Lecture 19
Observability and state estimation

• state estimation
• discrete-time observability
• observability – controllability duality
• observers for noiseless case
• continuous-time observability
• least-squares observers
• example
State estimation set up

we consider the discrete-time system

\[x(t + 1) = Ax(t) + Bu(t) + w(t), \quad y(t) = Cx(t) + Du(t) + v(t) \]

• \(w \) is state disturbance or noise
• \(v \) is sensor noise or error
• \(A, B, C, \) and \(D \) are known
• \(u \) and \(y \) are observed over time interval \([0, t - 1]\)
• \(w \) and \(v \) are not known, but can be described statistically, or assumed small (e.g., in RMS value)
State estimation problem

state estimation problem: estimate $x(s)$ from

$$u(0), \ldots, u(t-1), y(0), \ldots, y(t-1)$$

- $s = 0$: estimate initial state
- $s = t - 1$: estimate current state
- $s = t$: estimate (i.e., predict) next state

An algorithm or system that yields an estimate $\hat{x}(s)$ is called an *observer* or *state estimator*

$\hat{x}(s)$ is denoted $\hat{x}(s|t-1)$ to show what information estimate is based on (read, “$\hat{x}(s)$ given $t-1$”)
Noiseless case

Let’s look at finding \(x(0) \), with no state or measurement noise:

\[
x(t + 1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t)
\]

With \(x(t) \in \mathbb{R}^n \), \(u(t) \in \mathbb{R}^m \), \(y(t) \in \mathbb{R}^p \)

Then we have

\[
\begin{bmatrix}
y(0) \\
\vdots \\
y(t-1)
\end{bmatrix} = O_t x(0) + T_t
\begin{bmatrix}
u(0) \\
\vdots \\
u(t-1)
\end{bmatrix}
\]
where

$$\mathcal{O}_t = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{t-1} \end{bmatrix}, \quad \mathcal{T}_t = \begin{bmatrix} D & 0 & \cdots \\ CB & D & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots \\ CA^{t-2}B & CA^{t-3}B & \cdots & CB & D \end{bmatrix}$$

- \mathcal{O}_t maps initials state into resulting output over $[0, t - 1]$
- \mathcal{T}_t maps input to output over $[0, t - 1]$

hence we have

$$\mathcal{O}_t x(0) = \begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} - \mathcal{T}_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix}$$

RHS is known, $x(0)$ is to be determined
hence:

- can uniquely determine $x(0)$ if and only if $\mathcal{N}(O_t) = \{0\}$
- $\mathcal{N}(O_t)$ gives ambiguity in determining $x(0)$
- if $x(0) \in \mathcal{N}(O_t)$ and $u = 0$, output is zero over interval $[0, t - 1]$
- input u does not affect ability to determine $x(0)$; its effect can be subtracted out
Observability matrix

by C-H theorem, each A^k is linear combination of A^0, \ldots, A^{n-1}

hence for $t \geq n$, $\mathcal{N}(\mathcal{O}_t) = \mathcal{N}(\mathcal{O})$ where

$$
\mathcal{O} = \mathcal{O}_n = \begin{bmatrix}
C \\
CA \\
\vdots \\
CA^{n-1}
\end{bmatrix}
$$

is called the observability matrix

if $x(0)$ can be deduced from u and y over $[0, t - 1]$ for any t, then $x(0)$ can be deduced from u and y over $[0, n - 1]$

$\mathcal{N}(\mathcal{O})$ is called unobservable subspace; describes ambiguity in determining state from input and output

system is called observable if $\mathcal{N}(\mathcal{O}) = \{0\}$, i.e., $\text{Rank}(\mathcal{O}) = n$
Observability – controllability duality

let \((\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})\) be dual of system \((A, B, C, D)\), i.e.,

\[
\tilde{A} = A^T, \quad \tilde{B} = C^T, \quad \tilde{C} = B^T, \quad \tilde{D} = D^T
\]

controllability matrix of dual system is

\[
\tilde{C} = \left[\tilde{B} \ A \tilde{B} \ T \cdot \tilde{A} \ n \ \tilde{B} \right]
\]
\[
= \left[C^T \ A^T C^T \ ... \ (A^T)^n \ C^T \right]
\]
\[
= \mathcal{O}^T,
\]

transpose of observability matrix

similarly we have \(\tilde{O} = C^T\)
thus, system is observable (controllable) if and only if dual system is controllable (observable)

in fact,

\[\mathcal{N}(\mathcal{O}) = \text{range}(\mathcal{O}^T)^\perp = \text{range}(\tilde{\mathcal{O}})^\perp \]

\text{i.e., unobservable subspace is orthogonal complement of controllable subspace of dual}
Observers for noiseless case

suppose $\text{Rank}(O_t) = n$ (i.e., system is observable) and let F be any left inverse of O_t, i.e., $FO_t = I$

then we have the observer

$$x(0) = F \left(\begin{bmatrix} y(0) \\ \vdots \\ y(t-1) \end{bmatrix} - T_t \begin{bmatrix} u(0) \\ \vdots \\ u(t-1) \end{bmatrix} \right)$$

which deduces $x(0)$ (exactly) from u, y over $[0, t-1]$

in fact we have

$$x(\tau - t + 1) = F \left(\begin{bmatrix} y(\tau - t + 1) \\ \vdots \\ y(\tau) \end{bmatrix} - T_t \begin{bmatrix} u(\tau - t + 1) \\ \vdots \\ u(\tau) \end{bmatrix} \right)$$

Observability and state estimation
i.e., our observer estimates what state was $t - 1$ epochs ago, given past $t - 1$ inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter, with inputs u and y, and output \hat{x}
Invariance of unobservable set

fact: the unobservable subspace \(\mathcal{N}(\mathcal{O}) \) is invariant, *i.e.*, if \(z \in \mathcal{N}(\mathcal{O}) \), then \(Az \in \mathcal{N}(\mathcal{O}) \)

proof: suppose \(z \in \mathcal{N}(\mathcal{O}) \), *i.e.*, \(CA^k z = 0 \) for \(k = 0, \ldots, n-1 \)

evidently \(CA^k(Az) = 0 \) for \(k = 0, \ldots, n-2 \);

\[
CA^{n-1}(Az) = CA^n z = - \sum_{i=0}^{n-1} \alpha_i CA^i z = 0
\]

(by C-H) where

\[
\det(sI - A) = s^n + \alpha_{n-1}s^{n-1} + \cdots + \alpha_0
\]
Continuous-time observability

continuous-time system with no sensor or state noise:

\[\dot{x} = Ax + Bu, \quad y = Cx + Du \]

can we deduce state \(x \) from \(u \) and \(y \)?

let’s look at derivatives of \(y \):

\[
\begin{align*}
 y &= Cx + Du \\
 \dot{y} &= C\dot{x} + D\dot{u} = CAx + CBu + D\dot{u} \\
 \ddot{y} &= CA^2x + CABu + CB\ddot{u} + D\ddot{u}
\end{align*}
\]

and so on
hence we have
\[
\begin{bmatrix}
y \\
y' \\
\vdots \\
y^{(n-1)}
\end{bmatrix}
= O x + T
\begin{bmatrix}
u \\
u' \\
\vdots \\
u^{(n-1)}
\end{bmatrix}
\]

where O is the observability matrix and

\[
T =
\begin{bmatrix}
D & 0 & \cdots \\
CB & D & 0 & \cdots \\
\vdots \\
CA^{n-2}B & CA^{n-3}B & \cdots & CB & D
\end{bmatrix}
\]

(same matrices we encountered in discrete-time case!)
rewrite as

$$Ox = \begin{bmatrix} y \\
y' \\
\vdots \\
y^{(n-1)} \end{bmatrix} - T \begin{bmatrix} u \\
u' \\
\vdots \\
u^{(n-1)} \end{bmatrix}$$

RHS is known; x is to be determined

hence if $\mathcal{N}(O) = \{0\}$ we can deduce $x(t)$ from derivatives of $u(t), y(t)$ up to order $n - 1$

in this case we say system is observable

can construct an observer using any left inverse F of O:

$$x = F \left(\begin{bmatrix} y \\
y' \\
\vdots \\
y^{(n-1)} \end{bmatrix} - T \begin{bmatrix} u \\
u' \\
\vdots \\
u^{(n-1)} \end{bmatrix} \right)$$
• reconstructs $x(t)$ (exactly and instantaneously) from

$$u(t), \ldots, u^{(n-1)}(t), y(t), \ldots, y^{(n-1)}(t)$$

• derivative-based state reconstruction is dual of state transfer using impulsive inputs
A converse

suppose \(z \in \mathcal{N}(\mathcal{O}) \) (the unobservable subspace), and \(u \) is any input, with \(x, y \) the corresponding state and output, \(i.e.\),

\[
\dot{x} = Ax + Bu, \quad y =Cx + Du
\]

then state trajectory \(\tilde{x} = x + e^{tA}z \) satisfies

\[
\dot{\tilde{x}} = A\tilde{x} + Bu, \quad y = C\tilde{x} + Du
\]

\(i.e.\), input/output signals \(u, y \) consistent with both state trajectories \(x, \tilde{x} \)

hence if system is unobservable, no signal processing of any kind applied to \(u \) and \(y \) can deduce \(x \)

unobservable subspace \(\mathcal{N}(\mathcal{O}) \) gives fundamental ambiguity in deducing \(x \) from \(u, y \)
least-squares observers

discrete-time system, with sensor noise:

\[x(t + 1) = Ax(t) + Bu(t), \quad y(t) = Cx(t) + Du(t) + v(t) \]

we assume \(\text{Rank}(O_t) = n \) (hence, system is observable)

least-squares observer uses pseudo-inverse:

\[
\hat{x}(0) = O_t^\dagger \left(\begin{bmatrix} y(0) \\ \vdots \\ y(t - 1) \end{bmatrix} - T_t \begin{bmatrix} u(0) \\ \vdots \\ u(t - 1) \end{bmatrix} \right)
\]

where \(O_t^\dagger = (O_t^T O_t)^{-1} O_t^T \)
interpretation: $\hat{x}_{ls}(0)$ minimizes discrepancy between

- output \hat{y} that *would be* observed, with input u and initial state $x(0)$ (and no sensor noise), and

- output y that *was* observed,

measured as

$$\sum_{\tau=0}^{t-1} \| \hat{y}(\tau) - y(\tau) \|^2$$

can express least-squares initial state estimate as

$$\hat{x}_{ls}(0) = \left(\sum_{\tau=0}^{t-1} \sum_{\tau=0}^{t-1} (A^T)^\tau C^T C A^\tau \right)^{-1} \sum_{\tau=0}^{t-1} (A^T)^\tau C^T \hat{y}(\tau)$$

where \hat{y} is observed output with portion due to input subtracted:

$\tilde{y} = y - h \ast u$ where h is impulse response
Least-squares observer uncertainty ellipsoid

since $\mathcal{O}_t \mathcal{O}_t^\dagger = I$, we have

$$\tilde{x}(0) = \hat{x}_{1s}(0) - x(0) = \mathcal{O}_t^\dagger \begin{bmatrix} v(0) \\ \vdots \\ v(t-1) \end{bmatrix}$$

where $\tilde{x}(0)$ is the estimation error of the initial state

in particular, $\hat{x}_{1s}(0) = x(0)$ if sensor noise is zero
(i.e., observer recovers exact state in noiseless case)

now assume sensor noise is unknown, but has RMS value $\leq \alpha$,

$$\frac{1}{t} \sum_{\tau=0}^{t-1} \|v(\tau)\|^2 \leq \alpha^2$$
set of possible estimation errors is ellipsoid

\[\tilde{x}(0) \in \mathcal{E}_{\text{unc}} = \left\{ \mathcal{O}_t^\dagger \begin{bmatrix} v(0) \\ \vdots \\ v(t-1) \end{bmatrix} \mid \frac{1}{t} \sum_{\tau=0}^{t-1} \|v(\tau)\|^2 \leq \alpha^2 \right\} \]

\(\mathcal{E}_{\text{unc}} \) is ‘uncertainty ellipsoid’ for \(x(0) \) (least-square gives best \(\mathcal{E}_{\text{unc}} \))

shape of uncertainty ellipsoid determined by matrix

\[(\mathcal{O}_t^T \mathcal{O}_t)^{-1} = \left(\sum_{\tau=0}^{t-1} (A^T)^\tau C^T C A^\tau \right)^{-1} \]

maximum norm of error is

\[\|\hat{x}_{1s}(0) - x(0)\| \leq \alpha \sqrt{t} \|\mathcal{O}_t^\dagger\| \]
Infinite horizon uncertainty ellipsoid

the matrix

\[P = \lim_{t \to \infty} \left(\sum_{\tau=0}^{t-1} (A^T)^{\tau} C^T C A^{\tau} \right)^{-1} \]

always exists, and gives the limiting uncertainty in estimating \(x(0) \) from \(u, y \) over longer and longer periods:

- if \(A \) is stable, \(P > 0 \)
 \(i.e., \) can’t estimate initial state perfectly even with infinite number of measurements \(u(t), y(t), t = 0, \ldots \) (since memory of \(x(0) \) fades . . .)

- if \(A \) is not stable, then \(P \) can have nonzero nullspace
 \(i.e., \) initial state estimation error gets arbitrarily small (at least in some directions) as more and more of signals \(u \) and \(y \) are observed
Example

- particle in \mathbb{R}^2 moves with uniform velocity
- (linear, noisy) range measurements from directions $-15^\circ, 0^\circ, 20^\circ, 30^\circ$, once per second
- range noises IID $\mathcal{N}(0, 1)$; can assume RMS value of v is not much more than 2
- no assumptions about initial position & velocity

problem: estimate initial position & velocity from range measurements
express as linear system

\[
x(t + 1) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x(t), \quad y(t) = \begin{bmatrix} k_1^T \\ \vdots \\ k_4^T \end{bmatrix} x(t) + v(t)
\]

• \((x_1(t), x_2(t))\) is position of particle

• \((x_3(t), x_4(t))\) is velocity of particle

• can assume RMS value of \(v\) is around 2

• \(k_i\) is unit vector from sensor \(i\) to origin

true initial position & velocities: \(x(0) = (1 - 3 - 0.04 0.03)\)
range measurements (& noiseless versions):

measurements from sensors 1 – 4
• estimate based on \((y(0), \ldots, y(t))\) is \(\hat{x}(0|t)\)

• actual RMS position error is

\[
\sqrt{(\hat{x}_1(0|t) - x_1(0))^2 + (\hat{x}_2(0|t) - x_2(0))^2}
\]

(similarly for actual RMS velocity error)
RMS position error

RMS velocity error

Observability and state estimation
Continuous-time least-squares state estimation

assume \(\dot{x} = Ax + Bu, \ y = Cx + Du + v \) is observable

least-squares estimate of initial state \(x(0) \), given \(u(\tau), y(\tau), 0 \leq \tau \leq t \):
choose \(\hat{x}_{ls}(0) \) to minimize integral square residual

\[
J = \int_0^t \| \tilde{y}(\tau) - Ce^{\tau A}x(0) \|^2 \ d\tau
\]

where \(\tilde{y} = y - h \ast u \) is observed output minus part due to input

let’s expand as \(J = x(0)^T Q x(0) + 2r^T x(0) + s \),

\[
Q = \int_0^t e^{\tau A^T} C^T Ce^{\tau A} \ d\tau, \quad r = \int_0^t e^{\tau A^T} C^T \tilde{y}(\tau) \ d\tau,
\]

\[
s = \int_0^t \tilde{y}(\tau)^T \tilde{y}(\tau) \ d\tau
\]
setting $\nabla x(0)J$ to zero, we obtain the least-squares observer

$$\hat{x}_{ls}(0) = Q^{-1}r = \left(\int_0^t e^{\tau A^T} C^T C e^{\tau A} d\tau \right)^{-1} \int_0^t e^{A^T \tau} C^T \tilde{y}(\tau) d\tau$$

estimation error is

$$\tilde{x}(0) = \hat{x}_{ls}(0) - x(0) = \left(\int_0^t e^{\tau A^T} C^T C e^{\tau A} d\tau \right)^{-1} \int_0^t e^{\tau A^T} C^T v(\tau) d\tau$$

therefore if $v = 0$ then $\hat{x}_{ls}(0) = x(0)$