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Outline

Pictures: leads and lags in US data

Equations: the usual suspects + bells & whistles
Computations: loglinear approximation

More pictures: leads and lags in the model

Extensions
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Leads and lags in US data

Cross-correlation functions of GDP with

» Stock price indexes
> Interest rates and spreads
» Consumption and employment

US data, quarterly, 1960 to present

Quarterly growth rates (log x; — log x;_1) except

> Interest rates and spreads (used as is)
» Occasional year-on-year comparisons (log x¢+2 — log x¢—2)
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Leads and lags in data

Stock prices and GDP

Backus, Routledge, & Zin (NYU & CMU)

Lag Relative to GDP

Leads, lags, and logs
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Stock prices and GDP (year-on-year)

S&P 500 (yoy)
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Stock prices and GDP

S&P 500 S&P 500 minus Short Rate

Leads GDP Lags GDP
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Interest rates and GDP

Yield Spread (10y—3m) Yield Spread (GDP yoy)
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Consumption and GDP

Consumption Services
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Investment and GDP

Investment Structures
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Employment and GDP

Employment (Nonfarm Payroll) Employment (Household Survey)
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Leads and lags in data

Lead/lag summary

Things that lead GDP

» Stock prices
» Yield curve and short rate
» Maybe consumption (a little)

Things that lag GDP
» Maybe employment (a little)

Why?
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The usual suspects

(Almost) the usual equations

Streamlined Kydland-Prescott except

Recursive preferences (Kreps-Porteus/Epstein-Zin-Weil)
CES production
Adjustment costs

>
>
>
» Unit root in productivity
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The usual suspects

(Almost) the usual equations

Streamlined Kydland-Prescott except

Recursive preferences (Kreps-Porteus/Epstein-Zin-Weil)
CES production

Adjustment costs

Unit root in productivity

Predictable component in productivity growth

vV vy VY VvYYyYy
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The usual suspects

Preferences

Equations

Ut

ut

V(Ut,ﬂt)
:ut(Ut—i-l)

Interpretation

IES
CRRA

Backus, Routledge, & Zin (NYU & CMU)

Vut, pe(Usy1)]

Ct(]. — nt))‘

[(1 = B)uf + Bug]™”
(E:Ugyy) "

1/(1—p)
11—«

p = additive preferences
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The usual suspects

Technology: production

Equations
yr = f(ktaztnt)
= [wk’ + (1= w)(zene) 1M
yi = G+t

Interpretation

Elast of Subst = 1/(1—v)
Capital Share = w(y/k)™"
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The usual suspects

Technology: capital accumulation

Equations

kivi = g(it, ke)
(1= 8)ke + ke[(ie/ke)" (i / k)" = (L= n)(i/K)]/n

Interpretation

No adjustment costs if n = 1
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The usual suspects

Productivity
Equations
logxty1 = (I —A)logx+ Alog x¢ + Bwii1
{wt} ~ NID(0,1)
logzt11 —logzy = logxit1 (first element)
Interpretation
A = [0] = no predictable component
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Computation overview

Scaling

> Recast as stationary problem in “scaled” variables

Loglinear approximation

» Loglinearize value function (not log-quadratic)
» Loglinearize necessary conditions

» With constant variances, recursive preferences irrelevant to quantities

Backus, Routledge, & Zin (NYU & CMU) Leads, lags, and logs
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Computation overview

Scaling
> Recast as stationary problem in “scaled” variables

Loglinear approximation

» Loglinearize value function (not log-quadratic)

» Loglinearize necessary conditions
» With constant variances, recursive preferences irrelevant to quantities

A feature, not a bug!
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Scaling the Bellman equation

Key input: (V,pu,f,g) are hdl

Natural version

ke, xe,ze) = max 4 {Ct(]- - nt)/\;Mt[J(kt+1,Xt+1,Zt+1]}
subject to: ki1 = glf(ke,zent) — ct, ke)

plus productivity process & initial conditions

Scaled version [/~<t = ki/z¢, & = ¢t/ z

J(l?hxta]-) = EﬂanX V{Et(l_ ”t))‘,Mt[X1t+1J(/~<t+1,Xt+1,1)]}

subject to: /~<t+1 = g[f(/?tu ne) — &, /~<t]/X1t+1

plus productivity process & initial conditions
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Loglinear approximation

Objective: loglinear decision rules [IAQ = log ke — log k, etc]

& = hecke + hl %
e = hpcke + h,,TX?t
Key input:
log J(ke,xt) = po+ pxlog ke + p, log x:
Solution

» Brute force loglinearization of necessary conditions

» Riccati equation separable: first pg, then p,
» Lots of algebra, but separability allows you to do it by hand

18 / 35
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Necessary conditions

First-order conditions

_1(1—”t)p)\ = Mg
(1—”t)p)\_1 = M:gitfnt

(1-p)
A1 - pB)ef
Envelope condition

e = J):I_th(gitfkt+gkt)

“Massive expression”

My = B pe(xaes1desn)” “Eel(xaer1de01)® hea]
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Expectations and certainty equivalents

Example: let log x ~ N(k1, k2)
Expectations and certainty equivalents for lognormals

E(x) = exp(k1+k2/2)
E(x*) = exp(ars + a’ky/2)
w(x) = [EYY = exp(k1 + anz/2).

Effect of risk is multiplicative (like )
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Approximation: two flavors

Problem: find decision rule us = h(x;) satisfying
EtF(Xt7 Ug, Wt+1) = ]., W ~ N(O, /{2)

Judd + many others

» Taylor series expansion of F
» nth moment shows up in nth-order term

Us + much of modern finance

» Taylor series expansion of f = log F in
E; exp[f (X, ug, wey1)] = 1

» All moments show up even in linear approximation

Backus, Routledge, & Zin (NYU & CMU) Leads, lags, and logs
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Approximation: example

Linear “perturbation” method

> Linear approximation of F

F(xe,ur,wer1) = F 4 Fe(xe — x) + Fu(ur — u) + Fuwipr
EF =1 = u—u=(1-F)/F,—(Fx/F,)(xt — x)

» Decision rule doesn't depend on variance of w (or higher moments)

“Affine” finance method

» Linear approximation of f = log F

f(Xt, Ug, Wt+1) = f + fX(Xt — X) + fu(ut - U) + fWWt+1
Erexp(f) =1 = u—u = —(f+ fura/2)/fy, — (/Fs)(xt — x)

» Note impact of variance v (higher moments would show up, too)
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Loglinear approximation revisited

Decision rules are linear in s; = [kg, X¢]
¢t = hesse, Ny = hpsse

Controlled law of motion is linear

st41 = AsSt + Bswiia
Pricing kernel is loglinear

logmer1 = log B+ (p—1)log(cri1/ct)
+ (a — p)log [Urs1/pe(Urs1)]
~ constant + hmsSt + Amw Weit1

Note: affine bond model a la Ang, Piazzesi, et al.
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Leads and lags in models

Leads and lags in the model: overview

Growth model: no labor or adjustment costs

Three processes for productivity growth

» Random walk (A = 0)
» Two-period lead
» Small predictable component

The challenge
» Barro and King

Backus, Routledge, & Zin (NYU & CMU) Leads, lags, and logs
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Leads and lags in models

Random walk: impulse responses
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Leads and lags in models

Random walk: cross correlations
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Leads and lags in models

Two-period lead: cross correlations
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Leads and lags in models

Predictable component: cross correlations
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Summary and extensions

Summary

» Data: interest rates lead the cycle
» Model: ditto from predictable component in productivity growth

Extensions

» Labor dynamics: Gali's result?
» Stochastic volatility
» Could this result from endogenous dynamics? Monetary policy?
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Related work

Leads and lags in data

» Ang-Piazzesi-Wei, Beaudry-Portier, King-Watson, Stock-Watson

Predictable components in models

» Bansal-Yaron, Jaimovich-Rebelo

(Log)linear approximation

» Campbell, Hansen-Sargent, Lettau, Tallarini, Uhlig

Kreps-Porteus pricing kernels

» Hansen-Heaton-Li, Weil
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Extra slides

Autocorrelations of quarterly growth rates

Autocorrelations of Growth Rates
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Extra slides

Random walk: autocorrelations
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Extra slides

Predictable component: autocorrelations
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Extra slides

Predictable component: impulse responses
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Theory and reality (circa 1964)

Realist MaclLeod:

» Mundell’s article [ignores] complications associated with speculation in
the forward market. It can only bring discredit on the economics
profession to leave unchallenged his attempt to draw from the model
policy conclusions that are applicable in the real world.
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Theory and reality (circa 1964)

Realist MaclLeod:

» Mundell’s article [ignores] complications associated with speculation in
the forward market. It can only bring discredit on the economics
profession to leave unchallenged his attempt to draw from the model
policy conclusions that are applicable in the real world.

Theorist Mundell:

» Theory is the poetry of science. It is simplification, abstraction, the
exaggeration of truth, a caricature of reality. Dr McLeod calls my
assumptions unrealistic. | certainly hope he is right. | left out a million
variables that made my caricature of reality unrealistic. At the same
time, it enabled me to find fruitful, but refutable, empirical
generalizations.
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