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1 Introduction

Dynamic general equilibrium models of business cycles have implications for asset prices,
but the reverse is also true: asset prices tell us something about the dynamic structure of
the economy. But what?

The most striking feature of asset prices in this context is that they lead the business
cycle. While we sometimes summarize business cycles by saying “everything moves up
and down together,” a closer look tells us this isn’t quite true. Aggregate equity prices,
for example, are procyclical — they move up and down (on average) with GDP — but
they also lead the cycle. The contemporaneous correlation of broad equity indexes with
GDP (quarterly growth rates in both cases) is about 0.2, but the correlation with GDP
one or two quarters later is 0.4. Interest rates follow a similar pattern. Term spreads —
the difference between yields on 10-year and 3-month treasuries, for example — are more
highly correlated with future than current GDP growth. Even quantities exhibit modest
departures from strict synchronicity. All of these features of aggregate data have been
documented by others.

But what do these leads and lags tell us about the nature of business cycles? We think
they suggest an information mechanism: that agents (think “investors”) have information
about the near-term future of the economy that is reflected in asset prices, but not yet
in GDP. We illustrate this mechanism in a variant of the Kydland-Prescott (1982) model.
In standard versions of the model the information set consists of the current values of the
capital stock and productivity. With this information set, output, consumption, investment,
employment, and interest rates invariably move up and down together. Indeed, the Barro-
King (1984) challenge to business cycle theory is just that: to induce these variables to move
together, when shocks to anything but current productivity tend to drive at least some of
them in opposite directions.

We study these patterns of leads and lags in a business cycle model with two novel
features: recursive preferences and a predictable component in productivity growth. As
in Tallarini (2000), recursive preferences have essentially no impact on the behavior of
quantities, but they allow us to generate more realistic asset prices. The key ingredient is
the predictable component in productivity growth. As we have learned from Bansal and
Yaron (2004), even a small predictable component in quantities can have a significant impact
on asset prices. In our setting, a predictable component in productivity growth also affects
quantities. One might guess, for example, that an increase in expected future productivity
growth would raise current consumption and reduce employment and investment. The
question is whether this helps us reproduce the correlations we see in the data or destroys
the basic business cycle features of the model for reasons outlined by Barro and King. We’ll
leave you in suspense for now.

2 Leads and lags in US data

US time series data contains a number of well-documented leads and lags. We emphasize
asset prices: specifically equity prices and interest rates. The data are quarterly, 1960:1 to



2006:1. In most cases we look at quarterly growth rates, defined as log-differences (log xt−
log xt−1). The exceptions are interest rates and spreads, which we use as is, and occasional
centered year-on-year growth rates (log xt+2 − log xt−2), which we use to smooth the high-
frequency variation in many macroeconomic series. Year-on-year growth rates serve, in a
sense, as a poor man’s Hodrick-Prescott filter.

We describe the lead/lag pattern between two variables x and y with their cross-
correlation function,

rxy(k) = corr(xt, yt−k),

plotted as a function of k. If x is an indicator and y is (real) GDP growth, negative values
of k correspond to correlations of the indicator with future GDP growth. If the correlations
are large, we say the indicator leads GDP. Similarly, positive values of k correspond to
correlations of x with past GDP growth; large values suggest a lagging indicator.

Our first example is equity prices. We report cross-correlation functions for growth rates
of equity prices and GDP in Figure 1. The upper left panel uses the S&P 500 index; we see
that the peak in the ccf occurs at k = −1 with a correlation of 0.33, implying that equity
prices lead GDP by about a quarter. If we use the broader NYSE composite index, the
lead increases to 2 quarters with a maximum correlation of 0.33. The S&P 500 growth rate
minus the short rate (a crude excess return measure) and the growth rate of the Nasdaq
index are similar: they lead GDP by one or two quarters, with a maximum correlation
between 0.3 and 0.4. Returns on various equity portfolios (not reported) are similar: they
all lead GDP by one or two quarters. Correlations of year-on-year growth rates show a
similar lead, but the maximum correlations are somewhat larger (close to 0.5).

Interest rates also lead GDP, as we see in Figure 2. The most common form of this
relation involves the slope of yield curve. The cross-correlation function for “10y–3m” term
spread (the difference between the yield on 10-year treasuries and the 3-month treasury
bill rate) is pictured in the upper left panel. The maximum correlation (0.31) with GDP
growth occurs at k = −2, so the term spread leads GDP by about two quarters. The
correlation is positive, so a steep yield curve (large spread) is associated with rapid future
GDP growth, and a downward-sloping yield curve with slow growth. Using the year-on-year
GDP growth rate again increases the magnitude of the correlations but not the shape of
the cross-correlation function. The lower left panel suggests that most of the correlation
comes from the short rate. The final panel shows that using a real rate (we subtract an
inflation expectations measure from the 3-month rate) leads to the same pattern. We use
this relation in our theoretical work, since it incorporates the lead of interest rates over
GDP growth in a particularly simple form.

Quantities exhibit both higher correlations and more modest leads and lags. Consump-
tion (Figure 3) is more highly correlated with GDP than equity prices or interest rates (the
contemporaneous correlation is 0.63), but the correlations fall quickly with both leads and
lags. Both are different from familiar correlations constructed from Hodrick-Prescott fil-
tered data, where the contemporaneous correlations are larger and the decay rate smaller.
See, for example, Christiano and Eichenbaum (1992) and Kydland and Prescott (1982).
Evidently growth rates include more high-frequency noise than HP-filtered data. There’s
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also a slight tendency for consumption to lead GDP. In three of the four panels, the maxi-
mum correlation is contemporaneous (k = 0), but consumption growth leads GDP growth
in the sense that the correlation of consumption with future GDP is larger than that of
consumption with past GDP. The exception is consumption of services, which accounts for
more than half of total personal consumption. Its growth rate leads GDP’s by about a quar-
ter. Investment (Figure 4) is roughly contemporaneous, although equipment and software
leads GDP a little and non-residential structures lags. Employment (Figure 5) exhibits a
slight tendency to lag GDP. Although the maximum correlation is again contemporaneous,
employment growth is more strongly correlated with past GDP growth than future GDP
growth.

Similar features of US data have been reported in dozens, perhaps hundreds, of other
papers. Prominent recent examples include Ang, Piazzesi, and Wei (2006), Beaudry and
Portier (2006), King and Watson (1996), Rouwenhorst (1995), and Stock and Watson (1989,
2003). We think they are interesting from a theoretical perspective, since they suggest more
complex dynamics than most existing models possess.

3 A theoretical economy

Our theoretical economic environment is a variant of the Kydland-Prescott (1982) model,
a growth model with one good, physical capital, endogenous labor input, and shocks to
productivity. We make several changes to an otherwise streamlined version of their model:
preferences are recursive, production is CES, changes to the capital stock are subject to
costs of adjustment rather than time-to-build, and the productivity process has a unit root.
We describe each below, characterize the economy’s equilibrium with a Bellman equation,
and show how a growing economy can be expressed as a stationary one in scaled variables.

We use two notational conventions throughout. (i) We use letters with time subscripts
to denote values of variables at specific dates and the same letters without subscripts to
denote steady state values. Thus kt/yt is the capital-output ratio at date t and k/y is its
steady state value. (ii) We denote derivatives by (non-time) subscripts, so that fk is the
derivative of f with respect to k. Thus fkt is the value of the derivative evaluated at date-t
values of the variables on which it depends and fk (with no time subscript) is the derivative
evaluated at steady state values.

Our economy has a single agent who represents a continuum of like agents. The agent’s
preferences are given by the recursive utility function

Ut = V [ut, µt(Ut+1)],

where Ut is “utility from date t on;” ut is date-t (“current”) utility, a function of consumption
ct and leisure (1 − nt); and µt(Ut+1) is the certainty equivalent of future utility (the risk-
adjusted utility of Ut+1). For current utility, we follow Kydland and Prescott and use

ut = ct(1− nt)λ.
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We’ll see shortly that it’s essential that ut is proportional to ct (or the equivalent). To
accomodate growth, we assume that the time aggregator V and certainty equivalent function
µ are each homogeneous of degree one (hd1). More specifically, we use the constant elasticity
functions

V (ut, µt) = [(1− β)uρ
t + βµρ

t ]
1/ρ (1)

µt(Ut+1) =
[
EtU

α
t+1

]1/α
, (2)

with 0 < β < 1 and ρ, α < 1. When α = ρ, equations (1) and (2) are equivalent to additive
power utility. We refer to σ = 1/(1−ρ) as the intertemporal elasticity of substitution (IES)
and 1 − α as the coefficient of relative risk aversion (or simply risk aversion). This class
of preferences was proposed by Kreps and Porteus (1978); the constant elasticity versions
were suggested and applied to asset pricing by Epstein and Zin (1988) and Weil (1989).

The single good is produced with capital and labor, as described by the production
function

yt = f(kt, ztnt) = [ωkν
t + (1− ω)(ztnt)ν ]1/ν ,

where yt is output (GDP) at date t, kt is the stock of physical capital, and zt is labor
productivity (the shock that generates fluctuations in the model). The function f is homo-
geneous of degree one in k and n. The constant elasticity version on the right defines the
elasticity of substitution between capital and labor as 1/(1 − ν). The resource constraint
ties output to consumption and investment it:

yt = f(kt, ztnt) = ct + it. (3)

The law of motion for capital is

kt+1 = g(it, kt) = (1− δ)kt + kt[(it/kt)η(i/k)1−η − (1− η)(i/k)]/η, (4)

where g is also hd1. Strict convexity of g is equivalent to adjustment costs for capital, which
are necessary if the model is to generate realistic asset prices, particularly equity prices; see
Cochrane (1991). The constant elasticity version includes the parameters η ≤ 1, 0 < δ < 1
(“depreciation”), and i/k (the steady state ratio of investment to capital). Similar functions
have been used by Fernandez de Cordoba and Kehoe (2000) and Jermann (1999). If η = 1,
we have the familiar g(it, kt) = (1 − δ)kt + it. In this case, g is linear in both arguments
and its second derivatives are zero. But if η < 1, g is strictly concave, which implies costs
of adjusting the capital stock. Taken together, the components of technology lead to the
law of motion

kt+1 = g(yt − ct, kt) = g[f(kt, ztnt)− ct, kt], (5)

which is inherits linear homogeneity from f and g.

The final component of the economy is the process generating productivity. We start
with a vector x of exogenous state variables that have loglinear dynamics:

log xt+1 = (I −A) log x + A log xt + Bwt+1, (6)
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where {wt} ∼ NID(0, I), A is stable, and log x is vector of constants (the unconditional
mean of log xt). Productivity growth is the first element of x:

log zt+1 − log zt = log x1t+1

or

zt+1 = zt x1t+1 = zt e>1 xt+1, (7)

where e>1 = (1, 0, 0, ...). The unit root in log z is essential to generate realistic asset returns;
see Alvarez and Jermann (2005). If x is one-dimensional and A = 0, productivity growth
is white noise. Multiple dimensions and nonzero As allow us to generate a wide range of
behavior for actual and expected productivity growth.

We compute equilibrium quantities by solving a planning problem: choose consumption
and labor in each state to maximize utility subject to the laws of motion for capital and
productivity and initial conditions. We then compute prices, as needed, from marginal
rates of substitution and transformation at equilibrium quantities. The planning problem
is summarized by the Bellman equation

J(kt, xt, zt) = max
ct,nt

V
{
ct(1− nt)λ, µt[J(kt+1, xt+1, zt+1)]

}
(8)

subject to (5,6,7) and initial conditions.

The next step is to transform a growing economy into a stationary one, which extends
similar results in Christiano and Eichenbaum (1992), King, Plosser, and Rebelo (1988), and
Tallarini (2000) to a more general setting. In (8), growth in productivity means that the
economy is not stationary: other variables inherit the unit root of the productivity process.
That’s a problem, in practice, because we use local approximations of decision rules. The
solution is to transform the problem into one that is stationary in scaled variables. This
works because V , µ, f , and g are all hd1. A direct consequence is that the value function
J is hd1 in (k, z). To see this, suppose an hd1 J satisfies the Bellman equation. Since the
Bellman equation has a unique solution, J must be hd1. To see if this works, suppose the
J on the right is hd1 and we divide by a positive number a. Then the Bellman equation
becomes

J(kt, xt, zt) = max
ct/a,nt

aV
{
(ct/a)(1− nt)λ, µt[J(kt+1/a, xt+1, zt+1/a)]

}

subject to: kt+1/a = g[f(kt/a, nt)− ct/a, kt/a]
zt+1/a = (zt/a)x1t+1

plus (6) and initial conditions. Thus J(kt, xt, zt) = aJ(kt/a, xt, zt/a) and J is hd1. In
words: if we divide capital and productivity by two, we get half as much consumption and
still satisfy the Bellman equation.

Now consider dividing by zt. The challenge here is that the scaling differs across periods.
If we define the scaled variables k̃t = kt/zt and c̃t = ct/zt, we can rewrite the Bellman
equation as

J(k̃t, xt, 1) = max
c̃t

V
{
c̃t(1− nt)λ, µt[x1t+1J(k̃t+1, xt+1, 1)]

}
(9)

subject to: k̃t+1 = g[f(k̃t, nt)− c̃t), k̃t]/x1t+1
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plus (6) and initial conditions. Scaling this way introduces the productivity growth rate
x1t+1 = zt+1/zt into the law of motion for capital and the certainty equivalent of the Bellman
equation, but in other respects the problem is the same as one without growth. We use (9)
in what follows, with a slight change in notation: we drop the “1” from J .

4 Loglinear approximation

Models like this can be solved by a variety of methods. We use loglinear approximations to
the decision rules, which are relatively easy to derive and interpret. Similar approximations
are the norm in business cycle research, but recursive preferences raise enough new issues
that it’s worth describing the approximation method in some detail.

Our goal is a pair of approximate decision rules of the form

ĉt = hckk̂t + h>cxx̂t (10)
n̂t = hnkk̂t + h>nxx̂t, (11)

where (hck, hcx, hnk, hnx) are coefficients to be derived. By convention, the “hat” notation
refers to deviations of logarithms of variables from constant values: ĉt = log c̃t − log c̃, n̂t =
log nt− log n, k̂t = log k̃t− log k̃, x̂t = log xt− log x, and (c̃, n, k̃, x) (without time subscripts)
are constant values (the means of the logarithms). We compute an approximation “by hand”
following the route of Campbell (1994), Hansen and Sargent (1980), and Lettau (2003). The
key insight comes from Hansen and Sargent: in linear-quadratic control problems with a
single controllable state variable, the only complicated dynamics are those of that state
variable, and they do not depend on the behavior of the forcing variables. That means, in
our case, that hck can be derived independently of the process for productivity growth, so
that we can incorporate relatively complex dynamics into the productivity process without
comparable increase in the complexity of our calculations. We deal with additional issues
raised by recursive preferences using methods similar to Hansen, Heaton, and Li (2005) and
Uhlig (2006). Our theoretical economy is then (approximately) a vector autoregression in
(k̂, x̂) that we can study with linear time series methods.

The method

We’re looking for a solution to the scaled planning problem (9) with the functional forms
(1,2) for time and risk preference. To keep the notation manageable, let Jt = J(k̃t, xt),
Jkt = ∂J(k̃t, xt)/∂k̃t, and so on. The first-order conditions for c̃t and nt imply

(1− β)c̃ρ−1
t (1− nt)ρλ = βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1]git (12)

λ(1− β)c̃ρ
t (1− nt)ρλ−1 = βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1]gitfnt (13)

and the envelope condition for k̃t is

Jkt = J1−ρ
t βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1](gitfkt + gkt). (14)
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Note that these equations involve not only derivatives of the value function, but the value
function itself. In this respect, the problem with recursive preferences differs from one with
traditional additive preferences.

Our approach combines guess-and-verify with a ruthless determination to compute log-
linear approximations to equations that are not naturally loglinear. We guess a value
function of the form

log J(k̃t, xt) = log p0 + pk log k̃t + p>x log xt. (15)

With this guess, we derive an approximate solution in much the same way we solve linear-
quadratic problems:

1. Derive loglinear approximations of the laws of motion (5,6). This is where the ruthless
determination comes in: the sums that show up in the technology and the time aggre-
gator are not naturally loglinear, but with enough determination we can approximate
them by loglinear functions nonetheless.

2. Derive loglinear approximations of the first-order conditions (12,13). This uses the
value function guess (15) and the loglinear approximations of the laws of motion we
derived earlier. From them, we compute the coefficients of the decision rules (10,11)
as functions of the value function parameters.

3. Derive a loglinear approximation of the envelope condition (14) using the same inputs.
If we substitute the decision rules, we get Riccati-like equations that determine the
value function parameters (pk, px).

4. Solve the Riccati equations for the value function parameters. This is where the
Hansen-Sargent result comes in: pk is the solution to a quadratic equation that does
not depend on the properties of productivity growth. Given pk, px is linear.

5. Use value function parameters to compute the coefficients of the decision rules.

If the procedure is straightforward, the calculations are not. See Appendix B for the grue-
some details.

An example: the growth model

We illustrate the approximation method in what we term the growth model: a special case
in which the analytical burden is significantly lighter. We fix labor supply (by setting λ = 0)
and eliminate adjustment costs (by setting η = 1, which results in constant first derivatives
git = 1 and gkt = 1− δ). With these simplifications, the first-order and envelope conditions
become

(1− β)c̃ρ−1
t = βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1] (16)
Jkt = J1−ρ

t βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1](fkt + gkt). (17)
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Our objective is to use these two equations, the laws of motion, and the guess of the value
function to derive an approximate loglinear decision rule.

Despite the simplifications, the mathematical structure is similar to the full-blown
model. The first-order and envelope conditions, for example, contain both a certainty
equivalent and a conditional expectation — in fact, the same ones. We need loglinear
approximations of each. To see how this works, consider an arbitrary lognormal random
variable x whose logarithm is normal with mean κ1 and variance κ2. You should be able to
convince yourself that

E(x) = exp(κ1 + κ2/2)
E(xα) = exp(ακ1 + α2κ2/2)

µ(x) = [E(xα)]1/α = exp(κ1 + ακ2/2).

Note that the impact of risk (the κ2 terms) is multiplicative. Since risk is constant (this
changes when we introduce stochastic volatility), we can group these terms with the discount
factor in the first-order and envelope conditions. Apparently any change in risk or risk
aversion can be offset by changing the discount factor.

We use this insight (“ignore the variance”) to derive a loglinear approximation of

Mt ≡ βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1]

(think “M” for massive expression). Our value function guess (15) implies

Ĵt+1 + x̂1t+1 = pkk̂t+1 + (e1 + px)>x̂t+1

Ĵkt+1 = (pk − 1)k̂t+1 + p>x x̂t+1.

Using conditional means to evaluate the certainty equivalent and conditional expectation,
we find

M̂t = (ρpk − 1)Etk̂t+1 + [(ρ− 1)e1 + px]>Etx̂t+1

= −PkEtk̂t+1 + [(ρ− 1)e1 + ρpx]>Etx̂t+1,

where Pk = 1− ρpk is a convenient composite.

With this preliminary work out of the way, we follow the steps in order:

1. Loglinear approximation of the laws of motion. The forcing process is naturally log-
linear:

x̂t+1 = Ax̂t + Bwt+1.

The resource constraint (3) is approximated by

ŷt = (fkk/y)k̂t = (c/y)ĉt + (i/y)̂it ⇒ ît = (fkk/i)k̂t − (c/i)ĉt.

Therefore, the law of motion for capital can be written

k̂t+1 = (i/kx1)̂it + (gk/x1)k̂t − x̂1t+1

= [(fk + gk)/x1]k̂t − (c/kx1)ĉt − e>1 (Ax̂t + Bwt+1).
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and

M̂t = −Pk[(fk + gk)/x1]k̂t + Pk(c/kx1)ĉt + [(ρ− 1 + Pk)e1 + ρpx]>Ax̂t.

2. Loglinear approximation of the first-order condition. The loglinearized version of the
first-order condition (16) is

(ρ− 1)ĉt = M̂t,

which implies

[(ρ− 1)− Pk(c/kx1)]ĉt = −Pk[(fk + gk)/x1]k̂t + [(ρ− 1 + Pk)e1 + ρpx]>Ax̂t

[1 + σPk(c/kx1)]ĉt = σPk[(fk + gk)/x1]k̂t + [(1− σPk)e1 + (1− σ)px]>Ax̂t.

The second line follows the first from dividing by ρ− 1 = −1/σ, where σ is the IES.
Solving for ĉt, we see that the decision rule parameters are

hck =
σPk(fk + gk)/x1

1 + σPk(c/kx1)
, h>cx =

[(1− σPk)e1 + (1− σ)px]>A

1 + σPk(c/kx1)
(18)

These relations depend on the value function parameters, but both numerator and
denominator are linear in them.

3. Loglinear approximation of the envelope condition. The loglinearized version of the
envelope condition (17) is

Ĵkt + (ρ− 1)Ĵt = M̂t + d̂t,

where dt = fkt + gkt. The loglinear version of this expression is

d̂t = (fk + gk)−1fkkkk̂t.

If we substitute the intermediate results and collect terms, we have

−Pkk̂t + ρp>x x̂t = −Pk[(fk + gk)/x1]k̂t + Pk(c/kx1)ĉt

+ [(ρ− 1 + Pk)e1 + ρpx]>Ax̂t + (fk + gk)−1fkkkk̂t.

If we divide by ρ− 1 and substitute the decision rule (10) for ĉt, we get

σPkk̂t + (1− σ)p>x x̂t = σPk[(fk + gk)/x1]k̂t − σPk(c/kx1)(hckk̂t + h>cxx̂t)
+ [(1− σPk)e1 + (1− σ)px]>Ax̂t − σ(fk + gk)−1fkkkk̂t.

For this equation to hold for all (k̂t, x̂t), the coefficients must satisfy

k̂t : σPk = σPk(fk + gk)/x1 − σPk(c/kx1)hck − σ(fk + gk)−1fkkk

x̂t : (1− σ)p>x = −σPk(c/kx1)h>cx + [(1− σPk)e1 + (1− σ)px]>A.
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4. Solution of the Riccati equations. Given the decision rule coefficients (18), the previous
set of equations determines the parameters of the approximate value function, just as
in linear-quadratic problems. Note that the coefficients of k̂t, including those implicit
in hck, depend on Pk, but not on px or any other feature of the process for productivity
growth. This is the Hansen-Sargent result: we find Pk, hence pk and hck, without
reference to the shocks, including px. After substituting for hck, the coefficients of k̂t

imply

0 = σ2P 2
k (c/kx1) + σPk

[
1− (fk + gk)/x1 + σ(c/kx1)(fk + gk)−1fkkk

]

+ σ(fk + gk)−1fkkk. (19)

This is the Riccati equation, which we solve for Pk. Since the last term is negative, it
has one solution of each sign. We take the positive solution, so that the value function
is increasing in k̂. Given a solution for Pk, the solution for px is linear. If we define
q = 1 + σPk(c/kx1) > 1, then equating the x̂t terms gives us

(1− σ)p>x = (1− σPk)e>1 (q−1A)(I − q−1A)−1.

5. Calculation of decision rule. Now that we have the value function parameters, we
compute the decision rule coefficients from (18). The coefficients of the productivity
shock are

h>cx = (1− σPk)e>1 (q−1A)(I − q−1A)−1. (20)

Discussion

Now that we’ve worked our way through the algebra, we can step back and think about its
content. Some remarks:

Remark 1 (risk aversion). Tallarini (2000) shows that risk aversion (α in our notation) has
little effect on the behavior of quantities. In our version, the impact on the approximation
is exactly nil: α appears nowhere in our calculations. Why the difference? His model
has an IES of one and endogenous labor input, but neither of these differences matters.
The key difference is that he fixes the discount factor β, then allows the steady state to
change as he varies risk aversion. We instead fix the steady state, with the consequence
that risk aversion has no impact on the behavior of quantities: any change is implicitly
reversed by appropriate adjustment of the discount factor. Similar results are reported by
Kocherlakota (1990) and Hansen, Sargent, and Tallarini (1999). This is an approximation
result, to be sure, but related work by Campanale, Castro, and Clementi (2007) suggests
that the difference between the approximation and the true solution is small, even with
more complicated certainty equivalent functions. We’ll see shortly that risk aversion does
have an impact on asset prices and returns, so we can identify α and β that way.

If the irrelevance of risk aversion for the behavior of quantities seems like a disappoint-
ment (all this work for nothing?), we think of it as a strength: we can vary it as much as we
like without damaging the business cycle properties. Habits, in contrast, affect quantities as
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well as asset prices, which raises additional challenges in accounting for the joint behavior
of quantities and asset prices. See, for example, Boldrin, Christiano, and Fisher (2001) and
Jermann (1998).

Remark 2 (other loglinear approximation methods). Many loglinear aproximation methods,
including Tallarini’s, start with value functions that are quadratic in the logarithm of the
state, as in

J(log k) = p0 + pk(log k)2.

The derivative is therefore linear in log k. Value functions of this form are the industry
standard in business cycle research. With recursive preferences, Tallarini uses a result from
risk-sensitive control to evaluate the certainty equivalent of the value function when ρ = 0
(the IES is one). We use a value function like

J(k) = p0k
pk .

Here the logarithm of the derivative is linear in log k, which has similar analytical conve-
nience. With additive preferences, the two methods are identical. With recursive prefer-
ences, the loglinear structure allows us to compute certainty equivalents and expectations
as we did earlier.

Remark 3 (predictability of productivity growth). Equation (20) shows how predictability of
productivity growth affects the consumption decision, but it’s less than perfectly transpar-
ent. If A is a matrix of zeros, hcx is a vector of zeros: productivity growth is not predictable
and the current growth rate has no direct effect on consumption (although it does affect
consumption through the scaled capital stock). In general, the impact works like this:

h>cxx̂t = (1− σPk)e>1
(
q−1A + q−2A2 + q−3A3 + · · ·

)
x̂t

= (1− σPk)e>1
(
q−1Etx̂t+1 + q−2Etx̂t+2 + q−3Etx̂t+3 + · · ·

)

= (1− σPk)
∞∑

j=1

q−jEtx̂1t+j .

If we had characterized the solution as an expectational difference equation, as Hansen and
Sargent (1980) do, q would be the unstable root and the sum is would be the usual expected
discounted value of the future state. In our case, the sum expresses the impact of expected
future productivity growth on current consumption, which we interpret as an income effect:
higher expected future growth leads to more consumption now.

Remark 4 (equilibrium dynamics). The equilibrium dynamics of the state follow the linear
process

[
k̂t+1

x̂t+1

]
=

[
hkk h>kx

0 A

] [
k̂t

x̂t

]
+

[
−e>1 B

B

]
wt+1

or

st+1 = Asst + Bswt+1,
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where

hkk = [(fk + gk)/x1]− (c/kx1)hck, h>kx = −(c/kx1)h>cx − e>1 A.

The unconditional variance of the state is

G(0) = E
(
sts

>
t

)
= A∗G(0)A>∗ + BB>.

We compute G(0) iteratively using Hansen and Sargent’s (2005) Matlab program doublej.m.
Autocovariances follow from

G(k) = E
(
sts

>
t−k

)
=

{
Ak∗G(0) k > 0

G(0)(Ak∗)> k < 0.

Since G(−k) = G(k)>, positive k is sufficient. When we look at growth rates, we do the
same thing with the expanded state vector (st, st−1).

Remark 5 (intertemporal elasticity of substitution). The key parameter in the dynamics
of the capital stock is ρ: as ρ → −∞ [and σ = 1/(1 − ρ) → 0], hkk → 1. See Campbell
(1994). [Later: show this by expressing the Riccati equation in terms of hkk.] Since hkk

is the source of endogenous dynamics, it’s a critical feature to us. You see a similar effect
from the curvature of the production function: as fkk → 0, as it would if ν → 1 (we have
an “Ak” model in the limit), hkk → 1 .

Remark 6 (growth rates). We’re interested in (among other things) growth rates of various
macroeconomic variables: GDP, consumption, investment, and (later on) employment. We
compute them in our model from the dynamics of the state. The growth rate of GDP is

log yt − log yt−1 = ŷt − ŷt−1 + e>1 x̂t

= (fkk/y)(k̂t − k̂t−1) + e>1 x̂t.

Similarly, the growth rates of consumption and investment are, respectively,

log ct − log ct−1 = ĉt − ĉt−1 + e>1 x̂t

= hck(k̂t − k̂t−1) + h>cx(x̂t − x̂t−1) + e>1 x̂t

and

log it − log it−1 = ît − ît−1 + e>1 x̂t

= hik(k̂t − k̂t−1) + h>ix(x̂t − x̂t−1) + e>1 x̂t.

This last follows from the coefficients

hik = (fkk/i)− (c/i)hck, h>ix = −(c/i)h>cx.

Each expresses a growth rate as a linear function of st and st−1.

Remark 7 (interest rate). With these preferences and constant leisure, the pricing kernel is

mt+1 = β (ct+1/ct)
ρ−1 [Ut+1/µt(Ut+1)]

α−ρ .
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The (continuously-compounded one-period) real interest rate is

rt = − log Etmt+1.

With constant volatility, this is just

rt = constant + σ−1Et(ĉt+1 − ĉt + x̂1t+1)
= constant + σ−1hck(hkk − 1)k̂t + σ−1[hckh

>
kx + h>cx(A− I) + e>1 A]x̂t.

If A = 0, productivity growth is white noise and the second term is zero. The interest rate is
an AR(1), with persistence generated by the dynamics of the capital stock. Kaltenbrunner
and Lochstoer (2007) make a similar point. More generally, the interest rate reflects the
dynamics of both the capital stock and productivity growth.

5 Properties of the growth model

We show how the growth model works, starting with the growth model, the example from
the previous section. We consider the complete model in the next section. We start with
the benchmark case of white noise productivity growth, then go on to consider examples in
which productivity growth is predictable.

Parameter values

There’s some controversy about informal “calibration” exercises like this one. Perhaps it’s
best to confess up front that this is less than a serious statistical exercise. The model itself
differs from the US economy in many obvious respects: no government, no international
borrowing or lending, no variation in the relative price of consumption to investment goods,
no demographics, and so on. Nevertheless, our hope is that some of the properties of
the model will give us some insight into similar properties of the US and other aggregate
economies. In any case, most of the parameter values are common ones, taken in our case
from Kydland and Prescott (1982). We do our best later on to show that some of the
parameter values are central to the properties we report, but long experience suggests that
many are not.

Here’s a quick summary of the logic behind the parameter choices for the growth model:

• Preferences. We use Kydland and Prescott’s ρ = −0.5, which corresponds to an IES
of 2/3. There’s a range of opinion on this, so we’ll explore alternatives later. Labor
is fixed (λ = 0).

• Technology: production. Like most others, Kydland and Prescott use a Cobb-Douglas
production function. We imitate by setting ν = 0, but plan to explore this further at
some future date. The value of ω follows from data on capital’s share of gross domestic
income, which we label sk, and the capital-output ratio k/y. Kydland and Prescott
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use sk = 0.36, which we round to 1/3, and k/y = 10, but there are conceptual and
measurement issues with each. See, for example, the discussion in Gomme and Rupert
(2007). In the general case,

sk = fk(k/y) = ω(k/y)ν−1(k/y) = ω(k/y)ν .

With sk = 1/3 and ν = 0, we have ω = 1/3.

• Productivity growth. Our starting point is a random walk process for productivity:

log zt − log zt−1 = log x1t = x1 + Bwt+1.

This is more persistence than Kydland and Prescott (in their version, productivity
is persistent but stationary), but the random walk has been used by Christiano and
Eichenbaum (1992), King, Plosser, and Rebelo (1988), Tallarini (2000), and probably
many others. We use the Christiano-Eichenbaum number x1 = 1.004, the mean
growth rate of GDP per hour worked. As in these other papers, there are no dynamics
in productivity growth (A = 0). The conditional standard deviation is B = 0.015.
This comes from Kydland and Prescott (they have two components, whose combined
conditional standard deviation is about 0.01), scaled up by 3/2 because their process
is for total factor productivity, and ours is for labor productivity.

• Technology: law of motion. We use Kydland and Prescott’s δ = 0.025 and set η = 1,
which turns off the adjustment cost function.

These choices are summarized in Table 1.

With these inputs, we can compute numerical values for the various expressions used to
compute the solution. The derivatives of the technology are gk = 1 − δ and fk = sk(y/k).
The second derivative term is

fkkk = −(1− ν)ω(y/k)−ν [
1− ω(y/k)−ν]

= −(1− ν)(1− sk)sk(y/k) = −0.0222.

The steady state investment-to-capital ratio follows from equation (5):

x1 = 1− δ + (i/k),

or i/k = x1 − 1 + δ = 0.0290. Then (c/k) = (y/k)− (i/k) = 0.0710 and c/kx1 = 0.0707.

Properties of the benchmark version

The benchmark version of this model, with white noise productivity growth (A = 0), cannot
account for the leads and lags we see in US data. We focus on the cross-correlation between
the short rate and GDP growth, comparing the features of the model with those documented
in Section 2.

Growth rates in this model are largely a reflection of the shock. Growth rates of GDP,
consumption, and investment are each a combination of the white noise shock and a per-
sistent component due to capital dynamics, but with our parameters the former accounts
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for most of the variance. As a result, contemporaneous growth rates of consumption and
investment are highly correlated with GDP growth; see Figure 6. These contemporaneous
correlations overstate what we see in US data (compare Figures 3 and 4), an apparent result
of the one-shock process. In contrast, correlations at non-zero leads and lags are modest.
They’re not exactly zero, but they’re close.

The interest rate is much different from the growth rates: as expected consumption
growth, it inherits the persistent dynamics of capital accumulation. Its contemporaneous
correlation is positive (an increase in productivity raises the expected growth rate of con-
sumption and marginal product of capital). Correlations at leads and lags decline slowly,
reflecting the same dynamics.

Bottom line: this model, like most others in the literature, has the “everything moves
up and down together” property. All of this is pretty much built in; even relatively large
changes in parameter values have little impact on it.

Predictable productivity growth

We consider two processes with dynamics in productivity growth. The first is a two-period
lead, in which productivity growth is known two periods before it occurs. The second is
a combination of white noise and a predictable component designed to capture the useful
features of each.

The two-period information lead works like this: productivity growth is a random walk,
but it’s announced two periods in advance. The representative agent knows productivity
growth over the next two periods before making consumption and investment decisions. As a
result, consumption goes up immediately. Since output doesn’t change initially, investment
falls. The opposing movements in consumption and investment are a clear example of the
Barro-King result, and a sign that this isn’t the solution to our problem.

The interest rate doesn’t change much initially either, but expected future consumption
growth generates an increase in the expected future interest rate. In this model, we would
see an increase in the slope of the yield curve. The model thus reproduces the positive
correlation between the slope of the yield curve and future GDP growth that we saw in US
data.

Our last example is an attempt to combine the two: a productivity process that is
mostly a random walk, but has an additional predictable component that generates the
cross-correlation between the interest rate and GDP growth we see in the data. There are
lots of ways to do this; one that comes close is an ARMA(1,1) model that introduces a
persistent component in the spirit of Bansal and Yaron (2004):

x1t = (1− ϕ)x1 + ϕx1t−1 + wt − θwt−1.

A unit impulse generates the sequence: 1, ϕ + θ, ϕ(ϕ + θ), ϕ2(ϕ + θ). Thus ϕ governs the
persistence of this component and ϕ+ θ the magnitude. To get the negative correlation be-
tween the interest rate and GDP growth, we need ϕ+θ < 0, which means that productivity
overshoots: part of the initial increase is reversed in subsequent periods.
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We haven’t experimented extensively, but Figure 8 shows how this might work. We
set ϕ = 0.5 and θ = 0.8. As a result, we have something resembling the S-shaped cross-
correlation function we see in the data. Since the persistent component is smaller than the
initial shock, the correlations of consumption and investment with output remain strongly
positive. In this sense we have reconciled a predictable component of productivity growth
with the Barro-King challenge to business cycle theory.

6 Employment, adjustment costs, and stochastic volatility

[later.]

Employment dynamics

[Later. Back to the full-blown model. The interesting aspect of this version is that pre-
dictable increases in future productivity growth generate declines in current labor input
through the same income effect we saw with consumption. Too much of this will make
employment countercyclical a la Barro and King, but can a little bit generate dynamics like
Gali’s (1999)?]

Adjustment costs

[Later. Important mainly for equity prices, since it allows q to be different from 1.]

Multivariate productivity process

[Later. The idea is to allow different sources of information, which is apparent in yield curve
dynamics.]

Stochastic volatility

[Later. Breaks the observational equivalence result: recursive preferences play a central
role here. Example with white noise productivity growth but persistent volatility generates
interesting movements in interest rates and output: high volatility lowers the interest rate,
other things equal, without changing output. Mention Bloom (2007).]
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7 Related work

There’s lots of related work, we’ll discuss it some time. A quick list in the meantime:

• News about future productivity: Beaudry and Portier (2007), Jaimovich and Rebelo
(2006), Opazo (2006).

• Exotic preferences in business cycle models: Campanale, Castro, and Clementi (2007),
Croce (2006).

8 Final remarks

We’ve shown how modest changes to the Kydland-Prescott model can reproduce some of
the leads and lags evident in US macroeconomic data, particularly the tendency for interest
rates to lead GDP growth. Most of the work here is done by the productivity process,
which includes a small but important predictable component. Recursive preferences also
play a role when the conditional variance of productivity growth is stochastic. We use a
real model, but future work may explore the impact of monetary policy on this feature of
the data. Indeed, we would guess that one of the roles of monetary policy is to respond to
signals of future events, so in that sense this line of work would serve as a useful input.

All of these properties have been derived using a convenient loglinear approximation to
the equilibrium. This approach makes the calculations more transparent than usual and
helps us to understand the nature of the equilibrium dynamics. When we look at asset
prices, the loglinear approximation leads to the same kind of structure that has been used
so successfully in affine pricing models. As a result, it supplies an interpretation of their
parameters in terms of preferences, technology, and shocks.
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A Data definitions and sources

[Later.]

B Loglinear approximation

The objective is to approximate the solution of various business cycle models with loglinear
laws of motion and decision rules. The method follows the steps mentioned in Section 4,
but the algebra is more complicated than in the growth model.

[Work in progress.]

Endogenous labor input

Here we approximate the solution of the scaled planning problem (9) with decision rules of
the form (10,11).

Preliminaries. Most of the work is to compute loglinear approximations of various expres-
sions: first-order Taylor series in logs of variables. We start with the resource constraint
and laws of motion. The resource constraint (3) becomes (approximately)

ŷt = (fkk/y)k̂t + (fnn/y)n̂t

= (c/y)ĉt + (i/y)̂it
⇒ ît = (fkk/i)k̂t + (fnn/i)n̂t − (c/i)ĉt

Laws of motion. The law of motion (6) for the shocks is loglinear to start with:

x̂t+1 = Ax̂t + Bwt+1.

The law of motion (5) for capital implies

k̂t+1 = (i/kx1)̂it + (gk/x1)k̂t − x̂1t+1

= [(fk + gk)/x1]k̂t − (c/kx1)ĉt + (fnn/kx1)n̂t − e>1 x̂t+1.

The first line uses gi = 1, a common convention that is satisfied by our functional form.

First-order and envelope conditions. We start with the components and work up to the
conditions themselves. For example,

ĝit = giiîit + gikkk̂t

= (gik + giifk)kk̂t − (giic)ĉt + (giifnn)n̂t

f̂nt = (fnkk/fn)k̂t + (fnnn/fn)n̂t.
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For dt = gitfkt + gkt, we have

(fk + gk)d̂t = (fkk + fkgik + gkk)kk̂t + fknnn̂t + (fkgii + gki)îit
= (fkk + 2fkgik + gkk + f2

kgii)kk̂t − (fkgii + gki)cĉt + [fkn + fn(fkgii + gki)]nn̂t.

Now to the (approximate) value function (15). The loglinear approximation of next period’s
value function and its derivative are

Ĵt+1 = pkk̂t+1 + p>x x̂t+1

Ĵkt+1 = (pk − 1)k̂t+1 + p>x x̂t+1

With these inputs and the laws of motion, the loglinear approximation to

Mt ≡ βµt(x1t+1Jt+1)ρ−αEt[(x1t+1Jt+1)α−1Jkt+1]

is

M̂t = (ρpk − 1)
{
[(fk + gk)/x1]k̂t − (c/kx1)ĉt + (fnn/kx1)n̂t

}
+ ρ[px + (1− pk)e1]>Ax̂t.

We’ve essential replaced inputs with their conditional means and ignored the impact of risk
on the level, which is absorbed, in any case, in the discount factor β. We’ll return to this
when we consider asset pricing.

With these components, the first-order conditions have the loglinear approximations

(ρ− 1)ĉt − λρ[n/(1− n)]n̂t = M̂t + ĝit

ρĉt + (1− λρ)[n/(1− n)]n̂t = M̂t + ĝit + f̂nt

Collecting terms and substituting Pk = 1− ρpk, the first-order conditions become
[

(ρ− 1)− Pk(c/kx1) + giic −λρ[n/(1− n)] + Pk(fnn/kx1)− giifnn
ρ− Pk(c/kx1) + giic (1− λρ)[n/(1− n)] + Pk(fnn/kx1)− giifnn− fnnn/fn

] [
ĉt

n̂t

]

=

[
−Pk(fk + gk)/x1 + (gik + giifk)k ρ[(1− pk)e1 + px]>A

−Pk(fk + gk)/x1 + (gik + giifk + fnk/fn)k ρ[(1− pk)e1 + px]>A

] [
k̂t

x̂t

]
.

Similarly, the envelope condition becomes

(ρ− 1)Ĵt + Ĵkt = M̂t + d̂t

or

−Pkk̂t + ρp>x x̂t =
[
−Pk(fk + gk)/x1 + (fk + gk)−1(fkk + 2fkgik + gkk + f2

kgii)k
]
k̂t

+ ρ [(1− pk)e1 + px]>Ax̂t

+
[
Pk(c/kx1)− (fk + gk)−1(fkgii + gki)c

]
ĉt

+
[
−Pk(fnn/kx1) + (fk + gk)−1[fkn + fn(fkgii + gki)]n

]
n̂t
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or

0 =
[
−Pk[(fk + gk)/x1 − 1] + (fk + gk)−1(fkk + 2fkgik + gkk + f2

kgii)k
]
k̂t

+ ρ
[
(1− pk)e>1 − p>x (I −A)

]
x̂t

+
[
Pk(c/kx1)− (fk + gk)−1(fkgii + gki)c

]
ĉt

+
[
−Pk(fnn/kx1) + (fk + gk)−1[fkn + fn(fkgii + gki)]n

]
n̂t

This is a complete mess; its essential feature for our purposes is that all of these coefficients
are linear functions of the value function parameters (pk, px).

Riccati equation. [Later.]

Decision rules. [Later.]

Parameter values

[Later.]

Stochastic volatility

Here’s a simple stochastic volatility model, in which productivity growth has a constant
conditional mean but time-varying conditional variance. Let

vt+1 = (1− ϕ)v + ϕvt + τw0t+1

and replace wt+1 with v
1/2
t wt+1 in (6).

Quick and dirty version of the growth model. Work through the necessary conditions,
starting with Mt. Guess a value function of the form

log J(k̃t, xt) = log p0 + pk log k̃t + pvvt + p>x log xt.

Then

x̂1t+1 + Ĵt+1 = pkk̂t+1 + pvvt+1 + (e1 + px)>x̂t+1

= pk[k̂t − (c/kx1)ĉt] + pv[(1− ϕ)v + ϕvt + τw0t+1]

+ [(1− pk)e1 + px]>(Ax̂t + Bv
1/2
t wt+1).

All we care about are the vt terms. The certainty equivalent includes

pvϕvt + (ρ− α)α[(1− pk)e1 + px]>BB>[(1− pk)e1 + px]vt/2
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Now the expectation term:

(α− 1)(x̂1t+1 + Ĵt+1) + Ĵkt+1 = (αpk − 1)k̂t+1 + αpvvt+1 + [(α− 1)e1 + αpx]>x̂t+1

= (αpk − 1)[k̂t − (c/kx1)ĉt] + αpv[(1− ϕ)v + ϕvt + τw0t+1]

+ α[(1− pk)e1 + px]>(Ax̂t + Bv
1/2
t wt+1),

which generates the vt terms

αpvϕvt + α2[(1− pk)e1 + px]>BB>[(1− pk)e1 + px]vt/2.

Adding them together gives us

(1 + α)ϕpvvt + αρ[(1− pk)e1 + px]>BB>[(1− pk)e1 + px]vt/2.
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Table 1
Benchmark parameter values for the growth model

Parameter Value Source/comment

Preferences
λ 0 fixes labor supply
ρ −0.5 Kydland and Prescott (1982)
α — does not affect quantities
β — identified by endogenous

Technology: production
ν 0 Kydland and Prescott (1982)
ω 1/3 Kydland and Prescott (1982), rounded

Technology: capital accumulation
δ 0.025 Kydland and Prescott (1982)
η 1 Kydland and Prescott (1982)

Productivity growth
x1 1.004 Christiano and Eichenbaum (1992)
A 0 no predictable component
B = Var t(log x1t+1)1/2 0.015 Kydland and Prescott (1982), adjusted
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Figure 1
US data: cross-correlation functions for equity prices and GDP
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Figure 2
US data: cross-correlation functions for interest rates and GDP growth
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Figure 3
US data: cross-correlation functions for consumption and GDP
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Figure 4
US data: cross-correlation functions for investment and GDP
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Figure 5
US data: cross-correlation functions for employment and GDP
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Figure 6
Growth model: cross-correlation functions with random walk productivity
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Figure 7
Growth model: cross-correlation functions with two-period information
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Figure 8
Growth model: cross-correlation functions with persistent component
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