Recursive Models of Dynamic Linear Economies
Recursive Models of Dynamic Linear Economies

Lars Peter Hansen
University of Chicago

Thomas J. Sargent
New York University
and
Hoover Institution
Contents

Acknowledgements x

Preface xi

Part I: Overview

1. Theory and Econometrics 3

Part II: Tools

2. Linear Stochastic Difference Equations 17
 2.1. Introduction. 2.2. Notation and Basic Assumptions. 2.3. Prediction Theory. 2.4. Transforming Variables to Uncouple Dynamics. 2.4.1. Deterministic Seasonals. 2.4.2. Indeterministic Seasonals. 2.4.3. Univariate Autoregressive Processes. 2.4.4. Vector Autoregressions. 2.4.5. Polynomial Time Trends. 2.4.6. Martingales with Drift. 2.4.7. Covariance Stationary Processes. 2.4.8. Multivariate ARMA Processes. 2.4.9. Prediction of a Univariate First-Order ARMA. 2.4.10. Growth. 2.4.11. A Rational Expectations Model. 2.4.12. Method of Undetermined Coefficients. 2.5. Concluding Remarks.
3. Efficient Computations

3.1. Introduction. 3.2. The Optimal Linear Regulator Problem. 3.3. Transformations to Eliminate Discounting and Cross-Products. 3.4. Stability Conditions. 3.5. Invariant Subspace Methods. 3.5.1. Px as Lagrange Multiplier. 3.5.2. Invariant Subspace Methods. 3.6. Doubling Algorithm. 3.7. Partitioning the State Vector. 3.8. Periodic Optimal Linear Regulator. 3.9. A Periodic Doubling Algorithm. 3.9.1. Partitioning the State Vector. 3.10. Linear Exponential Quadratic Gaussian Control. 3.10.1. Doubling Algorithm for a Risk-Sensitive Problem. A. Concepts of Linear Control Theory. B. Symplectic Matrices. C. Alternative Forms of Riccati Equation.

Part III: Components of Economies

4. Economic Environments

4.1. Information. 4.2. Taste and Technology Shocks. 4.3. Production Technologies. 4.4. Examples of Production Technologies. 4.4.1. Other Technologies. 4.5. Household Technologies. 4.6. Examples of Household Technologies. 4.7. Square Summability. 4.8. Summary.

5. Optimal Resource Allocations

6. A Commodity Space

7. Competitive Economies

Part IV: Representations and Properties

8. Statistical Representations

9. Canonical Household Technologies

9.1. Introduction. 9.2. Definition of a Canonical Household Technology. 9.3. Dynamic Demand Functions. 9.3.1. Wealth and the Multiplier μ^w_0. 9.3.2. Dynamic Demand System. 9.3.3. Gorman Aggregation and Engel curves. 9.3.4. Re-Opened Markets. 9.4. Computing Canonical Representations. 9.4.1. Basic Idea. 9.4.2. An Auxiliary Problem Induces a Canonical Representation. 9.5. An Operator Identity. 9.6.
Contents

10. Examples

11. Permanent Income Models

12. Gorman Heterogeneous Households

13. Complete Markets Aggregation
The Aggregate Preference Shock Process. 13.9.1. Interpretation of \(\hat{s}_t \) Component. 13.10. Initial Conditions.

14. Periodic Models of Seasonality 301

A. MATLAB Programs 339

15. References 391

16. Subject Index 407

17. Author Index 411

18. MATLAB Index 413
Acknowledgements

For helpful discussions and research assistance, we thank Evan Anderson, Saki Bigio, Ross Doppelt, Casey Mulligan, Martin Schneider, Thomas Tallarini, Pierre-Olivier Weill, François Velde, Neng Wang, and Chi Wa Yuen. We thank Bilal Kamal for excellent help in proof reading and criticizing the manuscript. We thank François Velde for writing \TeX macros that we used to typeset this book. We thank Richard Blundell for insightful comments and corrections.
Preface

In 1992, Carolyn Sargent said “You are writing the second edition of your book before you have published the first.” Her assertion was correct. We wrote ninety percent of this book between 1988 and 1994, but completed it only in 2012. Richard Blundell’s invitation to deliver the Gorman Lectures at University College London convinced us to abandon our earlier intentions to publish this book only after we had implemented the many improvements that we still know are possible.

James Tobin said that macroeconomics, or what he also liked to call aggregate economics, is a subject that ignores distribution effects. Tobin referred to theories of prices, interest rates, and aggregate quantities that are self-contained in the sense that they restrict aggregate quantities without needing also to determine distributions of quantities across people. The great economist Sherwin Rosen said that ‘the whole damn subject of economics is macroeconomics.’ His quip aptly describes Sherwin’s models of markets for cattle, houses, and workers, all of which are cast in terms of demand and supply functions best thought of as describing behaviors of representative agents. Big parts of macroeconomics, but not all, continue to ignore distribution effects in the analytical tradition of Tobin and Rosen. (See Ljungqvist and Sargent (2012) for an introduction to some models now routinely used by macroeconomists and in which heterogeneity across consumers plays a big part.)

Though some of our leading examples are about microeconomic topics, this book is mostly about macroeconomics in the sense of Tobin and Rosen, the models being cast in terms of a representative consumer. Such models are useful but restrictive. More general structures with heterogeneous consumers do not possess a representative household of the type that this book extensively uses to facilitate analysis of aggregate quantities and prices. This book demonstrates the analytical benefits acquired when an aggregate analysis is possible, but characterizes how restrictive are the assumptions under which there exists the representative household that justifies a purely aggregative analysis.
Thus, for us, among the most interesting parts of this book are two chapters about different ways of aggregating heterogeneous households’ preferences into a representative household and the senses in which they do or don’t justify an aggregative economic analysis. These chapters extend ideas of W.M. Gorman to a particular dynamic setting. We attempt to honor W.M. Gorman by thinking hard about his ideas.
Part I

Overview
Chapter 1
Theory and Econometrics

Complete market economies are all alike . . .

1.1. Introduction

Economic theory can identify patterns that unite apparently diverse subjects. Consider the following list of economic models:

1. Ryoo and Rosen’s (2004) partial equilibrium model of the market for engineers;
2. Rosen, Murphy, and Scheinkman’s (1994) model of cattle cycles;
3. Lucas’s (1978) model of asset prices;
4. Brock and Mirman’s (1972) and Hall’s (1978) model of the permanent income theory of consumption;
5. Time-to-build models of business cycles;
7. Rosen and Topel’s (1988) model of the dynamics of house prices and quantities;
8. Theories of dynamic demand curves;
9. Theories of dynamic supply curves;
10. Lucas-Prescott’s (1972) model of investment under uncertainty, . . . and many more.

These models have identical structures because all describe competitive equilibria with complete markets. This is the meaning of the remark with which we have chosen to begin this book. Lucas refers to the fact that complete markets models are cast in terms of a common set of objects and a common set of assumptions about how those objects fit together, namely:

1. Descriptions of flows of information over time, of endowments of resources, and of commodities that can be traded.

1 Unity goes only so far. The words comprising the . . . in Lucas’s sentence are “but each incomplete market economy is incomplete in its own individual way.”

- 3 -
2. A technology for transforming endowments into commodities and an associated set of feasible allocations.
3. A list of people and their preferences over feasible allocations.
4. An assignment of endowments to people, a price system, and a single budget constraint for each person.\footnote{A single budget constraint for each person is a tell-tale sign marking a complete markets model.}
5. An equilibrium concept that uses prices to reconcile decisions of diverse price-taking agents.

This book is about constructing and applying competitive equilibria for a class of linear-quadratic-Gaussian dynamic economies with complete markets. For us, an economy will consist of a list of matrices that describe peoples’ household technologies, their preferences over consumption services, their production technologies, and their information sets. Competitive equilibrium allocations and prices satisfy some equations that are easy to write down and solve. These competitive equilibrium outcomes have representations that are convenient to represent and estimate econometrically.

Practical and analytical advantages flow from identifying an underlying structure that unites a class of economies. Practical advantages come from recognizing that apparently different applications can be formulated and estimated using the same tools simply by replacing one list of matrices with another. Analytical advantages and deeper understandings come from appreciating the roles played by key assumptions such as completeness of markets and structures of heterogeneity.
1.2. A Class of Economies

We constructed our class of economies by using (i) a theory of recursive dynamic competitive economies;\(^3\) (ii) linear optimal control theory;\(^4\) (iii) methods for estimating and interpreting vector autoregressions;\(^5\) and (iv) a computer language for rapidly manipulating linear systems.\(^6\) Our economies have competitive equilibria with representations in terms of vector autoregressions that can be swiftly computed, simulated, and estimated econometrically. The models thus merge economic theory with dynamic econometrics. The computer language MATLAB implements the computations. It has a structure and vocabulary that economize time and effort. Better yet, \textit{dynare} has immensely improved, accelerated, and eased practical applications.

We formulated this class of models because practical difficulties of computing and estimating more general recursive competitive equilibrium models continue to limit their use as tools for thinking about applied problems. Recursive competitive equilibria were developed as useful special cases of the Arrow-Debreu competitive equilibrium model. Relative to the more general Arrow-Debreu setting, the great advantage of recursive competitive equilibria is that they can be computed by solving discounted dynamic programming problems. Further, under some additional conditions, a competitive equilibrium can be represented as a Markov process. When that Markov process has a unique invariant distribution, there exists a vector autoregressive representation. Thus, the theory of recursive competitive equilibria holds out the promise of making easier contact with econometric theory than did previous formulations of equilibrium theory.

Two computational difficulties continue to leave some of this promise unrealized. The first is a “curse of dimensionality” that makes dynamic programming a costly procedure with even small numbers of state variables. The second is that after a dynamic program has been solved and an equilibrium Markov process computed, an implied vector autoregression has to be computed by applying least-squares projection formulas involving a large number of moments from the

\(^3\) This work is summarized by Harris (1987) and Stokey, Lucas, and Prescott (1989).
\(^4\) For example, see Kwakernaak and Sivan (1972), and Anderson and Moore (1979).
\(^6\) See the MATLAB manual.
model’s invariant probability distribution. Typically, each of these computational steps can be solved only approximately. Good research along several lines has been directed at improving these approximations.\(^7\)

The need to approximate originates in the fact that for general functional forms for objective functions and constraints, even one iteration on the key functional equation of dynamic programming (named the ‘Bellman equation’ after Richard Bellman) cannot be performed analytically. It so happens that the functional forms economists would most like to use are ones for which the Bellman equation cannot be iterated on analytically.

Linear control theory studies the most important special class of problems for which iterations on the Bellman equation can be performed analytically, namely, problems having a quadratic objective function and a linear transition function. Application of dynamic programming leads to a system of well understood and rapidly solvable equations known as the matrix Riccati difference equation.

The philosophy of this book is to swallow hard and to accept up front primitive descriptions of tastes, technology, and information that satisfy the assumptions of linear optimal control theory. This approach facilitates computing competitive equilibria that automatically take the form of a vector autoregression, albeit often cast in terms of some states unobserved to the econometrician. A cost of the approach is that it does not accommodate specifications that we sometimes prefer.

A purpose of this book is to display the versatility and tractability of our class of models. Versions of a wide range of models from modern capital theory and asset pricing theory can be represented within our framework. Competitive equilibria can be computed so easily that we hope that the reader will soon be thinking of new models. We provide formulas and software for the reader to experiment; and for many of our calculations, dynare offers even better software.

1.3. Computer Programs

In writing this book, we put ourselves under a restriction that we should supply the reader with a computer program that implements every equilibrium concept and mathematical representation. The programs are written in MATLAB, and are described throughout the book. When a MATLAB program is referred to in the text, we place it in typewriter font. Similarly, all computer codes appear in typewriter font. You will get much more out of this book if you use and modify our programs as you read.

1.4. Organization

This book is organized as follows. Chapter 2 describes the first-order linear vector stochastic difference equation and shows how special cases of it can represent a variety of models of time series processes popular with economists. We use this difference equation to represent the information flowing to economic agents and also to represent competitive equilibria.

Chapter 3 is a catalogue of useful computational tricks that can be skipped on first reading. It describes fast ways to compute equilibria via doubling algorithms that accelerate computation of expectations of geometric sums of quadratic forms and solve dynamic programming problems. On first reading, it is just good that the reader knows that these fast methods are available and that they are implemented both in our programs and in dynare.

Chapter 4 defines an economic environment in terms of a household technology for producing consumption services, preferences of a representative agent, a technology for producing consumption and investment goods, stochastic processes of shocks to preferences and technologies, and an information structure. The stochastic processes fit into the model introduced in chapter 2, while the preferences, technology, and information structure are specified with an eye toward making competitive equilibria computable with linear control theory.

8 These programs are referred to in a special index at the end of the book. They can be downloaded from <https://files.nyu.edu/ts43/public/books.html>.

9 To run our programs, you will need MATLAB’s Control Toolkit in addition to the basic MATLAB software.

10 The dynare suite of MATLAB programs is also very useful for analyzing and estimating our models.
Chapter 5 describes a planning problem that generates competitive equilibrium allocations. We formulate the planning problem in two ways, first as a variational problem using stochastic Lagrange multipliers, then as a dynamic programming problem. We describe how to solve the dynamic programming problem with formulas from linear control theory. The solution of the planning problem is a first-order vector stochastic difference equation of the form studied in chapter 2. We also show how to use the value function for the planning problem to compute Lagrange multipliers associated with constraints on the planning problem.

Chapter 6 describes a commodity space and a price system that support a competitive equilibrium. We use a formulation that lets the values to appear in agents’ budget constraints and objective functions be represented as conditional expectations of geometric sums of streams of future prices times quantities. Chapter 6 relates these prices to Arrow-Debreu state-contingent prices.

Chapter 7 describes a decentralized economy and its competitive equilibrium. Competitive equilibrium quantities solve the chapter 5 planning problem. The price system can be deduced from the stochastic Lagrange multipliers associated with the chapter 5 planning problem.

Chapter 8 describes links between competitive equilibria and autoregressive representations. We show how to obtain an autoregressive representation for observable variables that are error-ridden linear functions of state variables. In describing how to deduce an autoregressive representation from a competitive equilibrium and parameters of measurement error processes, we complete a key step that facilitates econometric estimation of free parameters. An autoregressive representation is naturally affiliated with a recursive representation of a likelihood function for the observable variables. More precisely, a vector autoregressive representation implements a convenient factorization of the joint density of a complete history of observables (i.e., the likelihood function) into a product of densities of time t observables conditioned on histories of those observables up to time $t - 1$. Chapter 8 also treats two other topics intimately related to econometric implementation: aggregation over time and the theory of approximation of one model by another.

Chapter 9 describes household technologies that describe the same preferences and dynamic demand functions. It characterizes a special subset of them as canonical. Canonical household technologies are useful for describing economies with heterogeneity among household’s preferences because of how
they align linear spaces consisting of histories of consumption services, on the one hand, and histories of consumption rates, on the other.

Chapter 10 describes some applications in the form of versions of several dynamic models that fit easily within our class of models. These include models of markets for housing, cattle, and occupational choice.

Chapter 11 uses our model of preferences to represent multiple goods versions of permanent income models. We retain Robert Hall’s (1978) specification of a ‘storage’ technology for accumulating physical capital and also a restriction on the discount factor, depreciation rate, and gross return on capital that in Hall’s simple setting made the marginal utility of consumption a martingale. In more general settings, adopting Hall’s specification of the storage technology imparts a martingale to outcomes, but it is concealed in an ‘index’ whose increments drive demands for multiple consumption goods that themselves are not martingales. This permanent income model forms a convenient laboratory for thinking about sources in economic theory of ‘unit roots’ and ‘co-integrating vectors.’

Chapter 12 describes a type of heterogeneity among households that allows us to aggregate preferences in a sense introduced by W.M. Gorman. Linear Engel curves of common slopes across agents give rise to a representative consumer. This representative consumer is ‘easy to find,’ and, from the point of view of computing equilibrium prices and aggregate quantities, adequately stands in for the representative household of chapters 4–7. Finding competitive equilibrium allocations to individual consumers requires additional computations that this chapter also describes.

Chapter 13 describes a setting with heterogeneity among households’ preferences of a kind that violates the conditions for Gorman aggregation. Households’ Engel curves are still affine, but dispersion of their slopes prevents Gorman aggregation. However, there is another sense in which there is a representative household whose preferences are a peculiar kind of average over the preferences of different types of households. We show how to compute and interpret this preference ordering over economy-wide aggregate consumption. This complete markets aggregate preference ordering cannot be computed until one knows the distribution of wealth evaluated at equilibrium prices, so it is less useful than the one produced by Gorman aggregation.

Chapter 14 adapts our setups to include features of periodic models of seasonality studied by Osborne (1988) and Todd (1983, 1990).
Appendix A is a manual of the MATLAB programs that we have prepared to implement the calculations described in this book.

1.5. Recurring Mathematical Ideas

Duality between control problems and filtering problems underlies the finding that recursive filtering problems have the same mathematical structure as recursive formulations of linear optimal control problems. Both problems ultimately lead to matrix Riccati equations.11 We use the duality of recursive linear optimal control and linear filtering repeatedly both in chapter 8 (for representing equilibria econometrically) and chapters 9, 12, and 13 (for representing and aggregating preferences).

In chapter 8, we state a spectral factorization identity that characterizes the link between the state-space representation for a competitive equilibrium and the vector autoregression for observables. This is by way of obtaining the ‘innovations representation’ that achieves a recursive representation of a Gaussian likelihood function or quasi likelihood function. In another guise, the same factorization identity is also a key tool in constructing what we call a canonical representation of a household technology in chapter 9.

In more detail:

1. We use a linear state space system to represent information flows that drive shocks to preferences and technologies (chapter 2).
2. We use a linear state space system to represent observable quantities and scaled Arrow-Debreu prices associated with competitive equilibria (chapters 5 and 7).
3. We coax scaled Arrow-Debreu prices from Lagrange multipliers associated with a planning problem (chapters 5 and 7).
4. We derive formulas for scaled Arrow-Debreu prices from gradients of the value function for a planning problem (chapters 5 and 7).
5. We use another linear state space system called an innovations representation to deduce a recursive representation of a Gaussian likelihood function or quasi-likelihood function associated with competitive equilibrium quantities and scaled Arrow-Debreu prices (chapter 8).

11 We expand on this theme in Hansen and Sargent (2008, ch. 4).
a. We use a Kalman filter to deduce an innovations representation associated with competitive equilibrium quantities and scaled Arrow-Debreu prices. In particular, we use the Kalman filter to construct a sequence of densities of time t observables conditional on a history of the observables up to time $t - 1$. This sequence of conditional densities is an essential ingredient of a recursive representation of the likelihood function (also known as the joint density of the observables over a history of length T).

b. The innovations in the innovation representation are square summable linear functions of the history of the observables. Thus, the innovations representation is said to be ‘invertible’, while the original state-state space representation is in general not invertible.

c. The limiting time-invariant innovations representation associated with a fixed point of the Kalman filtering equations implements a spectral factorization identity.

6. Intimate technical relationships prevail between the innovations representation of chapter 8 and what in chapter 9 we call a canonical representation of preferences.

a. An innovations representation is invertible in the sense that it expresses the innovations in observables at time t as square-summable linear combinations of the history up to time t.

b. A canonical representation of a household technology is invertible in the sense that it can be used to express a flow of consumption services as a square-summable linear combination of the history of consumption services.

c. A canonical representation of a household technology allows us to express dynamic demand curves for consumption flows.

d. A canonical representation of a household technology can be constructed using a version of the same spectral factorization identity encountered in chapter 8.

7. We describe two sets of conditions that allow us to aggregate heterogeneous consumers into a representative consumer.
a. Chapter 12 describes a dynamic version of Gorman’s (1953) conditions for aggregation, namely, that Engel curves be linear with common slopes across consumers. These conditions allow us to incorporate settings with heterogeneity in preference shocks and endowment processes, but they require that households share a common household technology for converting flows of purchases of consumption goods into consumption services.

b. When the chapter 12 conditions for Gorman aggregation hold, it is possible to compute competitive equilibrium prices and aggregate quantities without simultaneously computing individual consumption allocations. Without knowing allocations across heterogeneous agents, knowing prices and aggregate quantities is enough for many macroeconomic applications.\[^{12}\]

c. Chapter 13 describes a weaker complete markets sense in which there exists a representative consumer. Here, consumers have diverse household technologies for converting flows of consumption goods into the consumption services that enter their utility functions. The household technology that converts aggregate consumption flows into the service flows valued by a representative consumer is a weighted average of the household technologies of individual consumers, an average best expressed in the frequency domain. To construct a canonical representation of the household technology of the representative consumer requires using the spectral factorization identity.

d. To construct a complete markets representative agent requires knowing the vector of Pareto weights associated with a competitive equilibrium allocation. It has to be constructed simultaneously with and not before finding a competitive equilibrium aggregate allocation. Therefore, complete markets aggregation is less useful than Gorman aggregation for practical computations of competitive equilibrium prices and aggregate quantities.

8. The spectral factorization identity makes yet another appearance in chapter 14 where we study models with hidden periodicity. A population vector

\[^{12}\] James Tobin once defined macroeconomics as a discipline that neglects distribution effects.
autoregression, not conditioned on the period, can be constructed by an appropriate application of the factorization identity to an appropriate average of as many conditional spectral densities as there are seasons.

9. Our reasoning and mathematics easily extend to risk-sensitive and robust economies that allow households to express their distrust of an approximating statistical model. Hansen and Sargent (2008) describe some of these extensions.¹³

¹³ See especially chapters 12 and 13 of Hansen and Sargent (2008).
Part II

Tools
Chapter 2
Linear Stochastic Difference Equations

2.1. Introduction
This chapter introduces the vector first-order linear stochastic difference equation. We use it first to represent information flowing to economic agents, then again to represent competitive equilibria. The vector first-order linear stochastic difference equation is associated with a tidy theory of prediction and a host of procedures for econometric application. Ease of analysis has prompted us to adopt economic specifications that cause competitive equilibria to have representations as vector first-order linear stochastic difference equations.

Because it expresses next period’s vector of state variables as a linear function of this period’s state vector and a vector of random disturbances, a vector first-order vector stochastic difference equation is recursive. Disturbances that form a “martingale difference sequence” are basic building blocks used to construct time series. Martingale difference sequences are easy to forecast, a fact that delivers convenient recursive formulas for optimal predictions of time series.

2.2. Notation and Basic Assumptions
Let \(\{x_t : t = 1, 2, \ldots\} \) be a sequence of \(n \)-dimensional random vectors, i.e. an \(n \)-dimensional stochastic process. Let \(\{w_t : t = 1, 2, \ldots\} \) be a sequence of \(N \)-dimensional random vectors. We shall express \(x_t \) as the sum of two terms. The first is a moving average of past \(w_t \)’s. The second describes the effects of an initial condition. The \(\{w_t\} \) generates a sequence of information sets \(\{J_t : t = 0, 1, \ldots\} \). Let \(J_0 \) be generated by \(x_0 \) and \(J_t \) be generated by

\[1\] See Hansen and Sargent (2014) and Ljungqvist and Sargent (2012, ch. 2) for presentations of related material and extensions.
\(x_0, w_1, \ldots, w_t\), which means that \(J_t\) consists of the set of all measurable functions of \(\{x_0, w_1, \ldots, w_t\}\). The process \(\{w_{t+1}\}_{t=0}^\infty\) is assumed to be a martingale difference sequence adapted to this sequence of information sets.

Definition 1: The sequence \(\{w_t : t = 1, 2, \ldots\}\) is said to be a martingale difference sequence adapted to \(\{J_t : t = 0, 1, \ldots\}\) if \(E(w_{t+1}|J_t) = 0\) for \(t = 0, 1, \ldots\).

In addition, we assume that the \(\{w_t : t = 1, 2, \ldots\}\) process is conditionally homoskedastic, a phrase whose meaning is conveyed by

Definition 2: The sequence \(\{w_t : t = 1, 2, \ldots\}\) is said to be conditionally homoskedastic if \(E(w_{t+1}w'_{t+1}|J_t) = I\) for \(t = 0, 1, \ldots\).

It is an implication of the law of iterated expectations that \(\{w_t : t = 1, 2, \ldots\}\) is a sequence of (unconditional) mean zero, serially uncorrelated random vectors.\(^3\)

In addition, the entries of \(w_t\) are assumed to be mutually uncorrelated.

The process \(\{x_t : t = 1, 2, \ldots\}\) is constructed recursively using an initial random vector \(x_0\) and a time-invariant law of motion:

\[
x_{t+1} = Ax_t + Cw_{t+1}, \quad \text{for } t = 0, 1, \ldots, \tag{2.2.1}
\]

where \(A\) is an \(n\) by \(n\) matrix and \(C\) is an \(n\) by \(N\) matrix.

Representation (2.2.1) will be a workhorse in this book. First, we will use it to model the information upon which economic agents base their decisions. Information will consist of variables that drive shocks to preferences and to technologies. Second, we shall specify the economic problems faced by the agents in our models and the economic arrangement through which agents’ decisions

\(^2\) The phrase “\(J_0\) is generated by \(x_0\)” means that \(J_0\) can be expressed as a measurable function of \(x_0\).

\(^3\) Where \(\phi_1 \text{ and } \phi_2\) are information sets with \(\phi_1 \subset \phi_2\), and \(x\) is a random variable, the law of iterated expectations states that

\[
E(x | \phi_1) = E(E(x | \phi_2) | \phi_1).
\]

Letting \(\phi_1\) be the information set corresponding to no observations on any random variables, letting \(\phi_2 = J_t\), and applying this law to the process \(\{w_t\}\), we obtain

\[
E(w_{t+1}) = E(E(w_{t+1} | J_t)) = E(0) = 0.
\]
are reconciled (competitive equilibrium) so that the state of the economy has a representation of the form (2.2.1).

2.3. Prediction Theory

A tractable theory of prediction is associated with (2.2.1). We use this theory extensively both in computing a competitive equilibrium and in representing that equilibrium in the form of (2.2.1). The optimal forecast of x_{t+1} given current information is

$$E(x_{t+1} \mid J_t) = Ax_t,$$ \hspace{1cm} (2.3.1)

and the one-step-ahead forecast error is

$$x_{t+1} - E(x_{t+1} \mid J_t) = Cw_{t+1}. \hspace{1cm} (2.3.2)$$

The covariance matrix of x_{t+1} conditioned on J_t is

$$E(x_{t+1} - E(x_{t+1} \mid J_t))(x_{t+1} - E(x_{t+1} \mid J_t))' = CC'.$$ \hspace{1cm} (2.3.3)

A nonrecursive expression for x_t as a function of $x_0, w_1, w_2, \ldots, w_t$ can be found by using (2.2.1) repeatedly to obtain

$$x_t = Ax_{t-1} + Cw_t$$
$$= A^2x_{t-2} + ACw_{t-1} + Cw_t$$
$$= \sum_{\tau=0}^{t-1} A^\tau Cw_{t-\tau} + A^t x_0. \hspace{1cm} (2.3.4)$$

Representation (2.3.4) is one type of moving-average representation. It expresses $\{x_t : t = 1, 2, \ldots\}$ as a linear function of current and past values of the process $\{w_t : t = 1, 2, \ldots\}$ and an initial condition x_0. The list of moving average coefficients $\{A^\tau C : \tau = 0, 1, \ldots\}$ in representation (2.3.4) is often called an

\[\text{Slutsky (1937) argued that business cycle fluctuations could be approximated by moving average processes. Sims (1980) showed that a fruitful way to summarize correlations between time series is to calculate an impulse response function. In chapter 8, we study the relationship between the impulse response functions based on the vector autoregressions calculated by Sims (1980) and the impulse response function associated with (2.3.4).} \]
impulse response function. An impulse response function depicts the response of current and future values of \(\{x_t\} \) to a random shock \(w_t \). In representation (2.3.4), the impulse response function is given by entries of the vector sequence \(\{A^\tau C : \tau = 0, 1, \ldots\} \).\(^5\)

Shift (2.3.4) forward in time:

\[
x_{t+j} = \sum_{s=0}^{j-1} A^s C w_{t+s} + A^j x_t. \tag{2.3.5}
\]

Projecting both sides of (2.3.5) on the information set \(\{x_0, w_t, w_{t-1}, \ldots, w_1\} \) gives\(^6\)

\[
E_t x_{t+j} = A^j x_t. \tag{2.3.6}
\]

where \(E_t(\cdot) \equiv E(\cdot) \mid x_0, w_t, w_{t-1}, \ldots, w_1 = E(\cdot) \mid J_t \), and \(x_t \) is in \(J_t \). Equation (2.3.6) gives the optimal \(j \)-step-ahead prediction.

It is useful to obtain the covariance matrix of the \(j \)-step-ahead prediction error

\[
x_{t+j} - E_t x_{t+j} = \sum_{s=0}^{j-1} A^s C w_{t-s+j}. \tag{2.3.7}
\]

Evidently,

\[
E_t(x_{t+j} - E_t x_{t+j})(x_{t+j} - E_t x_{t+j})' = \sum_{k=0}^{j-1} A^k CC' A^{k'} \equiv v_j. \tag{2.3.8a}
\]

Note that \(v_j \) defined in (2.3.8a) can be calculated recursively via

\[
v_1 = CC' \\
v_j = CC' + Av_{j-1} A', \quad j \geq 2. \tag{2.3.8b}
\]

For \(j \geq 1 \), \(v_j \) is the conditional covariance matrix of the errors in forecasting \(x_{t+j} \) on the basis of time \(t \) information \(x_t \). To decompose these covariances into parts attributable to the individual components of \(w_t \), we let \(i_\tau \) be an

\(^5\) Given matrices \(A \) and \(C \), the impulse response function can be calculated using the MATLAB program `dimpulse.m`.

\(^6\) For an elementary discussion of linear least squares projections, see Sargent (1987b, ch. XI).
N-dimensional column vector of zeroes except in position τ, where there is a one. Define a matrix $v_{j,\tau}$ by

$$v_{j,\tau} = \sum_{k=0}^{j-1} A^k C i_{\tau} i_{\tau}' C' A'^k.$$ \hspace{1cm} (2.3.8c)

Note that $\sum_{\tau=1}^{N} i_{\tau} i_{\tau}' = I$, so that from (2.3.8a) and (2.3.8c) we have

$$\sum_{\tau=1}^{N} v_{j,\tau} = v_j.$$

Evidently, the matrices $\{v_{j,\tau}, \tau = 1, \ldots, N\}$ give an orthogonal decomposition of the covariance matrix of j-step-ahead prediction errors into the parts attributable to each of the components $\tau = 1, \ldots, N$.\(^7\)

The “innovation accounting” methods of Sims (1980) are based on (2.3.8). Sims recommends computing the matrices $v_{j,\tau}$ in (2.3.8) for a sequence $j = 0, 1, 2, \ldots$. This sequence represents the effects of components of the shock process w_t on the covariance of j-step ahead prediction errors for each series in x_t.

2.4. Transforming Variables to Uncouple Dynamics

It is sometimes useful to uncouple the dynamics of x_t by using the distinct eigenvalues of the matrix A. The Jordan decomposition of the matrix A is

$$A = TDT^{-1},$$ \hspace{1cm} (2.4.1)

where T is a nonsingular matrix and D is another matrix to be constructed. The eigenvalues of A are the zeroes of the polynomial $\det(\zeta I - A)$. This polynomial has n zeroes because A is n by n. Not all of these zeroes are necessarily distinct.\(^8\) Suppose that there are $m \leq n$ distinct zeroes of this polynomial,\(^8\)

\(^7\) For given matrices A and C, the matrices $v_{j,\tau}$ and v_j are calculated by the MATLAB program `evardec.m`.

\(^8\) In the case in which the eigenvalues of A are distinct, D is taken to be the diagonal matrix whose entries are the eigenvalues and T is the matrix of eigenvectors corresponding to those eigenvalues.
denoted \(\delta_1, \delta_2, \ldots, \delta_m \). For each \(\delta_j \), we construct a matrix \(D_j \) that has the same dimension as the number of zeroes of \(\det(\zeta I - A) \) that equal \(\delta_j \). The diagonal entries of \(D_j \) are \(\delta_j \) and the entries in the single diagonal row above the main diagonal are all either zero or one. The remaining entries of \(D_j \) are zero. Then the matrix \(D \) is block diagonal with \(D_j \) in the \(j \)th diagonal block.

Transform the state vector \(x_t \) as follows:

\[
x_t^* = T^{-1} x_t. \tag{2.4.2}
\]

Substituting into (2.2.1) gives

\[
x_{t+1}^* = D x_t^* + T^{-1} C w_{t+1}. \tag{2.4.3}
\]

Since \(D \) is block diagonal, we can partition \(x_t^* \) according to the diagonal blocks of \(D \) or, equivalently, according to the distinct eigenvalues of \(A \). In the law of motion (2.4.3), partition \(j \) of \(x_{t+1}^* \) is linked only to partition \(j \) of \(x_t^* \). In this sense, the dynamics of system (2.4.3) are uncoupled. To calculate multi-period forecasts and dynamic multipliers, we must raise the matrix \(A \) to integer powers (see (2.3.6)). It is straightforward to verify that

\[
A^\tau = T D^\tau T^{-1}. \tag{2.4.4}
\]

Since \(D \) is block diagonal, \(D^\tau \) is also block diagonal, where block \(j \) is just \((D_j)^\tau\). The matrix \((D_j)^\tau\) is upper triangular with \(\delta_j^\tau \) on the diagonal, with all entries of the \(k \)th upper right diagonal given by

\[
(\delta_j)^{\tau-k} \frac{\tau!}{k!(\tau-k)!} \text{ for } 0 \leq k \leq \tau, \tag{2.4.5}
\]

and zeroes elsewhere. Consequently, raising \(D \) to an integer power involves raising the eigenvalues to integer powers. Some of the eigenvalues of \(A \) may be complex. In this case, it is convenient to use the polar decomposition of the eigenvalues. Write eigenvalue \(\delta_j \) in polar form as

\[
\delta_j = \rho_j \exp(i\theta_j) = \rho_j [\cos(\theta_j) + i \sin(\theta_j)] \tag{2.4.6}
\]

where \(\rho_j = |\delta_j| \). Then

\[
\delta_j^\tau = (\rho_j)^\tau \exp(i\tau\theta_j) = (\rho_j)^\tau [\cos(\tau\theta_j) + i \sin(\tau\theta_j)]. \tag{2.4.7}
\]
We shall often assume that ρ_j is less than or equal to one, which rules out instability in the dynamics. Whenever ρ_j is strictly less than one, the term $\left(\rho_j\right)^\tau$ decays to zero as $\tau \to \infty$. When θ_j is different from zero, eigenvalue j induces an oscillatory component with period $(2\pi/|\theta_j|)$.

Next we consider some examples of processes that can be represented as (2.2.1).

2.4.1. Deterministic Seasonals

We can use (2.2.1) to represent $y_t = y_{t-4}$. Let $n = 4, C = 0, x_t = (y_t, y_{t-1}, y_{t-2}, y_{t-3})'$, $x_0 = (0 0 0 1)'$,

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \quad (2.4.8)$$

Here the A matrix has four distinct eigenvalues and the absolute values of each of these eigenvalues is one. Two eigenvalues are real $(1, -1)$ and two are imaginary $(i, -i)$, and so have period four.\(^9\) The resulting sequence $\{x_t: t = 1, 2, \ldots\}$ oscillates deterministically with period four. It can be used to model deterministic seasonals in quarterly time series.

2.4.2. Indeterministic Seasonals

We want to use (2.2.1) to represent

$$y_t = \alpha_4 y_{t-4} + w_t, \quad (2.4.9)$$

where w_t is a martingale difference sequence and $|\alpha_4| \leq 1$. We define $x_t = [y_t, y_{t-1}, y_{t-2}, y_{t-3}]'$, $n = 4$,

$$A = \begin{bmatrix} 0 & 0 & 0 & \alpha_4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \quad \text{\underline{9}}$$

\(^9\) For example, note that from representation (2.4.6), $i = \exp(\pi/2) + i \sin(\pi/2)$, so the period associated with i is $\frac{2\pi}{\sqrt{2}} = 4$.

With these definitions, (2.2.1) represents (2.4.9). This model displays an “indeterministic” seasonal. Realizations of (2.4.9) display recurrent, but aperiodic, seasonal fluctuations.

2.4.3. Univariate Autoregressive Processes

We can use (2.2.1) to represent the model

\[y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \alpha_3 y_{t-3} + \alpha_4 y_{t-4} + w_t, \]

(2.4.10)

where \(w_t \) is a martingale difference sequence. We set \(n = 4, x_t = [y_t \ y_{t-1} \ y_{t-2} \ y_{t-3}]^T, \)

\[
A = \begin{bmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}.
\]

The matrix \(A \) has the form of the companion matrix to the vector \([\alpha_1 \ \alpha_2 \ \alpha_3 \ \alpha_4] \).

2.4.4. Vector Autoregressions

Reinterpret (2.4.10) as a vector process in which \(y_t \) is a \((k \times 1)\) vector, \(\alpha_j \) a \((k \times k)\) matrix, and \(w_t \) a \(k \times 1\) martingale difference sequence. Then (2.4.10) is termed a vector autoregression. To map this into (2.2.1), we set \(n = k \cdot 4, \)

\[
A = \begin{bmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\
I & 0 & 0 & 0 \\
0 & I & 0 & 0 \\
0 & 0 & I & 0
\end{bmatrix}, \quad C = \begin{bmatrix} I \\ 0 \\ 0 \\ 0 \end{bmatrix}.
\]

where \(I \) is the \((k \times k)\) identity matrix.
2.4.5. Polynomial Time Trends

Let \(n = 2, x_0 = [0 \ 1]' \), and

\[
A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
\]

(2.4.11)

Notice that \(D = A \) in the Jordan decomposition of \(A \). It follows from (2.4.5) that

\[
A^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}.
\]

(2.4.12)

Hence \(x_t = [t \ 1]' \), so that the first component of \(x_t \) is a linear time trend and the second component is a constant.

It is also possible to use (2.2.1) to represent polynomial trends of any order. For instance, let \(n = 3, C = 0, x_0 = [0 \ 0 \ 1]' \), and

\[
A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.
\]

(2.4.13)

Again, \(A = D \) in the Jordan decomposition of \(A \). It follows from (2.4.5) that

\[
A^t = \begin{bmatrix} 1 & t & t(t-1)/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}.
\]

(2.4.14)

Then \(x'_t = [t(t-1)/2 \ t \ 1]' \), so that \(x_t \) contains linear and quadratic time trends.
2.4.6. Martingales with Drift

We modify the linear time trend example by making C nonzero. Suppose that N is one and $C' = [1 \ 0]$. Since $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $A^t = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$, it follows that

$$A^t C = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$ (2.4.15)

Substituting into the moving-average representation (2.3.4), we obtain (2.25)

$$x_{1t} = \sum_{\tau=0}^{t-1} w_{t-\tau} + [1 \ t] x_0$$

where x_{1t} is the first entry of x_t. The first term on the right side of the preceding equation is a cumulated sum of martingale differences, and is called a martingale, while the second term is a translated linear function of time.

2.4.7. Covariance Stationary Processes

Next we consider specifications of x_0 and A that imply that the first two unconditional moments of $\{x_t : t = 1, 2, \ldots\}$ are replicated over time. Let A satisfy

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & 1 \end{bmatrix},$$ (2.4.16)

where A_{11} is an $(n-1) \times (n-1)$ matrix with eigenvalues that have moduli strictly less than one and A_{12} is an $(n-1) \times 1$ column vector. In addition, let $C' = [C'_1 \ 0]$. We partition $x'_t = [x'_{1t} \ x'_{2t}]$, where x_{1t} has $n-1$ entries. It follows from (2.2.1) that

$$x_{1t+1} = A_{11} x_{1t} + A_{12} x_{2t} + C_1 w_{t+1}$$ (2.4.17)

$$x_{2t+1} = x_{2t}.$$ (2.4.18)

By construction, the second component, x_{2t}, simply replicates itself over time. For convenience, take $x_{20} = 1$ so that $x_{2t} = 1$ for $t = 1, 2, \ldots$.

We can use (2.4.17) to compute the first two moments of x_{1t}. Let $\mu_t = E x_{1t}$. Taking unconditional expectations on both sides of (2.4.17) gives

$$\mu_{t+1} = A_{11} \mu_t + A_{12}.$$ (2.4.19)
We can solve the nonstochastic difference equation (2.4.19) for the stationary value of \(\mu_t \). Define \(\mu \) as the stationary value of \(\mu_t \), and substitute \(\mu \) for \(\mu_t \) and \(\mu_{t+1} \) in (2.4.19). Solving for \(\mu \) gives \(\mu = (I - A_{11})^{-1} A_{12} \). Therefore, if

\[
E x_{10} = (I - A_{11})^{-1} A_{12}, \quad (2.4.20)
\]

then \(E x_{1t} \) will be constant over time and equal to the value on the right side of (2.4.20). Further, if the eigenvalues of \(A_{11} \) are less than unity in modulus, then starting from any initial value of \(\mu_0 \), \(\mu_t \) will converge to the stationary value \((I - A_{11})^{-1} A_{12} \).

Next we use (2.4.17) to compute the unconditional covariances of \(x_t \). Subtracting (2.4.19) from (2.4.17) gives

\[
(x_{1t+1} - \mu_{t+1}) = A_{11}(x_{1t} - \mu_t) + C_1 w_{t+1}. \tag{2.4.21}
\]

From (2.4.21) it follows that

\[
(x_{1t+1} - \mu_{t+1})(x_{1t+1} - \mu_{t+1})' = A_{11}(x_{1t} - \mu_t)(x_{1t} - \mu_t)' A_{11}' + C_1 w_{t+1} w_{t+1}' C_1'.
\]

The law of iterated expectations implies that \(w_{t+1} \) is orthogonal to \((x_{1t} - \mu_t) \). Therefore, taking expectations on both sides of the above equation gives

\[
V_{t+1} = A_{11} V_t A_{11}' + C_1 C_1',
\]

where \(V_t \equiv E(x_{1t} - \mu_t)(x_{1t} - \mu_t)' \). Evidently, the stationary value \(V \) of the covariance matrix \(V_t \) must satisfy

\[
V = A_{11} V A_{11}' + C_1 C_1'. \tag{2.4.22}
\]

It is straightforward to verify that \(V \) is a solution of (2.4.22) if and only if

\[
V = \sum_{j=0}^{\infty} A_{11}^j C_1 C_1' A_{11}'^j. \tag{2.4.23}
\]

The infinite sum (2.4.23) converges when all eigenvalues of \(A_{11} \) are less in modulus than unity.\(^{10}\) If the covariance matrix of \(x_{10} \) is \(V \) and the mean of

\(^{10}\) Equation (2.4.22) is known as the discrete Lyapunov equation. Given the matrices \(A_{11} \) and \(C_1 \), this equation is solved by the MATLAB programs \texttt{dlyap.m} and \texttt{doublej.m}.\]
x_{10} is \((I - A_{11})^{-1}A_{12}\), then the covariance and mean of \(x_{1t}\) remain constant over time. In this case, the process is said to be covariance stationary. If the eigenvalues of \(A_{11}\) are all less than unity in modulus, then \(V_t \rightarrow V\) as \(t \rightarrow \infty\), starting from any initial value \(V_0\).

From (2.3.8) and (2.4.23), notice that if all eigenvalues of \(A_{11}\) are less than unity in modulus, then \(\lim_{j \rightarrow \infty} v_j = V\). That is, the covariance matrix of \(j\)-step ahead forecast errors converges to the unconditional covariance matrix of \(x\) as the horizon \(j\) goes to infinity.\(^{11}\)

The matrix \(V\) can be decomposed to display contributions of each entry of the process \(\{w_t\}\). Let \(\iota_{\tau}\) be an \(N\)-dimensional column vector of zeroes except in position \(\tau\), where there is a one. Then

\[
I = \sum_{\tau=1}^{N} \iota_{\tau} \iota'_{\tau}. \tag{2.4.24}
\]

Define

\[
\tilde{V}_{\tau} = \sum_{j=0}^{\infty} (A_{11})^j C_1 \iota_{\tau} \iota'_{\tau} C_1' (A_{11})^j'. \tag{2.4.25}
\]

We have, by analogy to (2.4.22) and (2.4.23), that \(\tilde{V}_{\tau}\) satisfies \(\tilde{V}_{\tau} = A_{11} \tilde{V}_{\tau} A_{11}' + C_1 \iota_{\tau} \iota'_{\tau} C_1'\). In light of (2.4.24), (2.4.25), and (2.4.23), we have that

\[
V = \sum_{\tau=1}^{N} \tilde{V}_{\tau}. \tag{2.4.26}
\]

The matrix \(\tilde{V}_{\tau}\) is the contribution to \(V\) of the \(\tau\)th component of the process \(\{w_t : t = 1, 2, \ldots\}\). Hence, (2.4.26) gives a decomposition of the covariance matrix \(V\) into parts attributable to each of the underlying economic shocks.

Next, consider the autocovariances of \(\{x_t : t = 1, 2, \ldots\}\). From the law of iterated expectations, it follows that

\[
E[(x_{1t+\tau} - \mu)(x_{1t} - \mu)'] = E\{E[(x_{1t+\tau} - \mu) | J_t](x_{1t} - \mu)']
= E[A_{11}'(x_{1t} - \mu)(x_{1t} - \mu)']
= A_{11}' V. \tag{2.4.27}
\]

\(^{11}\) The doubling algorithm described in chapter 3 can be used to compute the solution of (2.4.22) via iterations that approximate (2.4.23). The algorithm is implemented in the MATLAB programs doublej.m and doublej2.m.
Notice that this expected cross-product or autocovariance does not depend on calendar time, only on the gap τ between the time indices.12 Independence from calendar time of means, covariances, and autocovariances defines covariance stationary processes. For the particular class of processes we are considering, if the covariance matrix does not depend on calendar time, then none of the autocovariance matrices does.

\subsection*{2.4.8. Multivariate ARMA Processes}

Specification (2.2.1) assumes that x_t contains all the information available at time t to forecast x_{t+1}. In many applications, vector time series are modelled as multivariate autoregressive moving-average (ARMA) processes. Let y_t be a vector stochastic process. An ARMA process \{\(y_t : t = 1, 2, \ldots\)\} has a representation:

\[
y_t = \alpha_1 y_{t-1} + \alpha_2 y_{t-2} + \cdots + \alpha_k y_{t-k} + \gamma_0 w_t + \gamma_1 w_{t-1} + \cdots + \gamma_k w_{t-k}.
\] (2.4.28)

where \(E[w_t \mid y_{t-1}, y_{t-2}, \ldots y_{t-k+1}, w_{t-1}, w_{t-2}, \ldots w_{t-k+1}] = 0\). The requirement that the same number of lags of y enter (2.4.28) as the number of lags of w is not restrictive because some coefficients can be set to zero. Hence, we can think of k as being the greater of the two lag lengths. A representation such as (2.4.28) can be shown to satisfy (2.2.1). To see this, we define

\[
x_t = \begin{bmatrix}
\alpha_2 y_{t-1} + \alpha_3 y_{t-2} + \cdots + \alpha_k y_{t-k+1} + \gamma_1 w_t + \gamma_2 w_{t-1} + \cdots + \gamma_k w_{t-k+1} \\
\alpha_3 y_{t-1} + \cdots + \alpha_k y_{t-k+2} + \gamma_2 w_{t-1} + \cdots + \gamma_k w_{t-k+2} \\
\vdots \\
\alpha_k y_{t-1} + \gamma_{k-1} w_t + \gamma_k w_{t-1} \\
\gamma_k w_t
\end{bmatrix}
\] (2.4.29)

12 Equation (2.4.27) shows that the matrix autocovariogram of x_{1t} (i.e., $\Gamma_\tau \equiv E[(x_{1t+\tau} - \mu)(x_{1t} - \mu)']$ taken as a function of τ) satisfies the nonrandom difference equation $\Gamma_{t+1} = A_{11} \Gamma_t$.
\[C = \begin{bmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_k \end{bmatrix} \] (2.4.30)

and
\[A = \begin{bmatrix} \alpha_1 & I & \cdots & 0 \\ \alpha_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_k & 0 & \cdots & I \\ 0 & 0 & \cdots & 0 \end{bmatrix} \] (2.4.31)

It is straightforward to verify that the resulting process \(\{x_t : t = 1, 2, \ldots\} \) satisfies (2.2.1).

2.4.9. Prediction of a Univariate First-Order ARMA

Consider the special case of (2.4.28)
\[y_t = \alpha_1 y_{t-1} + \gamma_0 w_t + \gamma_1 w_{t-1} \] (2.4.32)
where \(y_t \) is a scalar stochastic process and \(w_t \) is a scalar white noise. Assume that \(|\alpha_1| < 1\) and that \(|\gamma_1/\gamma_0| < 1\). Applying (2.4.29), we define the state \(x_t \) as
\[x_t = \begin{bmatrix} y_t \\ \gamma_1 w_t \end{bmatrix}. \]

Applying (2.4.30) and (2.4.31), we have
\[C = \begin{bmatrix} \gamma_0 \\ \gamma_1 \end{bmatrix}, \quad A = \begin{bmatrix} \alpha_1 & 1 \\ 0 & 0 \end{bmatrix}. \]

We can apply (2.3.6) to obtain a formula for the optimal \(j \)-step ahead prediction of \(y_t \). Using (2.3.6) in the present example gives
\[E_t \begin{bmatrix} y_{t+j} \\ \gamma_1 w_{t+j} \end{bmatrix} = \begin{bmatrix} \alpha_1^j & \alpha_1^{j-1} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} y_t \\ \gamma_1 w_t \end{bmatrix} \]
which implies that
\[E_t y_{t+j} = \alpha_1^j y_t + \alpha_1^{j-1} \gamma_1 w_t. \] (2.4.33)
We can use (2.4.33) to derive a famous formula of John F. Muth (1960). Assume that the system (2.4.32) has been operating forever, so that the initial time is infinitely far in the past. Then using the lag operator L, express (2.4.32) as

$$(1 - \alpha_1 L)y_t = (\gamma_0 + \gamma_1 L)w_t.$$

Solving for w_t gives

$$w_t = \gamma_0^{-1}(1 - \alpha_1 L)\gamma_1 y_t,$$

which expresses w_t as a geometric distributed lag of current and past y_t's. Substituting this expression for w_t into (2.4.33) and rearranging gives

$$E_t y_{t+j} = \alpha_1^{j-1}\left[\alpha_1 + \frac{\gamma_1}{\gamma_0}\right] y_t.$$

As $\alpha_1 \to 1$ from below, this formula becomes

$$E_t y_{t+j} = \left[\frac{1 + \frac{\gamma_1}{\gamma_0}}{1 + \frac{\gamma_1}{\gamma_0}}\right] y_t,$$

which is independent of the forecast horizon j. In the limiting case $\alpha_1 = 1$, it is optimal to forecast y_t for any horizon as a geometric distributed lag of past y's. This is Muth's finding that a univariate process whose first difference is a first-order moving average is optimally forecast via an “adaptive expectations” scheme (i.e., a geometric distributed lag with the weights adding up to unity).

2.4.10. Growth

In much of our analysis, we assume that the eigenvalues of A have absolute values less than or equal to one. We have seen that such a restriction still allows for polynomial growth. Geometric growth can also be accommodated by suitably scaling the state vector. For instance, suppose that \{${x_t}^+: t = 1, 2, \ldots$\} satisfies

$${x_{t+1}^+} = A^+ {x_t}^+ + C w_{t+1}^+,$$

where $E(w_{t+1}^+ | J_t) = 0$ and $E[w_{t+1}^+ (w_{t+1}^+)'] | J_t] = (\varepsilon)^t I$. The positive number ε can be bigger than one. The eigenvalues of A^+ are assumed to have absolute values that are less than or equal to $\varepsilon^{\frac{1}{2}}$, an assumption that we make to assure
that the matrix $A = \varepsilon^{-\frac{1}{2}}A^+$ has eigenvalues with modulus bounded above by unity. We transform variables as follows:

$$x_t = (\varepsilon)^{-\frac{1}{2}} x_t^+ \quad (2.4.36)$$

$$w_t = (\varepsilon)^{-\frac{1}{2}} w_t^+. \quad (2.4.37)$$

The transformed process $\{w_t : t = 1, 2, \ldots\}$ is now conditionally homoskedastic as required because $E[w_{t+1}(w_{t+1})' | J_t] = I$. Furthermore, the transformed process $\{x_t : t = 1, 2, \ldots\}$ satisfies (2.2.1). The matrix A now satisfies the restriction that its eigenvalues are bounded in modulus by unity. The original process $\{x_t^+ : t = 1, 2, \ldots\}$ is allowed to grow over time at a rate of up to .5 log (ε).

2.4.11. A Rational Expectations Model

Consider a stochastic process $\{p_t\}$ related to a stochastic process $\{m_t\}$ via

$$p_t = \lambda E_t p_{t+1} + \gamma m_t, \quad 0 < \lambda < 1 \quad (2.4.38)$$

where

$$m_t = G x_t \quad (2.4.39)$$

and x_t is governed by (2.2.1). In (2.4.38), $E_t(\cdot)$ denotes $E(\cdot) | J_t$. This is a rational expectations version of Cagan’s (1956) model of hyperinflation, where p_t is the log of the price level and m_t the log of the money supply. or a version of LeRoy and Porter’s (1981) and Shiller’s (1981) model of stock prices, where p_t is the stock price and m_t is the dividend. Recursions on the difference equation (2.4.38) establish that a solution is $p_t = E_t \gamma \sum_{j=0}^{\infty} \lambda^j m_{t+j}$. Using (2.3.6) and (2.4.39) in this equation gives $p_t = \gamma G \sum_{j=0}^{\infty} \lambda^j A^j x_t$, or $p_t = \gamma G(I - \lambda A)^{-1} x_t$.

Collecting our results, we have that (p_t, m_t) satisfies

$$\begin{bmatrix} p_t \\ m_t \end{bmatrix} = \begin{bmatrix} \gamma G(I - \lambda A)^{-1} \\ G \end{bmatrix} x_t$$

$$x_{t+1} = A x_t + C w_{t+1}. \quad (2.4.40)$$

System (2.4.40) embodies the cross-equation restrictions associated with rational expectations models: note that the same parameters in A, G that pin down
the stochastic process for \(m_t \) also enter the equation that determines \(p_t \) as a function of the state \(x_t \).

2.4.12. Method of Undetermined Coefficients

It is useful to show how to derive (2.4.40) using the method of undetermined coefficients. Returning to (2.4.38), we guess that a solution for \(p_t \) is of the form \(p_t = Hx_t \), where \(H \) is a matrix to be determined. Given this guess and (2.2.1), it follows that \(E_t p_{t+1} = HE_t x_{t+1} = HAx_t \). Substituting this and (2.4.39) into (2.4.38) gives \(Hx_t = \lambda HA x_t + \gamma Gx_t \), which must hold for all realizations \(x_t \).
This implies that \(H = \lambda HA + \gamma G \) or \(H = \gamma G \left(I - \lambda A \right)^{-1} \), which agrees with (2.4.40).

2.5. Concluding Remarks

Chapters 4, 5, 6, 7, and 10 describe a class of economic structures with competitive equilibrium prices and quantities that can be represented in terms of a vector linear stochastic difference equation. In particular, the state of the economy \(x_t \) will be represented by a version of (2.2.1), while a vector \(y_t \) containing various prices and quantities will simply be linear functions of the state, i.e., \(y_t = Gx_t \). The rest of this book studies how the matrices \(A, C, G \) can be interpreted as functions of parameters that determine the preferences, technologies, and information flows.
Chapter 3
Efficient Computations

3.1. Introduction

This chapter describes fast algorithms for computing the value function and optimal decision rule for the type of social planning problem to be described in chapter 5.\footnote{Parts of this chapter use results described in Anderson, Hansen, McGrattan, and Sargent (1996). Also see Kwakernaak and Sivan (1972) for what is mostly a treatment of continuous time systems.} This same decision rule determines the competitive equilibrium allocation to be described in chapter 7, while the optimal value function for the planning problem contains all of the information needed to determine competitive equilibrium prices. The optimal value function and optimal decision rule can be computed by iterating to convergence on a functional equation called the Bellman equation. These iterations can be accelerated by using ideas from linear optimal control theory. We want to avail ourselves of these faster methods when we confront high dimensional systems.

This chapter is organized as follows. First, we display a transformation that removes both discounting and cross-products between states and controls. This transformation simplifies algebra without altering substance. Next we describe invariant subspace methods for solving an optimal linear regulator problem. These are typically faster than iterating on the Bellman equation. We then describe a closely related method called the doubling algorithm that effectively skips steps in iterating on the Bellman equation. The calculations can be further accelerated by partitioning the state vector to take advantage of patterns of zeros in various matrices that define the problem. Next, we discuss fast methods for computing equilibria for periodic economies like those to be described in chapter 14. We describe a periodic optimal linear regulator problem and show how to solve it rapidly. The chapter concludes by describing how our calculations can be adapted to handle Hansen and Sargent’s (1995) recursive formulation of Jacobson’s and Whittle’s risk-sensitive preferences.\footnote{Hansen and Sargent (2008, chapters 12 and 13) extend the models of this book to include such preferences.}
3.2. The Optimal Linear Regulator Problem

Consider the following optimization problem known as an optimal linear regulator problem: choose a contingency plan for \(\{x_{t+1}, u_t\}_{t=0}^{\infty} \) to maximize

\[
-E \sum_{t=0}^{\infty} \beta^t [x_t' R x_t + u_t' Q u_t + 2u_t' W x_t], \quad 0 < \beta < 1
\]

subject to

\[
x_{t+1} = Ax_t + Bu_t + Cw_{t+1}, \quad t \geq 0,
\]

where \(x_0 \) is given. In (3.2.2) – (3.2.3), \(x_t \) is an \(n \times 1 \) vector of state variables, and \(u_t \) is a \(k \times 1 \) vector of control variables. In (3.2.3), we assume that \(w_{t+1} \) is a martingale difference sequence with \(Ew_t w_t' = I \), and that \(C \) is a matrix conformable to \(x \) and \(w \). We also impose condition (3.2.1). We temporarily assume that \(R \) and \(Q \) are positive definite matrices, although in practice we use weaker assumptions about both matrices.

A standard way to solve this problem is to apply the method of dynamic programming. Let \(V(x) \) be the optimal value associated with the program starting from initial state vector \(x_0 = x \). The Bellman equation is

\[
V(x_t) = \max_{u_t} \left\{ -(x_t' R x_t + u_t' Q u_t + 2u_t' W x_t) + \beta E_t V(x_{t+1}) \right\}
\]

where the maximization is subject to (3.2.3). One way to solve this functional equation is to iterate on (3.2.4), thereby constructing a sequence \(V_j(x_t) \) of successively better approximations to \(V(x_t) \). In particular, let

\[
V_{j+1}(x_t) = \max_{u_t} \left\{ -(x_t' R x_t + u_t' Q u_t + 2u_t' W x_t) + \beta E_t V_j(x_{t+1}) \right\},
\]

where the maximization is again subject to (3.2.3). Suppose that we initiate iterations from \(V_0(x) = 0 \). Then direct calculations show that successive

\[\text{3} \] Throughout this chapter, we study solutions of our control problem that satisfy the additional condition

\[
E \sum_{t=0}^{\infty} \beta^t (|x_t|^2 + |u_t|^2) < \infty,
\]

where \(x_t \) is the state and \(u_t \) is the control. In appendix A of this chapter, we describe conditions on matrices determining returns and the transition law that are sufficient to imply condition (3.2.1). For conditions sufficient to imply this condition, see Kwakernaak and Sivan (1972), Anderson and Moore (1979), and Anderson, Hansen, McGrattan, and Sargent (1996).

\[\text{4} \] Incidentally, this is the appropriate terminal value function for a one-period problem.
The Optimal Linear Regulator Problem

iterates on (3.2.5) take the quadratic form

$$V_j(x_t) = -x_t'P_jx_t - \rho_j, \quad (3.2.6)$$

where P_j and ρ_j satisfy the equations

$$P_{j+1} = R + \beta A'P_j A - (\beta A'P_j B + W)$$
$$\times (Q + \beta B'P_j B)^{-1}(\beta B'P_j A + W')$$

$$\rho_{j+1} = \beta \rho_j + \beta \text{trace } P_j CC'. \quad (3.2.7)$$

Equation (3.2.7) is the matrix Riccati difference equation. Notice that it involves only $\{P_j\}$, not $\{\rho_j\}$. Notice also that C, which multiplies the noises impinging on the system and so determines the variances of innovations to information in the system, affects the $\{\rho_j\}$ sequence but not the $\{P_j\}$ sequence. We can say that $\{P_j\}$ is independent of the system’s noise statistics.\(^5\)

The value function $V(x_t)$ that satisfies the Bellman equation (3.2.4) is

$$V(x_t) = -x_t'Px_t - \rho,$$

where P and ρ are the limit points of iterations on (3.2.7) and (3.2.8) starting from $P_0 = 0, \rho = 0$. The decision rule that attains the right side of (3.2.5) is

$$u_t = -F_jx_t$$

where

$$F_j = (Q + \beta B'P_j B)^{-1}(\beta B'P_j A + W'). \quad (3.2.9)$$

The optimal decision rule for the original problem is $u_t = -Fx_t$, where $F = \lim_{j \to \infty} F_j$, or

$$F = (Q + \beta B'PB)^{-1}(\beta B'PA + W'). \quad (3.2.10)$$

According to (3.2.10), the optimum decision rule for u_t is independent of the parameters C, and so of the noise statistics.

The limit point P of iterations on (3.2.7) evidently satisfies

$$P = R + \beta A'PA - (\beta A'PB + W)$$
$$\times (Q + \beta B'PB)^{-1}(\beta B'PA + W'). \quad (3.2.11)$$

\(^5\) This fact is what permits us to focus on nonstochastic problems in devising our algorithms.
This equation in P is called the \textit{algebraic matrix Riccati equation}.

One way to solve an optimal linear regulator problem is to iterate directly on (3.2.7) and (3.2.8). Faster algorithms are available. Before studying some of them, we describe useful transformations.

3.3. Transformations to Eliminate Discounting and Cross-Products

The following transformations eliminate both discounting and cross-products between states and controls. Define the transformed control v_t and transformed state \hat{x}_t by

$$v_t = \beta^{t/2}(u_t + Q^{-1}W'x_t), \quad \hat{x}_t = \beta^{t/2}x_t. \quad (3.3.1)$$

Notice that

$$v_t'Qv_t = \beta^t \left[x_t' u_t' \right] \begin{bmatrix} WQ^{-1}W' & W \\ W' & Q \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}.$$

It follows that

$$\beta^t \left[x_t' u_t' \right] \begin{bmatrix} R & W' \\ W & Q \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix} = \hat{x}_t'R\hat{x}_t + v_t'Qv_t$$

where $R^* = R - WQ^{-1}W'$. The transition law (3.2.3) can be represented as

$$\hat{x}_{t+1} = A^*\hat{x}_t + B^*v_t + \beta^{t+1}Cw_{t+1}, \quad (3.3.3)$$

where $A^* = \beta^{1/2}(A - BQ^{-1}W')$, $B^* = \beta^{1/2}B$. Therefore, regulator problem (3.2.2) – (3.2.3) is equivalent to the following regulator problem without cross-products between states and controls and without discounting: choose $\{v_t\}$ to maximize

$$-E\sum_{t=0}^{\infty}[\hat{x}_t'R\hat{x}_t + v_t'Qv_t] \quad (3.3.2)$$

subject to

$$\hat{x}_{t+1} = A^*\hat{x}_t + B^*v_t + \beta^{t+1}Cw_{t+1}, \quad (3.3.3)$$

where

$$P = R^* + A'^*PA^* - A'^*PB^*(Q + B'^*PB^*)^{-1}B'^*PA^* \quad (3.3.4)$$
\[F^* = (Q + B^*PB^*)^{-1}B^*PA^*, \quad (3.3.5) \]

it being understood that \(P \) is the positive semi-definite solution of (3.3.4).

The optimal closed loop system in terms of transformed variables is

\[\hat{x}_{t+1} = (A^* - B^*F^*)\hat{x}_t + \beta^{\frac{t+1}{2}}Cw_{t+1} \quad (3.3.6) \]

Multiplying both sides of this equation by \(\beta^{-\frac{t+1}{2}} \) gives

\[x_{t+1} = \beta^{-\frac{t}{2}}(A^* - B^*F^*)x_t + Cw_{t+1}, \quad (3.3.7) \]

3.4. Stability Conditions

We shall typically restrict the undiscounted linear regulator (3.3.2), (3.3.3) defined by the matrices \((A^*, B^*, R^*, Q)\) to satisfy conditions from control theory designed to render the problem well behaved.

In particular, let \(DD' = R^* \), so that \(D \) is said to be a factor of \(R^* \). Our conditions are cast in terms of the concepts of stabilizability and detectability defined in Appendix A of this chapter. We adopt

Assumption A1: The pair \((A^*, B^*)\) is stabilizable. The pair \((A^*, D)\) is detectable.

Then there obtains:

Stability Theorem: Under assumption A1: (i) starting from any negative semi-definite matrix \(P_0 \), iterations on the matrix Riccati difference equation converge; and (ii) eigenvalues of \((A^* - B^*F^*)\) are less than unity in modulus.

In the next section, we describe a class of algorithms that exploit the stability of the optimal \((A^* - B^*F)\).\(^6\)

\(^6\) Because the eigenvalues of \((A^* - B^*F^*)\) are less than unity in modulus, it follows that the eigenvalues of \(A^* = \beta^{-\frac{t}{2}}(A^* - B^*F^*) \) are less than \(\frac{1}{\sqrt{\beta}} \) in modulus.
3.5. Invariant Subspace Methods

Following Vaughan (1970), a literature has developed fast algorithms for computing the limit point of the matrix Riccati equation (3.2.7) based on the eigenstructure of a matrix associated with the Riccati equation. These methods work with a Lagrangian formulation of the problem and with linear restrictions that stability condition (3.2.1) imposes on the multipliers and the state vector. These conditions restrict the appropriate solution \(P \) of the algebraic matrix Riccati equation.

Without loss of generality, we work with the undiscounted deterministic optimal linear regulator problem: choose \(\{u_t\}_{t=0}^{\infty} \) to maximize

\[
- \sum_{t=0}^{\infty} \{x'_t Rx_t + u'_t Qu_t\}
\]

subject to

\[
x_{t+1} = Ax_t + Bu_t.
\]

3.5.1. \(P_x \) as Lagrange Multiplier

It is convenient to write a Lagrangian for the Bellman equation:

\[
V(x) = \max_{u,\tilde{x}} \min_\mu \left\{ - (x'Rx + u'Qu + 2\mu'(Ax + Bu - \tilde{x})) + V(\tilde{x}) \right\},
\]

where \(\tilde{x} \) is next period’s value of the state, \(\mu \) is a vector of multipliers, and \(V(x) = -x'Px \), where the matrix \(P \) solves the matrix Riccati equation. The first-order condition for the above Lagrangian with respect to \(\tilde{x} \) implies that \(\mu = Px \). Thus, as usual, the multipliers are linked to the gradient of the value function.
3.5.2. Invariant Subspace Methods

Invariant subspace methods compute P indirectly by restricting the initial vector of multipliers μ to stabilize the solution for x_t, u_t, as required by (3.2.1). For now, we assume that A is invertible. We move to the space of sequences, and let $\{\mu_t\}_{t=0}^\infty$ be a sequence of vectors of Lagrange multipliers. Form the Lagrangian

$$J = -\sum_{t=0}^\infty \{x'_t Rx_t + u'_t Qu_t + 2\mu'_{t+1}[Ax_t + Bu_t - x_{t+1}]\} - 2\mu'_0(\bar{x}_0 - x_0).$$ \hspace{1cm} (3.5.3)

Here \bar{x}_0 is the given initial level of x_0. First order necessary conditions for the maximization of J with respect to $\{u_t\}_{t=0}^\infty$ and $\{x_t\}_{t=0}^\infty$ are

$$u_t : \quad Qu_t + B'\mu_{t+1} = 0, \quad t \geq 0 \hspace{1cm} (3.5.4)$$

$$x_t : \quad \mu_t = Rx_t + A'\mu_{t+1}, \quad t \geq 0. \hspace{1cm} (3.5.5)$$

Solve (3.5.4) for u_t and substitute into (3.5.2) to obtain

$$x_{t+1} = Ax_t - BQ^{-1}B'\mu_{t+1}. \hspace{1cm} (3.5.6)$$

Represent (3.5.5) and (3.5.6) as

$$L \begin{bmatrix} x_{t+1} \\ \mu_{t+1} \end{bmatrix} = N \begin{bmatrix} x_t \\ \mu_t \end{bmatrix}, \hspace{1cm} (3.5.7)$$

where

$$L = \begin{bmatrix} I & BQ^{-1}B' \\ 0 & A' \end{bmatrix}, \quad N = \begin{bmatrix} A & 0 \\ -R & I \end{bmatrix}. \hspace{1cm} (3.5.8)$$

Represent (3.5.7) as

$$\begin{bmatrix} x_{t+1} \\ \mu_{t+1} \end{bmatrix} = M_f \begin{bmatrix} x_t \\ \mu_t \end{bmatrix},$$

or

$$\begin{bmatrix} x_t \\ \mu_t \end{bmatrix} = M_b \begin{bmatrix} x_{t+1} \\ \mu_{t+1} \end{bmatrix},$$

where

$$M_f = L^{-1}N = \begin{bmatrix} A + BQ^{-1}B'A'^{-1}R & -BQ^{-1}B'A'^{-1} \\ -A'^{-1}R & A'^{-1} \end{bmatrix}.$$ \hspace{1cm} (3.5.10)
and
\[M_b = N^{-1}L = \begin{bmatrix} A^{-1} & A^{-1}BQ^{-1}B' \\ RA^{-1} & RA^{-1}BQ^{-1}B' + A' \end{bmatrix}. \] (3.5.11)

Evidently \(M_b = M_f^{-1} \). The matrices \(M_f \) and \(M_b \) each have the property that their eigenvalues occur in reciprocal pairs: if \(\lambda_o \) is an eigenvalue, then so is \(\lambda_o^{-1} \). We postpone a proof of the ‘reciprocal pairs’ property of the eigenvalues to the subsequent section on the doubling algorithm, where it will follow from verifying that \(M_b \) and \(M_f \) are examples of symplectic matrices.

Because its eigenvalues occur in reciprocal pairs, we can represent the matrix \(M_f \) in (3.5.8) via a Schur decomposition
\[M_f = VWV^{-1}, \] (3.5.12)
where \(V \) is a nonsingular matrix,
\[W = \begin{bmatrix} W_{11} & W_{12} \\ 0 & W_{22} \end{bmatrix}, \]
where \(W_{11} \) is a stable matrix, and \(W_{22} \) is an unstable matrix. In terms of transformed variables \(y_t^* = V^{-1}y_t \equiv V^{-1}\begin{bmatrix} x_t \\ \mu_t \end{bmatrix} \), the system can be written
\[y_{t+1}^* = Wy_t^*. \] (3.5.13)

Let \(V^{-1} = \begin{bmatrix} V^{11} & V^{12} \\ V^{21} & V^{22} \end{bmatrix} \), where the partitions conform in size to those of \(W \). The solution of (3.5.13) is
\[y_t^* = \begin{bmatrix} W_{11}^* & \phi_t \\ 0 & W_{22}^* \end{bmatrix} \begin{bmatrix} V^{11}x_0 + V^{12}\mu_0 \\ V^{21}x_0 + V^{22}\mu_0 \end{bmatrix}. \] (3.5.14)

where \(\phi_0 = W_{12}, \phi_{j+1} = W_{12}^jW_{12} + \phi_jW_{22} \) for \(j \geq 0 \). Because \(W_{22} \) is an unstable matrix, to guarantee that \(\lim_{t \to \infty} y_t^* = 0 \), we require that
\[V^{21}x_0 + V^{22}\mu_0 = 0, \] (3.5.15)
which replicates itself over time in the sense that recursions on (3.5.14) imply
\[V^{21}x_t + V^{22}\mu_t = 0, \] (3.5.16)
for all $t \geq 0$. Equation (3.5.15) implies
\[
\mu_0 = -(V^{22})^{-1}V^{21}x_0.
\]
Substituting (3.5.16) into (3.5.13) and using \[
\begin{bmatrix}
x_t \\
\mu_t
\end{bmatrix} = V y_t^* \]
gives
\[
\begin{align*}
x_{t+1} &= V_{11}W_{11}(V^{11} - V^{12}(V^{22})^{-1}V^{21})x_t \\
\mu_{t+1} &= V_{21}W_{11}(V^{11} - V^{12}(V^{22})^{-1}V^{21})x_t.
\end{align*}
\] (3.5.17)

However, as noted above, $\mu_t = Px_t$, where P solves the algebraic Riccati equation (3.3.4). Therefore, (3.5.17) implies that $PV_{11} = V_{21}$ or
\[
P = V_{21}V_{11}^{-1} = -(V^{22})^{-1}V^{21}.\] (3.5.18)

Equation (3.5.18) is our formula for P.

3.6. Doubling Algorithm

The algebraic matrix Riccati equation can be solved with a doubling algorithm.7

The algorithm shares with invariant subspace methods the prominent role it assigns to the matrix M_b of equation (3.5.9).

We start with a finite horizon version of our problem for horizon $t = 0, \ldots, \tau - 1$, which leads to a two point boundary problem. We continue to assume that A is nonsingular, iterate on (3.5.8), and impose the boundary condition $\mu_\tau = 0$ to get
\[
\tilde{M} \begin{bmatrix} x_\tau \\ 0 \end{bmatrix} = \begin{bmatrix} x_0 \\ \mu_0 \end{bmatrix},
\] (3.6.1)

where
\[
\tilde{M} = M_f^{-\tau} = M_b^\tau.
\] (3.6.2)

We want to solve (3.6.2) for μ_0 as a function of x_0, and from this solution deduce a finite-horizon approximation to P. Partitioning \tilde{M} conformably with

7 This section is based on Anderson, Hansen, McGrattan, and Sargent (1996). For another discussion of the doubling algorithm, see Anderson and Moore (1979, pp. 158–160).
the state-co-state partition, we deduce \(\hat{M}_{11}x_\tau = x_0, \hat{M}_{21}x_\tau = \mu_0 \). Therefore, we choose \(\mu_0 = \hat{M}_{21}(\hat{M}_{11})^{-1}x_0 \), and set the matrix

\[
P = \hat{M}_{21}(\hat{M}_{11})^{-1}.
\] (3.6.3)

The plan is efficiently to compute \(\hat{M} \) for large horizon \(\tau \), then use (3.6.3) to compute \(P \). We can accelerate the computations by choosing \(\tau \) to be a power of two and using

\[
M_f^{-2^{k+1}} = (M_f^{-2^k})M_f^{-2^k}.
\] (3.6.4)

Thus, for \(\tau = 2^j \), the matrix \(\hat{M} = M_f^{-\tau} \) can be computed in \(j \) iterations instead of \(2^j \) iterations, inspiring the name doubling algorithm.

Because \(M_f^{-1} \) has unstable eigenvalues, direct iterations on (3.6.4) can be unreliable. Therefore, the doubling algorithm transforms iterations on (3.6.4) into other iterations whose important objects converge. These iterations exploit the fact that the matrix \(M_f \) is symplectic (see Appendix B of this chapter). The eigenvalues of symplectic matrices come in reciprocal pairs. The product of symplectic matrices is symplectic; for any symplectic matrix \(S \), the matrices \(S_{21}(S_{11})^{-1} \) and \((S_{11})^{-1}S_{12} \) are both symmetric; and

\[
S_{22} = (S_{11}'^{-1} + S_{21}(S_{11})^{-1}S_{12} = (S_{11}')^{-1} + S_{21}(S_{11})^{-1}S_{11}(S_{11})^{-1}S_{12}.
\]

Therefore, a \((2n \times 2n)\) symplectic matrix can be represented in terms of three \((n \times n)\) matrices \(\alpha = (S_{11})^{-1}, \beta = (S_{11})^{-1}S_{12}, \gamma = S_{21}(S_{11})^{-1} \), the latter two matrices being symmetric.

These properties of symplectic matrices inspire the following parameterization of \(M_f^{-2^k} \)

\[
M_f^{-2^k} = \begin{bmatrix}
\alpha_k^{-1} & \alpha_k^{-1}\beta_k \\
\gamma_k\alpha_k^{-1} & \alpha_k' + \gamma_k\alpha_k^{-1}\beta_k
\end{bmatrix},
\] (3.6.5)

where the \(n \times n \) matrices \(\alpha_k, \beta_k, \gamma_k \) satisfy the recursions

\[
\begin{align*}
\alpha_{k+1} &= \alpha_k(I + \beta_k\gamma_k)^{-1}\alpha_k \\
\beta_{k+1} &= \beta_k + \alpha_k(I + \beta_k\gamma_k)^{-1}\beta_k\alpha_k' \\
\gamma_{k+1} &= \gamma_k + \alpha_k'\gamma_k(I + \beta_k\gamma_k)^{-1}\alpha_k.
\end{align*}
\] (3.6.6)

To initialize, we use representation (3.5.11) for \(M_k = M_f^{-1} \) to induce the settings: \(\alpha_0 = A, \gamma_0 = R, \beta_0 = BQ^{-1}B' \).
Anderson, Hansen, McGrattan, and Sargent (1996) describe a version of the doubling algorithm modified to build in a positive definite terminal value matrix P_o. Their scheme initializes iterations on (3.6.6) as follows:

\[
\alpha_0 = (I + BQ^{-1}B'P_o)^{-1}A \\
\beta_0 = (I + BQ^{-1}B'P_o)^{-1}BQ^{-1}B' \\
\gamma_0 = R - P_o + A'P_o(I + BQ^{-1}B'P_o)^{-1}A.
\] (3.6.7)

The modified algorithm then works as follows:

1. Initialize $\alpha_0, \beta_0, \gamma_0$ according to (3.6.7).
2. Iterate on (3.6.6).
3. Form P as the limit of $\gamma_k + P_o$.

We have assumed that A is nonsingular, but Anderson (1985) argues that the doubling algorithm is applicable also in circumstances where A is singular.\(^8\) Anderson, Hansen, McGrattan, and Sargent (1996) report the results of computations in which the doubling algorithm is among the fastest and most reliable available algorithms for solving several example economies.

3.7. Partitioning the State Vector

Undiscounted versions of the control problem solved by our social planner assume a form for which it is natural to partition the state vector to take advantage of the pattern of zeros in A and B. This leads to a control problem of the form: choose \(\{u_t, x_{t+1}\}_{t=0}^\infty \) to maximize

\[
-\sum_{t=0}^{\infty} \left[\begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix}' \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix} + u_t'Qu_t \right]
\] (3.7.1)

subject to

\[
\begin{bmatrix} x_{1t+1} \\ x_{2t+1} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u_t,
\] (3.7.2)

\(^8\) See Anderson, Hansen, McGrattan, and Sargent (1996) for conditions under which the matrix sequences $\{\alpha_k\}, \{\beta_k\}, \{\gamma_k\}$ converge.
with \([x_{10}', x_{20}']\) given.\(^9\)

For this problem, the operator associated with Bellman’s equation is

\[
T(P) = R + A'PA - A'PB(Q + B'PB)^{-1}B'PA. \tag{3.7.3}
\]

Partitioning \(P\) and \(T(P)\) conformably with the partition \(\begin{bmatrix} x_1 \cr x_2 \end{bmatrix}\) makes the \((1,1)\) and \((1,2)\) components of \(T(P)\) satisfy

\[
T_{11}(P_{11}) = R_{11} + A'_{11}P_{11}A_{11} - A'_{11}P_{11}B_1(Q + B'_{11}P_{11}B_1)^{-1}B'_{11}P_{11}A_{11} \tag{3.7.4}
\]

\[
T_{12}(P_{11}, P_{12}) = R_{12} + A'_{11}P_{11}A_{12} - A'_{11}P_{11}B_1(Q + B'_{11}P_{11}B_1)^{-1}B'_{11}P_{11}A_{12}
+ [A'_{11} - A'_{11}P_{11}B_1(Q + B'_{11}P_{11}B_1)^{-1}B'_{11}P_{12}A_{22}] \tag{3.7.5}
\]

Equation (3.7.4) shows that \(T_{11}\) depends on \(P_{11}\), but not on other elements of the partition of \(P\). From (3.7.5), \(T_{12}\) depends on \(P_{11}\) and \(P_{12}\), but not on \(P_{22}\). Because \(T\) maps symmetric matrices into symmetric matrices, the \((2,1)\) block of \(T\) is just the transpose of the \((1,2)\) block. Finally, the \((2,2)\) block of \(T\) depends on \(P_{11}, P_{12}\), and \(P_{22}\).

Partition the optimal feedback matrix \(F = [F_1, F_2]\), where the partition is conformable with that of \(x_1\). Then the optimal control is

\[
u_t = [F_1, F_2] \begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix}.
\]

Let \(P_{11}^f\) be the fixed point of (3.7.4) and let \(P_{12}^f\) be the fixed point of \(T_{12}(P_{11}^f, P_{12})\). Then \(F_1\) and \(F_2\) are given by

\[
F_1 = (Q + B'_{11}P_{11}^fB_1)^{-1}B'_{11}P_{11}^fA_{11} \tag{3.7.6}
\]

\[
F_2 = (Q + B'_{11}P_{11}^fB_1)^{-1}(B'_{12}P_{12}^fB_1 + B'_{12}P_{12}^fA_{22}). \tag{3.7.7}
\]

\(^9\) System (3.7.1) – (3.7.2) is called a controllability canonical form (see Kwakernaak and Sivan (1972)). Two things distinguish a controllability canonical form: (1) the pattern of zeros in the pair \((A, B)\) and (2) a requirement that \((A_{11}, B_1)\) be a controllable pair (see Appendix A of this chapter). A controllability canonical form adopts a description of the state vector that separates it into a part \(x_{2t}\) that cannot be affected by the controls, and a part \(x_{1t}\) that can be controlled in the sense that there exists a sequence of controls \(\{u_t\}\) that sends \(x_1\) to any arbitrarily specified point within the space in which \(x_1\) lives.
Equation (3.7.6) shows that \(F_1 \) depends only on \(P^f_{11} \), while \(F_2 \) depends on \(P^f_{11} \) and \(P^f_{12} \), but not on \(P^f_{22} \), the fixed point of \(T_{22} \).

We aim to compute \([F_1, F_2] \) and the multipliers to be described in chapter 5, which turn out only to depend on \(P^f_{11} \) and \(P^f_{12} \). We can compute these objects rapidly by using the structure exposed by (3.7.6) and (3.7.7). First, note that the \(T_{11} \) operator identified by (3.7.6) is formally equivalent with the \(T \) operator of (3.7.3), except that \((1,1)\) subscripts appear on \(A \) and \(R \), and a \((1)\) subscript appears on \(B \). Thus, the \(T_{11} \) operator is simply the operator whose iterations define the matrix Riccati difference equation for the small optimal regulator problem determined by the matrices \((A_{11}, B_1, Q, R_{11})\). We can compute \(P^f_{11} \) by using any of the algorithms described above for this smaller problem. We have chosen to use the doubling algorithm (3.6.6).

Second, given a fixed point \(P^f_{11} \) of \(T_{11} \), we apply another sort of doubling algorithm to compute the fixed point of \(T_{12} \). This mapping has the form

\[
T_{12}(P^f_{11}, P^f_{12}) = D + G'P^f_{12}H
\]

where \(D = R_{12} + A'_{11}P^f_{11}A_{12} - A'_{11}P^f_{11}B_1(Q + B'_1P^f_{11}B_1)^{-1}B'_1P^f_{11}A_{12} \), \(G = [A_{11} - B_1(Q + B'_1P^f_{11}B_1)^{-1}B'_1P^f_{11}A_{11}] \), \(H = A_{22} \). Notice that \(G = A_{11} - B_1F^1 \), where \(F^1 \) is computed from (3.7.6). When \(x_{2t} \) is set to zero for all \(t \), the law of motion for \(x_{1t} \) under the optimal control is thus

\[
x_{1t+1} = Gx_{1t}.
\]

For problems for which condition (3.2.1) is either automatically satisfied or else imposed, the eigenvalues of \(G \) and \(H \) each have absolute values strictly less than unity. That the eigenvalues of \(G \) and \(H \) are both less than unity assures the existence of a limit point to iterations on (3.7.8). The limit point satisfies the Sylvester equation

\[
P_{12} = D + G'P_{12}H,
\]

which is to be solved for \(P_{12} \). The limit point of iterations on \(T_{12} \) initiated from \(P_{12}(0) = 0 \) can be represented

\[
P^f_{12} = \sum_{j=0}^{\infty} G^jDH^j,
\]

whose status as a fixed point of \(T_{12}(P^f_{11}, \cdot) \) can be verified directly. However, iterations on (3.7.9) would not be an efficient way to compute \(P_{12} \). Instead,
we recommend using this doubling algorithm. Compute the following objects recursively:

\[G_j = G_{j-1} G_{j-1} \]
\[H_j = H_{j-1} H_{j-1} \]
\[P_{12,j} = P_{12,j-1} + G'_{j-1} P_{12,j-1} H_{j-1} \]

where we set \(P_{12,0} = D, G_0 = G, H_0 = H \). By repeated substitution it can be shown that

\[P_{12,j} = \sum_{i=0}^{2^j - 1} G'^i DH^i. \] (3.7.12)

Each iteration doubles the number of terms in the sum.\(^{10}\)\(^{11}\)

3.8. Periodic Optimal Linear Regulator

In chapter 14, we study a class of models of seasonality whose social planning problems form a periodic optimal linear regulator problem: choose \(\{u_t, x_{t+1}\}_{t=0}^\infty \) to maximize

\[\sum_{t=0}^\infty \{x'_t R_s(t) x_t + u'_t Q_s(t) u_t\} \] (3.8.1)

subject to

\[x_{t+1} = A_s(t) x_t + B_s(t) u_t. \] (3.8.2)

Here \(s(t) \) is a periodic function that maps the integers into a subset of the integers:

\[s : (\cdots -1, 0, 1, \cdots) \to [1, 2, \cdots, p] \]
\[s(t + p) = s(t) \text{ for all } t. \]

In problem (3.8.1) - (3.8.2), the matrices \(A_s, B_s, Q_s \), and \(R_s \) are each periodic with common period \(p \).

Associated with problem (3.8.1) - (3.8.2) is the following version of a matrix Riccati difference equation:

\[P_t = R_s(t) + A'_s(t) P_{t+1} A_s(t) \]
\[- A'_s(t) P_{t+1} B_s(t) (Q_s(t) + B'_s(t) P_{t+1} B_s(t))^{-1} B'_s(t) P_{t+1} A_s(t). \] (3.8.3)

\(^{10}\) This algorithm is implemented in the MATLAB program double2j.m.
\(^{11}\) The (1,2) partition of \(P \) is simply \(P_{12}' \). We could derive an algorithm similar to (3.7.11) to compute \(P_{12}' \), but we don’t need to compute \(P_{12}' \), which is used to compute neither \([F_1, F_2] \) nor the Lagrange multipliers that determine the price system associated with our equilibrium.
Under conditions that generalize assumption A1, which were discussed by Richard Todd (1983), iterations on (3.8.3) yield p convergent subsequences, whose limit points we denote P_1, P_2, \ldots, P_p. The optimal decision rule in period t is

$$u_t = -F_{s(t)}x_t,$$

where

$$F_{s(t)} = -(Q_{s(t)} + B_{s(t)}^r P_{s(t+1)} B_{s(t)})^{-1} B_{s(t)}^r P_{s(t+1)} A_{s(t)}.$$ (3.8.5)

Thus, optimal decision rules themselves have period p.

One way to compute optimal decision rules is to iterate on (3.8.3) to convergence of the p subsequences, and then to use (3.8.5). Faster algorithms can be obtained by adapting calculations described earlier in this chapter. In the next section, we show how doubling algorithms apply to the periodic linear regulator problem, and also how the ‘controllability canonical form’ can be exploited.

3.9. A Periodic Doubling Algorithm

First-order conditions for the periodic linear regulator can be represented as

$$\begin{bmatrix} x_{t+1} \\ \mu_{t+1} \end{bmatrix} = M_{f,s(t)} \begin{bmatrix} x_t \\ \mu_t \end{bmatrix},$$

(3.9.1)

where $M_{f,s(t)}$ is the periodic counterpart to the matrix M_f defined in (3.5.10). Iterating this equation p times and using the periodic structure of $s(t)$ gives

$$\begin{bmatrix} x_{t+p} \\ \mu_{t+p} \end{bmatrix} = \Gamma_p \begin{bmatrix} x_t \\ \mu_t \end{bmatrix},$$

(3.9.2)

where

$$\Gamma_p = M_{f,p-1} M_{f,p-2} \cdots M_{f,1} M_{f,p}.$$ (3.9.3)

The matrix Γ_p is the product of p symplectic matrices, and therefore is symplectic. Equation (3.9.2) at $t = p$ can be represented

$$\Gamma_p^{-1} \begin{bmatrix} x_{2p} \\ \mu_{2p} \end{bmatrix} = \begin{bmatrix} x_p \\ \mu_p \end{bmatrix}.$$ (3.9.4)
where
\[\Gamma_p^{-1} = M_{f,p}^{-1} M_{f,1}^{-1} \cdots M_{f,p-1}^{-1}. \] \hfill (3.9.5)

Iterating (3.9.4) \(\tau - 1 \geq 1 \) times and imposing the same boundary condition used in (3.6.1) gives
\[\hat{M} \begin{bmatrix} x_{p\tau} \\ 0 \end{bmatrix} = \begin{bmatrix} x_p \\ \mu_p \end{bmatrix}, \] \hfill (3.9.6)

where \(\hat{M} = \Gamma_p^{-\tau} \). An argument used earlier implies that the doubling algorithm can be applied to our redefined \(\hat{M} \) to compute
\[P_p = \hat{M}_{21}(\hat{M}_{11})^{-1}. \] \hfill (3.9.7)

It is straightforward to compute the remaining \(p-1 \) value functions. Notice that (3.9.4) implies
\[\hat{M} \begin{bmatrix} x_{p\tau} \\ 0 \end{bmatrix} = M_{f,p-1} \begin{bmatrix} x_{p-1} \\ \mu_{p-1} \end{bmatrix}, \] or
\[\hat{M}^{-1} M_{f,p-1} \hat{M} \begin{bmatrix} x_{p\tau} \\ 0 \end{bmatrix} = \begin{bmatrix} x_{p-1} \\ \mu_{p-1} \end{bmatrix}. \]

The same argument used above now implies that
\[\mu_1 = \hat{M}_{21}(\hat{M}_{22})^{-1} x_1 \equiv P_1 x_1, \]
where \(\hat{M} = \hat{M}_{p-1} = M_{f,p-1}^{-1} \hat{M} \) is symplectic because it is the product of two symplectic matrices. The product of two symplectic matrices \(Z_1, Z_2 \) has representation
\[Z_1 Z_2 = \bar{Z} = \begin{bmatrix} \tilde{\alpha}^{-1} & \tilde{\alpha}^{-1} \tilde{\beta} \\ \tilde{\gamma} \tilde{\alpha}^{-1} & \tilde{\alpha}^{-1} + \tilde{\gamma} \tilde{\alpha}^{-1} \tilde{\beta} \end{bmatrix} \]
where
\[\tilde{\alpha} = \alpha_2(I + \beta_1 \gamma_2)^{-1} \alpha_1 \]
\[\tilde{\gamma} = \gamma_1 + \alpha_1 \gamma_2 (I + \beta_1 \gamma_2)^{-1} \alpha_1 \] \hfill (3.9.8)
\[\tilde{\beta} = \beta_2 + \alpha_2(I + \beta_1 \gamma_2)^{-1} \beta_1 \alpha_2'. \]

We can use this feature to compute \(P_{p-1} \) from the \(\gamma \) term produced by this representation of multiplication.

Iterating this argument leads us to compute \(P_{p-2}, \ldots, P_1 \) as the corresponding \(\gamma \) matrices in the successive multiplications used to form \(\hat{M}_{p-2} = M_{f,p-2}^{-1} \hat{M}_{p-1}, \ldots, \hat{M}_1 = M_{f,1}^{-1} \hat{M}_2. \)
Thus, the algorithm works as follows.

1. Initialize $\alpha_0, \beta_0, \gamma_0$ according to (3.6.7).
2. Use the algorithm (3.9.8) for multiplying symplectic matrices to form Γ_p^{-1} defined as in (3.9.5).
3. Iterate on (3.6.6).
4. Form P_p as the limit of $\gamma_k + P_n$.
5. Successively form $\hat{M}_{p-1}, \hat{M}_{p-2}, \ldots, \hat{M}_1$ using (3.9.8), and set the corresponding γ terms to $P_{p-1}, P_{p-2}, \ldots, P_1$.

Having computed P_1, \ldots, P_p, we can use (3.8.5) to compute the optimal decision rules. The optimal feedback laws are periodic, so that $u_t = -F_{s(t)} x_t$. The matrices F_1, \ldots, F_p are computed from

$$F_j = (Q_j + B_j' P_{j+1} B_j)^{-1} B_j' P_{j+1} A_j,$$

where it is understood that $P_{p+1} = P_1$.

3.9.1. Partitioning the State Vector

We can also apply a partitioning technique to the periodic optimal linear regulator problem in order to accelerate computations. We partition the state vector into $\begin{bmatrix} x_{1t} \\ x_{2t} \end{bmatrix}$ exactly as above. With the appropriate specification of $R_s, Q_s, A_s,$ and B_s, we obtain a periodic version of the $T_{11}(P_{11})$ mapping described in equation (3.7.4). Use our procedures to compute P_1, P_2, \ldots, P_p as described above, then set $P_{11,j}^f = P_j$ for $j = 1, \ldots, p$.

The T_{12} mapping for the periodic model becomes

$$T_{12,k}(P_{11,k+1}^f, P_{12,k+1}) = D_k + G_k' P_{12,k+1} H_k$$

where

$$D_k = R_{12,k} + A_{11,k} P_{11,k+1}^f A_{12,k} - A_{11,k}' P_{11,k+1}^f B_{1k}$$

$$\times (Q_k + B_{1k}' P_{11,k+1}^f B_{1k})^{-1} B_{1k}' P_{11,k+1}^f A_{12,k}$$

$$G_k = [A_{11,k} - B_{1k}(Q_k + B_{1k}' P_{11,k+1}^f B_{1k})^{-1} B_{1k}' P_{11,k+1} A_{11,k}$$

$$H_k = A_{22,k}$$

(3.9.10)
In (3.9.9) – (3.9.10), \(P_{11,k+1}^f \) is the fixed point for \(P_{11,k+1} \) corresponding to period \(k + 1 \). Iterations on (3.9.9) will give rise to a sequence consisting of \(p \) convergent subsequences, whose limit points we call \(P_{12,1}^f, \ldots, P_{12,p}^f \). We desire to compute these limiting matrices.

We begin by creating an operator \(\bar{T}_{12,1} \) whose fixed point is \(P_{12,1}^f \). We define
\[
\bar{T}_{12,1}(P_{12,1}) = \bar{D}_1 + \bar{G}_1' P_{12,1} \bar{H}_1
\]
where \(\bar{D}_1 = D_1 + G_1' D_2 H_1 + \cdots + G_1' G'_2 \cdots G'_{p-1} D_p H_{p-1} H_{p-2} \cdots H_1 G'_1 = G_1' G'_2 \cdots G'_p H_1 = H_p H_{p-1} \cdots H_1 \). We can compute the fixed point of (3.9.9) by using the standard doubling algorithm that is implemented in the MATLAB program \texttt{double2j.m}.

Once we have computed \(P_{12,1}^f \), we can compute \(P_{12,j}^f \) for \(j = p, p-1, \ldots, 2 \) by using
\[
P_{12,p}^f = D_p + G'_p P_{12,1}^f H_1
\]
\[
P_{12,j}^f = D_j + G'_j P_{12,j+1}^f H_j , \quad j = p - 1, p - 2, \ldots, 2
\]

The optimal decision rules \(u_t = -F_s(t), x_t \) can be computed as follows. Let \(F_s(t) = [F_{1s(t)} \quad F_{2s(t)}] \), where the partition of \(F_s(t) \) matches that of the state vector into \(x_1(t), x_2(t) \). Then we have
\[
F_{1j} = (Q_j + B'_{1j} P_{11,j+1}^f B_{1j})^{-1} B'_{1j} P_{11,j+1}^f A_{11,j}
\]
\[
F_{2j} = (Q_j + B'_{1j} P_{11,j+1}^f B_{1j})^{-1} (B'_{1j} P_{11,j+1}^f A_{12,j} + B'_{1j} P_{12,j+1}^f A_{22,j}) \quad (3.9.13)
\]
for \(j = 1, \ldots, p \).

The optimal closed loop system is then
\[
x_{t+1} = (A_{s(t)} - B_{s(t)} F_s(t)) x_t . \quad (3.9.14)
\]
3.10. Linear Exponential Quadratic Gaussian Control

Hansen and Sargent (2008, chapters 12 and 13) reinterpret some of our economies in terms of risk-sensitive control theory. In this section, we describe how to adapt the preceding computational strategies to handle versions of the ‘risk-sensitivity corrections’ of Jacobson (1973, 1977) and Whittle (1990). We use Hansen and Sargent’s (1995) method of implementing discounting. The specification preserves the computational ease of the original linear quadratic specification, while relaxing some aspects of certainty equivalence. Let

$$V_t(x_t) = -(x_t' P_t x_t + q_t)$$

Let $\beta \in (0, 1)$ and consider the sequence $\{V_t(x_t)\}_{t=t_0}^{t_1}$ of value functions generated by the following constrained optimization problems:

$$V_t(x_t) = \max_{u_t, x_{t+1}} \left\{ - (x_t' R x_t + u_t' Q u_t) + \beta \frac{2}{\sigma} \log E_t \exp \frac{\sigma}{2} V_{t+1}(x_{t+1}) \right\}$$ \hspace{1cm} (3.10.1)

subject to

$$x_{t+1} = A x_t + B u_t + C w_{t+1},$$ \hspace{1cm} (3.10.2)

where w_{t+1} is an $(N \times 1)$ martingale difference sequence with Gaussian density

$$f(w_{t+1}) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp \left\{ - \frac{1}{2} w_{t+1}' \Sigma^{-1} w_{t+1} \right\}.$$ \hspace{1cm} (3.10.3)

Usually, we shall set the covariance matrix $\Sigma = E w_t w_t' = I$. We momentarily retain the more general notation in order to state a useful lemma in greater generality.

In solving this discounted linear exponential quadratic Gaussian (LEQG) control problem, we use the following lemma due to Jacobson (1973).

Lemma (Jacobson): Let $w_{t+1} \sim \mathcal{N}(0, \Sigma)$ and $x_{t+1} = A x_t + B u_t + C w_{t+1}$. Suppose that the matrix $(\Sigma^{-1} - \sigma C' P_{t+1} C)$ is positive definite. Then

$$E_t \exp \left\{ \frac{\sigma}{2} x_{t+1}' P_{t+1} x_{t+1} \right\} = \int_{-\infty}^{\infty} \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp \left\{ - \frac{1}{2} w_{t+1}' \Sigma^{-1} w_{t+1} \right\} \exp \left\{ \frac{\sigma}{2} x_{t+1}' P_{t+1} x_{t+1} \right\}$$

$$= k \exp \left\{ \frac{\sigma}{2} (A x_t + B u_t)' \hat{P}_{t+1} (A x_t + B u_t) \right\}$$ \hspace{1cm} (3.10.4)

where

$$\hat{P}_{t+1} = P_{t+1} + \sigma P_{t+1} C (\Sigma^{-1} - \sigma C' P_{t+1} C)^{-1} C' P_{t+1}$$ \hspace{1cm} (3.10.5)
This concludes the statement of the lemma.

Let \(V_{t+1}(x_{t+1}) = -x_t' P_{t+1} x_{t+1} - \eta_{t+1} \), and apply the lemma to evaluate the term inside the braces on the right side of (3.10.1):

\[
x_t' Rx_t + u_t' Qu_t + \beta \frac{2}{\sigma} \log E_t \exp \left\{ \frac{\sigma}{2} [x_t' P_{t+1} x_t + \eta_{t+1}] \right\} = x_t' Rx_t + u_t' Qu_t + \beta (Ax_t + Bu_t)' P_{t+1} (Ax_t + Bu_t) + \text{constant}
\]

where \(\tilde{P}_{t+1} \) is given by equation (3.10.5). Maximizing the right hand side of (3.10.7) with respect to \(u_t \) gives the linear decision rule \(u_t = -F_t x_t \), where \(F_t \) is determined by the recursions:

\[
\tilde{P}_{t+1} = P_{t+1} + \sigma P_{t+1} C (\Sigma^{-1} - \sigma C' P_{t+1} C)^{-1} C' P_{t+1} \quad (3.10.8)
\]

\[
F_t = (Q + \beta B' \tilde{P}_{t+1} B)^{-1} \beta B' \tilde{P}_{t+1} A \quad (3.10.9)
\]

\[
P_t = R + \beta A' \tilde{P}_{t+1} A - \beta^2 A' \tilde{P}_{t+1} B (Q + \beta B' \tilde{P}_{t+1} B)^{-1} B' \tilde{P}_{t+1} A. \quad (3.10.10)
\]

Notice that in the special case that \(\sigma = 0 \), these equations are versions of the Riccati difference equation and the associated decision rule. Notice also that when \(\sigma \neq 0 \), equations (3.10.8), (3.10.9), and (3.10.10) imply that the decision rules \(F_t \) depend on the innovation variances of the exogenous processes (note the appearance of \(C \) in (3.10.8)).

We can obtain a more compact version of these recursions as follows. Apply the matrix identity \((a - bd^{-1}c)^{-1} = a^{-1} + a^{-1}b(d-c^{-1}b)^{-1}ca^{-1}\) to (3.10.10) using the settings \(a^{-1} = \beta \tilde{P}_{t+1} \), \(b = -B \), \(d = Q \), \(c = B' \) to obtain

\[
\beta \tilde{P}_{t+1} - \beta \tilde{P}_{t+1} B (B' (\beta \tilde{P}_{t+1}) B + Q)^{-1} B' (\beta \tilde{P}_{t+1}) = \frac{1}{\beta} \tilde{P}_{t+1} + BQ^{-1} B'.
\]

Substituting into the right side of (3.10.10) gives

\[
P_t = R + A' \left(\frac{1}{\beta} \tilde{P}_{t+1} + BQ^{-1} B' \right)^{-1} A. \quad (3.10.11)
\]
Now apply the same matrix identity to the right side of (3.10.8) to obtain
\[\tilde{P}_{t+1} = (P_{t+1}^{-1} - \sigma C\Sigma C')^{-1}. \] (3.10.12)

Substituting (3.10.12) into (3.10.11) gives the version
\[P_t = R + A'(\beta^{-1}P_{t+1}^{-1} + BQ^{-1}B' - \sigma \beta^{-1}C\Sigma C')^{-1}A. \] (3.10.13)

Collecting results, we have that the solution of the problem can be represented via the recursions (3.10.13), (8.116), (3.10.9). We are interested in problems for which recursions on these equations converge as \(t \to -\infty \). In situations in which convergence prevails, we can avail ourselves of a doubling algorithm to accelerate the computations.

3.10.1. Doubling Algorithm for a Risk-Sensitive Problem

It suffices to consider the undiscounted (\(\beta = 1 \)) version of our problem, because we can transform a discounted problem into an undiscounted one. Represent the Riccati equation (3.10.13) in the form (see Appendix C of this chapter)
\[P_t = R + A'(P_{t+1}^{-1} + J)^{-1}A \] (3.10.14)
where \(J = BQ^{-1}B' - \sigma C\Sigma C' \). The doubling algorithm applies with
\[M_f^{-1} = M_b = \begin{bmatrix} A^{-1} & A^{-1}J \\ RA^{-1} & A' + RA^{-1}J \end{bmatrix}, \]
and with the settings \(\alpha_0 = A, \gamma_0 = R, \beta_0 = J \). To compute the solution with terminal value matrix \(P_0 \), use the initializations \(\alpha_0 = (I + JP_0)^{-1}A, \beta_0 = (I + JP_0)^{-1}J, \gamma_0 = -P_0 + R + A'P_0(I + JP_0)^{-1}A \). The algorithm then works as follows.

1. Initialize \(\alpha_0, \beta_0, \gamma_0 \) according to the formulas just given.
2. Iterate on (3.6.6).
3. Form \(P \) as the limit of \(\gamma_k + P_0 \).
A. Concepts of Linear Control Theory

Assume in the deterministic linear regulator (3.5.1)–(3.5.2) that matrix R is positive semi-definite and that Q is positive definite. Sufficient conditions for existence and stability of a solution of the deterministic linear regulator are typically stated in terms defined in the following four definitions.

Definition: The pair (A, B) is stabilizable if $y' B = 0$ and $y' A = \lambda y'$ for some complex number λ and some complex vector y implies that $|\lambda| < 1$ or $y = 0$.

Definition: The pair (A, B) is controllable if $y' B = 0$ and $y' A = \lambda y'$ for some complex number λ and some complex vector y implies that $y = 0$.

Definition: The pair (A, D) is detectable if $D' y = 0$ and $Ay = \lambda y$ for some complex number λ and some complex vector y implies that $|\lambda| < 1$ or $y = 0$.

Definition: The pair (A, D) is observable if $D' y = 0$ and $Ay = \lambda y$ for some complex number λ and some complex vector y implies $y = 0$.

Stabilizability and controllability evidently form a pair of concepts, with controllability implying stabilizability, but not *vice versa* (i.e., controllability is a more restrictive assumption). Similarly, detectability and observability form a pair of concepts, with observability implying detectability, but not *vice versa*.

Stabilizability is equivalent with existence of a time-invariant control law that stabilizes the state vector. Controllability implies that there exists a sequence of controls that can attain an arbitrary value for the state vector, starting from any initial state vector, within n periods, where n is the dimension of the state. When (A, B) is controllable, the entire state vector is ‘endogenous,’ in the sense of being potentially ‘under control.’

The concepts of detectability and observability are applied to the pair of matrices (A, D), where $DD' = R$ (i.e., D is a factor of R).

Assume (a) that the pair (A, B) is stabilizable, which implies that it is feasible to stabilize the state vector; and (b) that the pair (A, D) is detectable, which means that it is desirable to stabilize the state vector. Together, assumptions (a) and (b) imply that the optimal control stabilizes the state vector.

When R is nonsingular, the pair (A, D) is observable, and the value function is strictly concave.
B. Symplectic Matrices

We now define symplectic matrices and state some of their properties.

Definition: A $(2n \times 2n)$ matrix Z is said to be symplectic if $Z'JZ = J$, where

$$J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}.$$

The following properties of symplectic matrices follow directly from the definition of a symplectic matrix:

Property 1: If the matrix Z is symplectic, then so is any positive integer power of Z.

Property 2: If Z_1 and Z_2 are both $(2n \times 2n)$ symplectic matrices, then their product Z_1Z_2 is also symplectic.

Property 3: If a symplectic matrix Z is written in partitioned form

$$Z = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix},$$

and if Z_{11}^{-1} exists, then

$$Z_{22} = (Z_{11}')^{-1} + Z_{21}Z_{11}^{-1}Z_{12}$$

Property 4: The eigenvalues of any symplectic matrix Z occur in reciprocal pairs, i.e., if λ_i is an eigenvalue of a symplectic matrix Z, then so is λ_i^{-1}.

To establish property 4, that from the definition that any symplectic matrix Z satisfies $Z^{-1} = J^{-1}Z'J$. Since Z^{-1} and Z' are thus related by a similarity transformation, they have common eigenvalues. This implies that the eigenvalues of Z must occur in reciprocal pairs.

Property 3 means that if Z_{11}^{-1} exists, then a symplectic matrix Z can be represented in the form

$$Z = \begin{bmatrix} \alpha^{-1} & \alpha^{-1}\beta \\ \gamma\alpha^{-1} & \alpha' + \gamma\alpha^{-1}\beta \end{bmatrix}$$ \hspace{1cm} (3.B.1)

Let Z_j, for $j = 1, 2$, be two symplectic matrices, each represented in the form (3.B.1):

$$Z_j = \begin{bmatrix} \alpha_j^{-1} & \beta_j \\ \gamma_j \alpha_j^{-1} & \alpha_j' + \gamma_j \alpha_j^{-1} \beta_j \end{bmatrix}. \quad (3.B.2)$$

It can be verified directly that the product $Z_1 Z_2 = \bar{Z}$ has the same form, namely,

$$Z_1 Z_2 = \bar{Z} = \begin{bmatrix} \tilde{\alpha}^{-1} & \tilde{\alpha}^{-1} \tilde{\beta} \\ \tilde{\gamma} \tilde{\alpha}^{-1} & \tilde{\alpha}' + \tilde{\gamma} \tilde{\alpha}^{-1} \tilde{\beta} \end{bmatrix}. \quad (3.B.3)$$

where

$$\tilde{\alpha} = \alpha_2 (I + \beta_1 \gamma_2)^{-1} \alpha_1$$
$$\tilde{\gamma} = \gamma_1 + \alpha'_1 \gamma_2 (I + \beta_1 \gamma_2)^{-1} \alpha_1 \quad (3.B.4)$$
$$\tilde{\beta} = \beta_2 + \alpha_2 (I + \beta_1 \gamma_2)^{-1} \beta_1 \alpha'_2.$$

This algorithm is implemented in our MATLAB program mult.m.

C. Alternative Forms of Riccati Equation

It is useful to display alternative forms of the Riccati equation

$$P = R + A'PA - A'PB(Q + B'PB)^{-1}B'PA. \quad (3.C.1)$$

We first apply the following matrix identity from Noble and Daniel (1977, p. 29). Assume that d^{-1} and a^{-1} exist. Then $(a - bd^{-1}c)^{-1} = a^{-1} + a^{-1}b[d - ca^{-1}b]^{-1}ca^{-1}$. Apply this identity, setting $a^{-1} = P_{t+1}, b = -B, d = Q, c = B'$ to obtain

$$(P_{t+1}^{-1} + BQ^{-1}B')^{-1} = P_{t+1}^{-1} - P_{t+1}B(B'P_{t+1}B + Q)^{-1}B'P_{t+1}.$$

Substituting the above identity into (3.C.1) establishes

$$P_t = R + A'(P_{t+1}^{-1} + BQ^{-1}B')^{-1}A. \quad (3.C.2)$$

Now write (3.C.2) as

$$P_t = R + A'P_{t+1}P_{t+1}^{-1}(P_{t+1}^{-1} + BQ^{-1}B')^{-1}A$$
$$P_t = R + A'P_{t+1}(P_{t+1}^{-1} + BQ^{-1}B'P_{t+1})^{-1}A$$
$$P_t = R + A'P_{t+1}(I + BQ^{-1}B'P_{t+1})^{-1}A.$$
Assume that A^{-1} exists, and write the preceding equation as

$$P_t = R + A'P_{t+1}(A^{-1} + A^{-1}BQ^{-1}B'P_{t+1})^{-1}$$

$$P_t = A'P_{t+1}(A^{-1} + A^{-1}BQ^{-1}B'P_{t+1})^{-1}$$

$$+ R(A^{-1} + A^{-1}BQ^{-1}B'P_{t+1})(A^{-1} + A^{-1}BQ^{-1}B'P_{t+1})^{-1}.$$

This equation can be represented as

$$P_t = \{RA^{-1} + [A' + RA^{-1}BQ^{-1}B']P_{t+1}\}$$

$$\{A^{-1} + A^{-1}BQ^{-1}B'P_{t+1}\}^{-1}.$$ (3.C.3)

Equation (3.C.3) takes the form

$$P_t = \{C + DP_{t+1}\} \times \{E + FP_{t+1}\}^{-1}$$ (3.C.4)

where

$$C = RA^{-1}$$

$$D = A' + RA^{-1}BQ^{-1}B'$$

$$E = A^{-1}$$

$$F = A^{-1}BQ^{-1}B',$$

which can be represented as

$$\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} E & F \\ C & D \end{bmatrix} \begin{bmatrix} X_{t+1} \\ Y_{t+1} \end{bmatrix},$$

where $P_t = Y_tX_t^{-1}$. Notice that

$$\begin{bmatrix} E & F \\ C & D \end{bmatrix} = M_f^{-1} = M_b,$$

and that $\lim_{t \to -\infty} P_t = \lim_{t \to -\infty} Y_tX_t^{-1}$ can be computed as the limit of the γ_j term in the representation of the symplectic matrix $M_f^{-2\gamma}$.

Part III

Components of Economies
Chapter 4
Economic Environments

This chapter describes an economic environment with five components: a sequence of information sets, laws of motion for taste and technology shocks, a technology for producing consumption goods, a technology for producing services from consumer durables and consumption purchases, and a preference ordering over consumption services. A particular economy is described by a set of matrices A_2, C_2, U_b, and U_d that characterize the motion of information sets and of taste and technology shocks; matrices $\Phi_c, \Phi_g, \Phi_l, \Gamma, \Delta_k$, and Θ_k that determine the technology for producing consumption goods; matrices $\Delta_h, \Theta_h, \Lambda,$ and Π that determine the technology for producing consumption services from consumer goods; and a scalar discount factor β that helps determine the preference ordering over consumption services. This chapter describes and gives examples of each component of the economic environment. Chapter 5 presents a dynamic programming formulation of a planning problem that we use in chapter 7 to compute competitive equilibrium allocations and prices. Chapter 6 describes the appropriate commodity space for formulating a competitive equilibrium.

4.1. Information

Agents have a common information set at each date t. We use a vector martingale difference sequence $\{w_t : t = 1, 2, \ldots\}$ to construct the sequence of information sets $\{J_t : t = 0, 1, \ldots\}$. The initial information set J_0 is generated by a vector $x_0' = (h_{-1}', k_{-1}', z_0')$ of initial conditions, each component of which will be described subsequently. The time t information set J_t is generated by $x_0, w_1, w_2, \ldots, w_t$. We maintain:

Assumption 1: $E(w_t | J_{t-1}) = 0$ and $E(w_t w_t' | J_{t-1}) = I$ for $t = 1, 2, \ldots$
4.2. Taste and Technology Shocks

We use an \(n_z \)-dimensional process \(\{ z_t : t = 0, 1, \ldots \} \) to generate two underlying shocks. The first, denoted \(b_t \), is an \(n_b \)-dimensional vector taste shock, and the second, denoted \(d_t \), is an \(n_d \)-dimensional vector technology or endowment shock. These vectors of shocks are each assumed to be linear functions of the time \(t \) exogenous state vector \(z_t \):

\[
 b_t = U_b z_t \quad \text{and} \quad d_t = U_d z_t,
\]

where \(U_b \) and \(U_d \) are matrices that select entries of \(z_t \). The law of motion for \(\{ z_t : t = 0, 1, \ldots \} \) is

\[
 z_{t+1} = A_{22} z_t + C_2 w_{t+1} \quad \text{for} \quad t = 0, 1, \ldots ,
\]

where \(z_0 \) is a given initial condition. We make the following technical assumption:

Assumption 2: The eigenvalues of the matrix \(A_{22} \) have absolute values that are less than or equal to one.

In chapter 2, we showed that (4.2.2) can accommodate a rich variety of time series processes. The matrices \(U_b \) and \(U_d \) can be chosen to pick off appropriate components of \(z_t \) in ways that make \(b_t \) or \(d_t \) follow any of those stochastic processes.

4.3. Production Technologies

Inputs into date \(t \) production include a scalar household input \(\ell_t \), an \(n_k \)-dimensional vector \(k_{t-1} \) of capital stocks available at time \(t \), and the vector \(d_t \) of technology shocks. The vector \(k_{t-1} \) is an initial condition. Outputs at time \(t \) include the time \(t \) vector of capital stocks \(k_t \) and a composite vector \(\tilde{o}_t \) that is partitioned into three subvectors, an \(n_c \)-dimensional vector of consumption goods \(c_t \), an \(n_g \)-dimensional vector of intermediate goods \(g_t \), and an \(n_i \)-dimensional vector of investment goods \(i_t \).

The composite output vector \(\tilde{o}_t \) is constrained by \(k_{t-1} \) via the Leontief technology

\[
 \Phi \tilde{o}_t = \Gamma k_{t-1} + d_t.
\]
It is convenient to partition $\Phi = [\Phi_c \Phi_g \Phi_i]$ conformably with \bar{o}_t so that an alternative representation of (4.3.1) is

$$\Phi_c c_t + \Phi_g g_t + \Phi_i i_t = \Gamma k_{t-1} + d_t. \quad (4.3.2)$$

Entries in the matrix Φ_g can be negative because intermediate goods are used in producing consumption and investment goods. We make the following assumption about Φ:

Assumption 3: $[\Phi_c \Phi_g]$ is nonsingular.

This assumption guarantees that the levels of consumption and intermediate goods are determined uniquely by the current period’s values of investment and technology shocks and the previous period’s capital stock. Assumption 3 can readily be relaxed. Doing so would require that we alter the algorithm to be described in chapter 5 for solving a planning problem to accommodate a different definition of the ‘control.’ In practice, a technology for which assumption 3 is violated can usually be approximated arbitrarily well by another technology for which it is satisfied. We illustrate this below in our descriptions of example technologies 1 and 4.

An alternative specification that we do not use would replace the equality in (4.3.1) with a weak inequality. This would allow for idle capital. For some specifications of (Φ, Γ), it could then turn out to be optimal for there to be idle capital in some time periods. We will eventually describe a Lagrange multiplier on capital that indicates whether idle capital would be preferred to the outcome that we impose by insisting that (4.3.2) hold with equality.

There is an additional constraint on the production of g_t:

$$|g_t| \leq \ell_t, \quad (4.3.3)$$

where $| \cdot |$ denotes the norm of a vector. The intermediate goods vector g_t is a device for modeling symmetric adjustment costs, with the household input ℓ_t being used to measure the magnitude of these costs. In equilibrium, (4.3.3) always holds. For some interesting special cases, g_t does not enter (4.3.1) and hence ℓ_t is zero. In these cases, household inputs into production, such as labor supply, can be modeled as components of c_t.\(^1\)

\(^1\) It is straightforward to extend (4.3.3) to the case in which there are multiple household inputs. Suppose there is a partition g_{tj} of g_t corresponding to input ℓ_{tj}. Then we would assume: $g_{tj} \leq |\ell_{tj}|$ for all j.
Finally, investment goods are used to augment the capital stock for the subsequent time period, with capital possibly depreciating over time:

\[k_t = \Delta_k k_{t-1} + \Theta_k i_t. \]

(4.3.4)

We maintain:

Assumption 4: The absolute values of the eigenvalues of \(\Delta_k \) are less than or equal to one.

4.4. Examples of Production Technologies

We provide eight illustrations of technologies (4.3.1), (4.3.3), and (4.3.4).

Technology 1: Pure consumption endowment

There is a single consumption good that cannot be stored over time. In time period \(t \), there is an endowment \(d_t \) of this single good. There is neither a capital stock, nor an intermediate good, nor a rate of investment. Only constraint (4.3.2) is operative, and in this case it simplifies to \(c_t = d_t \).

To implement this specification, we could set \(\Phi_c = 1, \Phi_g = 0, \Phi_i = 0, \Gamma = 0, \Delta_k = 0, \Theta_k = 0 \). We can choose \(A_{22}, C_2, \) and \(U_d \) to make \(d_t \) follow any of the variety of stochastic processes described in chapter 2. However this specification would violate assumption 3 because \([1 \ 0]\) is a singular matrix. We can implement this technology by the following specification that does satisfy assumption 3:

\[c_t + i_t = d_{1t} \]

\[g_t = \phi_1 i_t \]

where \(\phi_1 \) is a small positive number. To implement this version, we set \(\Delta_k = \Theta_k = 0 \) and

\[\Phi_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \Phi_i = \begin{bmatrix} 1 \\ \phi_1 \end{bmatrix}, \Phi_g = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \Gamma = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, d_t = \begin{bmatrix} d_{1t} \\ 0 \end{bmatrix}. \]

Evidently this specification satisfies assumption 3. We shall eventually use this specification to create a linear-quadratic version of Lucas’s (1978) asset pricing model.
Examples of Production Technologies

Technology 2: Single-Period Adjustment Costs

There is a single consumption good, a single intermediate good, and a single investment good. The technology obeys

\[c_t = \gamma k_{t-1} + d_{1t}, \quad \gamma > 0 \]
\[\phi_1 i_t = g_t + d_{2t}, \quad \phi_1 > 0 \]
\[\ell_t^2 = g_t^2 \]
\[k_t = \delta k_{t-1} + i_t, \quad 0 < \delta_k < 1 \]

where \(d_{1t} \) is a random endowment of the consumption good at time \(t \), and \(d_{2t} \) is a random disturbance to adjustment costs at time \(t \). Given \(d_{2t} \), investment can be increased or decreased only by adjusting the intermediate good \(g_t \). The larger is the parameter \(\phi_1 \), the higher are adjustment costs. Production of the intermediate good \(g_t \) requires the household input \(\ell_t \), call it labor, on a one-for-one-basis. Physical capital depreciates.

To capture this technology, we specify

\[
\Phi_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \Phi_g = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} 0 \\ \phi_1 \end{bmatrix},
\]
\[
\Gamma = \begin{bmatrix} \gamma \\ 0 \end{bmatrix}, \quad \Delta_k = \delta_k, \quad \Theta_k = 1.
\]

We set \(A_2, C_2 \) and \(U_d \) to make \((d_{1t}, d_{2t})' = d_t\) follow one of the stochastic processes described in chapter 2.

This technology embodies a linear quadratic, general equilibrium version of the adjustment-cost technology used in Lucas and Prescott’s (1971) model of investment under uncertainty.

Technology 3: Multi-Period Adjustment Costs and “Time to Build”

A single consumption good is produced by a single capital good. The capital good can be produced in two ways: a fast and relatively resource-intensive way, and a slow and less resource intensive way. Different amounts of intermediate goods are absorbed in producing investment goods in the fast and slow ways. We model this by positing that there are two capital stocks, two investment goods, and four intermediate goods, and that adjustment costs are larger for
the faster investment technology. This technology is represented as

\[
\begin{align*}
 c_t &= \gamma k_{1t-1} + d_{1t}, \quad \gamma > 0 \\
 k_{1t} &= \delta_k k_{1t-1} + k_{2t-1} + i_{1t}, \quad 0 < \delta_k < 1 \\
 k_{2t} &= i_{2t} \\
 g_{1t} &= \phi_1(i_{1t} + i_{2t}), \quad \phi_1 > 0 \\
 g_{2t} &= \phi_2(i_{1t} + k_{2t-1}), \quad \phi_2 > 0 \\
 g_{3t} &= \phi_3 i_{1t}, \quad \phi_3 > 0 \\
 g_{4t} &= \phi_4 i_{2t}, \quad \phi_4 > 0 \\
 \ell_t^2 &= g_t \cdot g_t.
\end{align*}
\]

Equation (4.4.2a) describes how physical capital, \(k_{1t} \), and an endowment shock, \(d_{1t} \), are transformed into the consumption good. Equations (4.4.2b) and (4.4.2c) tell how capital, \(k_{1t} \), can be augmented by “quick investment”, \(i_{1t} \), and by “slow investment”, \(i_{2t} \). Notice that (4.4.2b) and (4.4.2c) imply that physical capital, \(k_{1t} \), is determined by

\[
k_{1t} = \delta_k k_{1t-1} + i_{1t} + i_{2t-1},
\]

an equation that exhibits the status of \(i_{1t} \) and \(i_{2t} \) as ‘fast’ and ‘slow’ investment processes, respectively.

Equations (4.4.2d) and (4.4.2e) describe how the intermediate goods, \(g_{1t} \) and \(g_{2t} \), are required to produce investment goods. According to (4.4.2d) and (4.4.2e), it is as though two stages of production are required to produce capital, the first stage using intermediate good \(g_{1t} \), and the second stage using intermediate good \(g_{2t} \). According to (4.4.2d) and (4.4.2e), fast investment \(i_{1t} \) undergoes both stages of production in the same period \(t \), while slow investment \(i_{2t} \) undergoes the first stage described by (4.4.2d) in period \(t \) and the second stage described by (4.4.2e) in period \((t+1) \).

Equations (4.4.2f) and (4.4.2g) describe additional inputs of intermediate goods that are specific to the two types of investment processes. We can set \(\phi_3 > \phi_4 \) to capture the notion that it is more resource-intensive to invest quickly. In equation (4.4.2h), ‘\(\cdot \)’ denotes an inner product.

To represent this technology, we set

\[
\Delta_k = \begin{bmatrix} \delta_k & 1 \\ 0 & 0 \end{bmatrix}, \quad \Theta_k = I
\]
Examples of Production Technologies

Recall that the matrices Φ_c, Φ_g, Φ_i multiply the vectors $c_t, [g_{1t} g_{2t} g_{3t} g_{4t}]', \text{and} [i_{1t} i_{2t}]'$, respectively, while Γ multiplies the vector $[k_{1t-1} k_{2t-1}]'$. Again, we set U_d, A_{22}, C_2 to make d_{1t} obey one of the processes described in Chapter 2.

This technology captures aspects of those used by Park (1984) and Kydland and Prescott (1982).

Technology 4: Growth

There are a single consumption good, a single investment good, a single capital good, and no intermediate good. Output obeys

$$c_t + i_t = \gamma k_{t-1} + d_t,$$

where d_t is a random endowment of output at time t. The motion of capital obeys

$$k_t = \delta k_{t-1} + i_t.$$

To represent this technology, we could set $\Phi_c = 1, \Phi_i = 1, \Phi_g = 0, \Gamma = \gamma, \Delta_k = \delta_k, \Theta_k = 1$. The reader can verify that this specification of the technology violates assumption 3 (because $[\Phi_c \Phi_g]$ is singular). To analyze such an economy, we could modify some of our calculations to dispense with assumption 3. An alternative way is to approximate the technology with another that satisfies assumption 3. In particular, assume that

$$c_t + i_t = \gamma k_{t-1} + d_{1t}$$

$$g_t = \phi_1 i_t$$

$$k_t = \delta k_{t-1} + i_t,$$
where ϕ_1 is a very small positive number and $d_{2t} \equiv 0$. To implement this technology, set

$$\Phi_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \Phi_g = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ \Phi_i = \begin{bmatrix} 1 \\ -\phi_1 \end{bmatrix}, \ \Gamma = \begin{bmatrix} \gamma \\ 0 \end{bmatrix},$$

$\Delta_k = \delta_k, \ \Theta_k = 1.$

2 This technology can be used to create a model of consumption along the lines of Hall (1978) and Flavin (1981), and a linear-quadratic version of a model of capital accumulation along the lines of Cass (1965), Koopmans (1965), and Brock and Mirman (1972). We shall also use it to represent aspects of a model of economic growth authored by Jones and Manuelli (1990).

Technology 5: Depletable Resource

There is a single consumption good, a single investment good, two intermediate goods and one capital stock. The capital stock is the cumulative stock of the resource that has been extracted. We let investment i_t be the extraction rate, so that

$$k_t = k_{t-1} + i_t. \tag{4.4.4a}$$

All of the amount extracted is consumed, so that

$$c_t = i_t. \tag{4.4.4b}$$

There are two sources of extraction costs. The first, which is coincident with using the first intermediate good g_{1t}, depends on the amount extracted in the current time period

$$g_{1t} = \phi_1 i_t. \tag{4.4.4c}$$

The second source of extraction costs, captured by the intermediate good g_{2t}, depends on the cumulative amount extracted at period t, which we approximate as $(i_t/2 + k_{t-1})$: \(^3\)

$$g_{2t} = \phi_2 (i_t/2 + k_{t-1}). \tag{4.4.4d}$$

\(^2\) In effect, the modification induces investment to be associated with the use of a small (because $\phi_1 \approx 0$) amount of intermediate goods that require labor input. The matrix $[\Phi_c \Phi_g]$ is now nonsingular, so that assumption 3 is satisfied. When $\phi_1 > 0$, technical conditions are satisfied that are required for the solution of the social planning problem automatically to lie in the space L^2_0 (see chapters 5 and 7). When ϕ_1 is close to zero, the solution of the planning problem will closely approximate the solution of the planning problem for $\phi_1 = 0$, augmented with the restriction that the solution lie in L^2_0.

\(^3\) We add half the current extraction rate i_t to k_{t-1} to approximate the average amount over the period that has been extracted cumulatively.
To represent this technology, we set
\[\Phi_c = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \Phi_g = \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} -1 \\ \phi_1 \\ \phi_2/2 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} 0 \\ 0 \\ -\phi_2 \end{bmatrix}, \]
\[\Delta_k = 1, \quad \Theta_k = 1. \]

In this technology, we have included no endowment shock process \(d_t \), so that we can take \(U_d = 0, A_{22} = 0, C_2 = 0 \). It would be possible to modify the technology in various ways to provide a role for an endowment or technology shock.

Such a technology was used by Hansen, Epple and Roberds (1985) to study alternative structures for an exhaustible resource market.

Technology 6: Learning by Doing

There is a single consumption good, a single investment good, a single intermediate good, and a single capital stock. The capital stock is the cumulative stock of knowledge, the acquisition of which requires expenditure of current output and the intermediate good. Thus, we set
\[
\begin{align*}
 c_t + i_t &= \gamma_1 k_{t-1} + d_t \\
 k_t &= \delta_k k_{t-1} + (1 - \delta_k) i_t.
\end{align*}
\]

Setting \(\Theta_k = (1 - \delta_k) \) makes \(k_t \) a weighted average of current and past rates of investment. Possession of knowledge (capital) lowers the quantity of intermediate goods required to accumulate more knowledge:
\[g_t = \phi i_t - \gamma_2 k_{t-1}, \]
where \(\phi \geq \gamma_2 > 0. \)

To represent this economy, we set
\[\Phi_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \Phi_g = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} 1 \\ \phi \end{bmatrix}, \quad \Gamma = \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}, \quad \Delta_k = \delta_k, \quad \Theta_k = (1 - \delta_k). \]

Technology 7: Fixed Proportions

There is a single consumption good, a single capital good, and a single “intermediate good” to be interpreted as labor. Labor and capital are required in fixed
proportions, apart from the effects of a random “labor-requirements” shock d_{2t}. The technology requires

$$c_t + i_t = \gamma_1 k_{t-1} + d_{1t}$$

$$g_t = \gamma_2 k_{t-1} + d_{2t}$$

$$g_t^2 = \ell_t^2$$

$$k_t = \delta_k k_{t-1} + i_t.$$

Here g_t represents employment of labor input. The parameter γ_2 determines the nonstochastic part of the capital-labor ratio.

To map this technology into our setup, we set

$$\Phi_c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \Phi_g = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

$$\Gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \end{pmatrix}, \quad \Delta_k = \delta_k, \quad \Theta_k = 1.$$

Technology 8: Interrelated Factor Demand with Costs of Adjustment

To produce output requires physical capital, k_{1t}, and labor, k_{2t}. It is costly to adjust the stock of either factor of production. To adjust capital, the intermediate good g_{1t} must be employed, while to adjust labor, the intermediate good g_{2t} must be employed. To implement this technology, we require $k_{2t} = g_{3t}$, which identifies k_{2t} with the direct input of labor. The technology satisfies

$$c_{1t} + i_t = [\gamma_1 \gamma_2] \begin{bmatrix} k_{1t-1} \\ k_{2t-1} \end{bmatrix} + d_{1t}$$

$$k_{1t} = \delta_k k_{1t-1} + i_{1t}$$

$$k_{2t} = k_{2t-1} + i_{2t}$$

$$g_{1t} = \phi_2 i_{1t}$$

$$g_{2t} = \phi_3 i_{2t}$$

$$g_{3t} = k_{2t}.$$

When $\phi_3 < \phi_2$, it is more costly to adjust capital than labor. To capture this technology, we set

$$\Delta_k = \begin{bmatrix} \delta_k & 0 \\ 0 & 1 \end{bmatrix}, \quad \Theta_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
\[\Phi_c = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \Phi_i = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \phi_2 & 0 \\ 0 & \phi_3 \end{bmatrix}, \quad \Phi_g = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} \gamma_1 & \gamma_2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}. \]

This technology is a version of one used by Mortensen (1973) and Hansen and Sargent (1981).

4.4.1. Other Technologies

Alternative technologies can be constructed that blend features of two or more of those described here. For instance, multiple-period adjustment costs can be incorporated into the growth technology, while learning by doing can be introduced into one of the adjustment cost technologies. Also, versions of these single consumption good technologies can be combined to yield technologies for the production of multiple consumption goods.

4.5. Household Technologies

We describe preferences in terms of two elements. First we describe a household technology for accumulating a vector of household capital that produce a vector of consumption services. Then we specify intertemporal preferences for consumption services at different dates and states of the world. For now, we assume a representative household. We postpone discussing ways that heterogeneity among consumers can be accommodated until chapters 12 and 13.

We assume that there is an \(n_h \)-dimensional vector of household capital stocks \(h_{t-1} \) brought into time \(t \). The vector \(h_{-1} \) is taken as an initial condition. The vectors of consumption goods \(c_t \) and household capital stocks \(h_{t-1} \) are inputs into the household technology at time \(t \). The outputs of this technology are an \(n_s \)-dimensional vector of household services \(s_t \) and a new vector of stocks of household capital \(h_t \). The relation between inputs (consumption goods) and outputs (consumption services) is described by

\[h_t = \Delta h_{t-1} + \Theta h c_t \] \hspace{1cm} (4.5.1)
Economic Environments

and

\[s_t = \Lambda h_{t-1} + \Pi c_t. \] \hspace{1cm} (4.5.2)

We maintain the following technical assumption:

Assumption 5: The absolute values of the eigenvalues of \(\Delta h \) are less than or equal to one.

Preferences are defined over stochastic processes for household services and household inputs into production. These preferences are separable across components of services, states of the world, and time. In particular, preferences are ordered by the quadratic utility functional:

\[-\left(\frac{1}{2} \right) E \sum_{t=0}^{\infty} \beta^t \left[(s_t - b_t) \cdot (s_t - b_t) + (\ell_t)^2 \right] | J_0, 0 < \beta < 1, \] \hspace{1cm} (4.5.3)

where \(\beta \) is a subjective discount factor.

What we call household services are called *characteristics* in the analyses of Gorman (1980) and Lancaster (1966). We can think of consumption \(c_t \) at date \(t \) as generating a bundle of consumption services in current and future time periods. Thus, the consumption vector \(c_t \) generates a vector \(\Pi c_t \) of consumption services at time \(t \) and a vector \(\Lambda (\Delta h)^{j-1} \Theta h c_t \) of consumption services at times \(t + j \), for \(j \geq 1 \). In effect, the household technology puts time and component nonseparabilities into the indirect preference ordering for consumption goods induced by (4.5.3). We allow negative consumption.

\(^4 \) The purpose of this assumption is to assure that the state vector that emerges from the chapter 5 planning problem has a stable transition matrix.
4.6. Examples of Household Technologies

We describe five examples of household technologies and preferences.

Household Technology 1: Time Separability

There is a single consumption good that is identical with the single service. There is no household capital. Preferences are described by

\[
-\frac{1}{2} E \sum_{t=0}^{\infty} \beta^t \left[(c_t - b_t)^2 + \ell_t^2 \right] | J_0, \quad 0 < \beta < 1
\]

(4.6.1)

where \(\ell_t \) is labor supplied in period \(t \) and \(b_t \) is a stochastic “bliss point”. Notice that when \(c_t \) is less than \(b_t \), utility is increasing in consumption. Typically, we try to specify the parameters of the \(b_t \) process and the household and production technologies so that in equilibrium \(c_t \) is usually less than \(b_t \).

Household Technology 2: Consumer Durables

There is a single consumption good and a single service. A single durable household good obeys

\[
h_t = \delta h_{t-1} + c_t, \quad 0 < \delta < 1.
\]

Services at \(t \) are related to the stock of durables at the beginning of the period:

\[
s_t = \lambda h_{t-1}, \quad \lambda > 0.
\]

Preferences are ordered by

\[
-\frac{1}{2} E \sum_{t=0}^{\infty} \beta^t \left[(\lambda h_{t-1} - b_t)^2 + \ell_t^2 \right] | J_0,
\]

(4.6.2)

where \(b_t \) is again a univariate stochastic process that represents a stochastic bliss point. We intend to set parameters so that \((\lambda h_{t-1} - b_t) \) is ordinarily negative, so that utility is rising in consumption services \(\lambda h_{t-1} \).

To implement these preferences, we would set \(\Delta_h = \delta, \Theta_h = 1, \Lambda = \lambda, \Pi = 0 \).
Household Technology 3: Habit Persistence

There is a single consumption good, a single consumption service, and a single household capital stock that is a weighted average of consumption in previous time periods. We want preferences to be

\[-\left(\frac{1}{2}\right) E \sum_{t=0}^{\infty} \beta^t \left(c_t - \lambda (1 - \delta_h) \left(\sum_{j=0}^{\infty} \delta_h^j c_{t-j} - b_t \right)^2 + \ell_t^2 \right),\]

\[0 < \beta < 1, \; 0 < \delta_h < 1, \; \lambda > 0.\]

Here the effective bliss point \(b_t + \lambda (1 - \delta_h) \sum_{j=0}^{\infty} \delta_h^j c_{t-j-1}\) shifts in response to a moving average of past consumption. Preferences in this form require an initial condition for the geometric sum \(\sum_{j=0}^{\infty} \delta_h^j c_{t-j-1}\) that we specify as an initial condition for the 'stock of household durables,' \(h_{-1}\).

To implement these preferences, let the household capital stock be

\[h_t = \delta_h h_{t-1} + (1 - \delta_h) c_t, \; 0 < \delta_h < 1.\]

This implies that

\[h_t = (1 - \delta_h) \sum_{j=0}^{t} \delta_h^j c_{t-j} + \delta_h^{t+1} h_{-1}.\]

Let consumption services be

\[s_t = -\lambda h_{t-1} + c_t, \; \lambda > 0.\]

We can represent the desired preferences by setting \(\Lambda = -\lambda, \; \Pi = 1, \; \Delta_h = \delta_h, \; \Theta_h = 1 - \delta_h\). The parameter \(\lambda\) governs the strength of habit persistence. When \(\lambda = 0\), we recover a version of household technology 1.

Household technology 3 is a version of the model of habit persistence of Ryder and Heal (1973). Later we shall use this specification to represent ideas of Jones and Manuelli (1990).

Household Technology 4: Seasonal Habit Persistence

We modify the preceding household technology to make habit persistence seasonal. There is a still a single consumption good, a single consumption service, and but now we assume that the time period is quarters and that the single
Examples of Household Technologies

Household capital stock is a weighted average of consumption in previous time periods of the same quarter. We want preferences to be

\[-\left(\frac{1}{2}\right) E \sum_{t=0}^{\infty} \beta^t \left[(c_t - \lambda (1 - \delta_h) \sum_{j=0}^{\infty} \delta^j_h c_{t-4j-4} - b_t)^2 + \ell^2_t \right], \]

\[0 < \beta < 1, \ 0 < \delta_h < 1, \ \lambda > 0.\]

Here the effective bliss point \(b_t + \lambda (1 - \delta_h) \sum_{j=0}^{\infty} \delta^j_h c_{t-4j-4}\) shifts in response to a moving average of past consumptions of the same quarter. Preferences of this form require an initial condition for the geometric sum \(\sum_{j=0}^{\infty} \delta^j_h c_{t-4j-4}\), which we specify as an initial condition for the vector of the 'stocks of household durables,' \(h_{-1}\).

To implement these preferences, let the household capital stock be

\[\tilde{h}_t = \delta h \tilde{h}_{t-4} + (1 - \delta_h) c_t, \ 0 < \delta_h < 1.\]

This implies that

\[h_t = \begin{bmatrix} \tilde{h}_t \\ \tilde{h}_{t-1} \\ \tilde{h}_{t-2} \\ \tilde{h}_{t-3} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \delta_h \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \tilde{h}_{t-1} \\ \tilde{h}_{t-2} \\ \tilde{h}_{t-3} \\ \tilde{h}_{t-4} \end{bmatrix} + \begin{bmatrix} (1 - \delta_h) \\ 0 \\ 0 \\ 0 \end{bmatrix} c_t\]

with consumption services

\[s_t = -\left[0 \ 0 \ 0 \ -\lambda \right] h_{t-1} + c_t, \ \lambda > 0.\]

The parameter \(\lambda\) governs the strength of habit persistence. When \(\lambda = 0\), we recover a version of household technology 1.

Household Technology 5: Adjustment Costs

There is a single consumption good, a single household capital stock equal to consumption, and two consumption services. We want to represent preferences of the form

\[-\left(\frac{1}{2}\right) E \sum_{t=0}^{\infty} \beta^t [(c_t - b_{1t})^2 + \lambda^2 (c_t - c_{t-1})^2 + \ell^2_t] \mid J_0 \]

\[0 < \beta < 1, \ \lambda > 0, \quad (4.6.4)\]
where \(b_{1t} \) is a stochastic bliss process intended ordinarily to exceed \(c_t \). A consumer with these preferences prefers more \(c_t \) to less but dislikes variability of consumption, as represented by the term \(\lambda^2 (c_t - c_{t-1})^2 \).

To capture these preferences, we set

\[
\begin{align*}
 h_t &= c_t \\
 s_t &= \begin{bmatrix} 0 \\ -\lambda \end{bmatrix} h_{t-1} + \begin{bmatrix} 1 \\ \lambda \end{bmatrix} c_t
\end{align*}
\]

so that

\[
\begin{align*}
 s_{1t} &= c_t \\
 s_{2t} &= \lambda (c_t - c_{t-1}).
\end{align*}
\]

We set the first component \(b_{1t} \) of \(b_t \) to capture the stochastic bliss process, and set the second component identically equal to zero. Thus, we set \(\Delta_h = 0, \Theta_h = 1, \)

\[
\Lambda = \begin{bmatrix} 0 \\ -\lambda \end{bmatrix}, \quad \Pi = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}.
\]

This specification captures a linear-quadratic version of Houthakker and Taylor’s (1970) model of adjustment costs or habit persistence.

Household Technology 6: Multiple Consumption Goods

There are two consumption goods and two consumption services. The first consumption service is proportional to the first consumption good, and the second consumption service is a linear combination of the two consumption goods. As in household technology 1, preferences for consumption goods are time separable. There are no durable household goods. We specify

\[
\Lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \Pi = \begin{bmatrix} \pi_1 & 0 \\ \pi_2 & \pi_3 \end{bmatrix}.
\]

Although preferences for consumption goods are state- and date-separable, they are not separable across components. Following Frisch (1932), Heckman and Macurdy (1982), and Browning, Deaton, and Irish (1985), it is convenient to exploit the separability across time and states and to analyze the implied consumption demands in each state of the world and time period separately. For a given state of the world and time period \(t \), the contribution of \(c_t \) to the utility function is

\[
\begin{align*}
\text{utility function is} \quad & (4.6.5)
\end{align*}
\]
Examples of Household Technologies

\[-\frac{1}{2}\beta^t(\Pi c_t - b_t)'(\Pi c_t - b_t).\] \hfill (4.6.6)

The corresponding marginal utility vector \(mu_t\) for consumption is then

\[mu_t = -\beta^t[\Pi'\Pi c_t - \Pi'b_t].\] \hfill (4.6.7)

Solving (4.6.7) for \(c_t\) in terms of \(mu_t\) and \(b_t\) gives

\[c_t = -(\Pi'\Pi)^{-1}\beta^{-1}mu_t + (\Pi'\Pi)^{-1}\Pi'b_t.\] \hfill (4.6.8)

Relation (4.6.8) is called the Frisch demand function for consumption. We can think of the vector \(mu_t\) as playing the role of prices, up to a common factor, for all dates and states. The scale factor is determined by the choice of numeraire.\(^5\)

Notions of substitutes and complements can be defined in terms of these Frisch demand functions. Two goods can be said to be substitutes if the cross-price effect is positive and to be complements if this effect is negative. Hence this classification is determined by the off-diagonal element of \(-\Pi'(\Pi')^{-1}\), which is equal to \(\pi_2\pi_3/\det(\Pi'\Pi)\). If \(\pi_2\) and \(\pi_3\) have the same sign, the goods are substitutes. If they have opposite signs, the goods are complements.

This household technology can be modified to incorporate features of the first four household technologies for each of the consumption goods.

\(^5\) Frisch demand functions differ from Marshallian and Hicks demand functions. In Frisch demand functions, compensation holds the marginal utility of the numeraire good constant.
4.7. Square Summability

To complete our description of the economic environment, we impose the following additional constraints on the two endogenous state vectors h_t and k_t:

$$
E \sum_{t=0}^{\infty} \beta^t h_t \cdot h_t \mid J_0 < \infty \quad \text{and} \quad E \sum_{t=0}^{\infty} \beta^t k_t \cdot k_t \mid J_0 < \infty. \quad (4.7.1)
$$

We define the space

$$
L_0^2 = \{ \{y_t\} : y_t \text{ is a random variable in } J_t \text{ and } E \sum_{t=0}^{\infty} \beta^t y_t^2 \mid J_0 < +\infty \}.
$$

We can express (4.7.1) by saying that each component of h_t and each component of k_t belongs to L_0^2.

These restrictions substitute for terminal conditions on the capital stocks. For many specifications, constraints (4.7.1) are redundant because it is optimal for the chapter 5 planner to stabilize the economy. For such specifications a set of transversality conditions implying (4.7.1) are among the first-order necessary conditions for the planner’s problem. For some other specifications, however, transversality conditions do not imply (4.7.1). For those specifications, we impose (4.7.1) as an additional constraint to give a sensible economic interpretation to the problem.\footnote{See the discussion of Hall’s model in chapter 5 for an illustration.} For such specifications, imposing (4.7.1) can be justified informally as a practical way of approximating solutions with nonnegativity constraints on capital stocks.
4.8. Summary

Information flows in our economy are governed by an exogenous stochastic process z_t that follows

$$z_{t+1} = A_{22}z_t + C_2w_{t+1},$$

where w_{t+1} is a martingale difference sequence. Preference shocks b_t and technology shocks d_t are linear functions of z_t:

$$b_t = U_bz_t$$
$$d_t = U_dz_t.$$

The matrices $A_{22}, C_2, U_b,$ and U_d characterize the laws of motion of b_t and d_t.

There is the following technology for producing consumption goods:

$$\Phi_c c_t + \Phi_g g_t + \Phi_i i_t = \Gamma k_{t-1} + d_t$$
$$k_t = \Delta k_{t-1} + \Theta_k i_t$$
$$g_t \cdot g_t = \ell_t^2.$$

Here c_t is a vector of consumption goods, g_t a vector of intermediate goods, i_t a vector of investment goods, k_t a vector of physical capital goods, and ℓ_t an amount of labor supplied by the representative household. The matrices $\Phi_c, \Phi_g, \Phi_i, \Gamma, \Delta_k,$ and Θ_k determine a production technology.

Preferences of a representative household are described by

$$\left(\frac{1}{2}\right) E \sum_{t=0}^{\infty} \beta^t \left[(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2 \right], 0 < \beta < 1$$

$$s_t = \Lambda h_{t-1} + \Pi c_t$$
$$h_t = \Delta h_{t-1} + \Theta_h c_t,$$

where s_t is a vector of consumption services, and h_t is a vector of household capital stocks. A particular set of preferences is specified by naming the matrices $\Lambda, \Pi, \Delta_h, \Theta_h,$ and the scalar β.

Having specified the structure of information, technology, and preferences, we must tell how the economy allocates resources in light of what is technically possible and what people want. We do this in chapters 5, 6, and 7.
Chapter 5
Optimal Resource Allocations

We eventually want to use our models to study aspects of competitive equilibria, including time series properties of various quantities, spot market prices, asset prices, and rates of return. The first welfare theorem asserts that competitive equilibrium allocations solve a particular resource allocation problem, which in our setting is a linear-quadratic optimal control problem.

In this chapter, we state the optimal resource allocation problem and compare two methods for solving it. The first method uses state- and date-contingent Lagrange multipliers; the second uses dynamic programming. The first method reveals a direct connection between the Lagrange multipliers and the equilibrium prices in a competitive equilibrium to be analyzed in chapter 7. The second method provides good algorithms for calculating both the law of motion for the optimal quantities and the Lagrange multipliers.

We also describe a set of MATLAB programs that solve the planning problem and that represent its solution in various ways. We use these programs to solve the planning problem for six sample economies that are formed by choosing particular examples of the ingredients from chapter 4.

5.1. Planning Problem

The planning problem is to choose \(\{c_t, s_t, i_t, h_t, k_t, g_t, \}^\infty_{t=0} \) to maximize a representative household’s utility subject to the resource constraints described in chapter 4. The constraint \(\ell_t^2 = g_t \cdot g_t \) can be substituted directly into the household’s objective function (4.5.3) to yield

\[
-(1/2)E \sum_{t=0}^{\infty} \beta^t [(s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t],
\]

which is to be maximized subject to the linear constraints:

\[
\Phi_c c_t + \Phi_g g_t + \Phi_i i_t = \Gamma k_{t-1} + d_t, \\
k_t = \Delta_k k_{t-1} + \Theta_k i_t, \\
h_t = \Delta_h h_{t-1} + \Theta_h c_t, \\
s_t = \Lambda h_{t-1} + \Pi c_t,
\]

- 83 -
and
\[z_{t+1} = A_{22}z_t + C_2w_{t+1}, \quad b_t = U_bz_t, \quad \text{and} \quad d_t = U_dz_t \quad (5.1.3) \]
for \(t = 0,1,\ldots \) where \(h_{-1}, k_{-1}, \) and \(z_0 \) are given as initial conditions. The process \(\{z_t : t = 0,1,\ldots\} \) is *uncontrollable* in the sense that the planner cannot influence its evolution. The planner’s problem is to choose stochastic processes \(\{c_t, s_t, g_t, i_t, k_t, h_t\}_{t=0}^{\infty} \) that maximize (5.1.1) subject to (5.1.2), (5.1.3), and the given initial conditions. We require that all components of the processes chosen by the planner be in the space \(L_0^2 \) defined by

\[
L_0^2 = \{ y : y_t \text{ is in } J_t \text{ for } t = 0,1,\ldots, \text{ and } \}
\]

\[
E \sum_{t=0}^{\infty} \beta^t y_t^2 \mid J_0 < \infty \}. \quad (5.1.4)
\]

Among other things, this requires that time \(t \) decisions depend only on information available at time \(t \).

5.2. Lagrange Multipliers

Our first approach to solving the constrained optimization problem uses Lagrange multipliers. We begin by focussing on the linear constraints (5.1.2) and the constraints (5.1.3) that determine the evolution of the process governing taste and technology shocks. The constraints (5.1.2) are indexed explicitly by the calendar date \(t \) and implicitly by the state of the world \((w_t, x_0)\), where \(w_t = (w_1, w_2, \ldots, w_t)\). Associated with these constraints are four vector multiplier processes \(\{M_d^t\}, \{M_k^t\}, \{M_h^t\}, M_s^t \). Because the constraints are required to hold in all states of the world, the multipliers are stochastic processes, the time \(t \) values of which are functions of the state of the world \((w_t, x_0)\). The components of the multiplier processes are in \(L_0^2 \). \(^1\)

\(^1\) Chapters 6 and 7 discuss the space of stochastic processes in which equilibrium prices that can be used to decentralize the economy reside. The discussion there also pertains to the Lagrange multipliers of this chapter. Equilibrium prices and Lagrange multipliers both live in \(L_0^2 \).
To solve the optimal resource allocation problem, we find the saddle point of the Lagrangian:

\[
L = -E \sum_{t=0}^{\infty} \beta^t \left[\left(\frac{1}{2} \right) |(s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t \right] \\
+ M^b_t \cdot (\Phi e c_t + \Phi g g_t + \Phi t i_t - \Gamma k_{t(-1)} - d_t) \\
+ M^h_t \cdot (k_t - \Delta k_{t(-1)} - \Theta k_{i_t}) \\
+ M^{h'}_t \cdot (h_t - \Delta h_{t(-1)} - \Theta h_{c_t}) \\
+ M^{i'}_t \cdot (s_t - \Delta h_{t(-1)} - \Pi c_t) \right] J_0.
\]

The planner solves the saddle point problem by choosing maximizing contingency plans (stochastic processes) for \{c_t, g_t, h_t, i_t, k_t, s_t\} and minimizing contingency plans for the multipliers \{M^b_t\}, \{M^h_t\}, \{M^{h'}_t\}, and \{M^{i'}_t\}. Each of

\[L = -E \sum_{t=0}^{\infty} \beta^t \left[\left(\frac{1}{2} \right) |(s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t \right] \\
+ M^b_t \cdot (\Phi e c_t + \Phi g g_t + \Phi t i_t - \Gamma k_{t(-1)} - d_t) \\
+ M^h_t (k_t - \Delta k_{t(-1)} - \Theta k_{i_t}) + M^{h'}_t (h_t - \Delta h_{t(-1)} - \Theta h_{c_t}) \\
+ M^{i'}_t (s_t - \Delta h_{t(-1)} - \Pi c_t) \right\} f^t(w^t, x_0) dw^t.
\]

In this expression, each element of \{s_t, b_t, g_t, c_t, i_t, k_t, d_t, M^b_t, M^h_t, M^{h'}_t, M^{i'}_t\} is to be regarded as a function of \(w^t, x_0\). The planner is to choose stochastic processes that make each element of \{c_t, s_t, g_t, i_t, k_t, h_t, M^b_t, M^h_t, M^{h'}_t, M^{i'}_t\} a function of \(w^t, x_0\), taking as given the initial state vector \(x_0\) and the stochastic processes for \(b_t\) and \(d_t\). Expression (5.2.0') emphasizes the fact that each constraint in (5.1.2) applies for each \(t\) and each \((w^t, x_0)\), and that a distinct multiplier is attached to each constraint for each \((w^t, x_0)\). In obtaining the first-order conditions for the optimization of (5.2.1) it is useful to remember the integration operation represented by the conditional expectation operator \(E(\cdot | J_0)\). Let \(f^t(w^t, x_0)\) be the density of \((w^t, x_0)\). Then representation (5.2.1) for the Lagrangian is equivalent with

\[L = -E \sum_{t=0}^{\infty} \beta^t \left[\left(\frac{1}{2} \right) |(s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t \right] \\
+ M^b_t \cdot (\Phi e c_t + \Phi g g_t + \Phi t i_t - \Gamma k_{t(-1)} - d_t) \\
+ M^h_t (k_t - \Delta k_{t(-1)} - \Theta k_{i_t}) + M^{h'}_t (h_t - \Delta h_{t(-1)} - \Theta h_{c_t}) \\
+ M^{i'}_t (s_t - \Delta h_{t(-1)} - \Pi c_t) \right\} f^t(w^t, x_0) dw^t.
\]

Thus, for (5.2.0) the first-order condition with respect to \(k_t(w^t, x_0)\) is \(\beta^t M^b_t \delta^t f^t(w^t, x_0) - \beta^{t+1} \left(\Delta k^t M^b_{t+1} + \Gamma^t M^{b'}_{t+1} \right) f^{t+1}(w^{t+1}, x_0) dw^{t+1} = 0\) or \(\beta^t M^b_t - \beta^{t+1} \left(\Delta k^t M^b_{t+1} + \Gamma^t M^{b'}_{t+1} \right) f^{t+1}(w^{t+1}, x_0) dw^{t+1} = 0\). This is the first-order condition for \(k_t\) displayed in (5.2.4).
these objects must be an element of L^2_0. First-order necessary conditions can be deduced by computing Gateaux or directional derivatives around a putative optimum and then setting them all to zero.³

The method of directional derivatives can be illustrated as follows. Let c^o_t be the optimal plan for consumption. Consider a class of admissible perturbations around c^o_t of the form $c^o_t + r\alpha_t$, where r is an arbitrary real number and α_t is an n_c-dimensional random vector in J_t with finite second moments. The vector α_t gives the direction of the derivative. For any direction α_t, we want the optimal setting of r to be zero. We replace c^o_t by the perturbation $c^o_t + r\alpha_t$ in the objective function, differentiate with respect to r, evaluate the result at $r=0$, and set it equal to zero. This results in

$$-\beta^t E[\alpha'_t(\Phi'_c M^d_t - \Theta'_h M^h_t - \Pi' M^s_t)] = 0,$$

where we have evaluated the derivative with respect to r at the optimal choice of r, namely $r = 0$. Since α_t can be chosen to be any n_c-dimensional random vector in J_t, (5.2.2) can be satisfied only if $\Phi'_c M^d_t - \Theta'_h M^h_t - \Pi' M^s_t$ is identically zero in every state of nature.⁴

It is useful to illustrate how this method applies to the determination of first-order conditions for the terms h_t and k_t, each of which makes two appearances under the sum in (5.2.1), namely as h_t and h_{t-1} and as k_t and k_{t-1}, respectively. We shall indicate how things work for k_t. Let α_t now be of the same dimension as k_t. For each $t \geq 0$, the terms involving k_t in the sum (5.2.1) are

$$E\{\beta^t M^d_t(k^o_t + r\alpha_t)$$

$$-\beta^{t+1}[M^d_{t+1}\Delta k^{o_t}(k^o_t + r\alpha_t) + M^d_{t+1}\Gamma(k^o_t + r\alpha_t)]\},$$

where k^o_t is the optimal capital sequence. Differentiating this expression with respect to r and setting the result to zero for $r = 0$ gives

$$\beta^t E\alpha'_t[M^d_t - \beta[\Delta^o_{t+1} + \Gamma M^d_{t+1}]] = 0.$$

³ See Luenberger (1969) for a discussion of Gateaux derivatives. An alternative approach is to compute Frechet derivatives of the Lagrangian (5.2.1) with respect to the stochastic process \{c_t, g_t, h_t, i_t, k_t, s_t, M^d_t, M^k_t, M^h_t\}. These derivatives are taken with respect to entire stochastic processes. To use this approach, we would have to define a sense of differentiation for criterion functions that depend on elements in L^2_0. Such a construction turns out to be straightforward in our context and exploits the fact that the space L^2_0 is a Hilbert space.

⁴ See chapter 7 for further discussion that is pertinent to understanding stochastic Lagrange multipliers.
This equation must hold for all directions α_t that can be chosen as functions of time t information (w^t, x_0). This implies that

$$M_t^k - E\beta[\Delta'_k M_{t+1}^k + \Gamma' M_{t+1}^d] | J_t = 0.$$

Applying the law of iterated expectations to the above equation gives

$$E\{M_t^k - \beta[\Delta'_k M_{t+1}^k + \Gamma' M_{t+1}^d]\} = 0,$$

which implies (5.2.3).

In this way, we can compute first-order necessary conditions for all processes chosen by the planner. First-order necessary conditions for maximization with respect to $c_t, g_t, h_t, i_t, k_t, s_t$, respectively, are:

$$-\Phi'_c M_t^d + \Theta'_h M_t^h + \Pi M_t^s = 0,$$

$$-g_t - \Phi'_g M_t^d = 0,$$

$$-M_t^h + \beta E(\Delta_k M_{t+1}^h + \Lambda M_{t+1}^s) | J_t = 0,$$

$$-\Phi'_k M_t^d + \Theta'_s M_t^s = 0,$$

$$-M_t^k + \beta E(\Delta_k M_{t+1}^k + \Gamma' M_{t+1}^d) | J_t = 0,$$

$$-s_t + b_t - M_t^s = 0$$

for $t = 0, 1, \ldots$. In addition, we have the transversality conditions

$$\lim_{t \to \infty} \beta' E[M_t^{d'} k_t] | J_0 = 0$$

$$\lim_{t \to \infty} \beta' E[M_t^{h'} h_t] | J_0 = 0.$$

By way of enforcing (5.2.5), we impose the additional condition that each of the processes $\{c_t, g_t, h_t, i_t, k_t, s_t\}$ belongs to the space L_0^2. This requirement is stronger than the transversality conditions, and makes the transversality conditions redundant. In an extended example in an appendix to this chapter, we illustrate the connection between the transversality conditions and the requirement that elements of the solution lie in L_0^2.

The optimal plan can now be computed by solving the stochastic expectation difference equation system formed by augmenting (5.1.2)–(5.1.3) with...
Optimal Resource Allocations

This system is to be solved jointly for the process \(\{c_t, g_t, h_t, i_t, k_t, s_t, \ldots \} \) subject to the initial conditions for \((h'_{-1}, k'_{-1}, z'_{0}, \ldots)\)' and to the side condition that all individual component processes be in \(L_0^2 \). It is possible to solve this system of difference equations using the invariant subspace methods described in chapter 3. We shall rely on dynamic programming here.

Before doing that, we manipulate some of the first-order conditions in (5.2.4) to deduce economic interpretations for the Lagrange multipliers. The multipliers have a direct connection to the price system to be used in chapter 7 to support an optimal resource allocation in a competitive economy.

Solving the sixth equation in (5.2.4) for \(M^t_s \) gives

\[
M^t_s = b_t - s_t. \tag{5.2.6}
\]

We can interpret \(M^t_s \) as the marginal utility vector or, equivalently, as the shadow price vector for services at date \(t \). Solving the third equation in (5.2.4) forward yields

\[
M^t_h = E[\sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h^{\tau-1} \Lambda^t M^t_s | J_t)]. \tag{5.2.7}
\]

We interpret \(M^t_h \) as the indirect marginal utility vector for the household capital stock at time \(t \). The infinite discounted sum in (5.2.7) captures the notions that household capital at date \(t \) generates services in subsequent time periods, and that the Lagrange multiplier \(M^t_h \) reflects this valuation. The indirect marginal utility vector for consumption at date \(t \) is \(M^t_c \equiv H^t_h M^t_h + \Pi' M^t_s \) because a vector \(c_t \) of consumption goods at time \(t \) yields \(H^t_h c_t \) units of household capital and \(\Pi c_t \) units of consumption services at time \(t \).

It is also of interest to deduce marginal valuations or shadow prices of investment and productive capital. These can be expressed in terms of the shadow price of consumption and the indirect marginal disutility of intermediate goods \(g_t \). Combining the first two equations in (5.2.4) gives

\[
\begin{bmatrix}
\Phi'_c \\
\Phi'_g
\end{bmatrix} \begin{bmatrix}
M^t_c \\
M^t_g
\end{bmatrix} = \begin{bmatrix}
\Theta^t_h M^t_h + \Pi' M^t_s \\
-g_t
\end{bmatrix}, \tag{5.2.8}
\]

When Assumption 3 of chapter 4 is satisfied, the matrix on the left side of (5.2.8) is nonsingular. Solving (5.2.8) for \(M^t_c \), we obtain

\[
M^t_c = \begin{bmatrix}
\Phi'_c \\
\Phi'_g
\end{bmatrix}^{-1} \begin{bmatrix}
\Theta^t_h M^t_h + \Pi' M^t_s \\
-g_t
\end{bmatrix}. \tag{5.2.9}
\]
The multiplier M^k_t can be used to represent the shadow price of capital in time period t. Solving the fifth equation in (5.2.4) forward gives

$$M^k_t = E[\sum_{\tau=1}^{\infty} \beta^\tau (\Delta^r_k)^{\tau-1} \Gamma' M^d_{t+\tau} | J_t]. \tag{5.2.10}$$

We interpret M^k_t as the shadow price vector for the capital stock. Capital at time t is valued because it is useful for producing output in subsequent time periods. The contribution to value from helping to produce output at time $t + \tau$ is manifested in the term $\Gamma' M^d_{t+\tau}$. This term is discounted by $\beta^\tau (\Delta^r_k)^{\tau-1}$, reflecting both the discounting in the consumer’s utility function and the depreciation in the capital stock. The vector $\Gamma' M^d_t$ can be used to ascertain whether there are incentives to hold idle capital at time t. In particular, negative values of this multiplier indicate that a better solution to the planning problem could be obtained if the equality in resource constraint stated in the first equation of (5.1.2) were relaxed to be a weak inequality.

Finally, the shadow price for new investment is $M^i_t = \Theta'_k M^k_t$ because a vector i_t of investment goods at time t yields $\Theta_k i_t$ units of capital at time t. In light of the fourth equation in (5.2.4), M^i_t is also given by $\Phi'_i M^d_t$, which reflects the resource cost of producing new investment goods. Notice that (5.2.6), (5.2.7), (5.2.9), and (5.2.10) can be used to obtain expressions for the multiplier processes in terms of the endogenous process $\{g_t, s_t\}$ and the exogenous process $\{z_t\}$. The fact that we obtain two equivalent representations for the shadow price of investment is an implicit restriction on the optimal choice of $\{g_t, s_t\}$.
5.3. Dynamic Programming

This section briefly describes how the method of dynamic programming can be used to solve the planning problem. The nuts and bolts of linear quadratic dynamic programming are described in chapter 3.

Recall that the vector of initial conditions at time zero consists of $x_0' \equiv (h_{-1}', k_{-1}', z_0')$. The planning problem can be solved in the following way. First, temporarily assume that someone has handed us the solution of the time-shifted version of the problem that takes $x_1' \equiv (h_0', k_0', z_1')$ as a given set of initial conditions and that shifts forward the constraints and objective function one time period. Let $V(x_1)$ be the optimal value function that is equal to the objective function of this altered problem evaluated at the initial condition x_1 and the associated optimal plan. Then solve a two-period problem that chooses c_0, i_0, g_0 to maximize:

$$[-.5((s_0 - b_0) \cdot (s_0 - b_0) + g_0 \cdot g_0) + \beta EV(x_1)]$$

subject to the linear constraints

$$\Phi_c c_0 + \Phi_g g_0 + \Phi_i i_0 = \Gamma k_{-1} + d_0,$$
$$k_0 = \Delta k_{-1} + \Theta k i_0,$$
$$h_0 = \Delta h_{-1} + \Theta h c_0,$$
$$s_0 = \Lambda h_{-1} + \Pi c_0,$$

and

$$z_1 = A_{22} z_0 + C_{2} w_1, \quad b_0 = U_h z_0 \quad \text{and} \quad d_0 = U_d z_0$$

The problem is to be solved taking as given the value of the initial state vector x_0. If the function V is concave, the problem can be solved for policy functions denoted by the vector valued function $F(x_0)$ that express $c_0, g_0, h_0, i_0, k_0, s_0$ as functions of the vector x_0. Then dynamic programming tells us that the optimal values of $c_t, g_t, h_t, i_t, k_t, s_t$ for the original problem are $F(x_t)$. So if we could somehow discover the function $V(\cdot)$, we would be able to solve the planning problem simply by solving the two-period problem (5.3.1) – (5.3.3).

Dynamic programming calculates V by exploiting the fact that the objective (5.3.1) evaluated at the optimal policy functions is $V(x_0)$. This means

6 See Stokey, Lucas, and Prescott (1989) and Sargent (1987a, chapter 1) for background on dynamic programming and some of its uses in macroeconomics.
that the value function is the same at time zero as it is at time one, and that
V solves the following fixed-point problem. First, solve the two-period opti-
mization problem (5.3.1) – (5.3.3) for a given value function V, then compute
the time zero value function T(V). The optimization problem thus induces an
operator T mapping a value function V into a new value function T(V). The
optimal value function V solves the functional equation V = T(V), known as
the Bellman equation.

One way to compute V is to iterate on the operator T. Let T^j denote
the operator T applied j times. Then the sequence \{T^j(0) : j = 1, 2, ...\} of
functions converges to V under some assumptions about our matrices that we
described in chapter 3, where 0 is interpreted as a function that is zero over its
entire domain. This method works under quite general circumstances.7

There is a special structure to the planning problem. If we let V be a
quadratic function of the form x'Px + ρ, then T(V) is a quadratic function
x'T_1(P)x+T_2(P,ρ). The optimal decision rule depends on P but is independent
of the scalar ρ. The optimal value of the matrix P can be calculated by iterating
on the T_1 transformation. That is, P can be computed as the limit point of
the sequence \{T_1^j(0) : j = 1, 2, ...\} where 0 now denotes a matrix with entries
that are all zero. However, iteration on the operator T_1 is computationally
inefficient. There exists a doubling algorithm that speeds up convergence by
computing only members of the subsequence \{T_2^j(0) : j = 1, 2, ...\}. This and
other algorithms are described in chapter 3.

The time-invariant character of the planning problem makes the optimal
policy functions or decision rules time invariant. The time t state vector is
x_t = (h_{t-1}, k_{t-1}, z_t). The time t decision rules depend on x_t. From P, it is
straightforward to deduce these rules by solving the two-period problem (5.3.1)
– (5.3.3). Since this problem has a quadratic objective function and linear
constraints, the contingency plans are all linear in the state vector x_t. We denote
these rules c_t = S_c x_t, g_t = S_g x_t, h_t = S_h x_t, i_t = S_i x_t, k_t = S_k x_t, s_t = S_s x_t.

7 The method works whenever technical conditions on the planning problem are satisfied
that make it redundant to impose the square-summability side conditions (4.7.1) incorporated
in requirement that solutions must lie in the space L_2^0 defined (5.1.4). However, for problems
in which those technical conditions aren’t satisfied, it is necessary to start the iterations on T
from an initial value function of the form x'W_1x + W_2, where W_1 is a negative semidefinite
matrix with some particular eigenvalues less than zero.
Similarly, the law of motion for the state vector is linear:

\[x_{t+1} = A^o x_t + C w_{t+1} \]

where

\[A^o \equiv \begin{bmatrix} A_{11}^o & A_{12}^o \\ 0 & A_{22} \end{bmatrix}, \quad C \equiv \begin{bmatrix} 0 \\ C_2 \end{bmatrix}. \tag{5.3.4} \]

The partitioning of the \(A^o \) and \(C \) matrices is according to the *endogenous* state vector \((h'_{t-1}, k'_{t-1})'\) and the *exogenous* state vector \(z_t\). The zero restriction on the (2,1) partition of \(A^o \) reflects the fact that the exogenous state vector at time \(t + 1 \) does not depend on the endogenous state vector at time \(t \). The zero restriction on the first rows in the partition of \(C \) reflects the fact that the endogenous state vector at time \(t + 1 \) is predetermined (i.e., depends only on time \(t \) information). The contingency plans for \(h_t \) and \(k_t \) are embedded in the part of (5.3.4) that determines the endogenous state vector \([h'_t \ k'_t]'\) as a function of \(x_t \). In particular,

\[\begin{bmatrix} S_h \\ S_k \end{bmatrix} = \begin{bmatrix} A_{11}^o & A_{12}^o \end{bmatrix}. \tag{5.3.5} \]

Notice that decision rules are recursive in the sense that time \(t \) decisions depend on the state vector at time \(t \), which in turn depends on the state vector at time \(t - 1 \). It would be possible to express this dependence via recursive substitutions and to deduce a time-varying representation of the state-contingent decision at time \(t \) on current and past values of the noise vector \(w_t \) and the initial condition \(x_0 \), as in equation (2.3.4).

Recall that the eigenvalues of \(A^o \) determine the growth of the state vector \(\{x_t\} \). Since \(A^o \) is block triangular, the set of eigenvalues of \(A^o \) is the union of the set of eigenvalues of \(A_{11}^o \) and the set of eigenvalues of \(A_{22} \). We refer to the first set of eigenvalues as the *endogenous eigenvalues* because \(A_{11}^o \) is determined by the solution to the planning problem. These eigenvalues must have absolute values strictly less than \(1/\sqrt{\beta} \) to satisfy the requirement that the components of \(\{x_t\} \) be in \(L_\beta^2 \). We refer to the second set of eigenvalues as the set of *exogenous eigenvalues* because the matrix \(A_{22} \) is specified exogenously. By assumption, the eigenvalues of \(A_{22} \) have absolute values that are less than or equal to one.
5.4. Lagrange Multipliers as Gradients of Value Function

Associated with the solution of the planning problem is the quadratic value function \(V(x_0) = x'_0 P x_0 + \rho \). The function \(V(x_0) \) gives the maximal value that the planner can attain when he starts from initial state \(x_0 \).

In this section, we show how the Lagrange multipliers are related to the value function. We attach Lagrange multipliers to each of the constraints, and formulate the Lagrangian associated with iterating once on the Bellman equation. The first-order conditions associated with the saddle point of this Lagrangian restrict the multipliers in terms of the value function. The multipliers become linear functions of the state \(x_t \).

Consider the two-period optimization problem that is the time \(t \) counterpart to that described by (5.3.1) – (5.3.3). Form the Lagrangian:

\[
\mathcal{L} = -(1/2)\left((s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t\right) + \beta E[V(x_{t+1})] | J_t
\]

\[
= -M_d^t : (\Phi_c c_t + \Phi_g g_t + \Phi_i i_t - \Gamma k_{t-1} - d_t)
\]

\[
- M_h^t : (k_t - \Delta_h k_{t-1} - \Theta_h h_t)
\]

\[
- M_e^t : (h_t - \Delta_e h_{t-1} - \Theta_e c_t)
\]

\[
- M_s^t : (s_t - \Lambda s_{t-1} - \Pi c_t).
\]

To obtain the first-order conditions for the Lagrangian (5.4.1), recall that \(V(x_{t+1}) = x'_{t+1} P x_{t+1} + \rho \). Notice that

\[
\frac{\partial}{\partial h_t} E(x'_{t+1} P x_{t+1} + \rho) | J_t = \frac{\partial x_{t+1}}{\partial h_t} \frac{\partial}{\partial x_{t+1}} E(x'_{t+1} P x_{t+1} + \rho) | J_t
\]

\[
= [I \ 0 \ 0] E(2Px_{t+1}) | J_t = 2[I \ 0 \ 0] PA^c x_t.
\]

Here the matrix \([I \ 0 \ 0] \) satisfies \(h_t = [I \ 0 \ 0] x_{t+1} \). Similarly \(\frac{\partial}{\partial c_t} E(x'_{t+1} P x_{t+1} + \rho) | J_t = 2[0 \ 0 \ 1] PA^c x_t \), where \(k_t = [0 \ I \ 0] x_{t+1} \). Differentiating (5.4.1) with respect to \(c_t, g_t, h_t, i_t, k_t, \) and \(s_t \) and using the above expressions for \(\frac{\partial}{\partial h_t} \) and \(\frac{\partial}{\partial c_t} \) yields

\[
-\Phi'_c M_c^t + \Theta'_c M_k^t + \Pi' M_s^t = 0,
\]

\[
- g_t - \Phi'_g M_d^t = 0,
\]

\[
-M_h^t + 2[0 \ 0 \ 1] PA^c x_t = 0,
\]

\[
-\Phi'_i M_i^t + \Theta'_c M_k^t = 0,
\]

\[
-M_k^t + 2[0 \ 0 \ 1] PA^c x_t = 0,
\]

\[
- s_t + b_t - M_s^t = 0.
\]
Solving the third and fifth equations of (5.4.2) for M_k^t and M_h^t gives

$$M_k^t = M_k x_t \quad \text{and} \quad M_h^t = M_h x_t$$

where

$$M_k = 2\beta [0 \ I \ 0] PA^o$$

$$M_h = 2\beta [I \ 0 \ 0] PA^o.$$ \hspace{1cm} (5.4.3)

In comparing (5.4.3) to (5.2.7) and (5.2.10), we see that the derivatives of $E[V(x_{t+1}) \mid J_t]$ with respect to the endogenous state vectors h_t and k_t give expressions in terms of x_t for the conditional expectations of the infinite sums that appear in (5.2.7) and (5.2.10). Solving the sixth equation (5.4.2) for M_s^t yields

$$M_s^t = M_s x_t$$

where $M_s = (S_b - S_s)$ and $S_b = [0 \ 0 \ U_b]$. \hspace{1cm} (5.4.4)

Solving the first two equations of (5.4.2) for M_d^t results in

$$M_d^t = M_d x_t$$

where

$$M_d = \left[\Phi'_c \right]^{-1} \left[\Theta'_h M_h + \Pi'M_s \right].$$ \hspace{1cm} (5.4.5)

Finally, the shadow price vectors for consumption and investment are

$$M_c^t = M_c x_t$$

where $M_c = \Theta'_h M_h + \Pi'M_s$ \hspace{1cm} (5.4.6)

$$M_i^t = M_i x_t$$

where $M_i = \Theta'_k M_k$. \hspace{1cm} (5.4.7)

Formulas (5.4.3) – (5.4.7) express the Lagrange multipliers for the planning problem in terms of the optimal value function.
5.5. Planning Problem as Linear Regulator

Our planning problem can be cast as an optimal linear regulator problem. A discounted linear regulator problem has the form:

$$\max_{\{u_t\}} -E \sum_{t=0}^{\infty} \beta^t [x'_t Rx_t + u'_t Qu_t + 2u'_t W x_t], \quad 0 < \beta < 1,$$

subject to

$$x_{t+1} = Ax_t + Bu_t + Cw_{t+1}, \quad t \geq 0$$

where \(\{w_{t+1}\} \) is a martingale difference sequence adapted to its own history and \(x_0 \), \(x_t \) is a vector of state variables, and \(u_t \) is a vector of control variables; the matrices \(R, Q, \) and \(W \) are conformable with the objects they multiply. The maximization is subject to the requirement that \(u_t \) be chosen to be a function of information known at \(t \), namely, \(\{x_t, x_{t-1}, \ldots, x_0, u_{t-1}, \ldots, u_0\} \).

To show how our planning problem maps into an optimal linear regulator problem, we must tell how to choose the objects \([x_t, u_t, w_{t+1}, R, Q, W, A, B, C] \) in the optimal regulator problem. We choose these objects as follows:

$$x_t = \begin{bmatrix} h_{t-1} \\ k_{t-1} \\ z_t \end{bmatrix}, \quad u_t = i_t$$

and \(w_t \) is the martingale difference sequence in (2.2);

$$A = \begin{bmatrix} \Delta_h & \Theta_h U_c [\Phi_c \Phi_g]^{-1} \Gamma & \Theta_h U_c [\Phi_c \Phi_g]^{-1} U_d \\ 0 & \Delta_k & 0 \\ 0 & 0 & A_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} -\Theta_h U_c [\Phi_c \Phi_g]^{-1} \Phi_i \\ \Theta_k \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 0 \\ 0 \\ C_2 \end{bmatrix}$$

$$\begin{bmatrix} x_t' \\ u_t \end{bmatrix}' S \begin{bmatrix} x_t' \\ u_t \end{bmatrix} = \begin{bmatrix} x_t' \\ u_t \end{bmatrix}' \begin{bmatrix} R & W' \\ W & Q \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}$$

where \(S = (G'G + H'H)/2 \) and

$$H = [A : \Pi U_c [\Phi_c \Phi_g]^{-1} \Gamma : \Pi U_c [\Phi_c \Phi_g]^{-1} U_d - U_b : - \Pi U_c [\Phi_c \Phi_g]^{-1} \Phi_i]$$
\[G = U_g[\Phi_c \Phi_g]^{-1}[0 : \Gamma : U_d : -\Phi_i]. \]

Here, \(U_c \) and \(U_g \) are selector matrices to be defined in appendix A to this chapter. There we show show constructively that these choices map the planning problem into the linear regulator.

The Bellman equation for the linear regulator is

\[
V(x_t) = \max_{u_t} \{-x_t'Rx_t + u_t'Qu_t + 2u_t'Wx_t + \beta E_t V(x_{t+1})\} \tag{5.5.1}
\]

where the maximization is subject to

\[x_{t+1} = Ax_t + Bu_t + Cw_{t+1}. \]

The value function \(V(x) \) is quadratic: \(V(x_t) = -x_t'Px_t - \rho \), where the matrix \(P \) and the scalar \(\rho \) satisfy

\[
P = R + \beta A'PA - (\beta A'PB + W')(Q + \beta B'PB)^{-1}(\beta B'PA + W) \tag{5.5.2}
\]

\[
\rho = \beta(1 - \beta)^{-1}\text{trace}(PCC'). \tag{5.5.3}
\]

The solutions of (5.5.1) can be computed by iterating on the \(T \) mapping defined above. Chapter 3 describes faster methods.

The optimal control law is

\[
u_t = -Fx_t \tag{5.5.4}
\]

where

\[
F = (Q + \beta B'PB)^{-1}(\beta B'PA + W). \tag{5.5.5}
\]

Substituting (5.5.4) into (5.5.1) gives the optimal closed loop system

\[
x_{t+1} = (A - BF)x_t + Cw_{t+1}, \tag{5.5.6}
\]

which we represent as

\[
x_{t+1} = A^ox_t + Cw_{t+1} \tag{5.5.7}
\]

where \(A^o = A - BF \).
We can use the solution of the linear regulator problem to represent the solution of the planning problem in a useful way. In particular, where

\[
\begin{align*}
h_t &= S_h x_t & d_t &= S_d x_t \\
k_t &= S_k x_t & e_t &= S_e x_t \\
k_{t-1} &= S_{k1} x_t & g_t &= S_g x_t \\
i_t &= S_i x_t & s_t &= S_s x_t \\
b_t &= S_b x_t
\end{align*}
\]

we have

\[
\begin{bmatrix}
S_h \\
S_k
\end{bmatrix} = \begin{bmatrix}
A_{11}^o & A_{12}^o \\
0 & A_{22}^o
\end{bmatrix}
\]

\[
S_{k1} = \begin{bmatrix} 0 & I & 0 \end{bmatrix}
\]

\[
S_i = -F
\]

\[
S_d = \begin{bmatrix} 0 & 0 & U_d \end{bmatrix}
\]

\[
S_b = \begin{bmatrix} 0 & 0 & U_b \end{bmatrix}
\]

\[
S_c = U_c \Phi_c \Phi_g^{-1} \{-\Phi_i S_i + \Gamma S_{k1} + S_d\}
\]

\[
S_g = U_g \Phi_c \Phi_g^{-1} \{-\Phi_i S_i + \Gamma S_{k1} + S_d\}
\]

\[
S_s = \Lambda [I \ 0 \ 0] + \Pi S_c.
\]

Here \(\begin{bmatrix} A_{11}^o & A_{12}^o \\
0 & A_{22}^o \end{bmatrix} = A - BF. \)

We also have a convenient set of formulas for the Lagrange multipliers associated with the planning problem. Where

\[
\begin{align*}
\mathcal{M}_k^k &= M_k x_t & \mathcal{M}_d^d &= M_d x_t \\
\mathcal{M}_h^h &= M_h x_t & \mathcal{M}_s^s &= M_s x_t \\
\mathcal{M}_i^i &= M_i x_t
\end{align*}
\]

we have

\[
\begin{align*}
M_k &= 2\beta [I \ 0 \ 0] P A^o \\
M_h &= 2\beta [I \ 0 \ 0] P A^o \\
M_s &= (S_b - S_s)
\end{align*}
\]

\[
M_d = \begin{bmatrix}
\Phi_c^\prime \\
\Phi_g^\prime
\end{bmatrix}^{-1} \begin{bmatrix}
\Theta_h^\prime M_h + \Pi^\prime M_s \\
- S_g
\end{bmatrix}
\]

\[
M_c = \Theta_h^\prime M_h + \Pi^\prime M_s \\
M_i = \Theta_i^\prime M_k.
\]
Here the partitions $[0 \ I \ 0]$ and $[I \ 0 \ 0]$ are conformable with the partition $[h'_{i-1}, k'_{i-1}, z_i]'$ of x_t.

5.6. Allocations for Five Economies

We now show by example how solutions of planning problems for our models can be computed by using MATLAB programs. Tables 1 and 2 describe how we have translated the symbols in the model (many of them Greek) into symbols to be manipulated by our programs. The translations are mnemonic, so that it ought to be easy to keep in mind the connections between the expressions in our MATLAB programs and the matrices in our models. We have prepared a battery of programs, to be used in sequence, that compute the objects that define and characterize the solution of the planning problem for a member of our class of models. To use these programs, we first have to feed in the matrices defined in Table 1, using the notation employed in Table 1. We have prepared a number of .m files that input these parameters for various particular economies. These files are called clex*.m, where the * is replaced by a particular integer to denote a particular economy. The economies corresponding to particular clex*.m files are listed in the MATLAB manual that we have included as appendix A of this book. The clex*.m files are MATLAB script files (i.e., they are not functions). To input the parameters of, say, of a version of Hall’s (1978) economy that we have stored in clex11.m, the user just types clex11.
Table 1
Correspondence Between Symbols in Model and Symbols in MATLAB programs

<table>
<thead>
<tr>
<th>Symbol in Model</th>
<th>Symbol in Computer Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{22}</td>
<td>a22</td>
</tr>
<tr>
<td>C_2</td>
<td>c2</td>
</tr>
<tr>
<td>U_b</td>
<td>ub</td>
</tr>
<tr>
<td>U_d</td>
<td>ud</td>
</tr>
<tr>
<td>Φ_c</td>
<td>phic</td>
</tr>
<tr>
<td>Φ_g</td>
<td>phig</td>
</tr>
<tr>
<td>Φ_i</td>
<td>phi</td>
</tr>
<tr>
<td>Γ</td>
<td>gamma</td>
</tr>
<tr>
<td>Δ_k</td>
<td>deltak</td>
</tr>
<tr>
<td>Θ_k</td>
<td>thetak</td>
</tr>
<tr>
<td>Δ_n</td>
<td>deltan</td>
</tr>
<tr>
<td>Θ_k</td>
<td>thetah</td>
</tr>
<tr>
<td>Λ</td>
<td>lambda</td>
</tr>
<tr>
<td>Π</td>
<td>pih</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
</tbody>
</table>
Table 2

Correspondence Between Symbols in Solution of the Planning Problem and Symbols in MATLAB programs

<table>
<thead>
<tr>
<th>Symbol in Model</th>
<th>Symbol in Computer Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A^o)</td>
<td>ao</td>
</tr>
<tr>
<td>(C)</td>
<td>c</td>
</tr>
<tr>
<td>(S_c)</td>
<td>sc</td>
</tr>
<tr>
<td>(S_g)</td>
<td>sg</td>
</tr>
<tr>
<td>(S_s)</td>
<td>ss</td>
</tr>
<tr>
<td>(S_k)</td>
<td>sk</td>
</tr>
<tr>
<td>(S_i)</td>
<td>si</td>
</tr>
<tr>
<td>(S_h)</td>
<td>sh</td>
</tr>
<tr>
<td>(S_b)</td>
<td>sb</td>
</tr>
<tr>
<td>(S_d)</td>
<td>sd</td>
</tr>
<tr>
<td>(M_c)</td>
<td>mc</td>
</tr>
<tr>
<td>(M_g)</td>
<td>mg</td>
</tr>
<tr>
<td>(M_s)</td>
<td>ms</td>
</tr>
<tr>
<td>(M_k)</td>
<td>mk</td>
</tr>
<tr>
<td>(M_i)</td>
<td>mi</td>
</tr>
<tr>
<td>(M_h)</td>
<td>mh</td>
</tr>
</tbody>
</table>

The MATLAB programs perform the following tasks:

a. The program `solvea.m` accepts as inputs a collection of matrices that specify a particular economy. It then computes the solution of the planning problem, and for future use creates and stores the matrices listed in table 2.\(^8\)

b. The program `steadst.m` computes the nonstochastic steady state, or equivalently the unconditional mean for the asymptotic stationary distribution, of the state vector, provided that this object is well defined.

\(^8\) An extension of this program called `solvex.m` handles risk-sensitive preferences that allow us to impute concerns about model uncertainty to the representative household. See Hansen and Sargent (2008, chapters 12 and 13).
c. The program \texttt{arma.m} computes an ARMA representation for the response of a specified list of variables to one of the innovations in the model.

d. The program \texttt{impulse.m} computes the impulse response function of a specified list of variables to one of the innovations in the model.

e. The program \texttt{asimul.m} computes a random or nonrandom simulation of a specified list of variables.

f. The program \texttt{asset.a.m} computes equilibrium prices for some particular assets to be specified. (The use of this program will be explained in chapter 7.)

The program \texttt{solvea.m} makes use of the following two programs in order to solve the planning problem efficiently.

\begin{itemize}
 \item[\textit{g.}] The program \texttt{doubleo.m} solves a matrix Riccati equation swiftly via a “doubling algorithm.”
 \item[\textit{h.}] The program \texttt{double2j.m} uses a doubling algorithm to compute variance-like terms that can be represented as particular infinite series of some matrix products.
\end{itemize}

The user can find out how to use these and all other programs by using the ‘help’ facility in MATLAB. Thus, to learn how to run the program \texttt{solvea.m}, the user just types \texttt{help solvea}.

The purpose of this section is to illustrate how easy it is to use these programs to analyze our models, and how rapidly things can be learned about the structures of our models by representing their solutions in the ways that our programs facilitate. In the spirit of learning by doing, we analyze five related models that can generate a range of behavior for time series of quantities (and also of the equilibrium prices to be studied in chapter 7).

We study a class of models that we form by combining technologies 4 (growth) and 2 (costs of adjustment) with preference specification 3 (habit persistence) from chapter 4. By setting parameters at different particular values, we are able to generate versions several models that have been studied in the literature. Each of these models is specified by defining preference and technology matrices of the same dimension. To create a new model of this class, we simply reset some parameter values, while leaving the dimensions of the matrices that define the economy unaltered.
Our models are generated by the following specification for preferences, technology, and information.

Preferences

\[-0.5 E \sum_{t=0}^{\infty} \beta^t [(s_t - b_t)^2 + \ell_t^2] J_0\]

\[s_t = \lambda h_{t-1} + \pi c_t\]

\[h_t = \delta_h h_{t-1} + \theta c_t\]

\[b_t = U_b z_t\]

Technology

\[c_t + i_t = \gamma k_{t-1} + d_{1t}\]

\[k_t = \delta_k k_{t-1} + i_t\]

\[g_t = \phi_1 i_t, \quad \phi_1 > 0\]

\[
\begin{bmatrix} d_{1t} \\ 0 \end{bmatrix} = U_d z_t
\]

Information

\[z_{t+1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.8 & 0 \\ 0 & 0 & 0.5 \end{bmatrix} z_t + \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} w_{t+1}\]

\[U_b = \begin{bmatrix} 30 & 0 & 0 \end{bmatrix}\]

\[U_d = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\]

\[x_0 = \begin{bmatrix} 5 & 150 & 1 & 0 & 0 \end{bmatrix}^\prime\]

The information process and the initial condition are specified so that the constant is the third state variable. We have set the \(b_t\) process equal to a constant value of 30. There is no random component of the preference shock process. There is a single nontrivial endowment shock, the second component of \(d_t\) having been set to zero via the specification of the matrix \(U_d\). The first component of \(d_t\) has been specified to follow a first-order autoregressive process with positive mean. The autoregressive parameter for the endowment process has been set at .8. The third component of the \(z_t\) vector is a first-order
autoregressive process with coefficient .5. However, this component of the z_t
vector impinges neither on b_t nor on d_t, given the way that we have specified
U_b and U_d. We include the third component of the z_t process in case the reader would like to edit one of our files, say, to add a random component to the preference shock b_t.

These specifications of preferences and technology are rich enough to encompass versions of several models from the macroeconomic literature. The preference specification can accommodate preferences that are quadratic in consumption, as used by Hall (1978); preferences incorporating habit persistence, as used by Becker and Murphy (1988); and preferences for a durable consumption good, as used by Mankiw (1982). The technology specification is a version of the one-good ‘growth’ technology of chapter 4, modified to include costs of adjusting capital. We shall initially set the parameters of the technology to satisfy the necessary condition for consumption to be a random walk in Hall’s model, namely, the condition $\beta(\gamma_1 + \delta_k) = 1$. This also suffices for the ‘growth condition’ of Jones and Manuelli (1990) to be just satisfied. For all of the specifications, we set U_b so that $b_t = 30$ for all t.

By setting the parameter values of this general model to particular values, we can capture the following models.

5.6.1. Brock-Mirman (1972) or Hall (1978) Model

Set the *preference* parameters as $\lambda = 0, \pi = 1$, while setting δ_h and θ_h arbitrarily. This makes preferences take the form

$$-\frac{1}{2}E \sum_{t=0}^{\infty} \beta^t [(c_t - b_t)^2 + \ell_t^2] J_0.$$

Set the *technology* parameters so that $\gamma_1 > 0, \phi_1 > 0$ but $\phi_1 \approx 0, (\gamma_1 + \delta_k)\beta = 1$.

5.6.2. A Growth Economy Fueled by Habit Persistence

Set the technology parameters as in Hall’s model, but set the preference parameters to capture household technology 3 of chapter 4 (habit persistence). In particular, set $1 > \delta_h > 0, \theta_h = (1 - \delta_h), \pi = 1, \lambda = -1$. This makes preferences assume the form

$$-\frac{5}{E} \sum_{t=0}^{\infty} \beta^t ((c_t - b_t - \lambda(1 - \delta_h) \sum_{j=0}^{\infty} \delta^j c_{t-j-1})^2 + \ell^2_t) |J_0.$$

5.6.3. Lucas’s Pure Exchange Economy

Set preference parameters as in Hall’s model, but alter the technology to render capital unproductive, i.e., set $\gamma_1 = 0$.

5.6.4. An Economy with a Durable Consumption Good

Set the technology as in Hall’s model, but alter preferences to capture the idea that the consumption good is durable. Set $\pi = 0, \lambda > 0, 0 < \delta_h < 1, \theta_h = 1$.

5.6.5. Computed Examples

We now illustrate how the solutions of the planning problem associated with several of these models can be computed and analyzed. Generally, we proceed as follows. First we read in the parameters that represent our economy by way of the matrices listed in Table 1. A set of ‘.m’ files read in these matrices for the economies listed above. Thus, clex11.m, clex12.m, and clex13.m are files that read in matrices corresponding to Hall’s model for various different parameter settings. Next, we use solvea.m to compute all of the matrices listed in Table 2, which characterize the solution of the planning problem. To compute the vector ARMA representation of any subset of quantities or Lagrange multipliers, we use aarma.m. To compute the impulse response functions of any set of quantities and/or Lagrange multipliers to components of $w(t)$, we use the program aimpulse.m. Finally, we can use simul.m or asimul.m to simulate the solution of the model.
5.7. Hall’s Model

We begin with the version of Hall’s model which we solved by hand earlier in this chapter. We begin by setting the parameters in a way that is designed to make consumption follow a random walk. In particular, we set $\phi_1 = .00001, \gamma_1 = .1, \delta_k = .95, \beta = 1/1.05$. Notice that $\beta(\gamma_1 + \delta_k) = 1$. We set the remaining parameters to the values described above.

After reading in the matrices by typing `clx11`, we compute the solution of the planning problem by typing `solvea`. Issuing this command causes the computer to respond as follows:

Calculating, please wait
The matrix a_0 has been calculated for the law of motion of the entire state vector. This matrix satisfies $x(t+1) = a_0*x(t) + c*w(t+1)$.

The endogenous eigenvalues are in the vector `endo`, and the exogenous eigenvalues are in the vector `exog`.

The solution to the model is given by $c(t) = sc*x(t)$, $g(t) = sg*x(t)$, $h(t) = sh*x(t)$, $i(t) = si*x(t)$, $k(t) = sk*x(t)$, and $s(t) = ss*x(t)$.

The matrices sc, sg, sh, si, sk, and ss have now been computed and can be used in other matlab programs.

The matrices sb and sd are constructed so that $b(t) = sb*x(t)$ and $d(t) = sd*x(t)$ and can be used in other matlab programs.

The shadow price vectors satisfy $M_c(t) = mc*x(t)$, $M_g(t) = mg*x(t)$, $M_h(t) = mh*x(t)$, $M_i(t) = mi*x(t)$, $M_k(t) = mk*x(t)$, $M_s(t) = ms*x(t)$, and $M_d(t) = md*x(t)$.

The matrices of these linear combinations can be used in other matlab programs.

Your equilibrium has been calculated.

You are now ready to experiment with the economy.

This is the end of the output that appears on the screen. The solution of the planning problem is stored in the matrices listed in table 2. To inspect these matrices, we just ask MATLAB to show them to us. Thus, issuing the
MATLAB command \(ao \) results in the output

\[
\begin{bmatrix}
0.9000 & 0.0050 & 0.5000 & 0.0200 & 0.0000 \\
0.0000 & 1.0000 & 0.0000 & 0.8000 & 0.0000 \\
0.0000 & 0.0000 & 1.0000 & 0.0000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.8000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.5000 \\
\end{bmatrix}
\]

To see the matrix \(c \), we type \(c \) and elicit the response

\[
\begin{bmatrix}
0.0000 & 0.0000 \\
0.0000 & 0.0000 \\
0.0000 & 0.0000 \\
1.0000 & 0.0000 \\
0.0000 & 1.0000 \\
\end{bmatrix}
\]

Recall that various quantities in the model are determined by premultiplying the state \(x_t \) by matrices \(S_j \) which are stored by MATLAB in \(sj \). For various purposes, it is useful to create a matrix by stacking various \(sj \)'s on top of one another. For example, we can stack the \(s \) matrices for consumption, household durables, services, physical investment, and physical capital by issuing the MATLAB command \(G=[sc;sh;ss;si;sk] \), which evokes the response

\[
\begin{bmatrix}
0.0000 & 0.0500 & 5.0000 & 0.2000 & 0.0000 \\
0.9000 & 0.0050 & 0.5000 & 0.0200 & 0.0000 \\
0.0000 & 0.0500 & 5.0000 & 0.2000 & 0.0000 \\
0.0000 & 0.0500 & 0.0000 & 0.8000 & 0.0000 \\
0.0000 & 1.0000 & 0.0000 & 0.8000 & 0.0000 \\
\end{bmatrix}
\]

The first row of \(G \) is \(S_c \), and so on. Similarly, various Lagrange multipliers in the model are determined by premultiplying \(x_t \) by the matrices \(M_j \), which are stored by MATLAB in \(mj \). We can create a matrix by stacking various \(mj \)'s by issuing the command \(H=[mc;ms;mh;mi;mk] \), which evokes

\[
\begin{bmatrix}
0.0000 & -0.0500 & 25.0000 & -0.2000 & 0.0000 \\
0.0000 & -0.0500 & 25.0000 & -0.2000 & 0.0000 \\
0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
0.0000 & -0.0500 & 25.0000 & -0.2000 & 0.0000 \\
0.0000 & -0.0500 & 25.0000 & -0.2000 & 0.0000 \\
\end{bmatrix}
\]
The endogenous and exogenous eigenvalues of A^o or ao are stored in endo and exo, respectively. For the present model, they are given by

$$\text{endo} = \begin{bmatrix} .90 \\ 1.0 \end{bmatrix}$$
$$\text{exo} = \begin{bmatrix} 1.00 \\ .80 \\ .50 \end{bmatrix}$$

The exogenous eigenvalue of unity corresponds to the constant (unity) in the state vector, while the other two exogenous eigenvalues are also directly inherited from our specification of the A_{22} matrix. The endogenous eigenvalue of .9 is inherited from the depreciation factor of .9 which we set for consumer durables, which is irrelevant in Hall’s model because we set $\lambda = 0$. This eigenvalue will become relevant below in specifications in which $\lambda \neq 0$. The eigenvalue of unity reflects the random walk character of consumption in Hall’s model. Actually, the second endogenous eigenvalue is not really unity, it is only close to unity. To see this, we switch to a long format in MATLAB by typing `format long` and then we type endo to receive the response

$$\text{endo} = \begin{bmatrix} 0.90000000000000 \\ 0.99999999999048 \end{bmatrix}$$

The eigenvalue is not exactly unity because of the very small costs of adjusting capital that we have imposed.

The fact that the endogenous eigenvalues of this model are below unity means that it possesses a nonstochastic steady state. To compute the steady state, we set $\text{nnc}=3$, which tells the computer that the constant term is the third component of the state vector. Then we type `steadst`, which causes the steady state to be computed and stored in zs. To compute the steady state value of consumption, just type sc*zs, and so on. For the present model, we obtain

$$\text{zs} = \begin{bmatrix} 5.0003 \\ 0.0061 \\ 1.0000 \\ 0.0000 \\ 0.0000 \end{bmatrix}$$

The steady state value of consumption is given by sc*zs, which is

$$\text{sc*zs} = [5.0003]$$
The steady state value of investment is given by \(si*zs \), which is

\[
si*zs = [0.0003]
\]

For the present model, these stationary steady state values are of little practical value because of the near unit endogenous eigenvalue. It will take very many periods for the effect of the initial conditions to die out in this model, despite the fact that a steady state for the nonstochastic version of the model does exist.

We can compute an ARMA representation for the impulse response of any quantities or Lagrange multipliers to a given component of the white noise process \(w_t \). We can learn how \texttt{aarma.m} works by typing \texttt{help aarma}, which delivers the response

\[
\text{function}[\text{num,den}]=\text{aarma}(ao,c,sy,ii)
\]

 Creates ARMA Representation for linear recursive equilibrium models. The equilibrium is

\[x(t+1) = ao*x(t) + c*w(t+1) \]

and is created by running SOLVEA. A vector of observables is given by

\[y(t) = sy*x(t) \]

where \(sy \) picks off the desired variables. For example, if we want \(y=[c',i'] \), we set \(sy=[sc;si] \). AARMA creates the representation

\[\text{den}(L)y(t) = \text{num}(L)w_i(t) \]

This is an arma representation for the response of \(y(t) \) to the \(i \)-th component of \(w(t) \).

For example, to compute the ARMA representation for the impulse response of \(c_t, i_t \) to the first component of \(w_t \), we type \(sy=[sc;si] \) and \([\text{num,den}]=\text{aarma}(ao,c,sy,1) \) which gives the response

\[
\text{num} = \begin{bmatrix} 0.0000 & 0.2000 & -0.6400 & 0.7540 & -0.3860 & 0.0720 \\ 0.0000 & 0.8000 & -2.6800 & 3.3040 & -1.7660 & 0.3420 \end{bmatrix}
\]

\[
\text{den} = \begin{bmatrix} 1.0000 & -4.2000 & 6.9700 & -5.7000 & 2.2900 & -0.3600 \end{bmatrix}
\]
This output is to be interpreted as follows. For $i = 0, \ldots, 5$, define α_i as the element in the $(i + 1)$ column of den. For $i = 0, \ldots, 5$ define ξ_i as the 3×1 matrix that is the $i + 2^{st}$ column of num. Define two polynomials in the lag operator L by

$$\alpha(L) = \sum_{i=0}^{5} \alpha_i L^i$$
$$\xi(L) = \sum_{i=0}^{5} \xi_i L^i$$

Let w_{1t} be the first innovation in the system, which drives the endowment process. Then we have the representation

$$\alpha(L) \begin{bmatrix} c_t \\ i_t \\ mct \end{bmatrix} = \xi(L)w_{1t}$$

For example, the first row of this representation is

$$(1 - 4.2L + 6.97L^2 - 5.7L^3 + 2.29L^4 - .36L^5)c_t$$
$$= (.2 - .64L + .754L^2 - .386L^3 + .0072L^4)w_{1t}$$

We can also create the impulse response function for a list of variables in response to a particular innovation. We shall compute the impulse response function for the two variables, c, i. To accomplish this, we set sy by typing $\text{sy} = [\text{sc};\text{si}]$. We set ii at 1 (we want the response to the first innovation), and specify the number of lags we want to perform the calculation for. We want the impulse response out to forty lags, so we specify $\text{ni}=40$. To compute the impulse response, we issue the MATLAB function $\text{aimpul}se$, which has the syntax $[z]=\text{aimpulse}(\text{a}, c, \text{sy}, \text{ii}, \text{ni})$, where $\text{sy}, \text{ii}, \text{ni}$ have the settings just described.\footnote{The MATLAB program $\text{aimpul}se.m$ takes the inputs we have created from the solution of the planning problem and feeds them into the MATLAB program $\text{dimpul}se.m$, which computes impulse response functions.} The impulse response function is returned in z. In Fig. 5.7.1.a we plot the impulse response functions for this model in response to the first innovation, which is the innovation in the endowment shock. These impulse response functions have shapes that are characteristic of a random walk for consumption and a unit root in capital. For consumption, the impulse response is an open “box” which attains its maximum height immediately. This impulse response is characteristic of a random walk consumption process. For investment, the impulse response has an asymptote.\footnote{In actuality, there is really no asymptote for the impulse response function for either consumption or investment, because the largest eigenvalue is just a little bit less than unity.}
We now generate a random simulation of the model for 150 periods. We use the non-interactive program `asimul.m` to generate this simulation. To use this program we must specify an observer matrix `sy` that links the called for variables to the state. Since we want to simulate the four series `c, i, k,` and the shadow price of consumption, we set `sy=[sc; si; sk; mc]`. We also have to specify the length of the simulation `t1`, whether we want a random (`k=1`) or nonrandom (`k=2`) simulation, and the initial state vector `x0`. We want a random simulation of length 150 with the initial condition specified above. After setting these parameters, we execute the simulation by commanding `asimul`. We obtain the response:

Your simulated vector is in the vector ‘‘y’’.

We display aspects of this simulation in Fig. 5.7.1.b. The sample paths of `c, k,` and the shadow price drift in the fashion that random walks do. For paths that are long enough, a random simulation of this model will eventually

In fact, the impulse response functions for both consumption and investment are ‘square summable’, but it would take a very long realization of them for this behavior to become apparent.
encounter negative values for capital and consumption. The key to obtaining samples so that capital and consumption for a long time remain positive with high probability is to select the initial condition for capital large enough and the elements of c_2 small enough.

Figure 5.7.1.b indicates that investment is relatively more variable than consumption, a pattern that is found in aggregate data for a variety of countries. The fact that this version of Hall’s model, like the stochastic growth model of Brock and Mirman (1972), so easily delivers this pattern is an important feature that has attracted adherents to this and other versions of ‘real business cycle’ theories.

5.8. Higher Adjustment Costs

We now turn to a second model which is created by making one modification to the economy we have just studied. The one change we make is to raise the costs associated with adjusting capital. We raise the absolute value of the cost parameter to $\phi_1 = .2$. All other parameters remain as in the previous economy.

We computed the solution of the planning problem using solvea.m. The endogenous eigenvalues were computed to be:

$$\text{endo} = \begin{bmatrix} 0.9000 \\ 0.9966 \end{bmatrix}$$

Notice that relative to the previous economy, one endogenous eigenvalue is left unaltered at .9, while the other endogenous eigenvalue has fallen below unity. The endogenous eigenvalue of .9 is inherited from the law of accumulation that we posit for household capital (which in this model is again irrelevant). The drop below unity of the second endogenous eigenvalue is the result of our having increased the costs of adjusting capital. The analysis that we performed above indicates that this is exactly what should occur when adjustment costs increase.

Figure 5.8.1.a reports impulse response functions for the response of c_t and i_t and to an innovation in the endowment process. Notice how these no longer have the tell tale signs of the presence of an endogenous unit eigenvalue. The
Fig. 5.8.1.a. Impulse response of consumption and investment to an endowment innovation in a version of Hall’s model with higher costs of adjusting capital and no random walk in consumption.

Fig. 5.8.1.b. Simulation of a version of Hall’s model with higher costs of adjusting capital and no random walk in consumption.

Impulse response for consumption and investment now both appear to be convergent and ‘square summable’. Figure 5.8.1.b shows a random simulation beginning from the same value for x_0 used with the earlier version of Hall’s model. Notice how consumption, while still smoother than income, has increased high frequency volatility relative to that depicted in figure 5.7.1.a, while the high frequency volatility of investment has decreased. This pattern is a response to the higher costs for adjusting capital. Notice also that there seems to be a downward ‘trend’ in both consumption and investment. This is a consequence of the decrease in the largest endogenous eigenvalue from being very nearly one in the earlier economy. The present economy has a nonstochastic steady state value for capital of .0000, for consumption of 5.00 (which is the mean of the endowment process), and for investment of .0000, each of which we computed using steadst.m. These nonstochastic steady state values correspond to the unconditional means from the asymptotic stationary distribution of our variables. Because the largest endogenous eigenvalue for this economy is .9966 rather than
.9999, the economy is headed toward these mean values much more rapidly than for our previous economy.

5.9. Altered ‘Growth Condition’

We generate our next economy by making two alterations in the preceding economy. First, we raise the adjustment cost parameter from .2 to 1. This will have the effect of further lowering the endogenous eigenvalue that is not .9, and of causing the impulse response functions to dampen faster than they did in the previous economy. Second, we raise the production function parameter from .1 to .15. This will have the effect of raising the optimal stationary value of capital to a positive value for the nonstochastic version of the model. Recall that the optimal stationary value of capital was zero in the previous economy. The nonstochastic steady state values of consumption, investment, and capital are 17.5, 6.25, and 125, respectively, for this economy.

The endogenous eigenvalues are

\[\begin{bmatrix} 0.9000 \\ 0.9524 \end{bmatrix} \]

We also created the impulse response function for \(c \) and \(i \), which is reported in figure 5.9.1.a. Notice the much faster rate of damping relative to the impulse responses displayed for the previous economies.

Figure 5.9.1.b displays a random simulation of this economy. Notice that the “transient” behavior displayed by our simulation of the previous economy is not present here. This is a consequence of our having altered the production function parameter value to induce a positive optimal stationary value for the capital stock of 125, and from our having started the simulation at an initial condition of 125 for the capital stock.
5.10. A Jones-Manuelli (1990) Economy

A notable feature of the models for the previous simulations is that consumption, investment, and capital generally failed to grow. We now define the matrices and set parameters with a view toward attaining a version of Jones and Manuelli’s model of economic growth. We set the parameters of the technology so that Jones and Manuelli’s “growth condition” is just satisfied. Our version of Jones and Manuelli’s model has the feature that their growth condition is a necessary but not a sufficient condition for growth to occur. Their growth condition makes sustained growth feasible in our model. In order for growth to occur, it is also necessary that it be desirable, a condition that is determined by the preference parameters λ, δ, and θ. We set these parameters in order to generate growth.

The Jones-Manuelli growth condition on the technology in our notation is $\beta(\gamma + \delta_k) \equiv 1$. This is also a condition that makes the marginal utility of consumption follow a martingale in Hall’s model.
In particular, setting λ equal to minus one turns out to generate a preference for growth.\(^\text{12}\)

As usual, we compute the equilibrium by using `asolve.m`. For this model, the endogenous eigenvalues are

$$\text{endo} = \begin{bmatrix} 1.0000 + 0.0000i \\ 1.0000 - 0.0000i \end{bmatrix}$$

The exogenous eigenvalue of unity is inherited from the law of motion of the unit vector, which is the third state variable. Notice that there are two unit endogenous eigenvalues. With some experimentation, the reader can determine how these two unit endogenous eigenvalues result from specifying the parameters of technology to obey the growth condition, and the parameters of preferences (especially λ) to capture a longing for consumption growth.\(^\text{13}\)

Figure 5.10.1.a displays impulse responses of consumption and investment to an innovation in the endowment process. For both consumption and investment, the effect of an innovation actually grows indefinitely over time. This is a product of the second unit endogenous eigenvalue that is inherited from the preference parameter λ.

Figure 5.10.1.b displays a simulation of consumption and investment for this economy. The economy grows. Notice that consumption is much smoother than investment. Notice also that investment typically exceeds consumption. In order to support the ‘habit’ that fuels growth, the economy has to accumulate physical capital.\(^\text{14}\)

We invite the reader to experiment with this economy by altering the settings of some parameter values one at a time relative to the parameter settings that we have made. In particular, we recommend that the following experiments be tried:

\(^{12}\) The parameter values for this economy are stored in `clex10.m`

\(^{13}\) One unit endogenous eigenvalue stems from setting β, γ, and Δ_k at the boundary of the Jones-Manuelli growth condition. The other unit endogenous eigenvalue results from setting $\lambda = -1$. The presence of very small positive adjustment costs for capital is what prevents these two endogenous eigenvalues from being exactly unity. The reader can check that they are not exactly unity by using the `format long` command in MATLAB.

\(^{14}\) It is a feature of models of addiction based on the type of preference specification used here, e.g., Becker and Murphy (1988), that ‘addicts’ grow wealthier and wealthier over time as they follow a consumption plan that allows for enough accumulation to support their growing addiction.
Fig. 5.10.1.a. Impulse response of consumption and investment to an endowment innovation in a Jones-Manuelli economy.

Fig. 5.10.1.b. Simulation of consumption and investment in a Jones-Manuelli economy.

1. Change the value of λ to $-.7$, leaving the other parameters unaltered. Obtain the solution of the planning problem, and inspect the endogenous eigenvalues. Also compute the impulse response function and simulate the model in response to the same initial condition that we used above. Does the economy still grow? Explain.

2. Change the value of β to $.94$. Recompute the solution of the planning problem. Does the economy grow? Link your explanation to the Jones-Manuelli growth condition.

3. Change the value of $\Gamma(1)$ to $.09$. Does the economy still grow?
5.11. Durable Consumption Goods

For our next example economy, we restore the productivity of capital to a value of .1 and raise the level of the parameter measuring adjustment costs for capital to a value of 1. We change the specification of preferences to make the consumption good durable. In particular, we adopt a version of preference specification 2. We implement this by setting λ equal to .1, π equal to zero, and θ_h equal to one. We leave δ_h at the value .9.15

\textbf{Fig. 5.11.1.a} Impulse response of consumption and investment to an endowment innovation in an economy with a durable consumption good.

\textbf{Fig. 5.11.1.b} Simulation of consumption and investment in an economy with a durable consumption good.

Figure 5.11.1.a displays the impulse response functions to an innovation in the endowment process. The impulse response function for consumption and for investment are very different than for our first model. In particular, from the impulse response function, we can see that in choosing consumption, the planner ‘smooths’ the endowment shock much less than he does in Hall’s original model, in which the planner in effect makes consumption an equal-weight moving average of current and lagged innovations to the endowment process. In the

15 These parameters settings are created by the file \texttt{clex15.m}.
present model, the planner makes consumption a much shorter, more peaked moving average of the endowment process. This shows up in the simulation of consumption and investment, which is reported in figure 5.11.1.b. Notice that now, in contrast to Hall’s model, it is investment that is much smoother than consumption. This example thus illustrates how making consumption goods durable tends to undo the strong consumption smoothing result which Hall obtained.

5.12. Summary

In this chapter, we have formulated a planning problem and described how to solve it. Associated with the solution of a planning problem are a set of Lagrange multipliers linked to derivatives of the value function for the planner’s dynamic programming problem. In the next two chapters, we shall show how those Lagrange multipliers are related to the price system for a competitive equilibrium. Chapter 6 begins by describing how to represent values.

A. Synthesizing a Linear Regulator

The planning problem is to maximize

$$ -0.5E \sum_{t=0}^{\infty} \beta^t \left[(s_t - b_t) \cdot (s_t - b_t) + g_t \cdot g_t \right] $$

subject to

$$ \Phi c_t + \Phi g_t + \Phi i_t = \Gamma k_{t-1} + d_t \quad (5.A.2) $$

$$ k_t = \Delta k_{t-1} + \Theta_h c_t \quad (5.A.3) $$

$$ h_t = \Delta h_{t-1} + \Theta_h c_t \quad (5.A.4) $$

$$ s_t = \Lambda h_{t-1} + \Pi c_t \quad (5.A.5) $$

$$ z_{t+1} = A_{22} z_t + C_2 w_{t+1} \quad (5.A.6) $$

$$ b_t = U_b z_t \quad (5.A.7) $$

$$ d_t = U_d z_t \quad (5.A.7) $$
We define the state of the system as \(x_t = \begin{bmatrix} h_{t-1} \\ k_{t-1} \\ z_t \end{bmatrix} \) and the control as \(u_t = i_t \). In defining the control to be \(i_t \), we exploit the assumption that \([\Phi_c \Phi_g]\) is nonsingular.

Solve (5.A.2) for \(c_t \) and \(g_t \):
\[
\begin{bmatrix} c_t \\ g_t \end{bmatrix} = [\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + U_d z_t - \Phi_i i_t \}.
\]

Let \(U_c \) and \(U_g \) be selector matrices that pick off the first \(n_c \) and the last \(n_g \) rows, respectively, of the right side of the above expression, so that the expression can be written
\[
c_t = U_c[\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + U_d z_t - \Phi_i i_t \}
g_t = U_g[\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + U_d z_t - \Phi_i i_t \}.
\]

(5.A.8)

Substituting (5.A.8) into (5.A.4) and (5.A.5) gives
\[
h_t = \Delta_h h_{t-1} + \Theta_h U_c[\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + U_d z_t - \Phi_i i_t \} \tag{5.A.9}
\]
\[
s_t = \Lambda h_{t-1} + \Pi U_c[\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + U_d z_t - \Phi_i i_t \} \tag{5.A.10}
\]

Combining (5.A.3), (5.A.9), and (5.A.6) gives the law of motion for the linear regulator
\[
\begin{pmatrix} h_t \\ k_t \\ z_t+1 \end{pmatrix} = \begin{pmatrix} \Delta_h & \Theta_h U_c[\Phi_c \Phi_g]^{-1} \Gamma & \Theta_h U_c[\Phi_c \Phi_g]^{-1} U_d \\ 0 & \Delta_k & 0 \\ 0 & 0 & A_{22} \end{pmatrix} \begin{pmatrix} h_{t-1} \\ k_{t-1} \\ z_t \end{pmatrix}
+ \begin{pmatrix} -\Theta_h U_c[\Phi_c \Phi_g]^{-1} \Phi_i \\ \Theta_h \\ 0 \end{pmatrix} i_t + \begin{pmatrix} 0 \\ 0 \\ C_2 \end{pmatrix} w_{t+1}
\]
\tag{5.A.11}
\]

or
\[
x_{t+1} = A x_t + B u_t + C w_{t+1}
\]
\tag{5.A.12}

where the matrices \(A, B, \) and \(C \) in (5.A.12) equal the corresponding matrices in (5.A.11).

Now use (5.A.10) to compute \((s_t - b_t) = \Lambda h_{t-1} + \Pi U_c[\Phi_c \Phi_g]^{-1} \Gamma k_{t-1} + (\Pi U_c[\Phi_c \Phi_g]^{-1} U_d - U_b) z_t - \Pi U_c[\Phi_c \Phi_g]^{-1} \Phi_i i_t \). Express this in matrix notation as
\[
(s_t - b_t) = [\Lambda : \Pi U_c[\Phi_c \Phi_g]^{-1} \Gamma : \Pi U_c[\Phi_c \Phi_g]^{-1} U_d - U_b : - \Pi U_c[\Phi_c \Phi_g]^{-1} \Phi_i] \begin{pmatrix} h_{t-1} \\ k_{t-1} \\ z_t \\ i_t \end{pmatrix}
\]
\tag{5.A.13}
\]

or
\[
(s_t - b_t) = [H_s : H_c] \begin{pmatrix} x_t \\ i_t \end{pmatrix}
\]
\tag{5.A.14}
\]

where the matrix \([H_s : H_c]\) in (5.A.14) equals the corresponding matrix in (5.A.13).
Next, use (5.A.8) to express \(g_t \) as

\[
g_t = \begin{bmatrix} 0 : U_g[\Phi_c \Phi g]^{-1} \Gamma : U_g[\Phi_c \Phi g]^{-1} U_d : - U_g[\Phi_c \Phi g]^{-1} \Phi g \end{bmatrix}'
\]

or

\[
g_t = [G_s \vdash G_c] \begin{bmatrix} x_t \\ i_t \end{bmatrix}
\]

where the matrix \([G_s \vdash G_c]\) in (5.A.16) equals the corresponding matrix in (5.A.15).

Define the matrices

\[
R = .5(H_s' H_s + G_s' G_s), \quad Q = .5(H_c' H_c + G_c' G_c), \quad W = .5(H_c' H_s + G_c' G_s).
\]

Then the current period return function for the planning problem is

\[-(x_t' R x_t + u_t' Q u_t + 2 u_t' W x_t).\]

(5.A.18)

In view of (5.A.14), (5.A.16), (5.A.17) and (5.A.18), we can represent the objective function in the planning problem as

\[-E \sum_{t=0}^{\infty} \beta^t (x_t' R x_t + u_t' Q u_t + 2 u_t' W x_t),\]

(5.A.19)

which is to be maximized over \(\{u_t\}_{t=0}^{\infty} \) subject to

\[x_{t+1} = Ax_t + Bu_t + Cw_{t+1}, \quad t \geq 0,\]

(5.A.20)

\(x_0 \) given. Thus, we have mapped the planning problem into a discounted optimal linear regulator problem.
B. A Brock-Mirman (1972) or Hall (1978) Model

We shall usually use the recursive numerical methods described above to compute a solution of a planning problem. These computational methods are quick and easy to use. However, to deepen our understanding of the structure of the planning problem and the role played by various technical assumptions, and also to heighten our appreciation of the ease and power of those recursive numerical methods, it is useful to solve one problem by hand.

We solve a planning problem for a model with one consumption good and one capital good. We include costs of adjusting the capital stock, but permit them to be zero as a special case. When these costs of adjustment are zero (i.e., when the parameter \(\phi \) in the model is set to zero), the model becomes a linear - quadratic, equilibrium version of Hall’s consumption model. To recover Hall’s solution of the model when \(\phi = 0 \), it is necessary to impose a side condition in the form of a version of our restriction (4.7.1) that forces the capital stock sequence \(\{ k_t \} \) to belong to \(L^2_0 \). The example is a useful laboratory for illustrating the relationships among the presence of costs to control (\(\phi > 0 \)), the transversality condition, and the side condition that the solution lie in \(L^2_0 \). After we work out the answer by hand, we can solve the problem by using the MATLAB program solvea.m.

The planning problem comes from combining versions of our preference specification number 1 and our technology specification number 4: choose a contingency plan for \(\{ c_t, k_t \} \) to maximize:

\[
-\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[(c_t - b_t)^2 + \ell_t^2 \right], \quad 0 < \beta < 1
\]

subject to

\[
c_t + i_t = \gamma k_{t-1} + d_{1t} , \quad \gamma > 0 \tag{5.B.2}
\]
\[
\phi_i = g_t , \quad \phi \geq 0 \tag{5.B.3}
\]
\[
k_t = \delta k_{t-1} + i_t , \quad 0 < \delta < 1 \tag{5.B.4}
\]
\[
g_t^2 = \ell_t^2 \tag{5.B.5}
\]
\[
k_{t-1} \text{ given} \tag{5.B.6}
\]

The stochastic processes \(b_t \) and \(d_{1t} \) are given by \(b_t = U_b z_t \) and \(d_{1t} = U_{d1} z_t \), where \(z_t \) obeys a version of (1.1). We assume that \(\{ d_{1t} \} \) and \(\{ b_t \} \) each belong to \(L^2_0 \), and do not impose that \(\{ k_t \} \) belongs to \(L^2 \).

We begin by forming the Lagrangian

\[
J = -\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{1}{2} (c_t - b_t)^2 + \ell_t^2 \right] - \lambda_{1t} [\gamma k_{t-1} + d_{1t} - c_t - i_t]
\]

\[
- \lambda_{2t} [g_t - \phi_i_t]
\]

\[
- \lambda_{3t} [\delta k_{t-1} + i_t - k_t] - \lambda_{4t} [\frac{1}{2} (\ell_t^2 - g_t^2)]
\]

Here \(\{ \lambda_{1t}, \lambda_{2t}, \lambda_{3t}, \lambda_{4t} \} \) is a 4-tuple of stochastic Lagrange multipliers. We obtain the first-order necessary conditions for a saddle point with respect to \(\{ c_t, i_t, k_t, \ell_t, g_t, \lambda_{1t}, \lambda_{2t} \} \).
Optimal Resource Allocations

$\lambda_{3t} \lambda_{4t} \in \mathbb{R}_{>0}$, and display the transversality condition for capital. First-order conditions with respect to $c_t, i_t, k_t, l_t,$ and g_t are:

\begin{align*}
 c_t : & - (c_t - b_t) - \lambda_{1t} = 0, \quad t \geq 0 \quad (5.B.8) \\
 i_t : & - \lambda_{1t} - \phi \lambda_{2t} + \lambda_{3t} = 0, \quad t \geq 0 \quad (5.B.9) \\
 k_t : & \gamma \beta E_t \lambda_{1t+1} + \beta \delta E_t \lambda_{3t+1} - \lambda_{3t} = 0, \quad t \geq 0 \quad (5.B.10) \\
 l_t : & - \xi_t + \lambda_{4t} - \lambda_{3t} = 0, \quad t \geq 0 \quad (5.B.11) \\
 g_t : & \lambda_{2t} - \lambda_{4t} - \lambda_{3t} = 0, \quad t \geq 0 \quad (5.B.12)
\end{align*}

In addition, we have the transversality condition

$$\lim_{t \to \infty} E_0 \beta t^{k_t} \lambda_{3t} = 0. \quad (5.B.13)$$

Equation (5.B.10) can be solved forward to yield

$$\lambda_{3t} = \gamma \beta \sum_{j=1}^{\infty} (\delta \beta)^{j-1} E_t \lambda_{1t+j}. \quad (5.B.14)$$

Our strategy is to substitute the above expressions for the multipliers into the first-order condition with respect to k_t to obtain an “Euler equation, and to study under what conditions, if any, this equation implies that the marginal utility of consumption is a martingale. Solving the first-order conditions for the multipliers, we obtain

\begin{align*}
 \lambda_{1t} & = b_t - c_t \quad (5.B.15) \\
 \lambda_{2t} & = g_t \quad (5.B.16) \\
 \lambda_{3t} & = \phi g_t + (b_t - c_t) \quad (5.B.17) \\
 \lambda_{4t} & = 1 \quad (5.B.18)
\end{align*}

Substituting (5.B.17) into (5.B.10) gives the “Euler equation"

$$\gamma \beta E_t (b_{t+1} - c_{t+1}) + \beta \delta E_t (\phi g_{t+1} + b_{t+1} - c_{t+1}) = \phi g_t + (b_t - c_t) \quad (5.B.19)$$

or

$$\beta \delta E_t \phi g_{t+1} + \beta (\gamma + \delta) E_t (b_{t+1} - c_{t+1}) = \phi g_t + (b_t - c_t). \quad (5.B.20)$$

Under the special condition that $\phi = 0$, this equation becomes

$$E_t (b_{t+1} - c_{t+1}) = [\beta (\gamma + \delta)]^{-1} (b_t - c_t), \quad (5.B.21)$$
A Brock-Mirman (1972) or Hall (1978) Model

which states that the shadow price of consumption \((\lambda_{1t} = b_t - c_t)\) follows a first-order autoregressive process. Under the further special condition that \(\beta(\gamma + \delta) = 1\), the shadow price of consumption follows a martingale.\(^1\) Finally, under the even further special condition that \(b_t\) is a martingale, \((5.21)\) asserts that consumption is a martingale.

The Euler equation \((5.21)\) is satisfied by the consumption plan

\[c_t = b_t \text{ for } t \geq 0. \tag{5.22} \]

Solving \((5.2)\) and \((5.4)\) for \(i_t\) under this plan gives

\[k_t = (\gamma + \delta)k_{t-1} + d_{1t} - b_t. \tag{5.23} \]

Note that in the special case that \(\lambda_{1t}\) (and maybe also \(c_t\)) is a martingale, \((\gamma + \delta) = 1/\beta\), so that \(\{k_t\}\) given by \((5.23)\) is a “process of exponential order 1/\(\beta\).” This implies that \(k_t\) does not belong to \(L^2\). Nevertheless, the transversality condition \((5.13)\) is satisfied because \(\lambda_{3t} = \phi g_t + (b_t - c_t) = 0\) along this solution, so that

\[\lim_{t \to \infty} \beta t \lambda_{3t} k_t = 0 \]

along this solution.

Thus, when \(\phi = 0\), it is optimal to consume bliss consumption always and to adjust the capital stock to support this consumption plan. The difference equation \((5.23)\) implies that

\[k_t = \xi k_0 + \sum_{j=0}^{t-1} \xi^j (d_{1t-j} - b_{t-j}) \]

where \(\xi \equiv \gamma + \delta\). If \(b_t - d_{1t} > \alpha > 0\) for some \(\alpha\) for all \(t\), then \(k_t\) will eventually become negative and, indeed, will eventually fall below any finite negative number. Such a consumption path is eventually being supported by “borrowing” or by ‘negative capital.’

In the interests of attaining an ‘Euler equation’ for capital, we substitute the following two implications of the constraints into the Euler equation:

\[c_t = (\gamma + \delta)k_{t-1} + d_{1t} - b_t \]

\[g_t = \phi k_t - \phi \delta k_{t-1} \]

After rearrangement, this gives the following Euler equation for capital:

\[\eta E_t \{k_{t+1} - \psi k_t + \beta^{-1}k_{t-1}\} = E_t z_t \tag{5.24} \]

where

\[\eta = \beta[\phi^2 + (\gamma + \delta)] \]

\[\psi = \frac{\beta \phi (\phi^2 + \beta(\gamma + \delta)^2 + \phi^2 + 1)}{\beta(\phi^2 + (\gamma + \delta))} \tag{5.25} \]

\[z_t = b_t - \beta(\gamma + \delta)d_{1t+1} \]

\[- d_{1t} + \beta(\gamma + \delta)d_{1t+1} \]

\(^1\) The condition that \(\beta(\gamma + \delta) \equiv 1\) plays the role of a “growth condition” in the model of Jones and Manuelli (1990).
We will solve the Euler equation (5.B.24) using the “certainty equivalence” methods described in Sargent (1987b, ch. XIV) and Hansen and Sargent (1980, 1981). This involves first solving the deterministic version of (5.B.25), and then replacing “feedforward” terms with their expectations conditioned on time t information.

We begin by solving the deterministic version of the Euler equation (5.B.24):

$$\eta \{ k_{t+1} - \psi k_t + \beta^{-1} k_{t-1} \} = z_t$$ \hspace{1cm} (5.B.26)

Write this as

$$\eta L^{-1} \{ 1 - \psi L + \beta^{-1} L^2 \} k_t = z_t.$$ \hspace{1cm} (5.B.27)

We seek a factorization of the polynomial in L:

$$(1 - \psi L + \beta^{-1} L^2) = (1 - \lambda_1 L)(1 - \lambda_2 L)$$ \hspace{1cm} (5.B.28)

Evidently

$$\psi = \lambda_1 + \lambda_2$$
$$\lambda_1 \lambda_2 = \beta^{-1}.$$

Thus we have

$$\lambda_2 = \frac{1}{\lambda_1 \beta}$$ \hspace{1cm} (5.B.29)

and

$$\lambda_1 + \frac{1}{\lambda_1 \beta} = \psi.$$ \hspace{1cm} (5.B.30)

Equations (5.B.29) and (5.B.30) imply that λ_1 and $\lambda_2 = \frac{1}{\lambda_1}$ are the intersections of the line of zero slope and height ψ with the curve $\lambda + \frac{1}{\lambda \beta}$ in figure 5.B.1. Since the function $f(\lambda) = \lambda + \frac{1}{\lambda \beta}$ achieves a minimum of $2/\sqrt{\beta}$ at the value $\lambda = 1/\sqrt{\beta}$, it follows that if a solution of (5.B.30) exists, it satisfies, without loss of generality,

$$0 < \lambda_1 < \frac{1}{\sqrt{\beta}}$$
$$\lambda_2 > \frac{1}{\sqrt{\beta}}.$$

Substituting (5.B.28) into (5.B.27) gives

$$\eta [(1 - \lambda_1 L)(1 - \frac{1}{\lambda_1 \beta} L)] k_{t+1} = z_t.$$ \hspace{1cm} (5.B.31)
We start analyzing the solution of (5.B.31) by returning to the special case in which \(\phi = 0 \). In this case, (5.B.25) implies that

\[
\psi = \xi + \frac{1}{\beta \xi}, \quad \xi = \gamma + \delta, \quad \eta = \beta \xi.
\]

It then follows immediately from (5.B.30) that we can take

\[
\lambda_1 = \frac{1}{\beta \xi}, \quad \lambda_2 = \xi.
\]

In the special case that the shadow price of consumption is a martingale, \(\beta \xi = 1 \), so that \(\lambda_1 = 1 \) and \(\lambda_2 = \frac{1}{\beta} \). The Euler equation thus becomes, in the special case that \(\phi = 0 \),

\[
\beta \xi ((1 - \frac{1}{\beta \xi})(1 - \xi L))k_{t+1} = z_t.
\]

But from the constraints to our problem,

\[
(1 - \xi L)k_{t+1} = d_{1t+1} - c_{t+1}
\]
Substituting this and the last line of (5.B.25) into the Euler equation gives

$$\beta \xi (1 - \frac{1}{\beta \xi} L)(d_{t+1} - c_{t}) = (\beta \xi - L)(d_{t+1} - b_{t+1})$$

or

$$(\beta \xi - L)(d_{t+1} - c_{t}) = (\beta \xi - L)(d_{t+1} - b_{t+1}),$$

an equation that is satisfied by setting $c_{t} = b_{t}$ for all t. Thus, our analysis of the Euler equation for capital in the case that $\phi = 0$ reconfirms our earlier derivation that the optimal plan involves setting $c_{t} = b_{t}$ and choosing whatever capital path is required to support this.

We begin to study the case when $\phi > 0$ by considering the special case in which ϕ is positive but arbitrarily close to zero. In particular, ϕ can be chosen sufficiently close to zero that in the Euler equation for capital,

$$\eta((1 - \lambda_{1} L)(1 - \lambda_{2} L))k_{t+1} = z_{t},$$

η is arbitrarily close to $\beta \xi$, λ_{1} is arbitrarily close to $\frac{1}{\beta \xi}$, and λ_{2} is arbitrarily close to ξ. This can be verified by using a version of figure 5.B.1.

It is tempting to suppose that since the Euler equation is arbitrarily close to that for the $\phi = 0$ case, the optimal solution for k_{t} will be close to the solution for k_{t} found in the $\phi = 0$ case, namely,

$$k_{t} = \xi^{t} k_{0} + \sum_{j=0}^{t-1} \xi^{j} (d_{1t-j} - b_{t-j}).$$

(5.B.34)

We now show that this supposition is wrong.

Note that when k_{t} obeys (5.B.34), $i_{t} = k_{t} - \delta k_{t-1}$, obeys

$$i_{t} = \xi^{t-1} (\xi - \delta) k_{0}$$

$$+ d_{1t} - b_{t} + (\xi - \delta) \sum_{j=0}^{t-2} \xi^{j} (d_{1t+j-1} - b_{t+j}).$$

(5.B.35)

Also, $c_{t} = b_{t}$ $\forall t$ in this case. When i_{t} follows (5.B.35), i_{t} is a process of exponential order ξ. It follows that ϕi_{t} is also a process of exponential order ξ when $\phi > 0$.

Now since $\ell_{t} = \phi i_{t}$ along the optimal path, we have that

$$\sum_{i=0}^{\infty} \beta^{i} \ell_{t}^{2} = \phi^{2} \sum_{i=0}^{\infty} \beta^{i} i_{t}^{2}. $$

(5.B.36)

The process i_{t}^{2} is of exponential order ξ^{2t} along the solution (5.B.35). The infinite series (5.B.36) will converge if and only if

$$\beta \cdot \xi^{2} < 1, \text{ or } \xi < \frac{1}{\sqrt{\beta}}.$$
In the case for which the shadow price of consumption is a martingale, \(\xi = 1/\beta > \frac{1}{\sqrt{\beta}} \), so that this condition is violated. In this case, (5.6.36) diverges to \(+\infty\).

This means that when investment follows the path (5.6.35), the objective function for the planning problem diverges to \(-\infty\) when \(\phi = 0 \). Since it is possible to find investment paths that leave the value of the objective function finite, a plan in which the objective function diverges to \(-\infty\) cannot be optimal.

Notice the role that the assumption that \(\phi > 0 \) plays in the above argument.

An alternative argument can be used to show that the path (5.6.35), or one close to it, cannot be optimal when \(\phi > 0 \) and \(\xi > \frac{1}{\sqrt{\beta}} \). This argument involves checking the transversality condition, which is

\[
\lim_{t \to \infty} \beta^t k_t \lambda_{3t} = 0.
\]

Computing, we have

\[
\lim_{t \to \infty} \beta^t k_t \lambda_{3t}
= \lim_{t \to \infty} \beta^t k_t (\phi g_t + \lambda_1)
= \lim_{t \to \infty} \beta^t k_t [\phi^2 (k_t - \delta k_{t-1}) + (b_t - c_t)].
= \lim_{t \to \infty} \beta^t [\phi^2 (k_t - \delta k_{t-1}) + (b_t - c_t)]
\]

For a solution that involves setting \(b_t = c_t \), this becomes

\[
\lim_{t \to \infty} \beta^t [\phi^2 (k_t^2 - \delta k_{t-1})] = 0
\]

A necessary and sufficient condition for (5.6.37) to be satisfied is that \(\{k_t\} \) be of exponential order less than \(\frac{1}{\sqrt{\beta}} \). Along a solution like (5.6.34), this requires that \(\xi < \frac{1}{\sqrt{\beta}} \), which is ruled out in the special case that the shadow price of consumption is a martingale. Arguments along these lines can be used to establish generally that when \(\phi > 0 \), the solutions for \(i_t \) and for \(k_t \) are required to be of exponential order less than \(\frac{1}{\sqrt{\beta}} \).

To solve for the optimal plan when \(\phi > 0 \), we return to the factored Euler equation (5.6.31):

\[
\eta [(1 - \lambda_1 L)(1 - \frac{1}{\lambda_1 \beta} L)] k_{t+1} = z_t
\]

where \(0 < \lambda_1 < 1/\sqrt{\beta} \). Formally, express \((1 - \frac{1}{\lambda_1 \beta} L) = -\frac{1}{\lambda_1 \beta} L(1 - \lambda_1 \beta L^{-1}) \). Substitute this into (5.6.31) to get

\[
-\frac{\eta}{\lambda_1 \beta} (1 - \lambda_1 \beta L^{-1})(1 - \lambda_1 L)] k_t = z_t
\]

Operating on both sides of (5.6.38) with the stable (forward) inverse of \((1 - \lambda_1 \beta L^{-1}) \) gives

\[
(1 - \lambda_1 L) k_t = -\frac{\lambda_1 \beta}{\eta} \frac{1}{(1 - \lambda_1 \beta L^{-1})} z_t
\]
or
\[k_t = \lambda_1 k_{t-1} - \frac{\lambda_1 \beta}{\eta} \sum_{j=0}^{\infty} (\lambda_1 \beta)^j z_{t+j}. \] (5.B.40)

Since \(\lambda_1 < 1/\sqrt{\beta}, \lambda_1 \beta < \sqrt{\beta} \). It follows (in the deterministic case) that the infinite series on the right converges, \(\{z_t\} \) being a sequence of exponential order less then \(1/\sqrt{\beta} \) (or equivalently, residing in \(L^2_0 \)).

When \(\phi > 0 \), equation (5.B.40) gives the unique solution of the Euler equation that satisfies the transversality condition. Because \(\lambda_1 < 1/\sqrt{\beta} \), \(k_t \) belongs to \(L^2_0 \).

5.B.1. Uncertainty
In the case that \(z_t \) is a random sequence, the solution when \(\phi_1 > 0 \) is given by
\[k_t = \lambda_1 k_{t-1} - \frac{\lambda_1 \beta}{\eta} \sum_{j=0}^{\infty} (\lambda_1 \beta)^j E_t z_{t+j} \] (5.B.41)

That this is the solution can be verified by applying the methods of Sargent (1987b, chapter XIV).

Consider applying (5.B.41) in the special case that makes consumption a martingale: \(\beta \xi = 1, \eta = \beta \xi = 1, \lambda_1 = 1, b_t = \bar{b} \) for all \(t \). In this case (5.B.41) becomes,
\[k_t - k_{t-1} = -\beta \sum_{j=0}^{\infty} \beta^j E_t (d_{1t+j+1} - d_{1t+j}) \] (5.B.42)

We can use a summation by parts argument to show that
\[E_t \sum_{j=0}^{\infty} \beta^j (d_{1t+j+1} - d_{1t+j}) \]
\[= (\beta^{-1} - 1) E_t \sum_{j=0}^{\infty} \beta^j d_{1t+j} - \beta^{-1} d_{1t} \] (5.B.43)

In particular, note that
\[\sum_{j=0}^{\infty} \beta^j (d_{1t+j+1} - d_{1t+j}) \]
\[= \sum_{j=1}^{\infty} \beta^{j-1} d_{1t+j} - \sum_{j=0}^{\infty} \beta^j d_{1t+j} \]
\[= (\beta^{-1} - 1) \sum_{j=0}^{\infty} \beta^j d_{1t+j} - \beta^{-1} d_{1t}. \]
Note that from the constraints
\[c_t = (\gamma + \delta)k_{t-1} - k_t + d_{1t} \]
or
\[c_t = \frac{1}{\beta}k_{t-1} - k_t + d_{1t} \quad (5.B.44) \]
in the special case that \((\gamma + \delta)\beta = 1\), which we are studying. Substituting (5.B.42) and (5.B.43) into (5.B.44) and rearranging gives
\[c_t = \left(\frac{1}{\beta} - 1 \right)k_{t-1} + (1 - \beta)\sum_{j=0}^{\infty} \beta^j E_t d_{1t+j}. \quad (5.B.45) \]

With \(k_{t-1}\) interpreted as “assets” and \(\{d_{1t}\}\) interpreted as “labor income”, representation (5.B.45) matches the representation of the permanent income theory of consumption that is associated with a linear quadratic version of Hall’s model.

In this model, \(\phi = 0\), so that (5.B.42) and (5.B.45), which emerge from imposing that \(\{k_t\}\) reside in \(L_0^2\), are not optimal for the original problem as stated. The solution (5.B.45) results from imposing as a side condition on the problem a version of (5.A.10). This side condition is intended to capture the idea that it is not really feasible to drive capital to negative infinity as quickly as the (unrestricted) \(\phi = 0\) solution would require.

The solution (5.B.45) is well approximated by the solution of the original problem with \(\phi > 0\) but \(\phi\) very close to zero. Instead of imposing the requirement that \(\{k_t\}\in L_0^2\) as a sort of “feasibility” condition, setting \(\phi > 0\) rigs preferences so that the planner always prefers to make \(\{k_t\} \in L_0^2\).

5.B.2. Optimal Stationary States

Temporarily assume that \(b_t = \bar{b}\) and \(d_{1t} = \bar{d}\) for all \(t\). To solve for the optimal stationary values of \(c_t\) and \(k_t\) (if they exist), we can use equation (5.B.20) and the following constraints:
\[
\begin{align*}
\phi i_t &= g_t \quad (4.52) \\
i_t &= k_t - \delta k_{t-1} \quad (4.53) \\
c_t + i_t &= \gamma k_{t-1} + d_{1t} \quad (4.51)
\end{align*}
\]
Evaluating these at steady state levels \(c_t = \bar{c}\) and \(k_t = \bar{k}\) for all \(t\) gives
\[\bar{c} = (\gamma + \delta - 1)\bar{k} + \bar{d}. \]
Substituting the constraints into the Euler equation (5.B.20) and evaluating at \(c_t = \bar{c}\) and \(k_t = \bar{k}\) gives
\[\phi^2 (\beta \delta - 1)(1 - \delta)\bar{k} = [1 - \beta(\gamma + \delta)][\bar{b} - \bar{c}]\]
Solving the two preceding equations for \(\bar{c} \) and \(\bar{k} \) gives

\[
\bar{k} = \frac{\phi^2(\beta \delta - 1)(1 - \delta) + (1 - \beta(\gamma + \delta))(\gamma + \delta - 1)}{(1 - \beta(\gamma + \delta)) \cdot (\bar{b} - \bar{d})}^{-1} (5.B.46)
\]

\[
\bar{c} = \frac{(\gamma + \delta - 1)(1 - \beta(\gamma + \delta))}{\phi^2(\beta \delta - 1)(1 - \delta) + (1 - \beta(\gamma + \delta))(\gamma + \delta - 1)} (\bar{b} - \bar{d}) + \bar{d}. (5.B.47)
\]

In the special case that \(\phi = 0 \), these solutions imply that \(\bar{c} = \bar{b} \), so that consumption is at bliss consumption and the steady state value of the multiplier \(\lambda_{1t} \) is zero. When \(\phi = 0 \), the steady state value of \(\bar{k} \) can be taken to be

\[
\bar{k} = \frac{1}{1 - (\gamma + \delta)^{\bar{d} - \bar{b}}}. (5.B.48)
\]

a solution that makes sense only when \((\gamma + \delta) < 1 \). Note that the constraints imply that capital evolves according to

\[
k_{t} = (\gamma + \delta)k_{t-1} - c_{t} + d_{1t}.
\]

Setting \(c_{t} = \bar{c} \) and \(d_{1t} = \bar{d} \) implies

\[
k_{t} = (\gamma + \delta)k_{t-1} - \bar{c} + \bar{d}.
\]

The solution of this equation is

\[
k_{t} = (\gamma + \delta) k_{0} + (\bar{d} - \bar{c}) \sum_{j=0}^{t-1} (\gamma + \delta)^{j}.
\]

This solution converges to the solution (5.B.48) for \(\bar{k} \) when \(\bar{c} = \bar{b} \) and \((\gamma + \delta) < 1 \).
6.1. Valuation

This chapter describes a concept of value that we shall later use to formulate a model in which the decisions of agents are reconciled in a competitive equilibrium. We describe a commodity space in which quantities and prices both will reside. The stochastic Lagrange multipliers of chapter 4 are closely related to equilibrium prices and live in the same mathematical space.

The planning problem studied in chapter 4 produces an outcome in which the process for consumption \(\{c_t\} \) is an \(n \)-dimensional stochastic process that belongs to \(L^2_0 \). To calculate the value \(\pi(c) \) of a particular consumption plan \(c = \{c_t\} \) from the vantage of time zero, we shall use the representation

\[
\pi(c) = E \sum_{t=0}^{\infty} \beta^t p^0_t \cdot c_t \mid J_0,
\]

where \(p^0_t \) belongs to \(L^2_0 \). The text of this chapter presents a heuristic justification for representing the value of \(\{c_t\} \) in this way. We proceed by reviewing several examples of commodity spaces and valuation functions. The appendix to this chapter contains a more formal treatment.
6.2. Price Systems as Linear Functionals

We follow Debreu (1954, 1959) and express values with a linear functional π that maps elements of a linear space L into the real line. The space L is taken as the commodity space, elements of which are vectors of commodities to be evaluated. The functional π assigns values to points in L. It is convenient if the functional π has an inner-product representation, namely, a representation in which the value $\pi(c)$ of a commodity point c equals the inner product of c with a point p in another linear space \tilde{L}. When such a representation exists, we can write

$$\pi(c) = \langle c \mid p \rangle \quad \text{for all } c \in L$$

(6.2.1)

where $p \in \tilde{L}$ and $\langle \cdot \mid \cdot \rangle$ denotes an inner product. In all cases that we consider, it turns out that $\tilde{L} = L$. Next we consider several examples of a commodity space L, a valuation functional π, and an inner product representation for π.

6.3. A One Period Model Under Certainty

Suppose that there is one period and no uncertainty. Let there be n consumption goods. Let c be an $n \times 1$ vector of consumption goods. Let the commodity space L be \mathbb{R}^n, the n-dimensional Euclidean space. In this case, the value of a vector c is

$$\pi(c) = \langle c \mid p \rangle \equiv \sum_{i=1}^{n} c_i p_i$$

where p is an n-dimensional price vector that belongs to $L = \mathbb{R}^n$. Note that both c and p belong to the same linear space L.
6.4. One Period Under Uncertainty

Suppose there is again one period, but now there is uncertainty about economic outcomes. Prior to the resolution of uncertainty, the quantity of the i^{th} consumption good is a random variable $c_i(\omega)$, where ω is the state of the world to be realized. Let $c = c(\omega)$ be an n-dimensional random vector whose i^{th} component is $c_i(\omega)$. Let $\text{prob}(\omega)$ be the probability density function of ω.

We want to evaluate a bundle of consumption goods prior to the resolution of uncertainty. Introducing uncertainty serves to increase the dimension of the commodity space, there being a vector $c(\omega)$ for each state of the world $\omega \in \Omega$, where Ω is the set of possible states of the world. When there is an infinite number of states of the world Ω, the commodity space L becomes infinite dimensional. To evaluate a state-contingent bundle of consumption goods prior to the resolution of uncertainty requires a well defined notion of “adding up” or integrating across states of the world.

When the number of states of the world is finite (or countable), it is natural to follow Arrow and Debreu and to define an n-dimensional vector of state-contingent prices $q(\omega)$, where $\Omega = [\omega_1, \omega_1, \ldots, \omega_N]$ is the set of possible states of the world. The value of the random vector c can then be represented as

$$\pi(c) = \sum_{j=1}^{N} c(\omega_j) \cdot q(\omega_j) \equiv <c \mid q>.$$

(6.4.1)

Here both c and q are elements of L, the space of n-dimensional random vectors indexed by the state of the world. The i^{th} component of $q(\omega), q_i(\omega)$, is to be interpreted as price of one unit of the i^{th} consumption good contingent on the state of the world being ω.

It is convenient to represent $\pi(c)$ in the alternative form

$$\pi(c) = \sum_{j=1}^{N} c(\omega_j) \cdot p(\omega_j) \cdot \text{prob}(\omega_j),$$

(6.4.2)

where $q(\omega_j) = p(\omega_j) \cdot \text{prob}(\omega_j)$. Here c and p are each vectors in L, the space of n-dimensional random vectors. Notice that (6.4.2) implies

$$\pi(c) = Ec \cdot p \equiv <c \mid p>.$$

Representation (6.4.1) is often used in contexts in which there is a finite or countable number of states of the world. We find it easier to use representations...
that build on (6.4.2) because we shall be dealing with environments with an uncountable number of states of the world.

6.5. An Infinite Number of Periods and Uncertainty

We now come to the main case studied in this book. The n-dimensional vector of consumption goods c_t is indexed both by states of the world and by time. We define an information set J_t as in chapters 4 and 5. Let L be the space of all n-dimensional stochastic processes $\{c_t : t = 0, 1, \ldots\}$ for which c_t is in J_t for all t and for which

$$\sum_{t=0}^{\infty} \beta^t E(c_t \cdot c_t) < \infty. \quad (6.5.1)$$

The constraint that c_t be in J_t is imposed because we want to represent the values only of contingent claims that depend on information available when the contingency is realized. The inequality restriction in (6.5.1) identifies claims that might have finite value.

In addition to integrating over states of the world, we also must sum over points in time. We find it convenient to use the discount factor β in performing this summation. Hence we use the following inner product:

$$<c | p> = \sum_{t=0}^{\infty} \beta^t E(c_t \cdot p_t). \quad (6.5.2)$$

In this case, the price system used to represent the valuation functional is an n-dimensional stochastic process $\{p_t : t = 0, 1, \ldots\}$ in L.

\[\]
6.5.1. Conditioning Information

So far we have considered valuation functions that map into the real numbers \mathbb{R}. This approach suffices for representing competitive equilibrium prices for markets that meet and clear prior to the realization of any information. However, we also want to reopen markets and to study valuations at later points in time, conditioned on information available then.

Consider valuation from the vantage point of time τ. Let valuation be conditioned on the time τ information set J_τ. Let π_τ be a time τ valuation function. We take the domain of π_τ to be the space L_τ consisting of all n-dimensional processes $\{c_{t+\tau} : t = 0, 1, \ldots\}$ where $c_{t+\tau}$ is in J_τ and

$$\sum_{t=0}^{\infty} \beta^t E(c_{t+\tau} \cdot c_{t+\tau}) | J_\tau < \infty$$ \hspace{1cm} (6.5.3)

with probability one. The range of π_τ is J_τ because valuations reflect the available conditioning information.

There is no longer an inner-product representation for π_τ because the range of π_τ is not the real line. Rather, the range is the space of random variables depending on J_τ. However, we can follow Harrison and Kreps (1979) and Hansen and Richard (1987) by using a conditional inner-product representation:

$$\pi_\tau(c) = < c | p >_\tau = \sum_{t=0}^{\infty} \beta^t E(c_{t+\tau} \cdot p_{t+\tau} | J_\tau)$$ \hspace{1cm} (6.5.4)

where $\{p_{t+\tau} : t = 0, 1, \ldots\}$ is a price process in L. The value assigned by π_τ is a random variable in L^2_τ.

6.6. Lagrange Multipliers

While we have focused on representing valuation in a competitive equilibrium, much of our discussion applies to using the method of Lagrange multipliers for solving constrained optimization problems. The vector of Lagrange multipliers for a vector of constraints indexed by states of the world and calendar time can be regarded as a stochastic processes \(\{M_t : t = 0, 1, \ldots \} \) in a space \(L \). The contribution to the Lagrangian is given by a corresponding linear functional \(\mu \) with an inner product representation

\[
\mu(\varepsilon) = \langle \varepsilon | M \rangle = \sum_{t=0}^{\infty} \beta^t E(\varepsilon_t \cdot M_t)
\]

where \(\varepsilon_t \) is the deviation from the constraint at time \(t \).

6.7. Summary

Our purpose in this chapter has been to lay groundwork needed to decentralize the economy described in chapter 5 into one with a collection of price-taking agents whose decisions are coordinated through markets. The appendix to this chapter describes the valuation functions that we use in more mathematical detail.

A. Mathematical Details

As was indicated above, we model \(\pi \) as a linear functional on a space \(L \). The space \(L \) is assumed to be a linear space, by which we mean that for any two members \(x_1 \) and \(x_2 \) in \(L \) and any two real numbers \(c_1 \) and \(c_2 \) in \(R \), \(c_1 x_1 + c_2 x_2 \) are in \(L \). In addition, we suppose that there is an inner product \(\langle \cdot | \cdot \rangle \) defined on \(L \). This inner product can be used to define a norm \(||x|| = \langle x | x \rangle^{1/2} \) and hence a metric. We take \(L \) to be complete. This means that all Cauchy sequences in \(L \) converge to elements in \(L \). The commodity spaces in all of the examples described in the text are complete linear spaces. The restriction that \(\pi \) be linear requires that \(\pi(c_1 x_1 + c_2 x_2) = c_1 \pi(x_1) + c_2 \pi(x_2) \). According to the Riesz Representation Theorem, \(\pi \) has an inner product representation whenever \(\pi \) is continuous at zero.
When conditioning information \(J \) is introduced, it is convenient to work with a space \(L_J \) that is linear conditioned on \(J \). For the moment, consider \(L_J \) to be a collection of random variables. Products and sums of random variables are also random variables. For \(L_J \) to be linear conditioned on \(J \), for any two elements \(x_1 \) and \(x_2 \) of \(L_J \) and any \(w_1 \) and \(w_2 \) in \(J \), we require that \(w_1 x_1 + w_2 x_2 \) is in \(L_J \). Similarly, \(\pi_J \) is conditionally linear if \(\pi_J(w_1 x_1 + w_2 x_2) = w_1 \pi_J(x_1) + w_2 \pi_J(x_2) \). The rationale for focusing on conditional linearity is that information in \(J \) can be used to construct consumption plans or trading strategies. Hansen and Richard (1987) obtained a conditional counterpart to the Riesz Representation Theorem that establishes the existence of a representation \(\pi_J(x) = E(x \cdot p \mid J) \) for some \(p \) in \(L_J \).

The restriction that \(L_J \) be a space of random variables is too limited for our purposes. Instead, we are interested in spaces of \(n \)-dimensional stochastic processes. Given an initial probability space \((\Omega, F, \Pr)\) and a sequence \(\{F_t : t = 0, 1, \ldots\} \) of subsigma algebras of \(F \), we construct a new probability space \((\Omega^+, F^+, \Pr^+)\), where \(\Omega^+ \) is the Cartesian product of \(\Omega^+ \), the nonnegative integers, and the set \(\{1, 2, \ldots, n\} \) and where \(\Pr^+ \) is the product measure of \(\Pr \) that assigns \(\beta^t(1 - \beta) \) to integer \(t \) and \(1/n \) to integer \(j \). The sigma algebra \(F^+ \) is generated by sets of the form

\[
\{(w, t, j) : w \in f_{t,j}\},
\]

where \(\{f_{t,j} : t = 0, 1, \ldots; j = 1, 2, \ldots, n\} \) is a collection of sets in \(F \) such that \(f_{t,j} \) is in \(F_t \) for all \(t \) and \(j \). An \(n \)-dimensional stochastic process defined on the original space can be viewed as a random variable on the product space. Thus, we can apply the preceding analysis to obtain a conditional inner product representation for \(\pi_\tau \) described in the text.
Chapter 7
Competitive Economies

7.1. Introduction

This chapter describes a decentralized economy. We assign ownership and decision making to three distinct economic entities, a household and two kinds of firms. We define a competitive equilibrium. Two fundamental theorems of welfare economics connect a competitive equilibrium to a planning problem. A price system supports the competitive equilibrium and implies interest rates and prices for derivative assets.

The representative household can be interpreted as a single household drawn from a population that is homogeneous in all respects. Alternatively, the representative household can be interpreted along lines to be described in chapters 12 and 13, as an artificial or “average” household that emerges after aggregating over the preferences and endowments of a collection of households. The representative household owns the technology shock process \(\{d_t\}_{t=0}^{\infty} \) and each period sells to firms the current period’s realization \(d_t \). The household owns the initial stocks \(h_{-1} \) of household capital and \(k_{-1} \) of productive capital, the latter of which it sells to firms. It sells this initial capital for a value \(v_0 \cdot k_{-1} \). The household sells its input \(\ell_t \) to firms. The household purchases consumption goods that add to its stocks of consumer durables and thereby generate consumption services and, ultimately, utility.

Of the two types of firms, the type I firm rents capital from firms of type II, rents labor from the household, and buys the current period’s realization \(d_t \) of the technology shock process from the household. A firm of type I produces new consumption and investment goods, sells the consumption goods to the household, and sells the investment goods to firms of type II. A firm of type II purchases the initial capital stock \(k_{-1} \) and all of the investment goods produced each period, then rents capital to firms of type I.

We use a mathematically convenient formulation of a price system. We let the price system be \([v_0, \{p^0_t, w^0_t, \alpha^0_t, q^0_t, r^0_t\}_{t=0}^{\infty}]\), where \(v_0 \) is a vector that prices the initial capital stock \(k_{-1} \); \(p^0_t \) is an
is a $n_c \times 1$ stochastic process that prices the consumption process c_t; w_t^0 is a scalar stochastic process that prices ℓ_t; α_t^0 is a vector stochastic process that prices the process $\{d_t\}$; q_t^0 is an $n_k \times 1$ vector stochastic process that prices new investment goods; and r_t^0 is an $n_k \times 1$ vector stochastic process of capital rental rates. Each component of $\{p_t^0, w_t^0, \alpha_t^0, q_t^0, r_t^0\}_{t=0}^\infty$ resides in a mathematical space L^2_0 defined in chapter 5, namely, $L^2_0 = \{y_t: y_t$ is a random variable in J_t for $t \geq 0$, and $E \sum_{t=0}^\infty \beta^t y_t^2 | J_0 < +\infty \}$. That y_t is in J_t means that y_t can be expressed as a measurable function of $J_t = [w^t, x_0]$, where $J_0 = [x_0]$. The square summability requirement, $E \sum_{t=0}^\infty \beta^t y_t^2 | J_0 < \infty$, imposes a stochastic version of a requirement that y_t not grow too fast in absolute value.

Stochastic processes for both prices and quantities in our economy must reside in L^2_0. By virtue of a Cauchy-Schwarz inequality, this makes the conditional inner products to be used in the budget constraints and objective functions below well defined and finite in equilibrium.

We proceed by first describing the choice problem facing each of our three classes of agents in terms of a Lagrangian. Next we obtain first-order conditions for these Lagrangians. By matching these first-order conditions to the chapter 5 first-order conditions for the planning problem, we accomplish two goals. First, we can verify the two fundamental theorems of welfare economics for our economy. Second, we can describe an efficient algorithm for computing the equilibrium price system in terms of the chapter 5 matrices $M_k, M_h, M_s, M_d, M_c,$ and M_i associated with the multipliers for the planning problem.

The representative household and both types of firm act as price takers. The optimal contingency plan for $\{c_t, s_t, k_t, h_t, \ell_t\}_{t=0}^\infty$ can be “realizable” in the sense that time t decisions must be contingent only on information available at time t, i.e., it must reside in L^2_0.

140 Competitive Economies
7.2. Households

A representative household chooses stochastic processes for \(\{ c_t, s_t, h_t, \ell_t \}_{t=0}^{\infty} \), each element of which is in \(L^2_0 \), to maximize

\[
-\frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left[(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2 \right]
\] \hspace{1cm} (7.2.1)

subject to

\[
E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot c_t | J_0 = E \sum_{t=0}^{\infty} \beta^t (w_t^0 \ell_t + \alpha_t^0 \cdot d_t) | J_0 + v_0 \cdot k_{-1}
\] \hspace{1cm} (7.2.2)

\[
s_t = \Lambda h_{t-1} + \Pi c_t
\] \hspace{1cm} (7.2.3)

\[
h_t = \Delta h_{t-1} + \Theta c_t, \quad h_{-1}, k_{-1} \text{ given.}
\] \hspace{1cm} (7.2.4)

7.3. Type I Firms

A firm of type I rents capital and labor, and buys the realization \(d_t \) of the endowment. It uses these inputs to produce consumption goods and investment goods, which it sells. The firm chooses stochastic processes for \(\{ c_t, i_t, k_t, \ell_t, g_t, d_t \} \), each element of which is in \(L^2_0 \), to maximize

\[
E_0 \sum_{t=0}^{\infty} \beta^t (p_t^0 \cdot c_t + q_t^0 \cdot i_t - r_t^0 \cdot k_{t-1} - w_t^0 \ell_t - \alpha_t^0 \cdot d_t)
\] \hspace{1cm} (7.3.1)

subject to

\[
\Phi c_t + \Phi g_t + \Phi i_t = \Gamma k_{t-1} + d_t
\] \hspace{1cm} (7.3.2)

\[-\ell_t^2 + g_t \cdot g_t = 0.\] \hspace{1cm} (7.3.3)
7.4. Type II Firms

A firm of type II is in the business of purchasing investment goods and renting capital to firms of type I. A firm of type II is a price taker that faces the vector v_0 and the stochastic processes $\{r_0^t, q_0^t\}$. The firm chooses k_{-1} and stochastic processes for $\{k_t, i_t\}_{t=0}^\infty$ to maximize

$$E \sum_{t=0}^\infty \beta^t (r_0^t \cdot k_{t-1} - q_0^t \cdot i_t) \mid J_0 - v_0 \cdot k_{-1}$$ (7.4.1)

subject to

$$k_t = \Delta_k k_{t-1} + \Theta k i_t.$$ (7.4.2)

7.5. Competitive Equilibrium

Definition: A *competitive equilibrium* is a price system $[v_0, \{r_0^t, w_0^t, \alpha_t^0, q_t^0, r_t^0\}_{t=0}^\infty]$ and an allocation $\{c_t, i_t, k_t, h_t, g_t, d_t\}_{t=0}^\infty$ that satisfy the following conditions:

a. Each component of the price system and the allocation resides in the space L_0^2.

b. Given the price system and given h_{-1}, k_{-1}, the stochastic process $\{c_t, s_t, \ell_t, k_t, h_t\}_{t=0}^\infty$ solves the household’s problem.

c. Given the price system, the stochastic process $\{c_t, i_t, k_t, \ell_t, d_t, g_t\}$ solves the problem of the firm of type I.

d. Given the price system, the vector k_{-1} and the stochastic process $\{k_t, i_t\}_{t=0}^\infty$ solve the problem of the firm of type II.
7.6. Lagrangians

We now formulate each agent’s problem as a Lagrangian, and obtain the associated first-order conditions.

7.6.1. Household Lagrangian

The household’s Lagrangian is

\[
L = -E_0 \sum_{t=0}^{\infty} \beta^t \left\{ \left[(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2 \right]/2 + \mu_0^w [p_0^t \cdot c_t - w_0^t \ell_t - \alpha^0_t \cdot d_t] + \mu_t^w [s_t - \Lambda h_{t-1} - \Pi_c t]
ight. \\
\left. + \mu_t^h^r [h_t - \Delta h_{t-1} - \Theta h c_t] + \mu_0^w v_0 \cdot k_{-1} \right\}
\]

Here \(\mu_0^w \) is a scalar and \(\{ \mu_t^s, \mu_t^h \} \) are sequences of vectors of stochastic Lagrange multipliers. The first-order conditions with respect to \(s_t, \ell_t, c_t, \) and \(h_t, \) respectively, are:

\[
\begin{align*}
s_t : \quad (s_t - b_t) + \mu_t^s = 0, & \quad t \geq 0 \\
\ell_t : \quad \ell_t - w_0^t \cdot \mu_0^w = 0, & \quad t \geq 0 \\
c_t : \quad \mu_0^w p_0^t - \Pi' \mu_t^s - \Theta_h^t \mu_t^h = 0, & \quad t \geq 0 \\
h_t : \quad -\beta E_t \Lambda' \mu_{t+1}^s - \beta E_t \Delta h_t \mu_{t+1}^h + \mu_t^h = 0, & \quad t \geq 0
\end{align*}
\]

Solving these equations, we obtain

\[
\begin{align*}
\mu_t^s &= b_t - s_t, & t \geq 0 & \quad (7.6.1) \\
w_0^t &= \ell_t/\mu_0^w, & t \geq 0 & \quad (7.6.2) \\
\mu_t^h &= E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta h_t)^{\tau-1} \Lambda' \mu_{t+\tau}^s, & t \geq 0 & \quad (7.6.3) \\
\mu_0^w p_0^t &= \Pi' \mu_t^s + \Theta_h^t \mu_t^h, & t \geq 0 & \quad (7.6.4)
\end{align*}
\]
7.6.2. Type I Firm Lagrangian

The Lagrangian of a type I firm is

\[
L_I = E \sum_{t=0}^{\infty} \beta^t \left\{ \left[p_t^0 \cdot c_t + q_t^0 \cdot i_t - r_t^{00} \cdot k_{t-1} - w_t^0 \cdot \ell_t - \alpha_t^0 \cdot d_t \right] + L_{\ell t}^d \left(\Gamma k_{t-1} + d_t - \Phi c_t - \Phi g_t - \Phi i_t \right) \right. \\
+ \left. L_{\ell t}^l \left[(\ell_t^2 - g_t \cdot g_t)/2 \right] \right\}.
\]

Here \(\{ L_{\ell t}^d, L_{\ell t}^l \} \) is a vector stochastic process of Lagrange multipliers. The first-order conditions associated with \(c_t, i_t, k_t, \ell_t, d_t, \) and \(g_t \), respectively, are

\[
\begin{align*}
c_t : & \quad p_t^0 - \Phi' c_t L_{\ell t}^d = 0, \quad t \geq 0 \quad (7.6.5) \\
i_t : & \quad q_t^0 - \Phi' i_t L_{\ell t}^d = 0, \quad t \geq 0 \quad (7.6.6) \\
k_t : & \quad r_t^{00} - \Gamma' L_{\ell t}^d = 0, \quad t \geq -1 \quad (7.6.7) \\
\ell_t : & \quad -w_t^0 + L_{\ell t}^l \ell_t = 0, \quad t \geq 0 \quad (7.6.8) \\
d_t : & \quad -\alpha_t^0 + L_{\ell t}^d = 0, \quad t \geq 0 \quad (7.6.9) \\
g_t : & \quad -\Phi' g_t L_{\ell t}^d - g_t L_{\ell t}^l = 0, \quad t \geq 0. \quad (7.6.10)
\end{align*}
\]

Solving (7.6.5) and (7.6.10) for \(L_{\ell t}^d \) gives

\[
L_{\ell t}^d = \begin{bmatrix} \Phi' c_t \\ \Phi' g_t \end{bmatrix}^{-1} \begin{bmatrix} p_t^0 \\ -g_t L_{\ell t}^l \end{bmatrix}. \quad (7.6.11)
\]

From (7.6.8), the solution for \(L_{\ell t}^l \) satisfies

\[
L_{\ell t}^l = w_t^0 / \ell_t. \quad (7.6.12)
\]

Equations (7.6.6), (7.6.7) and (7.6.9) imply

\[
\begin{align*}
p_t^0 = & \quad \Phi' c_t L_{\ell t}^d \quad (7.6.13) \\
r_t^{00} = & \quad \Gamma' L_{\ell t}^d \quad (7.6.14) \\
\alpha_t^0 = & \quad L_{\ell t}^d. \quad (7.6.15)
\end{align*}
\]
7.6.3. Type II Firm Lagrangian

The Lagrangian of a type II firm is

$$L_{II} = E_0 \sum_{t=0}^{\infty} \beta^t \left\{ (r^0_t \cdot k_{t-1} - q^0_t \cdot i_t) + \eta'_t (\Delta_k k_{t-1} + \Theta_k i_t - k_t) \right\} - v^0_0 \cdot k_{-1}$$

where \(\{\eta_t\} \) is a sequence of stochastic Lagrange multipliers. The first-order conditions with respect to \(k_t, i_t, \) and \(k_{-1} \), respectively, are

$$k_t : \quad \beta E_t r^0_{t+1} - \eta_t + \beta E_t \Delta'_k \eta_{t+1} = 0, \quad t \geq 0 \quad (7.6.16)$$

$$i_t : \quad -q^0_t + \Theta'_k \eta_t = 0, \quad t \geq 0 \quad (7.6.17)$$

$$k_{-1} : \quad r^0_0 + \Delta'_k \eta_0 - v^0_0 = 0 \quad (7.6.18)$$

Solving (7.6.16) for \(\eta_t \) gives

$$\eta_t = E_t \left(\sum_{j=1}^{\infty} \beta^j \Delta^{(j-1)}_k r^0_{t+j} \right), \quad t \geq 0. \quad (7.6.19)$$

Equation (7.6.17) implies

$$q^0_t = \Theta'_k \eta_t, \quad t \geq 0. \quad (7.6.20)$$

Equation (7.6.18) implies

$$v^0_0 = r^0_0 + \Delta'_k \eta_0. \quad (7.6.21)$$
7.7. Equilibrium Price System

Our task now is to find stochastic processes of prices, quantities, and Lagrange multipliers that satisfy the first-order conditions for each of our three classes of agents for all time and contingencies. We proceed constructively to link equilibrium prices to the Lagrange multipliers for the planning problem.

Recall the following equations obeyed by the Lagrange multipliers associated with the planning problem:

\[M_{s}^{t} = b_{t} - s_{t} \]
\[M_{h}^{t} = E \left[\sum_{\tau=1}^{\infty} \beta^{\tau} (\Delta_{h}^{\tau})^{T-1} \Lambda'M_{t+\tau}^{s} | J_{t} \right] \]
\[M_{d}^{t} = \begin{bmatrix} \Phi' \mu_{c}^{-1} \\ \Phi' \mu_{i}^{-1} \\ \Phi' \mu_{k}^{-1} \end{bmatrix} - g_{t} \]
\[M_{k}^{t} = E \left[\sum_{\tau=1}^{\infty} \beta^{\tau} (\Delta^{\tau})^{T-1} \Gamma'M_{t+\tau}^{d} | J_{t} \right]. \]

In chapter 5, we gave formulas for these multipliers along the optimum of the planning problem, namely,

\[M_{k}^{t} = M_{k} x_{t} \quad \text{and} \quad M_{h}^{t} = M_{h} x_{t} \]
\[M_{i}^{t} = M_{i} x_{t} \]
\[M_{d}^{t} = M_{d} x_{t}. \]

We also defined shadow prices for consumption and investment:

\[M_{c}^{t} = M_{c} x_{t}, \quad M_{c} = \Theta_{k}' M_{h} + \Pi'M_{s} \]
\[M_{i}^{t} = M_{i} x_{t}, \quad M_{i} = \Theta_{i}' M_{k}. \]

We gave formulas for the matrices \(M_{s}, M_{k}, M_{h} \) and \(M_{d} \) in terms of the optimal value function for the planning problem. Formulas (7.7.5), (7.7.6), (7.7.7), (7.7.8), (7.7.9) for the multipliers are evaluated along the solution \(x_{t+1} = A_{0} x_{t} + C w_{t+1} \) of the planning problem.

We can compute the equilibrium price system in terms of the multipliers from the planning problem. For the time being, let \(\mu_{0}^{w} \) be a free parameter.
Later we shall indicate how choosing the scalar marginal utility of wealth at time zero, μ_0^w, amounts to specifying a numeraire for the price system. We propose to set

$$p_t^0 = \left[\Pi_t^i M_t^i + \Theta_k M_t^k \right] / \mu_0^w = M_t^i / \mu_0^w$$

(7.7.10)

$$u_t^0 = | S_t^i x_t^i | / \mu_0^w$$

(7.7.11)

$$r_t^0 = \Gamma_t^i M_t^i / \mu_0^w$$

(7.7.12)

$$q_t^0 = \Theta_k^i M_t^k / \mu_0^w = M_t^k / \mu_0^w$$

(7.7.13)

$$\alpha_t^0 = M_t^d / \mu_0^w$$

(7.7.14)

$$v_0 = \Gamma_t^d M_0^d / \mu_0^w + \Delta_k^i M_0^k / \mu_0^w.$$

(7.7.15)

We shall verify that with this price system, values can be assigned to the Lagrange multipliers for each of our three classes of agents that cause all first-order necessary conditions to be satisfied at these prices and at the quantities associated with the optimum of the planning problem.

For the household, we set

$$\mu_t^s = M_t^s$$

(7.7.16)

$$\mu_t^h = M_t^h.$$

(7.7.17)

With these choices of multipliers, equations (7.6.1), (7.6.2), (7.6.3) and (7.6.4) are evidently satisfied at the proposed equilibrium prices (7.7.10) – (7.7.15) and at the quantities associated with the optimum of the planning problem.

For the firm of type I, we set

$$L_t^d = M_t^d / \mu_0^w$$

(7.7.18)

$$L_t^k = 1 / \mu_0^w.$$

(7.7.19)

With the settings (7.7.18) for L_t^d, (7.7.19) for L_t^k, and the price process (7.7.10), equation (7.6.11) becomes equivalent with (5.4.5) from the planning problem. Equation (7.7.12) for r_t^0 implies that the firm’s marginal condition (7.6.14) is satisfied along the solution of the social planning problem. Similarly, (7.6.20) implies that (7.6.15) is satisfied. Formula (7.7.13) for q_t^0 together with the fourth equation of (5.2.4) ($-\Phi_i^d M_t^d + \Theta_k^i M_t^k = 0$) implies that (7.6.13) is satisfied along the solution of the social planning problem. Finally, (7.7.18)–(7.7.19) imply that (7.6.10) is equivalent with the second equation of (5.2.4)
\(-g_t - \Phi'_g M_t^d = 0\). Thus, with settings (7.7.17), (7.7.18), price system (7.7.10)–(7.7.15) implies that firm I’s first-order necessary conditions are satisfied along the quantity path implied by the social optimum.

For the firm of type II, we set

\[\eta_t = M_t^k / \mu_0^w. \] (7.7.20)

With this setting, (7.7.15) and (3.19) imply that (7.6.19) (and thus (7.6.16)) is satisfied. Also, (7.6.20) is evidently satisfied as is (7.6.21). Thus, the first-order conditions for firms of type II are all satisfied at price system (7.7.10)–(7.7.15) along the solution of the planning problem. We are finished with our verification process.

In summary, the price system (7.7.10)–(7.7.15) supports the allocation associated with the optimum of the planning problem as a competitive equilibrium. The direction of argument can be reversed to establish that a competitive equilibrium solves the planning problem. This argument uses a competitive equilibrium allocation and price system to define multiplier processes that satisfy first-order conditions for the planning problem.\(^1\)

The scalar \(\mu_0^w\) that appears as a free parameter in (7.7.10)–(7.7.15) is evidently the marginal utility of wealth at time zero. In setting this parameter, we select a numeraire for our price system. For example, the \(j^{th}\) consumption good at time zero can be selected as the numeraire by setting

\[\mu_0^w = \bar{e}_j M_t^c = \bar{e}_j M_c x_0 \]

where \(\bar{e}_j\) is a \((1 \times n_c)\) vector consisting of zeros in each location except the \(j^{th}\) where there is a one. For the \(j^{th}\) consumption good at time zero to be a valid numeraire, we require that \(\bar{e}_j M_c x_0\) not equal zero. This is imposed in:

Assumption 5.1: The random variable \(\bar{e}_j M_c x_0\) selected as numeraire differs from zero with probability one.

\(^1\) Since the solution of the planning problem is unique, so is the competitive equilibrium.
7.8. Asset Pricing

We can use the main idea behind “arbitrage pricing theory” to motivate asset pricing formulas. Arbitrage pricing theory extracts restrictions on equilibrium prices solely from the weak property that assets must be priced so that budget sets offer no opportunities for earning sure returns with a zero commitment of resources.

To illustrate this approach, imagine altering the representative household’s problem (7.2.1) – (7.2.4) by supplying it with an additional opportunity. The household can go into the securities business on the side by issuing securities that promise to pay a stream of the \((n_c \times 1)\) vector of consumption goods \(\{y_t\}\). We assume that \(\{y_t\} \in L_0^2\). Suppose there is a market in such securities and that the price at time 0 of one unit of such security is \(a_0\) If the household sells \(S\) of these securities, its revenue at time 0 is \(Sa_0\). To cover itself in all contingencies, the household must purchase state contingent claims to consumption in the amount \(\{y_t\}\) for each unit of the security issued. The cost of purchasing enough claims to support the sale of \(S\) securities is

\[
S \cdot E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0.
\]

With this opportunity opened up to the household, the following term must be added to the right side of the household’s budget constraint (7.2.2):

\[
S \left(a_0 - E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0 \right).
\]

If \(a_0 > E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0\), the household can make the present value of consumption as large as it wants by setting \(S\) equal to a suitable positive number, i.e., by selling the security whose price is \(a_0\). However, for our economy, it is not feasible for the consumer to achieve any such desired present value of consumption. Therefore, in equilibrium we cannot have \(a_0 > E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0\). Similarly, we cannot have \(a_0 < E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0\), because that would confront the household with the opportunity to make the present value of consumption as large as it wants by buying the security at prices \(a_0\), then selling the pay offs \(y_t\) in the market for state contingent claims. Therefore, we must have

\[
a_0 = E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot y_t | J_0. \quad (7.8.1)
\]
We can use (7.8.1) to derive formulas for various special \(\{y_t\} \) processes, and thereby recover versions of Lucas’s asset pricing model (1978), as well as theories of the term structure of interest rates. We can derive more explicit formulas for assets with payoffs of the form

\[
y_t = U_a x_t
\]

(7.8.2)

where \(U_a \) is an \(n_c \times n \) matrix. Substituting (7.8.2) and the pricing formula \(p_t^0 = M_c x_t / \mu_0^w \) into (7.8.1) gives

\[
a_0 = E \sum_{t=0}^{\infty} \beta^t x'_t Z_a x_t \mid J_0
\]

(7.8.3)

where

\[
Z_a = U'_a M_c / \mu_0^w.
\]

(7.8.4)

We shall now show that \(a_0 \) can be represented as

\[
a_0 = x'_0 \mu_a x_0 + \sigma_a
\]

(7.8.5)

where

\[
\mu_a = \sum_{\tau=0}^{\infty} \beta^\tau (A^\tau)^\tau Z_a A^{\tau}\tau
\]

(7.8.6)

\[
\sigma_a = \frac{\beta}{1 - \beta} \text{trace} \left(Z_a \sum_{\tau=0}^{\infty} \beta^\tau (A^\tau)^\tau C C'(A^{\tau})' \right).
\]

(7.8.7)

According to (7.8.5), the asset price \(a_0 \) turns out to be the sum of a constant \(\sigma_a \), which reflects a “risk premium,” and a quadratic form in the state vector \(x_t \). To understand why \(\sigma_a \) reflects a risk premium, notice how the parameters in \(C \) influence \(\sigma_a \) but do not influence \(\mu_a \).

To derive (7.8.5), first express (7.8.3) as

\[
a_0 = E \sum_{t=0}^{\infty} \beta^t \text{trace} [Z_a x_t x'_t] \mid J_0.
\]

(7.8.8)

For \(t \geq 1 \), (1.5) implies that

\[
E x_t x'_t \mid J_0 = \sum_{\tau=0}^{(t-1)} (A^\tau)^\tau C C'(A^{\tau})' + (A^\tau)^t x_0 x'_0 (A^{\tau})^t.
\]

(7.8.9)

\[\text{We derive these formulas in an alternative way in chapter 14.}\]
Substituting (7.8.9) into (7.8.8) and rearranging gives

\[a_0 = \sum_{t=1}^{\infty} \beta^t \text{trace} \left[Z_a \sum_{\tau=0}^{t-1} (A^o)^\tau CC' (A^{o'})^\tau \right] \]
\[+ \text{trace} \left(Z_a \sum_{t=0}^{\infty} \beta^t (A^o)^t x_0 x_0' (A^{o'})^t \right). \] (7.8.10)

Exchanging orders of summation in the first term on the right of (7.8.10) gives

\[\sum_{t=1}^{\infty} \beta^t \text{trace} \left[Z_a \sum_{\tau=0}^{t-1} (A^o)^\tau CC' (A^{o'})^\tau \right] \]
\[= \text{trace} Z_a \sum_{\tau=0}^{\infty} \sum_{t=\tau+1}^{\infty} \beta^t (A^o)^\tau CC' (A^{o'})^\tau \]
\[= \frac{\beta}{1 - \beta} \text{trace} Z_a \sum_{\tau=0}^{\infty} \beta^\tau (A^o)^\tau CC' (A^{o'})^\tau \]
\[\equiv \sigma_a \]

which establishes (7.8.7). By repeatedly using the rule \(\text{trace}(AB) = \text{trace}(BA) \), the second term on the right side of (7.8.10) can be transformed to

\[x_0' \sum_{t=0}^{\infty} \beta^t (A^{o'})^t Z_a (A^o)^t x_0 \equiv x_0' \mu_a x_0, \]

which defines the matrix \(\mu \) given in (7.8.6). This completes our verification of the asset pricing formulas (7.8.5) – (7.8.7).

To implement (7.8.5) requires the application of numerical methods to calculate the matrices \(\mu_a \) and \(\sigma_a \) that satisfy (7.8.6) and (7.8.7). An efficient ‘doubling algorithm’ for calculating these matrices is described in chapter 3.

As an application of (7.8.3) – (7.8.5), let us compute the value of a title to one unit of the stream of the \(j \)th endowment shock, \(\{d_{jt}\}_{t=0}^{\infty} \). Let \(d_{jt} = e_j x_t \), where \(e_j \) is a selection vector that picks off the appropriate linear combination of \(x_t \). From (7.7.14) we have that the time zero value of the time \(t \) shock \(d_{jt} \) is

\[d_{jt} M^d x_t / \mu_0^w = x_j' e_j' M^d x_t / \mu_0^w. \]

The value of the entire stream is then given by

\[E \sum_{t=0}^{\infty} \beta^t x_j' Z_a x_t \mid J_0 \]
where \(Z_a = e_j^M M^d / \mu_0^w \). This matches (7.8.3), so that formulas (7.8.5)–(7.8.7) are applicable.

7.9. Term Structure of Interest Rates

The value at time zero of a sure claim to one unit of the first consumption good at time zero is evidently

\[
R_{11}^0 = \beta E[\bar{e}_1 \cdot p_{11}^0] | J_0
\]

or

\[
R_{11}^0 = \beta \bar{e}_1 \cdot M_c A^w x_0 / \mu_0^w.
\] (7.9.1)

Here \(R_{11}^0 \) is the reciprocal of the gross one-period sure interest rate at time zero. For longer horizons, we have

\[
R_{j1}^0 = \beta_j E[\bar{e}_1 \cdot p_{j1}^0] | J_0, j \geq 1
\]

or

\[
R_{j1}^0 = \beta^j \bar{e}_1 \cdot M_c A^{o_j} x_0 / \mu_0^w.
\] (7.9.2)

Here \(R_{j1}^0 \) is the reciprocal of the gross interest factor for a sure claim on the first consumption good \(j \) periods into the future at time zero.

7.10. Re-Opening Markets

The competitive equilibrium prices state– and date–contingent commodities that are traded at time zero. After time zero, markets are “closed,” with traders simply executing agreements entered into at time zero. As usual in Arrow-Debreu models, markets can be opened in subsequent time periods, but are redundant in the sense that zero trades occur. However, for the purpose of extracting time series implications, it is useful to compute prices in such re-opened markets.\(^3\)

Suppose that markets re-open at some time \(t \geq 1 \), and that the household and firms re-evaluate their contingency plans at new prices. The household

\(^3\) See Johnsen and Donaldson (1985) for a useful discussion of preferences that accommodate reopening markets in this way.
now values consumption services from time t forward. Only goods from time t forward enter valuations appearing in the budget sets and objective functions of each of our agents. We use L_t^2 as the commodity space, defined as

$$L_t^2 = \{ \{ y_s \}_{s=t}^{\infty} : y_s \text{ is a random variable in } J_s \text{ for } s \geq t \} \text{ and } E \sum_{s=t}^{\infty} \beta^{s-t} y_s^2 | J_t < +\infty].$$

Expectations conditioned on J_t replace those conditioned on J_0 in the intertemporal budget constraint of the household and the cash flow evaluations of the firms. For convenience, we use the jth consumption good at time t as the numeraire. For this choice to deliver a valid numeraire, we invoke

Assumption 5.2: The random variable $\bar{e}_j M^c x_t$ differs from zero with probability one.

We set the household’s marginal utility of time t wealth, μ_w^t, equal to $\bar{e}_j M^c x_t$ in order to select the time t, jth consumption good as numeraire. With these specifications, we can simply replicate the time zero analysis to obtain equilibrium prices from the vantage point of time t. This yields the following price system:

\begin{align*}
 p_t^s &= M_c x_s / [\bar{e}_j M_c x_t], \quad s \geq t \quad (7.10.1) \\
 w_t^s &= |S_g x_s| / [\bar{e}_j M_c x_t], \quad s \geq t \quad (7.10.2) \\
 r_t^s &= \Gamma' M_d x_s / [\bar{e}_j M_c x_t], \quad s \geq t \quad (7.10.3) \\
 q_t^s &= M_i x_s / [\bar{e}_j M_c x_t], \quad s \geq t \quad (7.10.4) \\
 \alpha_t^s &= M_d x_s / [\bar{e}_j M_c x_t], \quad s \geq t \quad (7.10.5) \\
 v_t &= \left[\Gamma' M_d + \Delta_k^t M_k \right] x_t / [\bar{e}_j M_c x_t] \quad (7.10.6)
\end{align*}

Of particular interest are the **spot market** prices implied by (7.10.1) – (7.10.6), namely, $p_t^t, w_t^t, r_t^t, q_t^t, \alpha_t^t$.
7.10.1. Non-Gaussian Asset Prices

The time t value of a permanent claim to a stream $y_s = U_a x_s, s \geq t$ is given by

$$a_t = \left(x_t' \mu_a x_t + \sigma_a \right) / (\bar{e}_j M c x_t) \quad (7.10.7)$$

where μ_a and σ_a satisfy (7.8.6) and (7.8.7) with $Z_a = U'_a M_c$. Notice how (7.10.7) makes the asset price a_t a nonlinear function of the state vector x_t. Suppose, for example, that the w_t process is Gaussian. This implies that the equilibrium x_t process is a multivariate normal process. Even so, the asset prices determined by (7.10.7) are not normally distributed, being determined as the ratio of a quadratic form in the Gaussian state vector x_t to a linear form in x_t. Thus, the asset prices generated by this “most Gaussian of economies” are highly nonlinear stochastic processes.

The term structure of interest rates on perfectly safe claims on the first consumption good j periods ahead is characterized by the gross interest factors

$$R^j_t = \beta^j \bar{e}_1 \cdot M_c A^{0j} x_t / \bar{e}_j M_c x_t, \quad j \geq 1, \ t \geq 0 \quad (7.10.8)$$

which generalizes (7.9.2).

7.11. Asset Pricing Example

We use the simple pure exchange one good model that is contained in clex14.m to illustrate our asset pricing formulas. The economy in clex14.m is a linear-quadratic version of an economy that Lucas (1978) used to develop an equilibrium theory of asset prices.

The economy is a member of the special class of structures described in chapter 4. The economy is described as follows:

Preferences

$$-.5E \sum_{t=0}^{\infty} \beta^t [(c_t - b_t)^2 + \bar{e}_t^2] | J_0$$

$s_t = c_t$

$b_t = U_b z_t$
Technology

\[c_t = d_{1t} \]
\[k_t = \delta_k k_{t-1} + \delta_t \]
\[g_t = \phi_1 \delta_t, \quad \phi_1 > 0 \]
\[\begin{bmatrix} d_{1t} \\ 0 \end{bmatrix} = U_d z_t \]

Information

\[z_{t+1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & .8 & 0 \\ 0 & 0 & .5 \end{bmatrix} z_t + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} w_{t+1} \]
\[U_b = \begin{bmatrix} 30 & 0 & 0 \end{bmatrix} \]
\[U_d = \begin{bmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
\[x_0 = \begin{bmatrix} 5 & 150 & 1 & 0 & 0 \end{bmatrix}^T \]

To compute the asset prices in this economy we issue the following MATLAB commands:

```matlab
cllex14
solvea
t1 = 100;
nt = t1;
sy = sc;
asimul
pay = sd(1,:)
assetas
```

The program `assetas` constructs a simulation of length `nt` of the price and rate of return of an asset that yields a stream of returns equal to `pay * x_t`, where the user specifies the matrix `pay`. Here we specified that `pay = sd(1,:)`, so that we are pricing a perpetual claim on the endowment process `d_{1t}`, which is the asset that Lucas priced in his 1978 paper. If the user desires to price a vector of assets, he should simply feed in the matrix `pay` such that `pay * x_t` is the payout vector of those assets. Let `nn` be the number of rows of `pay`, i.e., `nn` is the number of assets being priced. The program `assetas` creates a vector `y` of length `nt` that equals the vector `[mrs, payoff, asset prices, returns]`, where `mrs` is the one period intertemporal marginal rate of substitution; `payoff` is the payoff on the asset(s), which equals `pay * x_t`; `asset prices` is the series of asset prices;
and \(\text{ret} \) is the one period gross realized rate of return on the asset(s). For \(j = 1, 2, 5 \), the program also creates the reciprocals of the \(j \)-period ahead gross rates of return on safe assets, and stores them in the vectors \(R1, R2, R5 \).

We have computed asset prices for two versions of this economy. The first has the parameter settings listed above, while the second alters the autoregressive parameter in the endowment process to be .4 rather than .8. Figures 7.11.1 through 7.11.3 record the results of one hundred period simulations for each of these two economies. Figure 7.11.1 displays the simulated value of the asset price for the first economy. Figures 7.11.2 displays the gross rates of return on the ‘Lucas tree’ and on a sure one-period bond. We computed the correlation coefficient between these two returns to be -.49. For this economy, the ‘risk premium’ term in the price of the Lucas tree, namely \(\sigma_a \) in formula (7.10.7), is calculated to be -12.80. To give an idea of how the term structure of interest rates moves in this economy, Figure 7.11.2.b displays the net rates of return on one period and five period sure bonds. (We computed the net rate of return on \(j \)-periods bonds by taking the log of the gross rate of return and dividing by \(j \).) Notice the tendency of the term structure to slope upward when rates are low, and to slope downward when rates are high.

Figure 7.11.1: Price of a ‘stock’ entitling the owner to a perpetual claim on the dividends of a ‘Lucas tree’ when the autoregressive parameter for the endowment process is .8.
Fig. 7.11.2.a. Realized one period gross rates of return on a Lucas tree (solid line) and on a sure one period bond (dotted line) when the autoregressive parameter for the endowment process is .8.

Fig. 7.11.2.b. Net rates of return on a one-period (solid line) and a five period (dotted line) when the autoregressive parameter for the endowment process is .8.

Figures 7.11.3.a and 7.11.3.b record rates of return for the ‘Lucas tree’ and for sure bonds in the economy with the autoregressive parameter for the endowment process equaling .4. Figure 7.11.3.a shows the gross rates of return on the ‘Lucas tree’ and on a sure one-period bond. The correlation between these two was computed to be -.62. From Figure 7.11.3.b, we see that the tendency for the yield curve to slope upward when rates are low and to slope downward when rates are high has been accentuated relative to our first economy. For the second economy, the ‘risk premium’ term σ_a in the price of the Lucas tree is calculated to be -5.90.

The pure exchange economy in clex14.m is one of the simplest to which our asset pricing formulas can be applied. Indeed, for this simple economy, the pricing formulas can be worked out by hand, as the exercises at the end of this chapter indicate. In chapter 7, we shall apply these formulas and our computer programs in much richer contexts in which one can’t get very far by hand.
Fig. 7.11.3.a. Realized one period gross rates of return on a Lucas tree (solid line) and on a sure one period bond (dotted line) when the autoregressive parameter for the endowment process is .4.

Fig. 7.11.2.b. Net rates of return on a one-period (solid line) and a five period (dotted line) when the autoregressive parameter for the endowment process is .4.
Part IV

Representations and Properties
Chapter 8
Statistical Representations

This chapter shows how models restrict observed prices and quantities, and how observations can be used to make inferences about parameters. Earlier chapters have prepared a state-space representation that expresses states x_t and observables y_t as linear functions of an initial state x_0 and histories of martingale difference sequences w_t. The w_t's are shocks to endowments and preferences whose histories are observed by the agents in the economy. The econometrician does not directly observe those shocks but instead observes a history of observables $y_s, s \leq t$. Therefore, to prepare a model for estimation we obtain another representation that is cast in terms of shocks that could be recovered from histories of an econometrician’s observations of y_s if the model’s parameters were known. We accomplish this by using the Kalman filter to obtain what is known as an ‘innovations representation’. It is a workhorse. It can be transformed to yield a Wold representation or a vector autoregression for observables.\(^1\) An important approach to estimation, approximation, and aggregation over time is to deduce restrictions that models of the economy and of data collection impose on the innovations representation.\(^2\) The Kalman filter does this efficiently, and enables a recursive way of calculating a Gaussian likelihood function.

We describe how to obtain maximum likelihood and generalized method of moments estimators of a model’s parameters, using both time domain and frequency domain methods. As by-products of time domain estimation, we deduce autoregressive and Wold representations for observables. As a by-product of frequency domain estimation, we recover a theory of the consequences of model specification error. We also study aggregation over time, and how to estimate a model specified at a finer time interval than the available data. We augment these methods to incorporate data on asset prices that are non-linear functions of the state of the economy. The last part of the chapter describes how asset prices, returns, and other nonlinear functions of the state can contribute to estimation of a model’s deep parameters.

\(^1\) See Sims (1972b, 1980), Whittle (1983), and Sargent (1987b, ch. XI) for definitions and discussions of the Wold and autoregressive representations.

\(^2\) See Sargent (1989) for a discussion of how alternative theories of data collection and measurement errors impinge on estimation strategies for rational expectations models.
The Kalman filter is mathematically intimately connected to the optimal linear regulator (i.e., the linear-quadratic dynamic programming problem). Remarkably, the same matrix Riccati equation that solves the linear regulator is the key mathematical formula associated with the Kalman filter. The same spectral factorization identity connected with the Kalman filter plays an important role in linear-quadratic optimization theory. In chapters 9 and 13, we shall use a spectral factorization identity to provide information about alternative representations of household technologies and to isolate ones that are particularly useful for representing dynamic demand curves.

8.1. The Kalman Filter

We regard a vector of time \(t \) data \(y_t \) as error-ridden measures of linear combinations of the state vector \(x_t \). We append a measurement equation to an equilibrium law of motion of the state to attain the following state space system:

\[
\begin{align*}
 x_{t+1} & = A^0 x_t + C w_{t+1} \\
 y_t & = G x_t + v_t,
\end{align*}
\]

(8.1.1)

where \(v_t \) is a martingale difference sequence of measurement errors that satisfies \(E v_t v'_t = R, E w_{t+1} v'_t = 0 \) for all \(t+1 \geq s \). Here \(G \) is a matrix whose rows consist of entries of the \(S_j \) and \(M_j \) matrices, computed, for example, in chapters 5, 7, and 10, that select those components of quantities and prices for which data are available.\(^3\) We assume that \(x_0 \) is a random vector with known mean \(\hat{x}_0 \) and covariance matrix \(E(x_0 - \hat{x}_0)(x_0 - \hat{x}_0)' = \Sigma_0 \). Using (8.1.1), we have \(E y_0 = G \hat{x}_0 \).

We adopt the notation \(y^t_0 = [y_t, y_{t-1}, \ldots, y_0] \), \(y^t = y^t_{-\infty} \). For any variable \(z_t, t \geq 0 \), we let \(\hat{z}_t = \hat{E}[z_t|y^t_0, \hat{x}_0] \), where \(\hat{E}(\cdot) \) is the linear least squares projection operator. Also, we occasionally use the notation \(\hat{E} z_t = \hat{E}[z_t|y^t_0, \hat{x}_0] \). We want recursive formulas for \(\hat{y}_t, \hat{x}_t \). We begin by constructing an innovation process \(\{a_t\} \) such that \([a^t_0, \hat{x}_0] \) forms an orthogonal basis for the information set \([y^t_0, \hat{x}_0] \). We recursively calculate the projections \(\hat{x}_{t+1} \) and \(\hat{y}_t \) by regressing on the orthogonal basis \([a^t_0, \hat{x}_0] \).

\(^3\) Later in appendix C of this chapter we shall permit serially correlated measurement errors. It is also easy to modify the calculations to permit \(E w_{t+1} v'_t \) to be nonzero.
The orthogonal basis for \([y_0^t, \hat{x}_0] \) is constructed using a Gram-Schmidt process. Begin with the regression equation \(y_0 = E y_0 + a_0 = G \hat{x}_0 + a_0 \) or

\[
a_0 = y_0 - G \hat{x}_0,
\]

where the residual \(a_0 \) satisfies the least squares normal equation \(E \hat{x}_0 a_0' = 0 \). Evidently, \([y_0, \hat{x}_0]\) and \([a_0, \hat{x}_0]\) span the same linear space. Next, form \(a_1 \) as the residual from a regression of \(y_1 \) on \([y_0, \hat{x}_0]\), or equivalently, a regression of \(y_1 \) on \([a_0, \hat{x}_0]\):

\[
a_1 = y_1 - E [y_1 | y_0, \hat{x}_0]
\]

or

\[
a_1 = y_1 - E [y_1 | a_0, \hat{x}_0];
\]

\(a_1 \) is by construction orthogonal to \(a_0 \) and \(\hat{x}_0 \); i.e., \(E(a_1 a_0') = 0, E(a_1) = 0 \). Continuing in this way, form \(a_t = y_t - E[y_t | y_0^{t-1}, \hat{x}_0] = y_t - E[y_t | a_0^{t-1}, \hat{x}_0] \), where \(E(a_s a_s') = 0 \) for \(s = 0, \ldots, t-1 \) and \(E(a_t) = 0 \). We call \(a_t \) the innovation in \(y_t \).

It is useful to represent \(a_t \) as follows. From the second equation of (8.1.1) and from the fact that \(v_t \) is orthogonal to \(y_{t-s} \) and \(x_{t-s} \) for \(s \geq 1 \), it follows that

\[
\hat{y}_t = G \hat{x}_t
\]

and that

\[
y_t = G \hat{x}_t + G(x_t - \hat{x}_t) + v_t.
\]

By subtracting the first equation from the second, we find that the innovation \(a_t \) in \(y_t \) satisfies

\[
a_t \equiv y_t - \hat{y}_t = G(x_t - \hat{x}_t) + v_t.
\]

(8.1.2)

Calculate the second moment matrix of \(a_t \) to be

\[
E a_t a_t' = G E (x_t - \hat{x}_t)(x_t - \hat{x}_t)' G' + E v_t v_t'
\]

\[
= GS_t G' + R \equiv \Omega_t
\]

where \(\Sigma_t \equiv E(x_t - \hat{x}_t)(x_t - \hat{x}_t)' \). We shall soon give a recursive formula for \(\Sigma_t \).

From the first equation in (8.1.1), it follows that

\[
\hat{E}_t x_{t+1} = A^o \hat{E}_t x_t = A^o \hat{E}_{t-1} x_t + A^o (\hat{E}_t x_t - \hat{E}_{t-1} x_t),
\]

(8.1.3)

where again \(\hat{E}_t \) denotes projection on \([y_0^t, \hat{x}_0]\). Express the projection \(\hat{E}_t x_t = E x_t + \sum_{j=0}^t \Gamma_j a_j \), where \(x_t = \hat{E}_t x_t + \psi_t \), \(\psi_t \) is a least squares residual vector, and
the regression coefficients Γ_j are determined by the least squares orthogonality conditions $E\psi_t a'_s = 0$ for $s = 0, \ldots, t$. Because $[a'_0, \hat{x}_0]$ is an orthogonal basis for $[y'_0, \hat{x}_0]$, these orthogonality conditions imply

$$
(EX_{tt}a'_t)(\Omega_t)^{-1} = \Gamma^x_t,
$$

(8.1.4)

where $Ex_t a'_t = \Omega_t$. To compute $Ex_t a'_t$, first notice that $\dot{E}_{t-1} x_t = Ex_t + \sum_{j=0}^{t-1} \Gamma_j a_j$. Then $x_t = \dot{E}_{t-1} x_t + \Gamma^x_t a_t + \psi_t$ can be interpreted in terms of the regression equation

$$
(x_t - \dot{E}_{t-1} x_t) = \Gamma^x_t a_t + \psi_t,
$$

(8.1.5)

where $\Gamma^x_t a_t = \dot{E}[(x_t - \dot{E}_{t-1} x_t)|a_t]$. Evidently, $E(x_t - \dot{E}_{t-1} x_t)a'_t = Ex_t a'_t$. Use (8.1.2) to compute $E(x_t - \dot{E}_{t-1} x_t)a'_t = \Sigma_t G'$. It follows that (8.1.4) becomes

$$
\Gamma^x_t = \Sigma_t G'(G\Sigma_t G' + R)^{-1},
$$

(8.1.6)

and from (8.1.5) that

$$
\dot{E}_t x_t = \dot{E}_{t-1} x_t + \Gamma^x_t a_t.
$$

(8.1.7)

Substituting (8.1.7) into (8.1.3) gives $\dot{x}_{t+1} = A^o \dot{x}_t + A^o \Gamma^x_t(y_t - G \dot{x}_t)$ or

$$
\dot{x}_{t+1} = A^o \dot{x}_t + K_t a_t,
$$

(8.1.8)

where $a_t = y_t - G \dot{x}_t$, and where from (8.1.6) K_t must satisfy

$$
K_t = A^o \Sigma_t G'(G\Sigma_t G' + R)^{-1}.
$$

(8.1.9)

Equation (8.1.9) expresses the ‘Kalman gain’ K_t in terms of the state covariance matrix $\Sigma_t = E(x_t - \dot{x}_t)(x_t - \dot{x}_t)'$.

We want an equation for Σ_t. Subtract $\dot{x}_{t+1} = A^o \dot{x}_t + K_t(y_t - G \dot{x}_t)$ from the first equation of (8.1.1) to obtain $x_{t+1} - \dot{x}_{t+1} = (A^o - K_t G)(x_t - \dot{x}_t) + C \dot{w}_{t+1} - K_t \dot{v}_t$. Multiply each side of this equation by its own transpose and take expectations to obtain

$$
\Sigma_{t+1} = (A^o - K_t G)\Sigma_t (A^o - K_t G)' + CC' + K_t RK_t'.
$$

(8.1.10)

Substituting (8.1.9) into (8.1.10) and rearranging gives a matrix Riccati difference equation for Σ_t:

$$
\Sigma_{t+1} = A^o \Sigma_t A^{oc} + CC' - A^o \Sigma_t G'(G\Sigma_t G' + R)^{-1} G\Sigma_t A^{oc}.
$$

(8.1.11)
The recursions (8.1.9) and (8.1.11) for Σ_t, K_t determine the Kalman filter. They are to be initialized from a given Σ_0. Later we discuss alternative ways to choose Σ_0.

8.2. Innovations Representation

The Kalman filter associates with representation (8.1.1) an ‘innovations representation’:

$$\hat{x}_{t+1} = A^o \hat{x}_t + K_t a_t$$
$$y_t = G \hat{x}_t + a_t,$$

(8.2.1)

where $Ea_t a'_t \equiv \Omega_t = G \Sigma_t G' + R$. This time-varying representation is obtained starting from arbitrary initial conditions \hat{x}_0, Σ_0. We can rearrange (8.2.1) into the form of a whitening filter

$$a_t = y_t - G \hat{x}_t$$
$$\hat{x}_{t+1} = A^o \hat{x}_t + K_t a_t,$$

(8.2.2)

which can be used recursively to construct a record of innovations $\{a_t\}_{t=0}^T$ from an \hat{x}_0 and a record of observations $\{y_t\}_{t=0}^T$. The filter defined by (8.2.2) is called a “whitening filter” because it accepts as “input” the serially correlated process $\{y_t\}$ and produces as “output” the serially uncorrelated (i.e., “white”) vector stochastic process $\{a_t\}$. The process $\{a_t\}$ is said to be a fundamental white noise for the $\{y_t\}$ process because it equals the one-step ahead prediction error in a linear least squares projection of y_t on the history of y.\footnote{See Sims (1972b), Hansen and Sargent (1991, chapter 2), and Sargent (1987b, ch. XI) for the role such an error process plays in the construction of Wold’s representation theorem.}

Later, we shall use the whitening filter in several ways. We shall use it to study how the innovations $\{a_t\}$ from a population vector autoregression for $\{y_t\}$ are related to the $\{y_t\}$ process and to the underlying martingale process $\{w_t\}$ of information flowing to agents. We shall also use it to construct a recursive representation of a Gaussian likelihood function for a sample drawn from the $\{y_t\}$ process.
8.3. Convergence

For the purpose of obtaining a time-invariant counterpart to (8.2.1), we introduce two assumptions.

Assumption A1: The pair \((A^o', G')\) is stabilizable.

Assumption A2: The pair \((A^o', C)\) is detectable.

See the appendix to chapter 3 for definitions of stabilizability and detectability. Assumptions A1 and A2 are typically met for our applications. Under A1 and A2, two useful results occur. The first is that iterations on the matrix Riccati difference equation (8.1.11) converge as \(t \to \infty\), starting from any positive semi-definite initial matrix \(\Sigma_0\). The limiting matrix \(\Sigma_\infty \equiv \lim_{t \to \infty} \Sigma_t\) is the unique positive semi-definite matrix \(\Sigma\) that satisfies the algebraic matrix Riccati equation

\[
\Sigma = A^o \Sigma A^o' + CC' - A^o \Sigma G' (G \Sigma G' + R)^{-1} G \Sigma A^o'.
\]

(8.3.1)

If we initiate the Kalman filter by choosing \(\Sigma_0 = \Sigma_\infty\), then from (8.1.11) and (8.1.9), we obtain a time-invariant \(K_t\) matrix, call it \(K\). Under this circumstance, representation (8.2.1) becomes time invariant. Thus, we have the time-invariant innovations representation

\[
\begin{align*}
\hat{x}_{t+1} &= A^o \hat{x}_t + K a_t \\
y_t &= G \hat{x}_t + a_t,
\end{align*}
\]

(8.3.2)

where \(Ea_t a_t' \equiv \Omega = G \Sigma G' + R\) and the time-invariant whitening filter

\[
\begin{align*}
a_t &= y_t - G \hat{x}_t \\
\hat{x}_{t+1} &= A^o \hat{x}_t + K a_t.
\end{align*}
\]

(8.3.3)

The second useful result is that Assumptions A1 and A2 imply that \(A^o - KG\) is a stable matrix, i.e., its eigenvalues are strictly less than unity in modulus. Later we shall see how the stability of the matrix \(A^o - KG\) plays a key role in a convenient formula for the autoregressive representation for the \(\{y_t\}\) process.

\(^5\) The limiting form of (8.1.10) is evidently a discrete Lyapunov or Sylvester equation. See chapter 3.
8.3.1. Computation of Time-Invariant Kalman Filter

The infinite-horizon time-invariant Kalman filter defines a matrix valued function that we express as

\[
[K, \Sigma] = \text{kfilter}(A^o, G, V_1, V_2, V_3)
\]

(8.3.4)

where \(V_1 = CC', V_2 = Evtv_t', V_3 = Ewt+1v_t', \Sigma = E_{t-1}(x_t - \hat{x}_t)(x_t - \hat{x}_t)' \). For our model, we can use (8.3.4) with the following settings for the matrices \(V_1, V_2, V_3 \):

\(V_1 = CC', V_2 = R, V_3 = \) a matrix of zeros conformable to \(x \) and \(y \). By using the MATLAB function \(\text{kfilter} \), we can evidently associate with representation (8.1.1) a time-invariant innovations representation

\[
\hat{x}_{t+1} = A^o\hat{x}_t + Ka_t
\]

\[
y_t = G\hat{x}_t + a_t,
\]

(8.3.5)

where \(Ea_{t}a_{t}' \equiv \Omega_t = G\Sigma G' + R \).

8.4. Factorization of Likelihood Function

The Kalman filter enables a recursive algorithm for computing a Gaussian likelihood function for a sample of observations \(\{y_s\}^T_{s=0} \) on a \((p \times 1)\) vector \(y_t \). We assume that these data are governed by the innovations representation (8.2.1). The likelihood function of \(\{y_s\}^T_{s=0} \) is defined as the joint density \(f(y_T, y_{T-1}, \ldots, y_0) \), which we understand to be a function of the unknown parameters. It is convenient to factor the likelihood function

\[
f(y_T, y_{T-1}, \ldots, y_0) = f_T(y_T|y_{T-1}, \ldots, y_0)f_{T-1}(y_{T-1}|y_{T-2}, \ldots, y_0) \cdots f_1(y_1|y_0)f_0(y_0). \]

(8.4.1)

The Gaussian likelihood function for an \(n \times 1 \) random vector \(y \) with mean \(\mu \) and covariance matrix \(V \) is

\[
\mathcal{N}(\mu, V) = (2\pi)^{-n/2}|V|^{-1/2} \exp \left(-\frac{1}{2}(y - \mu)'V^{-1}(y - \mu) \right). \]

(8.4.2)

\footnote{The function \(\text{kfilter} \) defined in (8.3.4) solves a version of (8.1.9) and (8.1.11) for \(\Sigma_{\infty} \) and \(K_{\infty} \), a version that has been generalized to permit arbitrary covariance between \(w_{t+1} \) and \(v_t \), which is required for several of our applications.}
Evidently, from (8.1.1), the distribution \(f_0(y_0) \) is \(\mathcal{N}(G\hat{x}_0,\Omega_0) \), where \(\Omega_t = G\Sigma_t G' + R \) and \(\Sigma_t \) is the covariance matrix of \(x_t \) around \(\hat{x}_t \). Further, it occurs that \(f(y_t|y_{t-1},\ldots,y_0) = \mathcal{N}(G\hat{x}_t,\Omega_t) \). It is easy to verify that the distribution \(g_t(a_t) \) of the innovation \(a_t \) is \(\mathcal{N}(0,\Omega_t) \). Thus, \(f_0(y_0) \) equals \(g_0(a_0) \), the distribution of the initial innovation. More generally, from (8.2.1), the conditional density \(f_t(y_t|y_{t-1},\ldots,y_0) \) equals the density \(g_t(a_t) \) of \(a_t \). Then the likelihood (8.4.1) can be represented as

\[
g_T(a_T)g_{T-1}(a_{T-1})\ldots g_1(a_1)g_0(a_0). \tag{8.4.3}
\]

Expression (8.4.3) implies that the logarithm of the likelihood function for \(y_0^T \) is

\[
-0.5 \sum_{t=0}^{T} \left\{ p \ln(2\pi) + \ln |\Omega_t| + a_t'\Omega_t^{-1}a_t \right\}. \tag{8.4.4}
\]

\subsection*{8.4.1. Initialization Assumptions}

Two alternative sets of assumptions are commonly used to initiate the Kalman filter, corresponding to different information about \(y_0 \).

(a) The distribution of the initial \(y_0 \) is treated as if it were conditioned on an infinite history of \(y \)'s. This idea is implemented by specifying that \(x_0 \) has mean \(\hat{x}_0 = E[x_0|y_{-1},y_{-2},\ldots] \) and a covariance matrix \(\Sigma_0 = \Sigma_\infty \) coming from the steady state of the Kalman filter. In this case, the time-invariant Kalman filter can be used to construct the Gaussian log likelihood:

\[
-0.5 \sum_{t=0}^{T} \left\{ p \ln(2\pi) + \ln |\Omega_t| + a_t'\Omega_t^{-1}a_t \right\}, \tag{8.4.5}
\]

where \(\Omega = G\Sigma_\infty G' + R \), and where the innovations \(a_t \) are computed using the steady state Kalman gain \(K \). This procedure amounts to replacing \(f_0(y_0) \) in (8.4.1) with \(f(y_0|y_{-\infty}^{-1}) \).

(b) The initial value \(y_0 \) is drawn from the stationary distribution of \(y \), meaning that it is associated with an \(x_0 \) governed by the stationary distribution of \(x_t \), an assumption implemented by initiating the Kalman filter with \(\Sigma_0 = \Sigma_x \), where \(\Sigma_x \) is the asymptotic stationary covariance matrix of \(x \).
Assumptions (a) and (b) pertain to how one selects the matrix Σ_0. Under each of assumptions (a) and (b), it is common to set \hat{x}_0 equal to the unconditional mean of x, provided that this exists.

8.4.2. Possible Non-Existence of Stationary Distribution

Approach (b) assumes that the law of motion $x_{t+1} = A^o x_t + C w_{t+1}$ is such that the $\{x_t\}$ process has an asymptotic stationary distribution, and cannot be used without modification in models that violate this assumption. When an asymptotic stationary distribution doesn’t exist, one procedure is to assume a ‘diffuse’ initial distribution over the piece of x_0 that has no stationary distribution. For example, the models described in chapter 11, with their co-integrated equilibrium consumption processes, necessitate such a procedure.

In appendix A, we describe a method for coping with this situation, inspired by ideas of Kohn and Ansley (1985). It is most useful for us to describe their idea in the context of models with serially correlated measurement errors, which we treat in appendix C.

8.5. Spectral Factorization Identity

For a model with serially uncorrelated measurement errors, we have two alternative representations for an observed process $\{y_t\}$, the original state space representation (8.1.1) and the innovations representation (8.2.1). Because they describe the same stochastic process $\{y_t\}$, they imply two representations of the spectral density matrix of $\{y_t\}$, an outcome expressed in the spectral factorization identity.

The original state space representation is

$$
\begin{align*}
 x_{t+1} &= A^o x_t + C w_{t+1} \\
 y_t &= G x_t + v_t,
\end{align*}
$$

(8.5.1)

where w_{t+1} is a martingale difference sequence of innovations to agents’ information sets, and v_t is another martingale difference sequence of measurement errors. We assumed that w_{t+1}, v_t are mutually orthogonal stochastic processes.

The first line of (8.5.1) can be written $L^{-1} x_t = (I - A^o L)^{-1} C w_{t+1}$ or $x_t = (L^{-1} - A^o)^{-1} C w_{t+1}$. It follows that the covariance generating function
of \(\{x_t\} \) defined as \(S_x(z) = \sum_{\tau=-\infty}^{\infty} C_x(\tau) z^\tau \), where \(z \) is a complex scalar and \(C_x(\tau) = E x_t x'_{t-\tau} \), satisfies\(^7\)

\[
S_x(z) = (zI - A^o)^{-1} CC' (z^{-1}I - (A^o)'^{-1})^{-1}.
\]

Using this expression and the second line of (8.1.1), together with the observation that \(v_t \) is orthogonal to the process \(x_t \), shows that the covariance generating function of the \(\{y_t\} \) process is

\[
S_y(z) = G(zI - A^o)^{-1} CC' (z^{-1}I - (A^o)'^{-1}G' + R.
\]

(8.5.2)

Representation (8.2.1) implies \(\hat{x}_t = (L^{-1} - A^o)^{-1} K a_t \), and

\[
y_t = [G(L^{-1} - A^o)^{-1} K + I] a_t.
\]

(8.5.3)

Because \(a_t \) is a white noise with covariance matrix \(G \Sigma G' + R \), it follows that the covariance generating function of \(\{y_t\} \) also equals

\[
S_y(z) = [G(zI - A^o)^{-1} K + I][G \Sigma G' + R][K'(z^{-1}I - A^o)^{-1}G' + I].
\]

(8.5.4)

Expressions (8.5.2) and (8.5.4) are alternative representations for the covariance generating function \(S_y(z) \). Equating them leads to the spectral factorization identity:

\[
G(zI - A^o)^{-1} CC' (z^{-1}I - A^o)^{-1}G' + R = [G(zI - A^o)^{-1} K + I][G \Sigma G' + R][K'(z^{-1}I - A^o)^{-1}G' + I].
\]

(8.5.5)

The importance of the factorization identity hinges on the fact that, under assumptions A1 and A2, the zeros of the polynomial \(\det[G(zI - A^o)^{-1} K + I] \) all lie inside the unit circle, which means that in the representation (8.5.3) for \(y_t \), the polynomial in \(L \) on the right hand side has a one-sided inverse in nonnegative powers of \(L \), so that \(a_t \) lies in the space spanned by square summable linear combinations of \(y_t \). We establish this result in appendix B of this chapter and apply it in subsequent sections.

\(^7\) See Sargent (1987b, ch. XI) for definitions and properties of covariance generating functions. See the appendix to chapter 9 for a discussion of elementary properties of \(z \)-transforms.
8.6. Wold and Autoregressive representations

For the purpose of describing the relationship of the time-invariant innovations representation to the Wold moving average and autoregressive representations, when needed we shall avail ourselves of:

Assumption A3: The eigenvalues of A^o are all less than unity in modulus, except possibly for one associated with a constant.

A Wold representation for a covariance stationary stochastic process y_t is a moving average of the form

$$y_t = Ey + \sum_{j=0}^{\infty} \Gamma^y_y \epsilon_{t-j},$$

where $\epsilon_t = y_t - \hat{E}[y_t|y^{t-1}]$, and $\sum_{j=0}^{\infty} \text{trace}(\Gamma^y_y \Gamma^y_y') < +\infty$. Below, we shall for the most part set the unconditional mean vector Ey to zero, to conserve on notation. We can attain a Wold representation by manipulating the innovations representation in a way that amounts to driving the date for the initial \hat{x}_0 arbitrarily far into the past.

Thus, the first equation of (8.3.5) can be solved recursively for

$$\hat{x}_{t+1} = \sum_{j=0}^{t} (A^o)^j Ka_{t-j} + (A^o)^{t+1} \hat{x}_0.$$

Now assume that \hat{x}_0 was itself formed by having observed the history y^{-1}, so that

$$\hat{x}_0 = (I - A^o L)^{-1} Ka_{-1} + \mu_x,$$

where μ_x is the unconditional mean of x. Under this specification for \hat{x}_0,

$$\hat{x}_{t+1} = (I - A^o L)^{-1} Ka_t + \mu_x. \quad (8.6.1)$$

Below, we shall omit the unconditional mean term by assuming that $\mu_x = 0$.

For a model with serially uncorrelated measurement errors, a Wold moving average representation for $\{y_t\}$ is

$$y_t = \{G(I - A^o L)^{-1} KL + I\} a_t. \quad (8.6.2)$$
Applying the inverse of the operator on the right side of (8.6.2) and using

\[G(I - A^o L)^{-1} KL + I)^{-1} = I - G[I - (A^o - KG)L]^{-1} KL, \] (8.6.3)

which comes from identity (8.B.3) in appendix B of this chapter, gives

\[y_t = G[I - (A^o - KG)L]^{-1} Ky_{t-1} + a_t. \] (8.6.4)

Equation (8.6.4) decomposes \(y_t \) into an innovation \(a_t \) and a one-step ahead linear least squares predictor

\[E[y_t|y_{t-1}] = G[I - (A^o - KG)L]^{-1} K y_{t-1}. \] (8.6.5)

Equation (8.6.4) is equivalent with

\[y_t = \sum_{j=1}^{\infty} G(A^o - KG)^{j-1} Ky_{t-j} + a_t. \] (8.6.6)

Equation (8.6.6) is a vector autoregressive representation for \(y_t \). Thus, the Kalman filter allows us to move from the original state space representation to a vector autoregression.

8.7. Frequency Domain Estimation

Using Hannan’s (1970) frequency domain approximation to the likelihood function, we now describe how to estimate the free parameters of the following model with serially correlated measurement errors:

\[
\begin{align*}
x_{t+1} &= A^o x_t + C w_{t+1} \\
y_t &= G x_t + v_t \\
v_t &= D v_{t-1} + \eta_t,
\end{align*}
\] (8.7.1)

This is the same model as model (8.C.1) in appendix C. We assume that \(y_t \) is asymptotically stationary. Let the mean vector for the observable \(\{y_t\} \) process be denoted \(\mu \). The mean vector \(\mu \) is a function of the parameters of the model.

The spectral density matrix of the \(\{y_t\} \) process is defined as

\[
S_y(e^{-i\omega}) = \sum_{\tau=-\infty}^{\infty} C_y(\tau)e^{-i\omega \tau}, \quad \omega \in [-\pi, \pi],
\] (8.7.2)
where $C_y(\tau) = E[y_{t-\tau} - \mu | y_t - \mu]'$. For model (8.7.1), the spectral density can be represented as

$$S_y(e^{-i\omega}) = G(I - A^o e^{-i\omega})^{-1}CC'(I - A^{o'} e^{+i\omega})^{-1}G' + (I - De^{-i\omega})^{-1}R(I - D'e^{+i\omega})^{-1}$$

and the unconditional means can be represented via a function

$$Ey_t \equiv \mu = \mu(A^o, G).$$

Autocovariances can be recovered from $S_y(e^{-i\omega})$ via the inversion formula

$$C_y(\tau) = \left(\frac{1}{2\pi}\right) \int_\pi^{\pi} S_y(e^{-i\omega}) e^{+i\omega\tau} d\omega.$$

Let y_t be a ($p \times 1$) vector. Suppose that a sample of observations on $\{y_t\}_{t=1}^T$ is available. Define the Fourier transform of $\{y_t\}_{t=1}^T$ as

$$y(e^{-i\omega_j}) = \sum_{t=1}^T y_t e^{-i\omega_j t},$$

where $\omega_j = \frac{2\pi j}{T}, j = 1, \ldots, T$. The periodogram of $\{y_t\}_{t=1}^T$ is defined as

$$J_y(e^{-i\omega_j}) = \frac{1}{T} y(e^{-i\omega_j}) \overline{y(e^{-i\omega_j})}'$$

where here the overbar denotes complex conjugation.

Following Hannan (1970), the Gaussian log likelihood of $\{y_t\}_{t=1}^T$ as a function of the free parameters determining A^o, C, D, and R can be approximated as

$$L^* = -\left(\frac{1}{2}\right) (T + Tp) \log 2\pi - \sum_{j=1}^{T/2+1} \log \det S_y(e^{-i\omega_j})
- \sum_{j=1}^{T/2+1} \text{trace}[S_y(e^{-i\omega_j})^{-1} J_y(\omega_j)]
- \frac{T}{2} \text{trace}\{S_y(1)^{-1} [T^{-1} \sum_{t=1}^T y_t - \mu] [T^{-1} \sum_{t=1}^T y_t - \mu]'\}$$

The MATLAB programs spectral.m and spectr1.m can be used to compute a spectral density matrix for one of our models. These programs implement formula (8.7.3).
In (8.7.7), p is the dimension of the y_t vector.

The free parameters determining A^o, C, D, and R can be estimated by maximizing the right side of (8.7.7) with respect to them. Notice that the data $\{y_t\}_{t=1}^T$ enter the right side of (8.7.7) only through the sample mean $T^{-1} \sum_{t=1}^T y_t$ and the periodogram $J_y(e^{-i\omega})$, while the theory enters through relation (8.7.3) that determines μ and $S_y(e^{-i\omega})$ as functions of the free parameters. Parameter estimation uses any of a variety of hill-climbing algorithms on (8.7.7). An advantage of frequency domain estimation is that it avoids the need, associated with time domain estimation, to deduce a Wold representation for y_t. Frequency domain estimation proceeds without factoring the spectral density matrix (8.7.3).

8.8. Approximation Theory

When an economist estimates a misspecified model, how are the probability limits of the parameters that he estimates related to the parameters of a “true” model? This question is not well posed until one states an alternative model that generates the data and relative to which the model at hand is regarded as misspecified. If such an alternative model is on the table, then the question can be answered by adapting the analysis of approximation used by S. Kullback and R.A. Leibler (1951), Christopher Sims (1972), Halbert White (1982), and Hansen and Sargent (1993). A modification of (8.7.7) underlies the theory of approximation.

To state a complete theory of approximation, these elements are required: (1) a model that in truth generates the data (to speak of approximation, it is necessary to specify what is being approximated); (2) the model being estimated; and (3) the method of parameter estimation. We make the following assumption about these three elements. The true model is a member of the class of models described in this book, with parameters denoted by a vector δ. The true mean vector for the observables is $\nu(\delta)$, and the true spectral density matrix is $S_y(e^{-i\omega}, \delta)$, where $S_y(e^{-i\omega}, \delta)$ is determined by a version of

9 For example, see Bard (1974). See Canova (2007) and DeJong and Dave (2011) for extensive treatments of maximum likelihood and Bayesian estimation of dynamic macroeconomic models.
Aggregation Over Time

(8.7.3a) with parameters \(\overline{A}, \overline{C}, \overline{G}, \overline{R}, \overline{D} \) that depend on the parameter vector \(\delta \). The estimated model is another version of (8.7.3), where the parameters determining the matrices \(A^\alpha, C, G, R, D \), are denoted \(\alpha \), the spectral density matrix is \(\overline{S}_y(e^{-i\omega}, \alpha) \), and the mean vector is \(\mu(\alpha) \). The method of estimation is maximum likelihood. It can be shown (see Hansen and Sargent (1993)) that the probability limits of the free parameters \(\alpha \) satisfy

\[
\text{plim} \hat{\alpha} = \arg \max_{\alpha} \left\{ -\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \det \overline{S}_y(e^{-i\omega}, \alpha) \, d\omega \\
- \frac{1}{2\pi} \int_{-\pi}^{\pi} \text{trace} \left[\overline{S}_y(e^{-i\omega}, \alpha)^{-1} \overline{S}_y(e^{-i\omega}, \delta) \right] d\omega \\
- \left[\nu - \mu(\alpha) \right] \overline{S}_y(1, \alpha)^{-1} \left[\nu - \mu(\alpha) \right]' \right\}.
\]

(8.8.1)

The right side of (8.8.1) is obtained from (8.7.7) by appropriately taking limits as \(T \to \infty \). Roughly speaking, taking limits replaces the periodogram \(J_y(e^{-i\omega}) \) with the spectral density for the true model \(\overline{S}_y(e^{-i\omega}) \), and replaces the sample mean with the true mean vector.

8.9. Aggregation Over Time

In this section, we describe how to use the Kalman filter to calculate the likelihood for data that are “aggregated over time.” We formulate a model in state space form and then use the Kalman filter to derive an associated innovations representation from which a Gaussian log likelihood function can be constructed.

Let the original equilibrium model have the state space form

\[
x_{t+1} = A^\alpha x_t + Cw_{t+1} \\
y_t = Gx_t
\]

(8.9.1)

where \(w_{t+1} \) is a martingale difference sequence with \(Ew_{t+1}w_{t+1}'|J_t = I \). We assume that the model is formulated to apply at a finer time interval than that for which data are available. For example, the model (8.9.1) may apply to weekly or monthly data, while only quarterly or annual data may be available.

\(10\) We include the matrix \(D \) to allow for serially correlated measurement errors as in specification (8.C.1) described in appendix C of this chapter.
to the economist. Furthermore, some of the observed data may be averages over
time of the \(\{y_t\} \) data generated by (8.9.1), as when “flow” data are generated
by averaging over time. (Data on output, consumption, and investment flows
are usually generated in this way.) Other observations may simply be point-
in-time “skip sampled” versions of the data. That is, “quarterly” data are
formed by sampling every thirteenth observation of the “weekly” data. We
want to catalogue restrictions imposed on these time aggregated data by the
model (8.9.1). We accomplish this by deducing the likelihood function of these
data as a function of the free parameters of (8.9.1).

We perform our analysis of aggregation over time in two steps. First, we
expand the state space by including enough lagged states to accommodate whatever
averaging over time of data is occurring. Let \(m \) be the number of dates
over which data are potentially to be averaged. Then we form the augmented system

\[
\begin{bmatrix}
 x_{t+1} \\
 x_t \\
 x_{t-1} \\
 \vdots \\
 x_{t-m+2}
\end{bmatrix} =
\begin{bmatrix}
 A^o & 0 & \cdots & 0 & 0 \\
 I & 0 & \cdots & 0 & 0 \\
 0 & I & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & I & 0
\end{bmatrix}
\begin{bmatrix}
 x_t \\
 x_{t-1} \\
 x_{t-2} \\
 \vdots \\
 x_{t-m+1}
\end{bmatrix} +
\begin{bmatrix}
 C
\end{bmatrix}
\begin{bmatrix}
 w_{t+1}
\end{bmatrix}
\]

or

\[
x_{t+1} = \overline{A} x_t + \overline{C} w_{t+1}
\]

where

\[
\overline{x}_{t+1} = \overline{A} x_t, \quad \overline{A} = \begin{bmatrix}
 A^o & 0 & \cdots & 0 & 0 \\
 I & 0 & \cdots & 0 & 0 \\
 0 & I & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & I & 0
\end{bmatrix}, \quad \overline{C} = \begin{bmatrix}
 C
\end{bmatrix}
\]

Once we have formed \(\overline{A} \) and \(\overline{C} \), it is easy to form the appropriate model for averaged data. For example, suppose that we are interested in forming the model
governing three-period averages of consumption. We would set \(m \) equal to 3
in (8.9.2) and (8.9.3), and could then model averaged consumption via the obser-
ver equation \(y_t = \overline{C} x_t \) where \(\overline{C} = [S_c \ S_c \ S_c] \). The MATLAB program \texttt{avg.m}
obtains the matrices \(\overline{A} \) and \(\overline{C} \) of (8.9.3) for a given \(m \), thereby accomplishing
the first step in our analysis of aggregation over time.
The second step is to perform the aggregation over time by skipping observations on a representation of the form (8.9.1) or (8.9.2). Let an equilibrium be represented in the state space form

\[x_{t+1} = Ax_t + Cw_{t+1}, \quad t = 0, 1, 2, \ldots \]

\[y_t = Gx_t \] (8.9.4)

where the first line of (8.9.4) could correspond either to (8.9.2) or to its special case, the first line of (8.9.1). Suppose that data on \(y_t \) are available only every \(r > 1 \) periods, where \(r \) is an integer. Then the data are generated by

\[x_{t+r} = A_rx_t + w_{t+r+r}^r, \quad t = 0, r, 2r, \ldots \]

\[y_t = Gx_t \] (8.9.5)

where

\[A_r = A^r \]

\[w_{t+r}^r = A^{r-1}Cw_{t+1} + A^{r-2}Cw_{t+2} + \cdots + ACw_{t+r-1} + Cw_{t+r}. \] (8.9.6)

Represent (8.9.5),(8.9.6) as the state space system

\[x_{s+1} = A_r x_s + w_{s+1}^r, \quad s = 0, 1, 2, \ldots \]

\[y_s = Gx_s \] (8.9.7)

where \(w_{s+1}^r \) is a martingale difference sequence with contemporaneous covariance matrix

\[Ew_s^r w_{s'} = CC' + ACC'A' + \cdots + A^{r-1}CC'A'^{-1} \]

\[\equiv V. \] (8.9.8)

Now suppose that only error-corrupted observations on the time aggregated \(\{y_s\} \) data are available, and that the measurement errors are first-order serially correlated. To capture this assumption, augment (8.9.7) – (8.9.8) to become the state space system

\[x_{s+1} = A_r x_s + w_{s+1}^r \]

\[y_s = Gx_s + v_s \] (8.9.9)

\[v_s = Dv_{s-1} + \eta_s \]

where \(E\eta_s \eta'_s = R \) and \(Ew_{s+1} \eta'_s = 0 \) for all \(t \) and \(s \).
System (8.9.9) is a version of the state space system (8.C.1) described in appendix C of this chapter. Proceeding as in our analysis of (8.C.1), define \(\bar{y}_s \equiv y_{s+1} - Dy_s \) and \(G_r = (G A_r - D G \bar{y}_s) \). Then (8.9.9) implies the system
\[
\begin{align*}
x_{s+1} &= A_r x_s + w_{s+1}^r \\
\bar{y}_s &= G_r x_s + G w_{s+1}^r + \eta_{s+1}.
\end{align*}
\tag{8.9.10}
\]
Define the covariance matrices \(E w_s^r w_s'^r = V \equiv V_1, E(G w_{s+1}^r + \eta_{s+1})(G w_{s+1}^r + \eta_{s+1})' = G V G' + R \equiv V_2, E w_{s+1}^r (G w_{s+1}^r + \eta_{s+1})' = V G' = V_3 \). Use the function \texttt{kfilter} to obtain \([K, \Sigma] = \texttt{kfilter}(A_r, G_r, V_1, V_2, V_3)\). Then an innovations representation for system (8.9.10) is
\[
\begin{align*}
\hat{x}_{s+1} &= A_r \hat{x}_s + K a_s \\
\bar{y}_s &= G_r \hat{x}_s + a_s
\end{align*}
\tag{8.9.11}
\]
where \(\hat{x}_s = E[x_s | \bar{y}_s^{s-1}], a_s = \bar{y}_s - E[y_s | \bar{y}_s^{s-1}], \Omega_1 \equiv E a_s a_s' = G_r \Sigma G_r' + V_2 \). Once again, the innovations representation (8.9.11) can be used to form the residuals \(a_t \) recursively, and thereby to form the Gaussian log likelihood function.11

We illustrate the programs \texttt{avg.m} and \texttt{aggreg.m} by showing how they can be used to analyze the effects of aggregation over time in the context of our equilibrium version of Hall’s model. We want to deduce the univariate Wold representation for consumption data that are constructed by taking a three-period moving average, and then “skip sampling” every third period. The following MATLAB code performs these calculations:

```matlab
11 The MATLAB program \texttt{aggreg.m} constructs the innovations representation (8.9.11) from inputs in the form of the state space representation (8.9.4) and the parameters \( R \) and \( D \) of the measurement error model (8.9.2).
```
We have set the parameters of Hall’s model at the values that make unaveraged consumption follow a random walk. Notice that we set \(R \) and \(D \) so that only a very small measurement error is present in consumption. The impulse response function for skip-sampled three period moving average consumption reveals the following representation for the skip-sampled moving average data \(\bar{c}_t \):

\[\bar{c}_t - \bar{c}_{t-1} = a_t + .2208a_{t-1} \]

where \(a_t = \bar{c}_t - E(\bar{c}_t | \bar{c}_{t-1}, \bar{c}_{t-2}, \ldots) \). Thus, the first difference of \(\bar{c}_t \) is a first-order moving average process. These calculations recover a version of Holbrook Working’s (1960) findings about the effects of skip sampling a moving average of a random walk.

8.10. Simulation Estimators

We have described how to estimate the free parameters of a model using data that are possibly error-ridden linear functions of the state vector \(x_t \). In our models, quantities and (scaled Arrow-Debreu) prices are linear functions of the state, but asset prices and rates of return are non-linear functions of the state. In this section, we describe how observations of non-linear functions of the state can be used in estimation.

The equilibrium transition law for the state vector \(x_t \) is

\[x_{t+1} = A'(\theta)x_t + C(\theta)w_{t+1}, \quad Ew_t w_t' = I, \quad (8.10.1) \]

where the \(r \times 1 \) vector \(\theta \) contains the free parameters of preferences, technologies, and information. We partition the data into two parts, \((z_{1t}, t = 0, \ldots, T)\) and \((z_{2t}, t = 0, \ldots, T)\), where the \(z_{1t} \)'s are linear functions of the state \(x_t \), and the \(z_{2t} \)'s are nonlinear functions of the state. Assume that \(z_{1t} \) is \(k \times 1 \) and \(z_{2t} \) is \(m \times 1 \). The data are related to the state \(x_t \) and measurement errors \(v_t \) as follows:

\[z_{1t} = G(\theta)x_t + v_{1,t} \]
\[z_{2t} = f(x_t, v_{2,t}, \theta), \]

where

\[E \left(\begin{array}{c} w_{t+1} \\ v_t \\ w_{t+1} \\ v_t \end{array} \right) \left(\begin{array}{c} w_{t+1} \\ v_t \end{array} \right)' = \left(\begin{array}{cc} Q(\theta) & W(\theta) \\ W(\theta)' & R(\theta) \end{array} \right), \]
and where \(Q(\theta) = C(\theta)C(\theta)' \).

The Gaussian log likelihood function of \(\{z_{1t}\}_{t=0}^T \) is

\[
L(\theta) = \sum_{t=0}^{T} \ell_t = -\frac{1}{2} \sum_{t=0}^{T} \left[p \log(2\pi) + \log |\Omega_t| + a_t'\Omega_t^{-1}a_t \right]
\]

where \(z_t \) is \(p \times 1 \) and \(a_t = z_{1,t} - E[z_{1,t}|z_{1,t-1}, \ldots, z_{1,0}] \) is the innovation vector from the innovations representation and \(\Omega_t = E(a_t a_t') \).

Maximizing the log likelihood function with respect to \(\theta \) is equivalent to a particular generalized method of moments (GMM) procedure using observations on \((z_{1t}, t = 0, \ldots, T) \). Note that the first-order order conditions for maximizing the log likelihood function are

\[
\frac{\partial L}{\partial \theta} = 0.
\]

To see how this matches up with GMM, compute the score vector \(s_t = \frac{\partial \ell_t}{\partial \theta} \) that has elements,

\[
\frac{\partial \ell_t}{\partial \theta_i} = -\frac{1}{2} \text{tr} \left\{ \left(\Omega_t^{-1} \frac{\partial \Omega_t}{\partial \theta_i} \right) \left(I - \Omega_t^{-1} a_t a_t' \right) \right\} - \left(\frac{\partial a_t}{\partial \theta_i} \right)' \Omega_t^{-1} a_t.
\]

Using a notation of Hansen (1982), the GMM estimator of \(\theta \) minimizes

\[
J_T(\theta) = g_T(\theta)' W_T g_T(\theta)
\]

where

\[
g_T(\theta) = \frac{1}{T} \sum_{t=0}^{T} s_t(\theta)
\]

and \(W_T \) is any positive definite \(r \times r \) weighting matrix. Notice that \(g_T(\theta) = \frac{\partial L}{\partial \theta} \), so that for any positive definite weighting matrix, criterion (8.10.2) is minimized by the minimizer of \(L(\theta) \). The irrelevance of the weighting matrix \(W_T \) reflects the property that from the viewpoint of GMM, this is a ‘just-identified’ system, with as many moment conditions as free parameters.

Suppose that we want to use the observations in \(z_{1t} \) and in \(z_{2t} \) to estimate \(\theta \). We can apply a method described by Lee and Ingram (1991). Given the law of motion in (8.10.1) and a realization from a pseudo-random number generator for \(\{w_{j+1}, v_{1j}, v_{2j}\}_{j=0}^N \), we can generate a pseudo-random realization of the series
Let $q(\cdot)$ be a given function of the data. Use the data and the simulation of the model, respectively, to compute the two moment vectors:

$$H_T(z) = \frac{1}{T+1} \sum_{t=0}^{T} q(z_{1t}, z_{2t})$$

$$H_N(\theta) = \frac{1}{N+1} \sum_{j=0}^{N} q(z_{1j}, z_{2j}; \theta).$$

Define $h_T(\theta)$ as

$$h_T(\theta) = \frac{1}{T+1} \sum_{t=0}^{T} \left[q(z_{1t}, z_{2t}) - \frac{1}{n+1} \sum_{j=0}^{n} q(z_{1j}, z_{2j}; \theta) \right]$$

$$= H_T(z) - H_N(\theta),$$

where $n + 1 = (N + 1)/(T + 1)$ and $N + 1$ is some integer multiple of $T + 1$.

Then the estimation strategy is to choose θ to minimize

$$J_T(\theta) = \begin{bmatrix} \partial L/\partial \theta' \\ h_T(\theta) \end{bmatrix}' W_T \begin{bmatrix} \partial L/\partial \theta \\ h_T(\theta) \end{bmatrix}$$

for some weighting matrix W_T. To estimate W_T, we can use a two-stage procedure of Hansen (1982), which is to start with $W_T = I$ and then construct the weighting matrix associated with the resulting estimate of θ.

A. Initialization of Kalman Filter

This appendix describes how Kohn and Ansley’s (1986) idea for estimating the initial state can be applied in the context of our class of models. Aside from numerical issues, Kohn and Ansley’s procedure is equivalent to using all of the data $\{y_t\}_{t=0}^{T}$, and initializing the Kalman filter from a partitioned covariance matrix designed to approximate

$$\Sigma_0 = \begin{bmatrix} +\infty I & +\infty \mathbf{1} \\ +\infty \mathbf{1}' & \Sigma_{0,22} \end{bmatrix},$$

where $\Sigma_{0,22}$ is the asymptotic covariance matrix of that piece of the state vector that has an asymptotically stationary distribution, and $\mathbf{1}$ is a matrix of ones.
The $+\infty I$ pertains to elements of the state that have no asymptotic stationary distribution. In practice, $+\infty$ is approximated by a large positive scalar. This procedure was used by Harvey and Pierse (1984) and in principle ought to be close to Kohn and Ansley’s, though the literature contains examples of cases in which the numerical properties of the ‘$+\infty \approx$ a big number’ approach are poor.\footnote{Another approach has been to use an ‘inverse filter’ in which the recursions are cast in terms of the inverse of Σ_t.} For that reason, it is good to have in hand procedures like the one we shall describe.

For convenience, we temporarily work with the state-space system\footnote{It is easy to map (8.C.3), which describes the state-space system with serially correlated measurement errors, into this form. Define $w_{t+1}^* = \begin{pmatrix} w_{t+1} \\ \eta_{t+1} \end{pmatrix}$ and represent (8.C.3) as $x_{t+1} = Ax_t + \begin{pmatrix} C \\ \eta \end{pmatrix} \begin{pmatrix} w_{t+1}^* \\ \eta_{t+1} \end{pmatrix}$

$y_t = Gx_t + Gw_{t+1}^*.$}

\begin{equation}
\begin{aligned}
 x_{t+1} &= Ax_t + Cw_{t+1}^* \\
 y_t &= Gx_t + Qw_{t+1}^*,
\end{aligned}
\tag{8.A.1}
\end{equation}

where w_{t+1}^* is a martingale difference sequence with identity for its conditional covariance matrix. In the interest of eventually imputing a diffuse prior to the initial values of that part of the state vector that has no stationary distribution, we represent the initial state as

$$x_0 = \phi \eta + \psi + N\nu,$$

where ψ is an $n \times 1$ vector with all zeros except possibly for one value of one that locates the constant in the state, ν is normally distributed with mean zero and covariance I, and η is normally distributed with mean zero and covariance kI, where the random vectors ν and η are assumed to be independent. We use $\phi \eta$ to represent the piece of the initial state that has no stationary distribution, and $N\nu$ to represent the piece with a stationary distribution. We attain a diffuse prior on the stationary distribution by driving k to $+\infty$. Our plan is to project x_m on y_{m-1}, \ldots, y_0, while driving $k \to +\infty$, and then to initialize the Kalman filter from the resulting estimators of the distribution of x_m.

Initialization of Kalman Filter

By iterating on the state equation (8.A.1), we can write

\[x_m = A^m \phi \eta + A^m \psi + H_m w^m \]

(8.A.2)

where \(w^{m'} = (\nu' \quad w_1' \quad \ldots \quad w_m') \) and

\[H_m = (A^{m-1} N \quad A^{m-2} C \quad \ldots \quad C). \]

Now create a vector \(Y^{m-1'} = (y_0' \quad y_1' \quad \ldots \quad y_{m-1}') \) that obeys:

\[Y^{m-1} = M_m \eta + \alpha + G_m w^m \]

(8.A.3)

where

\[
M_m = \begin{pmatrix}
G\phi \\
G\phi \quad A \phi \\
\vdots \\
G A^{m-1} \phi
\end{pmatrix}, \quad \alpha = \begin{pmatrix}
G \\
G \quad A \\
\vdots \\
G A^{m-1}
\end{pmatrix} \psi
\]

and

\[
G_m =
\begin{pmatrix}
G N & Q & 0 & 0 & \ldots & 0 & 0 \\
G A N & G C & Q & 0 & \ldots & 0 & 0 \\
G A^2 N & G A C & G C & Q & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
G A^{m-2} N & G A^{m-3} C & G A^{m-4} C & G A^{m-5} C & \ldots & Q & 0 \\
G A^{m-1} N & G A^{m-2} C & G A^{m-3} C & G A^{m-4} C & \ldots & G C & Q
\end{pmatrix}.
\]

Transform equation (8.A.2) as follows. Regress \(H_m w^m \) onto \(G_m w^m \) and denote the residual as \(R_m w^m \) to obtain the representation

\[H_m w^m = H^*_m G_m w^m + R_m w^m, \]

(8.A.4)

where \(H^*_m = (E H_m w^m w^{m-1} G_m')(E G_m w^m w^{m-1} G_m')^{-1} \) is a matrix of least squares regression coefficients and \(R_m = H_m - H^*_m G_m \). Thus, \(H^*_m = H_m G_m'(G_m G_m')^{-1} \).

Also, since \(G_m w^m = Y^{m-1} - M_m \eta - \alpha \), (8.A.4) implies the representation

\[H_m w^m = H^*_m (Y^{m-1} - M_m \eta - \alpha) + R_m w^m. \]

Rewrite state equation (8.A.2) as:

\[x_m = (A^m \phi - H^*_m M_m) \eta + A^m \psi - H^*_m \alpha + H^*_m Y^{m-1} + R_m w^m. \]

(8.A.5)
Next we compute some conditional expectations and covariances. Initially, we use (8.5) and the facts that (i) by assumption, \(w^m \) is orthogonal to \(\eta \), and (ii) by construction, \(R_m w^m \) is orthogonal to \(G_m w^m \), to compute:

\[
E(x_m | Y^{m-1}, \eta) = (A^m \phi - H^* M_m) \eta + A^m \psi - H^* \alpha + H^* Y^{m-1},
\]

and

\[
\text{cov}(x_m | Y^{m-1}, \eta) = R_m R'_m.
\]

To compute the conditional expectation and covariance matrix conditioning only \(Y^{m-1} \), we first compute the projection of \(\eta \) on \(Y^{m-1} - \alpha \):

\[
\eta = \beta^* (Y^{m-1} - \alpha) + \varepsilon,
\]

where \(\varepsilon \) is a least squares residual. We compute \(E(\eta | Y^{m-1} - \alpha) \) and the second moment matrix of \(Y^{m-1} - \alpha \) and use them in the projection formula:

\[
\beta^* = (kM^{'m})(kM_m M^{'m} + G_m G^{'m})^{-1}.
\]

Premultiply by \([M^{'m}(G_m G^{'m})^{-1} M_m]^{-1}[M^{'m}(G_m G^{'m})^{-1} M_m]^{-1}M^{'m}(G_m G^{'m})^{-1}[kM_m M^{'m}(kM_m M^{'m} + G_m G^{'m})^{-1}] \) to get \(\beta^* = [M^{'m}(G_m G^{'m})^{-1} M_m]^{-1}M^{'m}(G_m G^{'m})^{-1}(Y^{m-1} - \alpha). \) If we drive \(k \to +\infty \), the last term in square brackets approaches the identity matrix, so that we have

\[
E(\eta | Y^{m-1} - \alpha) = [M^{'m}(G_m G^{'m})^{-1} M_m]^{-1}M^{'m}(G_m G^{'m})^{-1}(Y^{m-1} - \alpha). \tag{8.6}
\]

Notice that \(\varepsilon = \beta^*(M_m \eta + G_m w^m) - \eta = (\beta^* M_m - I) \eta + \beta^* G_m w^m \), and that \((\beta^* M_m - I) = 0 \). It follows that

\[
\text{cov}(\eta | Y^{m-1} - \alpha) = [M^{'m}(G_m G^{'m})^{-1} M_m]^{-1}. \tag{8.7}
\]

Using these results and applying the Law of Iterated Expectations to (8.5) gives:

\[
E(x_m | Y^{m-1}) = (A^{m-1} \phi - H^* M_m)[M^{'m}(G_m G^{'m})^{-1} M_m]^{-1} M^{'m}(G_m G^{'m})^{-1}(Y^{m-1} - \alpha) + A^{m-1} \psi - H^* \alpha + H^* Y^{m-1}, \tag{8.8}
\]

\footnote{Note that equations (8.6) and (8.7) result from applying generalized least squares to the system of equations (8.3), where \(\eta \) is regarded as a matrix of constants and \(M_m \) is a matrix of regressors.}
Initialization of Kalman Filter

185

and

\[
\text{cov}(x_m | Y^{m-1}) = R_m R'_m + (A^{m-1} \phi - H'_m M_m)[M'_m (G_m G'_m)^{-1} M_m]^{-1}
\]

\[
(A^{m-1} \phi - H'_m M_m)' .
\]

(8.A.9)

The Kalman filter is to be initialized by using these values of \(\hat{x}_m, \Sigma_m \), then applied to compute (8.C.9), using observations \(\{y_s\}_{s=m}^T \).

When we apply this procedure with (8.A.1) corresponding to the system (8.C.3), we should interpret \(Y^{m-1} \) in the preceding development as \(\bar{Y}^{m-1} \), which corresponds to \(Y^m \) in the real data. In this case, we should interpret \(\hat{x}_m, \Sigma_m \) according to definitions of the (\(\hat{\cdot} \)) variables defined for the system with serially correlated measurement errors.\(^{15}\)

We can also include a contribution to the likelihood function to account for the initial observations used to form \(\hat{x}_m \). Begin with (8.A.3) and let \(\Omega = G_m G'_m \), which we take to be nonsingular. Suppose that \(M_m \) is dimensioned \(r \) by \(s \) where \(r > s \) so that \(\eta \) is ‘overidentified.’ Construct two matrices labeled \(M^\perp \) and \(M^* \), dimensioned \((r-s) \times r\) and \(s \times r\), respectively, to satisfy:

\[
M^\perp \Omega^{-1} M_m = 0
\]

\[
M^* \Omega^{-1} M^\perp = 0,
\]
and construct the nonsingular matrix:

\[
D = \begin{pmatrix} M^* \Omega^{-1} \\ M^\perp \Omega^{-1} \end{pmatrix}.
\]

Define:

\[
z_1 = M^* \Omega^{-1} Y^m
\]

\[
z_2 = M^\perp \Omega^{-1} Y^m.
\]

Notice that conditioned on \(\eta \), \(z_1 \) and \(z_2 \) are uncorrelated. Moreover, by construction \(z_2 \) does not depend on \(\eta \).

We deduce the initial likelihood contribution as follows. First note that

\[
\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = D Y^m.
\]

\(^{15}\) Notice that with serially correlated measurement errors, (8.A.8), (8.A.9) give the appropriate initial conditions for the Kalman filter, because of the dating conventions that make \(u_t \) the innovation to \(y_{t+1} \).
Transforming the \(z \)'s introduces a Jacobian term:

\[
\log \det D,
\]

which is the first contribution to the likelihood.

The second and third contributions are the likelihoods of the \(z \)'s. Conditioned on \(\eta \), the likelihood can be factored. Only the first term in the factorization depends on \(\eta \), and is present in the ‘exactly identified’ case. The quadratic form term converges to zero for this contribution. We deduce the log det term by taking the limit as \(k \) goes to infinity of:

\[
\log \det (kM^*\Omega^{-1}M_m^*M_m^*\Omega^{-1}M^* + M^*G_mG_m^*M^*) =
\]

\[
n_1 \log k + \log \det (M^*\Omega^{-1}M_m^*\Omega^{-1}M^* + \frac{1}{k}M^*G_mG_m^*M^*),
\]

where \(n_1 \) is the dimension of \(z_1 \). Taking the limit and neglecting the term \(n_1 \log k \), which is the same for all settings of the parameter values and so can be ignored, leaves the term:

\[
\log \det (M^*\Omega^{-1}M_m^*\Omega^{-1}M^*).
\]

The \(z_2 \) contribution to the likelihood retains both a log det and a quadratic form contribution. Notice that the \(z_2 \) term is absent in the ‘exactly identified’ case.

B. Zeros of Characteristic Polynomial

We utilize two theorems from the algebra of partitioned matrices. Let \(a, b, c, d \) be appropriately conformable and invertible matrices. Then

\[
(a - bd^{-1}c)^{-1} = a^{-1} + a^{-1}b(d - ca^{-1}b)^{-1}ca^{-1} \quad (8.B.1)
\]

and

\[
\det(a) \det(d + ca^{-1}b) = \det(d) \det(a + bd^{-1}c). \quad (8.B.2)
\]

Apply equality (8.B.1) to \([I + G(zI - A^o)^{-1}K]^{-1}\) with the settings \(a = I, b = -G, d = (zI - A^o), c = K\), to get

\[
[I + G(zI - A^o)^{-1}K]^{-1} = I - G[zI - (A^o - KG)]^{-1}K. \quad (8.B.3)
\]
Apply equality (8.B.2) with the settings \(a = I, b = G, d = (zI - A^o), c = K \) to get

\[
\text{det}(zI - (A^o - KG)) = \text{det}(zI - A^o) \text{det}(I + G(zI - A^o)^{-1}K),
\]

or

\[
\text{det}(I + G(zI - A^o)^{-1}K) = \frac{\text{det}(zI - (A^o - KG))}{\text{det}(zI - A^o)}. \tag{8.B.4}
\]

It follows from (8.B.4) that the zeros of \(\text{det}(I + G(zI - A^o)^{-1}K) \) are the eigenvalues of \(A^o - KG \), and the poles of \(\text{det}(I + G(zI - A^o)^{-1}K) \) are the eigenvalues of \(A^o \). Assumptions A1 and A2 guarantee that the eigenvalues of \(A^o - KG \) are less than unity in modulus. We have already made assumptions that assure that the eigenvalues of \(A^o \) are less than unity in modulus. These conditions on the eigenvalues together with equations (8.B.3) and (8.B.4) permit us to obtain the Wold and autoregressive representations of \(\{y_t\} \) in convenient forms.

C. Serially Correlated Measurement Errors

It is useful to extend some of the calculations in the text to cover the case in which the measurement errors \(v_t \) in (8.1.1) are serially correlated.\(^{16}\) Modify (8.1.1) to be

\[
x_{t+1} = A^o x_t + Cw_{t+1}
\]

\[
y_t = Gx_t + v_t
\]

\[
v_t = Dv_{t-1} + \eta_t,
\]

where \(D \) is a matrix whose eigenvalues are strictly below unity in modulus and \(\eta_t \) is a martingale difference sequence that satisfies

\[
E\eta_t\eta_t' = R
\]

\[
Ew_{t+1}w_s' = 0 \quad \text{for all } t \text{ and } s.
\]

In (8.C.1), \(v_t \) is a serially correlated measurement error process that is orthogonal to the \(x_t \) process. Define the quasi-differenced process

\[
\overline{y}_t \equiv y_{t+1} - Dy_t. \tag{8.C.2}
\]

\(^{16}\) The calculations in this section imitate those of Anderson and Moore (1979).
From (8.C.1) and the definition (8.C.2) it follows that

\[\eta_t = (GA^o - DG)x_t + GCw_{t+1} + \eta_{t+1} \]

Thus, \((x_t, \eta_t)\) is governed by the state space system

\[x_{t+1} = A^o x_t + Cw_{t+1} \]
\[\eta_t = Gx_t + GCw_{t+1} + \eta_{t+1} \]

(8.C.3)

where \(G = GA^o - DG \). This state space system has nonzero covariance between the state noise \(Cw_{t+1} \) and the “measurement noise” \((GCw_{t+1} + \eta_{t+1})\). Define the covariance matrices

\[V_1 = CC', V_2 = GCC'G' + R, V_3 = CC'G' \]

By applying the Kalman filter to (8.C.3), we obtain a gain sequence \(K_t \) with which to construct the associated innovations representation

\[\hat{x}_{t+1} = A^o \hat{x}_t + K_t u_t \]
\[\overline{y}_t = G\hat{x}_t + u_t \]

(8.C.4)

where \(\hat{x}_t = \hat{E}[x_t | \overline{y}_0^{-1}, \hat{x}_0], u_t = \eta_t - \hat{E}[\eta_t | \overline{y}_0^{-1}, \hat{x}_0], \Omega_1 \equiv EU_tu_t' = G\Sigma_k\overline{G} + V_2. \)

Using definition (8.C.2), it follows that \([y_{t+1}^0, \hat{x}_0]\) and \([\overline{y}_0, \hat{x}_0]\) span the same space, so that \(\hat{x}_t = \hat{E}[x_t | y_0^0, \hat{x}_0], u_t = y_{t+1} - \hat{E}[y_{t+1} | y_0^0, \hat{x}_0]. \) Thus, \(u_t \) is the innovation in \(y_{t+1}. \)

Combined System

It is useful to have a formula that gives a state space representation for \(y_t \) driven by the innovations to \(y_t \). We obtain this by combining the innovations system (8.C.4) for \(\overline{y}_t \) with the system

\[y_{t+1} = Dy_t + \overline{y}_t. \]

(8.C.5)

The system (8.C.5) accepts \(\{\overline{y}_t\} \) as an “input” and produces \(\{y_t\} \) as an “output”. The two systems (8.C.4) and (8.C.5) can be combined in a series to give the state space system:

\[
\begin{bmatrix}
\hat{x}_{t+1} \\
y_{t+1}
\end{bmatrix} =
\begin{bmatrix}
A^o & 0 \\
G & D
\end{bmatrix}
\begin{bmatrix}
\hat{x}_t \\
y_t
\end{bmatrix}
+
\begin{bmatrix}
K_t \\
I
\end{bmatrix} u_t
\]

\[
y_t =
\begin{bmatrix}
0 \\
I
\end{bmatrix}
\begin{bmatrix}
\hat{x}_t \\
y_t
\end{bmatrix}
+ [0] u_t
\]

(8.C.6)
The MATLAB program `evardec.m` uses the time-invariant version of (8.C.6), obtained using `kfilter.m`, to obtain a decomposition of the j-step ahead prediction error variance associated with the Wold representation for y_t.\footnote{The MATLAB program `series.m` can be used to obtain the time-invariant system (8.C.6) from the two systems (8.C.4) and (8.C.5).}

Likelihood function with serially correlated measurement errors

When we use the state space model with serially correlated measurement errors (8.C.1), some adjustments are called for in the above procedures for forming the log likelihood. These adjustments are occasioned by the timings in the definitions of \hat{x}_t, u_t. In particular, the notation now denotes $\hat{x}_t = E[x_t|y^t]$ and $\Sigma_t = E(x_t - \hat{x}_t)(x_t - \hat{x}_t)'$. These changes mean that the distribution $g_{t-1}(u_{t-1})$ equals $f_t(y_t|y_{t-1}, \ldots, y_0)$. So corresponding to the factorization (8.4.1) we have

$$g_{T-1}(u_{T-1})g_{T-2}(u_{T-2}) \cdots g_0(u_0)g_{-1}(u_{-1}). \quad (8.C.7)$$

To deduce the appropriate distribution of y_0, or equivalently, of u_{-1}, notice that the time 0 version of the ‘whitener’ is

$$u_{-1} = y_0 - D y_{-1} - \bar{G} \hat{x}_{-1}$$
$$\hat{x}_{0} = A^0 \hat{x}_{-1} + K_0 u_{-1},$$

where K_0 is the time 0 value for the Kalman gain. It is natural to start the system with $y_{-1} = GEx$ and $\hat{x}_{-1} = Ex$, where Ex is the stationary mean of x_t,\footnote{Notice that G and not \bar{G} appears in the equation for the unconditional mean.} and to initiate the Kalman filter from the mean of the stationary distribution of x. So the Gaussian log likelihood function is

$$-0.5 \sum_{t=1}^{T-1} \{ p \ln(2\pi) + \ln |\Omega_t| + u_t' \Omega_t^{-1} u_t \}. \quad (8.C.8)$$

We now indicate how these procedures can be adapted to handle models for which no stationary distribution for x_t exists, following procedures of Kohn and Ansley (1983), to be discussed in more detail in appendix A. The idea is to factor the likelihood function as

$$f(y_T, y_{T-1}, \ldots, y_0) = f_T(y_T|y_{T-1}, \ldots, y_0)f_{T-1}(y_{T-1}|y_{T-2}, \ldots, y_0) \cdots$$
$$f_m(y_m|y_{m-1}, \ldots, y_0)f(y_{m-1}, \ldots, y_0). \quad (8.C.9)$$
Kohn and Ansley assign a 'diffuse prior' to that subset of the state vector that does not possess a stationary distribution, and let the remaining piece of \(x_0 \) be distributed according to its stationary distribution. This specification embodies an 'improper prior' distribution for \((y_{m-1}, \ldots, y_0)\). Under this specification, we use the first \(m \) observations of \(y_t \) to estimate \(\hat{x}_{m-1} \), then form \(\hat{x}_{m-1}, \Sigma_{m-1} \) from which to initiate the Kalman filter for the system (8.3.3) with serially correlated measurement errors. The Kalman filter is applied to compute the likelihood for the sample \(\{y_s\}_{s=m}^T \). In addition, we can adjust (8.3.9) to account for the first \(m \) observations. Details are given in the appendix.

Wold and autoregressive representations

To get a Wold representation for \(y_t \), for the case in which the measurement errors are vector first-order autoregressive processes, substitute (8.3.2) into (8.3.4) to obtain

\[
\hat{x}_{t+1} = A^o \hat{x}_t + Ku_t
\]

\[
y_{t+1} - D y_t = \Sigma \hat{x}_t + u_t.
\]

Then (8.3.10) and (8.6.1) can be used to get a Wold representation for \(y_t \):

\[
y_{t+1} = [I - DL]^{-1} [I + \Sigma (I - A^o L)^{-1} KL] u_t,
\]

where again \(L \) is the lag operator. Also, from (8.3.10) a “whitening filter” for obtaining \(\{u_t\} \) from \(\{y_t\} \) is given by

\[
u_t = y_{t+1} - D y_t - \Sigma \hat{x}_t
\]

\[
\hat{x}_{t+1} = A^o \hat{x}_t + Ku_t.
\]

Using \([G(I - A^o L)^{-1} KL + I]^{-1} = I - G[I - (A^o - KG)L]^{-1} KL\) from equation (8.6.3), we can write (8.3.11) as

\[
y_{t+1} = [I - DL]^{-1} [I - G[I - (A^o - KG)L]^{-1} KL]^{-1} u_t
\]

Premultiplying both sides of (8.3.13) by \((I - DL)\) and then premultiplying both sides by \([I - G][I - (A^o - KG)L]^{-1} KL\] gives

\[
[I - G][I - (A^o - KG)L]^{-1} KL \] \((I - DL)y_{t+1} = u_t,
\]

which implies

\[
y_{t+1} = [D + G[I - (A^o - KG)L]^{-1} K(I - DL)] y_t + u_t,
\]
Innovations in y_{t+1} as Functions of w_{t+1} and η_{t+1}

or equivalently

$$y_{t+1} = D y_t + G \sum_{j=0}^{\infty} (A^o - K G)^j K y_{t-j} - G \sum_{j=0}^{\infty} (A^o - K G)^j K D y_{t-j-1} + u_t$$

$$= (D + G K) y_t + G \sum_{j=1}^{\infty} (A^o - K G)^j K y_{t-j} - G \sum_{j=1}^{\infty} (A^o - K G)^{j-1} K D y_{t-j} + u_t$$

$$= (D + G K) y_t + G \sum_{j=1}^{\infty} (A^o - K G)^j [K - (A^o - K G)^{-1} K D] y_{t-j} + u_t$$

(8.C.16)

Equations (8.C.15) and (8.C.16) express y_{t+1} as the sum of the one-step ahead linear least squares forecast and the one-step prediction error.\(^{19}\)

D. Innovations in y_{t+1} as Functions of w_{t+1} and η_{t+1}

By coupling the original state space system with the associated innovations representation, it is possible to express the innovations in the \{y_t\} process as functions of the disturbances \{w_t\} and the measurement errors \{v_t\}. Having a method for expressing this connection can be useful when we want to interpret the innovations in \{y_t\} as functions of the shocks impinging on agents’ information sets and the measurement errors.

The state space system is

$$x_{t+1} = A^o x_t + C w_{t+1}$$
$$\bar{y}_t = G x_t + G C w_{t+1} + \eta_{t+1},$$

(8.D.1)

which corresponds to an innovations representation, which can be expressed as the “whitener”

$$\hat{x}_{t+1} = (A^o - K G) \hat{x}_t + K \bar{y}_t$$
$$u_t = \bar{y}_t - G \hat{x}_t.$$ \hspace{1cm} (8.D.2)

Substituting the second equation of (8.C.3) into the first equation of (8.D.2) gives

$$\hat{x}_{t+1} = (A^o - K G) \hat{x}_t + K G x_t + K G C w_{t+1} + K \eta_{t+1}.$$ \hspace{1cm} (8.D.3)

\(^{19}\) The MATLAB program varrep.m uses (8.C.16) to obtain a vector autoregressive representation for an equilibrium set of y_t’s, given $[A^o, C, G, D, R]$.

Using (8.D.3), systems (8.C.3) and (8.D.2) can be combined to give the consolidated system

$$\begin{bmatrix} x_{t+1} \\ \hat{x}_{t+1} \end{bmatrix} = \begin{bmatrix} A^0 & 0 \\ K \overline{G} & A^0 - K \overline{G} \end{bmatrix} \begin{bmatrix} x_t \\ \hat{x}_t \end{bmatrix} + \begin{bmatrix} C w_{t+1} \\ K G C w_{t+1} + K \eta_{t+1} \end{bmatrix}$$

(8.D.4)

In system (8.D.4), the “inputs” are the innovations to agents’ information sets, namely, w_{t+1}, and the innovations to the measurement errors, namely, η_{t+1}. The “output” of the system is the innovation to y_{t+1}, namely $u_t = y_{t+1} - \hat{E}y_{t+1} | y_t$. By computing the impulse response function of system (8.D.4), we can study how the innovations u_t depend on current and past values of w_{t+1} and η_{t+1}. Versions of formula (8.D.4) are useful for studying the range of issues considered by Hansen and Sargent (1991, ch. 4) and Fernandez-Villaverde, et al. (2007).

In the next section, we illustrate one such issue in the context of a permanent income example.

E. Innovations in a Permanent Income Model

This appendix illustrates some of the preceding ideas in the context of an economic model that implies that the econometrician’s information set spans a smaller space than agents’ information. The context is a class of models that impose expected present value budget balance. As we shall see, expected present value budget balance is characterized by a condition that implies that the moving average representation that records the response of the system to the w_t’s fails to be invertible. A consequence is that the innovations in the autoregressive representation don’t coincide with the w_t’s. Representation (8.D.4) can be used to compute a distributed lag expressing the innovations as functions of the lagged w_t’s.

We consider the following version of Hall’s (1978) model in which the endowment process is the sum of two orthogonal autoregressive processes. Preferences, technology, and information are specified as follows:

\footnote{The MATLAB programs \texttt{white1.m} and \texttt{white2.m} use formula (8.D.4) to compute impulse response functions of u_t with respect to w_t and η_t, respectively.}
Preferences

\[- \frac{1}{2} E \sum_{t=0}^{\infty} \beta^t [(c_t - b_t)^2 + \ell_t^2] \mid J_0 \]

Technology

\[c_t + i_t = \gamma k_{t-1} + d_t\]

\[\phi_1 i_t = g_t\]

\[k_t = \delta_k k_{t-1} + i_t\]

\[g_t \cdot g_t = \ell_t^2\]

Information

\[
A_{22} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & .9 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix},
C_2 = \begin{bmatrix}
0 & 0 \\
1 & 0 \\
0 & 4 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]

\[U_d = \begin{bmatrix}
5 & 1 & 1 & .8 & .6 & .4 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}\]

\[U_b = \begin{bmatrix}
30 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}\]

We specify that \(\gamma = .05, \delta_k = 1, \beta = 1/1.05, \phi_1 = .00001\). Note that \(\beta(\delta_k + \gamma) = 1\), which is the condition for consumption to be a random walk in Hall’s model. The preference shock is constant at 30, while the endowment process is the sum of a constant (5) plus two orthogonal processes. In particular, we have specified that \(d_t = 5 + d_{1t} + d_{2t}\), where

\[d_{1t} = .9d_{1t-1} + w_{1t}\]

\[d_{2t} = \bar{w}_{2t} + .8\bar{w}_{2t-1} + .6\bar{w}_{2t-2} + .4\bar{w}_{2t-3}\]

where \((w_{1t}, \bar{w}_{2t}) = (w_{1t}, 4w_{2t})\). Notice that we have set

\[E\begin{bmatrix} w_{1t} \\ \bar{w}_{2t} \end{bmatrix} \begin{bmatrix} w_{1t} \\ \bar{w}_{2t} \end{bmatrix}' = \begin{bmatrix} 1 & 0 \\ 0 & 16 \end{bmatrix}.
\]
Here \(d_{1t} \) is a first-order autoregressive process, while \(d_{2t} \) is a third order pure moving average process.

We define the household’s net of interest deficit as \(c_t - d_t \). Hall’s model imposes “expected present value budget balance,” in the sense that \(E \sum_{j=0}^{\infty} \beta^j (c_{t+j} - d_{t+j}) \mid J_t = \beta^{-1} k_t - 1 \) for all \(t \), which implies that the present value of the moving average coefficients in the response of the deficit to innovations in agents’ information sets must be zero. That is, let the moving average representation of \((c_t, c_t - d_t) \) in terms of the \(w_t \)'s be

\[
\begin{bmatrix}
 c_t \\
 c_t - d_t \\
\end{bmatrix} = \begin{bmatrix}
 \sigma_1(L) \\
 \sigma_2(L) \\
\end{bmatrix} w_t, \quad (8.E.1)
\]

where \(\sigma_1(L) \) and \(\sigma_2(L) \) are each \((1 \times 2)\) matrix polynomials, and \(\sigma_i(L) = \sum_{j=0}^{\infty} \sigma_{i,j} L^j \). Then Hall’s model imposes the restriction

\[
\sigma_2(\beta) = [0 \ 0]. \quad (8.E.2)
\]

The agents in this version of Hall’s model observe \(J_t \) at \(t \), which includes the history of each component of \(w_t \) up to \(t \). This means that agents see histories of both components of the endowment process \(d_{1t} \) and \(d_{2t} \). Let us now put ourselves in the shoes of an econometrician who has data on the history of the pair \([c_t, d_t]\), but not directly on the history of \(w_t \). We imagine the econometrician to form a record of consumption and the deficit \([c_t, c_t - d_t]\), and to obtain a Wold representation for the process \([c_t, c_t - d_t]\). Denote this representation

\[
\begin{bmatrix}
 c_t \\
 c_t - d_t \\
\end{bmatrix} = \begin{bmatrix}
 \sigma_1^*(L) \\
 \sigma_2^*(L) \\
\end{bmatrix} u_t, \quad (8.E.3)
\]

where \(\sigma^*(L) \) is one-sided in nonnegative powers of \(L \), and \(\sigma_0^* u_t \) is a serially uncorrelated process with mean zero and \(E u_t u_t' = I \); \(u_t \) is the innovation of \([c_t, c_t - d_t]\) relative to the history \([c^t-1, c^t-1 - d^t-1]\).

It is natural to ask whether the impulse response functions \(\sigma^*(L) \) in the Wold representation (or vector autoregression) \((8.E.3)\) estimated by the econometrician “resemble” the impulse response functions \(\sigma(L) \) that depict the response of \((c_t, c_t - d_t)\) to the innovations to agents’ information. A way to

\[22\] Without loss of generality, the covariance matrix of \(w_t \) can be chosen to be the identity matrix.
\[23\] Without loss of generality, the covariance matrix of \(u_t \) can be chosen to be the identity matrix.
Innovations in a Permanent Income Model

195

attack this question is to ask whether the history of the \(\{u_t\} \) process of innovations to the econometrician’s information set in (8.3) reveals the history of the \(\{w_t\} \) process impinging on agents’ information sets. In the present model, the answer to this question is ‘no’ precisely because restriction (8.2) holds. In particular, (8.2) implies that the history of \(u_t \)'s in (8.3) spans a smaller linear space than does the history of \(w_t \)'s.

Here is the reason. The \(u_t \)'s in (8.3) are constructed to lie in the space spanned by the history of the \([c_t, c_t - d_t]\) process. Technically, this implies that the operator \(\sigma^*(L) \) in (8.3) is invertible, so that (8.3) can be expressed as

\[
 u_t = \sigma^*(L)^{-1} \begin{bmatrix} c_t \\ c_t - d_t \end{bmatrix},
\]

where \(\sigma^*(L)^{-1} \) is one-sided in nonnegative powers of \(L \), and where the coefficients in its power series expansion are square summable. Given that \(\sigma^*(z)\sigma^*(z^{-1})' \) is of full rank, a necessary condition for \(\sigma^*(L)^{-1} \) to exist (i.e., to have a representation as a square-summable polynomial in nonnegative powers of \(L \) is that \(\det(\sigma^*(z)) \) have no zeros inside the unit circle.

Condition (8.2) then rules out the possibility that \(\sigma^*(L) \) is related to \(\sigma(L) \) by a relation of the form \(\sigma^*(L) = U\sigma(L) \) where \(U \) is a nonsingular \(2 \times 2 \) matrix. For (8.2) implies that \(\det(\sigma(z)) \) has a zero at \(\beta \), which is inside the unit circle. In circumstances in which \([c_t, c_t - d_t]\) is a full-rank process,\(^{25}\) the history of \([c_t, c_t - d_t]\) generates a smaller information set than does the history of the \(w_t \) process.

When \(u_t \) spans a smaller space than \(w_t \), \(u_t \) will typically be a distributed lag of \(w_t \) that is not concentrated at zero lag:

\[
 u_t = \sum_{j=0}^{\infty} \alpha_j w_{t-j}, \quad (8.4)
\]

Thus, the econometrician’s news \(u_t \) potentially responds belatedly to agents’ news \(w_t \). The calculations leading to representation (8.D.4) can be used to compute the vector distributed lag \(\alpha_j \).

\(^{24}\) Recall the construction underlying Wold’s representation theorem, e.g., see Sargent (1987b, ch. XI).

\(^{25}\) By a full-rank process we mean that \(\sigma^*(z)\sigma^*(z^{-1}) \) is nonsingular.
To illustrate these ideas in the context of the present version of Hall’s model, figures 8.E.1.a and 8.E.1.b display the impulse response functions of \([c_t, c_t - d_t] \) to the two innovations in the endowment process.\(^{26}\) Consumption displays the characteristic “random walk” response with respect to each innovation. Each endowment innovation leads to a temporary surplus followed by a permanent net-of-interest deficit. The temporary surplus is used to accumulate a stock of capital sufficient to support the permanent net-of-interest deficit that is to follow it. Restriction (8.E.2) states that the temporary surplus just offsets the permanent deficit in terms of expected present value. For each innovation, we computed the present value of the response of \((c_t - d_t)\) to be zero, as predicted by (8.E.2).

Figures 8.E.2.a and 8.E.2.b report the impulse responses from the Wold representation, which we obtained using the programs `varma.m` and `varma2.m`.

\(^{26}\) This is a version of the example in Fernandez-Villaverde, et al. (2007).
The covariance matrix of the innovations $\sigma_0^u u_t$ is

$$E\sigma_0^u \sigma_0'^u = \begin{bmatrix} .3662 & -1.9874 \\ -1.9874 & 12.8509 \end{bmatrix}.$$

Notice that consumption responds only to the first innovation in the Wold representation, and that it responds with an impulse response symptomatic of a random walk. That consumption responds only to the first innovation in the vector autoregression is indicative of the Granger-causality imposed on the $[c_t, c_t - d_t]$ process by Hall’s model: consumption Granger causes $c_t - d_t$, with no reverse causality.

Unlike consumption, the response of the deficit $(c_t - d_t)$ to the innovations in the vector autoregression depicted in figures 8.E.2.a and 8.E.2.b fail to match up qualitatively with the patterns displayed in figures 8.E.1.a and 8.E.1.b. In particular, the present values ($\sigma_2^2(\beta)$) of the response of $c_t - d_t$ to u_t are $(6.0963, 6.6544)$. By construction, $\sigma_2^2(\beta)$ cannot be zero because $\sigma_2^2(L)$ is invertible.

Figures 8.E.3.a and 8.E.3.b display the impulse responses of u_t to w_t, the kind of representation depicted in equation (8.E.4). While the responses of the
Innovations to consumption are concentrated at lag zero for both components of \(w_t \), the responses of the innovations to \((c_t - d_t) \) are spread over time (especially the response to \(w_{1t} \)). Thus, the innovations to \((c_t - d_t) \) as revealed by the vector autoregression depend on what to economic agents is “old news”.

Hansen, Roberds, and Sargent (1991) describe how such issues impinge on strategies for econometrically testing present value budget balance. Hansen and Sargent (1991, ch. 4) and Marcet (1991) more generally study the link between innovations in a vector autoregression and the innovations in agents’ information sets.
9.1. Introduction

This chapter derives dynamic demand schedules from a household service technology

\[h_t = \Delta_h h_{t-1} + \Theta_h c_t \]
\[s_t = \Delta h_{t-1} + \Pi c_t \] \hspace{1cm} (9.1.1)

with preference shock \(b_t = U_b z_t \). An equivalence class of household technologies \((\Delta_h, \Theta_h, \Pi, \Lambda, U_b) \) give rise to identical demand schedules. Among such household technologies, particular ones that we call canonical are convenient for reasons that we explain in this chapter.

We apply the concept of canonical representation of household technologies to a version of Becker and Murphy’s model of rational addiction. The chapter sets the stage for the chapter 10 use of demand curves to construct partial equilibrium interpretations of our models. This chapter also sets the stage for the studies of aggregation of preferences in chapters 12 and 13.

9.2. Definition of a Canonical Household Technology

DEFINITION: A household service technology \((\Delta_h, \Theta_h, \Pi, \Lambda, U_b) \) is said to be canonical if

i. \(\Pi \) is nonsingular, and

ii. The absolute values of the eigenvalues of \((\Delta_h - \Theta_h \Pi^{-1} \Lambda) \) are strictly less than \(1/\sqrt{\beta} \).

A canonical household service technology maps a service process \(\{s_t\} \) in \(L_0^2 \) into a corresponding consumption process \(\{c_t\} \) for which the implied household capital stock process \(\{h_t\} \) is also in \(L_0^3 \). To verify this, we use the canonical
representation to obtain a recursive representation for the consumption process in terms of the service process:

\[
\begin{align*}
 c_t &= -\Pi^{-1} \Lambda h_{t-1} + \Pi^{-1} s_t \\
 h_t &= (\Delta_h - \Theta_h \Pi^{-1} \Lambda) h_{t-1} + \Theta_h \Pi^{-1} s_t.
\end{align*}
\] (9.2.1)

The restriction on the eigenvalues of the matrix \((\Delta_h - \Theta_h \Pi^{-1} \Lambda)\) keeps the household capital stock \(\{h_t\}\) in \(L_0^2\). We can call (9.2.1) an inverse household technology.

9.3. Dynamic Demand Functions

We postpone constructing a canonical representation, and proceed immediately to use one to construct a dynamic demand schedule. In chapter 7, we derived the following first-order conditions for the household’s optimization problem:

\[
\begin{align*}
 s_t &= b_t - \mu^*_t \\
 \Pi' \mu^*_t &= -\Theta_h' \mu^*_h + \mu^w_p \rho^0_t \\
 \mu^h_t &= \beta E_t (\Lambda' \mu^*_t + \Delta_h' \mu^h_{t+1}).
\end{align*}
\] (9.3.1-9.3.3)

As a prelude to computing demand for consumption, we compute demand for services. Our strategy is to use (9.3.2) and (9.3.3) to solve for the multiplier \(\mu^*_t\) and then to substitute it into (9.3.1). Shift (9.3.2) forward one time period and solve (9.3.2) for \(\mu^*_{t+1}\). Substitute this expression into (9.3.3):

\[
\mu^h_t = \beta E_t (\Lambda' \mu^*_t + \Delta_h' \mu^h_{t+1}).
\] (9.3.4)

Solve (9.3.4) forward to obtain:

\[
\mu^h_t = \mu^w E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h' - \Lambda' \Pi^{-1} \Theta_h')^{\tau-1} \Lambda' \Pi^{-1} \rho^0_{t+\tau}.
\] (9.3.5)

Because we are using a canonical household service technology, the infinite sum on the right side of (9.3.5) converges (in \(L_0^2\)). Therefore, the service demand can be expressed as

\[
 s_t = b_t - \mu^w_p \rho^0_t,
\] (9.3.6)
where
\[
\rho^0_t = \Pi^{-1} \left[\rho^0_t - \Theta_h E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta^h_\tau - \Lambda' \Pi^{-1} \Theta_h) \tau - 1 \Lambda' \Pi^{-1} \rho^0_{t+\tau} \right].
\] (9.3.7)

Equations (9.3.6) and (9.3.7) represent the service demands in terms of expected future prices of the consumption good. The random vector \(\rho^0_t \) is an implicit rental price for services expressed in terms of current and expected future prices of consumption goods. The inverse system (9.2.1) transforms \(\{s_t\} \) in \(L^2_0 \) into \(\{c_t\} \) in \(L^2_0 \).

9.3.1. Wealth and the Multiplier \(\mu^w_0 \)

The service demands expressed in (9.3.6) depend on the endogenous scalar multiplier \(\mu^w_0 \). To compute \(\mu^w_0 \), we partition the household capital and service sequences into two components. One component is a service sequence obtained from an initial endowment of household capital. The other component is the service sequence obtained from market purchases of consumption goods. The service sequence \(\{s_{i,t}\} \) obtained from the initial endowment of household capital evolves according to
\[
s_{i,t} = \Lambda h_{i,t-1} \\
h_{i,t} = \Delta h_{i,t-1},
\] (9.3.8)
where \(h_{i,-1} = h_{-1} \). The service sequence \(\{s_{m,t}\} \) obtained from purchases of consumption satisfies:
\[
s_{m,t} = b_t - s_{i,t} - \mu^w_0 \rho^0_t.
\] (9.3.9)

We can compute the time zero cost of the sequence \(\{s_{m,t}\} \) in one of two equivalent ways. One way is to compute the time zero cost of the consumption sequence \(\{c_t\} \) needed to support the service demands using the price sequence \(\{p_t\} \). Another is to use the implicit rental sequence \(\{\rho^0_t\} \) directly to compute the time zero costs of \(\{s_{m,t}\} \). In the appendix to this chapter, we verify that the two measures of costs agree:
\[
E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot s_{m,t} = E_0 \sum_{t=0}^{\infty} \beta^t p^0_t \cdot c_t.
\] (9.3.10)
It is plausible that, starting from $h_{-1} = 0$, the value of a service stream equals the value of consumption stream that delivers it.

It follows from (9.3.9) that

$$E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot s_{m,t} = E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot (b_t - s_{i,t}) - \mu^w_0 E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot \rho^0_t. \tag{9.3.11}$$

Substitute (9.3.10) and (9.3.11) into the consumer’s budget constraint (6.2) and solve for the time zero marginal utility of wealth μ^w_0:

$$\mu^w_0 = \frac{E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot (b_t - s_{i,t}) - W_0}{E_0 \sum_{t=0}^{\infty} \beta^t \rho^0_t \cdot \rho^0_t}, \tag{9.3.12}$$

where W_0 denotes initial period wealth satisfying

$$W_0 = E_0 \sum_{t=0}^{\infty} \beta^t (w_0^t \ell_t + \alpha^t_0 \cdot d_t) + v_0 \cdot k_{-1}. \tag{9.3.13}$$

Taken together, (9.3.6), (9.3.7), (9.3.12), and (9.3.13) give demand functions for consumption services. A recursive representation for the dynamic demand function for consumption goods is obtained by substituting for s_t in (9.2.1).

9.3.2. Dynamic Demand System

Substituting (9.3.6) and (9.3.7) into (9.2.1) gives

$$c_t = -\Pi^{-1} \Lambda h_{t-1} + \Pi^{-1} b_t - \Pi^{-1} \mu^w_0 E_t \{\Pi'^{-1} - \Pi'^{-1} \Theta_h \\
[I - (\Delta'_h - \Lambda' \Pi'^{-1} \Theta'_h) \beta L^{-1}]^{-1} \Lambda' \Pi'^{-1} \beta L^{-1} \} p^0_t \tag{9.3.14}$$

$$h_t = \Delta h_{t-1} + \Theta_h c_t.$$

System (9.3.14) describes dynamic demand functions for consumption. It expresses consumption demands at date t as functions of: (i) time-t conditional expectations of future scaled Arrow-Debreu prices $\{p^0_{t+s}\}_{s=0}^{\infty}$; (ii) the stochastic process for the household’s endowment $\{d_t\}$ and preference shock $\{b_t\}$, as mediated through the multiplier μ^w_0 given by equation (9.3.12) and wealth W_0 given by equation (9.3.13); and (iii) past values of consumption, as mediated through the state variable h_{t-1}.
9.3.3. Gorman Aggregation and Engel curves

In chapter 12, we shall explore how the dynamic demand schedule for consumption goods opens up the possibility of satisfying Gorman’s (1953) conditions for aggregation in a heterogeneous consumer model. The first equation of (9.3.14) is an Engel curve for consumption that is linear in the marginal utility of individual wealth μ_0^w with a coefficient on μ_0^w that depends only on prices. Through (9.3.12), the multiplier μ_0^w depends on wealth in an affine relationship, so that consumption is also linear in wealth. In a model with heterogeneous consumers who have the same household technologies $(\Delta_h, \Theta_h, \Lambda, \Pi)$ but possibly different preference shock processes and initial values of household capital stocks, the coefficient on the marginal utility of wealth is the same for all consumers. Gorman showed that when Engel curves satisfy this property, there exists a unique community or aggregate preference ordering over aggregate consumption that is independent of the distribution of wealth. We shall exploit this property in chapter 12 when we compute a competitive equilibrium of a multiple consumer economy. The community dynamic demand schedule for that heterogeneous agent economy sums individuals’ Engel curves.

9.3.4. Re-Opened Markets

It is useful to describe the demand system in terms of equilibrium prices when markets are re-opened as in chapter 7. We use superscripts t to denote prices in the time t reopened markets and form them as described in section 7.10. Rental rates in the re-opened markets can be represented as

$$
\rho_t^i = \Pi^{-1} p_t^i - \Theta_h^t E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h^\tau - \Lambda^\tau \Pi^{-1} \Theta_h^\tau)^{-1} \Lambda^\tau \Pi^{-1} \rho_{t+\tau}^i.
$$

(9.3.15)

The following counterpart to system (9.3.8) prevails

$$
\begin{align*}
 s_{i,t} &= \Lambda h_{i,t-1} \\
 h_{i,t} &= \Delta_h h_{i,t-1},
\end{align*}
$$

(9.3.16)

where now we initialize by setting $h_{i,t-1} = h_{i,t-1}$. Define time t wealth W_t as

$$
W_t = E_t \sum_{j=0}^{\infty} \beta^j (w_{t+j}^t l_{t+j} + a_{t+j}^t d_{t+j}) + v_t k_{t-1}.
$$

(9.3.17)
The time t multiplier on wealth is

$$
\mu^w_t = \frac{E_t \sum_{j=0}^{\infty} \beta^j \rho^i_{t+j} \cdot (b_{t+j} - s_{i,t+j}) - W_t}{E_t \sum_{t=0}^{\infty} \beta^j \rho^i_{t+j} \cdot \rho^i_{t+j}}.
$$

In terms of objects from re-opened markets at time t, our time t dynamic demand system can be represented as

$$
c_t = -\Pi^{-1} \Delta h_{t-1} + \Pi^{-1} b_t - \Pi^{-1} \rho^i_t E_t \{\Pi' - \Pi'^{-1} \Theta'_h \}
\begin{bmatrix}
I - (\Delta'_h - \Lambda' \Pi'^{-1} \Theta'_h) \beta L^{-1} \end{bmatrix}^{-1} \Lambda' \Pi'^{-1} \beta L^{-1} \} p_t^i
$$

$$
h_t = \Delta_h h_{t-1} + \Theta_h c_t.
$$

Demand system (9.3.19) indicates that the time t vector of demands for c_t are influenced by:

1. Through the multiplier μ^w_t in equation (9.3.18), the time t continuation of the preference shock process $\{b_t\}$ and the time t continuation of $\{s_{i,t}\}$. 1
2. The time $t-1$ level of household durables h_{t-1}.
3. Everything that affects the household’s time t wealth in equation (9.3.17), including its stock of physical capital k_{t-1} and its value v_t, the time t continuation of the factor prices $\{w_t, \alpha_t\}$, the household’s continuation endowment process, and the household’s continuation plan for $\{\ell_t\}$.
4. The time t continuation of the vector of prices $\{p^t\}$.

This list suggests ways to tighten what are sometimes loose discussions of ‘demand shocks’ and their sources. Some things from our list of items (1)-(4) are contributed by exogenous preference and endowment shocks. Others like k_{t-1}, h_{t-1}, and the time t continuation of ℓ_t arise partly or entirely from the household’s past choices and its choices of time t contingency plans for the future. 2 These diverse sources affect demands in different ways.

1 We define a time t continuation of a sequence $\{z_t\}_{t=0}^{\infty}$ as the sequence $\{z_t\}_{t=t}^{\infty}$.

2 Sargent (1982) discusses related issues in the context of some macroeconomic models. See chapter 10 for some examples in which we map what others have specified as ‘demand shocks’ into more primitive objects.
9.4. Computing Canonical Representations

In deriving a dynamic demand function, we assumed that the representation of the household service technology is canonical. Now we start with a preference shock process \(\{ b_t \} \) and a specification of \((\Delta_h, \Theta_h, \Lambda, \Pi)\) that is not necessarily canonical and show how to find a canonical representation that represents the same preference ordering.\(^3\) In the appendix to this chapter, we establish that for any \((\Delta_h, \Theta_h, \Lambda, \Pi)\), there exists a canonical service technology \((\hat{\Delta}_h, \hat{\Theta}_h, \hat{\Lambda}, \hat{\Pi})\) and accompanying preference shock process \(\{ \hat{b}_t \} \) that induces an identical preference ordering over consumption. In the text, we display mechanically how to compute a canonical technology and associated preference shock process, relegating the technical details to the appendix.\(^4\) These mechanics are closely related to mathematics underlying the innovations representations presented in chapter 8.

9.4.1. Basic Idea

We study two matrix polynomials in the lag operator \(L \):
\[
\sigma(L) = \Pi + \Lambda L[I - \Delta_h L]^{-1} \Theta_h \\
\hat{\sigma}(L) = \hat{\Pi} + \hat{\Lambda} L[I - \Delta_h L]^{-1} \Theta_h.
\]

As explained in the appendix, when \(c_t = 0 \forall t < 0 \), applying the operator \(\sigma(L) \) to \(c_t \) gives \(s_t \), so that \(s_t = \sigma(L)c_t \). For two household technologies \([\Delta_h, \Theta_h, \Pi, \Lambda] \) and \([\hat{\Delta}_h, \hat{\Theta}_h, \hat{\Pi}, \hat{\Lambda}] \) to give rise to the same preference ordering over \(\{ c_t \} \) it is necessary that
\[
\sigma(\beta^{5}L^{-1})'\sigma(\beta^{5}L) = \hat{\sigma}(\beta^{5}L^{-1})'\hat{\sigma}(\beta^{5}L).
\]

If the \([\hat{\Lambda}, \hat{\Pi}]\) technology is to be canonical, it is necessary that \(\hat{\sigma}(\beta^{5}L) \) be invertible, meaning that \(\hat{\sigma}(\beta^{5}L)^{-1} \) is one-sided in nonnegative powers of \(L \) with coefficients that are square-summable.

In the appendix, we verify the following version of a spectral factorization identity:
\[
[\Pi + \beta^{1/2}L^{-1}\Lambda(I - \beta^{1/2}L^{-1}\Delta_h)^{-1}\Theta_h]'[\Pi + \beta^{1/2}L\Lambda(I - \beta^{1/2}L\Delta_h)^{-1}\Theta_h] = [\hat{\Pi} + \beta^{1/2}L^{-1}\hat{\Lambda}(I - \beta^{1/2}L^{-1}\Delta_h)^{-1}\Theta_h]'[\hat{\Pi} + \beta^{1/2}L\hat{\Lambda}(I - \beta^{1/2}L\Delta_h)^{-1}\Theta_h],
\]

\(^3\) For a \((\Delta_h, \Theta_h, \Lambda, \Pi)\) that is not canonical, see the expression of Ryoo and Rosen’s (2004) model given in section 10.6.1.

\(^4\) The MATLAB program canonpr.m computes a canonical representation.
where $[\hat{\Lambda}, \hat{\Pi}]$ satisfy (9.4.1), (9.4.4), and (9.4.5) below. The factorization identity guarantees that the $[\hat{\Lambda}, \hat{\Pi}]$ representation satisfies both requirements for a canonical representation. Thus, to attain a canonical household technology, we have to implement this factorization. We can do this by solving a control problem.

9.4.2. An Auxiliary Problem Induces a Canonical Representation

The following artificial optimization problem and the associated optimal linear regulator facilitate computing a canonical representation.

Problem C: Choose $\{c_t\}_{t=0}^{\infty} \in L_0^2$ to maximize

$$-0.5 \sum_{t=0}^{\infty} \beta^t (s_t - b_t) \cdot (s_t - b_t)$$

subject to

$$h_t = \Delta_h h_{t-1} + \Theta_h c_t$$
$$s_t = \Lambda h_{t-1} + \Pi c_t.$$

The recursive solution to Problem C contains all ingredients of a canonical service technology.

Problem C resembles one that a household confronts in a competitive equilibrium, except that we have omitted the budget constraint. For a canonical technology, the solution to this optimization problem is trivial: choose $\{c_t\}$ so that the implied service sequence matches the preference shock sequence, $s_t = b_t \ \forall \ t$. However, when the service technology is not canonical, it might not be feasible to construct a consumption process in L_0^2 that attains that goal, in which case the optimization problem is not trivial.

We simplify the household optimization problem further by initially setting the preference shock process to zero for all $t \geq 0$. In making this simplification, we are exploiting the fact that for the optimal linear regulator problem, the feedback part of the decision rule can be computed independently of the feedforward part, and that the $\{b_t\}$ process influences only the feedforward part. In this optimization problem it is feasible to stabilize the state vector $\{h_t\}$ so that it satisfies the square summability requirement. For instance, one can set the consumption process to zero for all $t \geq 0$. So long as it is also optimal...
to stabilize the household capital stock process, there exists a unique positive semidefinite matrix P satisfying the algebraic Riccati equation:

$$P = \Lambda'\Lambda + \beta\Delta_h'P\Delta_h - \left(\beta\Delta_h'P\Theta_h + \Lambda'\Pi\right)$$

$$\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)^{-1}\left(\beta\Theta_h'P\Delta_h + \Pi'\Lambda\right). \tag{9.4.1}$$

The optimal choice of consumption can be represented as

$$c_t = -\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)^{-1}\left(\beta\Theta_h'P\Delta_h + \Pi'\Lambda\right)h_{t-1}. \tag{9.4.2}$$

When this optimal rule is implemented, the evolution equation for the household capital stock is

$$h_t = \left[\Delta_h - \Theta_h\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)^{-1}\left(\beta\Theta_h'P\Delta_h + \Pi'\Lambda\right)\right]h_{t-1}, \tag{9.4.3}$$

where the eigenvalues of the matrix multiplying h_{t-1} are strictly less than $1/\sqrt{\beta}$.\footnote{We require that assumption A1 and the stability theorem of chapter 3 apply to Problem C.} With this in mind, we choose $\hat{\Pi}$ and $\hat{\Lambda}$ so that

$$\hat{\Pi}^{-1}\hat{\Lambda} = \left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)^{-1}\left(\beta\Theta_h'P\Delta_h + \Pi'\Lambda\right). \tag{9.4.4}$$

For this choice, condition (ii) for a canonical service technology is satisfied.

We still have to construct $\hat{\Pi}$. In the appendix, it is shown as an implication of the factorization identity that we should set $\hat{\Pi}$ to be a factor of the symmetric positive definite matrix $\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)$:

$$\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right) = \hat{\Pi}'\hat{\Pi}. \tag{9.4.5}$$

Any factorization works so long as $\hat{\Pi}$ is a square matrix. Since $\left(\Pi'\Pi + \beta\Theta_h'P\Theta_h\right)$ is nonsingular, $\hat{\Pi}$ satisfies condition (i) for a canonical representation.

In summary, (9.4.1), (9.4.4), and (9.4.5) compute a $(\hat{\Pi}, \hat{\Lambda})$ that corresponds to a canonical representation. The service process $\{\hat{s}_t\}$ for this new household technology satisfies:

$$\hat{s}_t = \hat{\Lambda}h_{t-1} + \hat{\Pi}c_t. \tag{9.4.6}$$

\footnote{This condition on the eigenvalues of the ‘closed loop system’ follows from the assumption that it is optimal to stabilize the system (i.e., that the system is detectable).}
We also need to construct a preference shock process to accompany the canonical service technology. One way to do this is simply to reintroduce the preference shock process \(\{ b_t \} \) into the auxiliary household optimization problem, and to recompute the optimal decision rule for consumption. The decision rule can be represented as:

\[
c_t = - (\hat{\Pi})^{-1} \hat{\Lambda} h_{t-1} + (\hat{\Pi})^{-1} \hat{U}_b z_t
\]

(9.4.7)

for some matrix \(\hat{U}_b \). As discussed in chapter 5, the feedback portion of this decision rule \([(\hat{\Pi})^{-1} \hat{\Lambda}] \) is the same as for the problem in which the preference shock process was set to zero. The feedforward part \([(\hat{\Pi})^{-1} \hat{U}_b] \) can be computed using the method described in chapter 5, which permits the optimal decision rule to be calculated efficiently in two steps. Using those methods, the shock process associated with the canonical service technology is

\[
\hat{b}_t = \hat{U}_b z_t.
\]

(9.4.8)

An alternative method for computing \(\{ \hat{b}_t \} \) is more useful and revealing. As shown in the appendix to this chapter, two household service technologies having the same demand functions give rise to the same preference ordering over consumption paths. Therefore, marginal utilities are also the same across the two specifications of household technologies and preference shock processes. Equality between the indirect marginal utility of consumption and current and expected future marginal utilities of consumption services and (9.3.1), (9.3.2), and (9.3.3) imply that the two preference shock processes must satisfy:

\[
\Pi' b_t + \Theta_h' E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h')^{\tau-1} \Lambda' b_{t+\tau} = \hat{\Pi}' \hat{b}_t + \Theta_h' E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h')^{\tau-1} \hat{\Lambda}' \hat{b}_{t+\tau}.
\]

(9.4.9)

Let the left side of (9.4.9) be denoted \(\hat{b}_t \) for each \(t \). Since the \((\hat{\Lambda}, \hat{\Pi}) \) technology is canonical, it follows that we can solve (9.4.9) for \(\hat{b}_t \):

\[
\hat{b}_t = \hat{\Pi}^{-1} \hat{b}_t - \hat{\Pi}^{-1} \Theta_h' E_t \sum_{\tau=1}^{\infty} \beta^\tau (\Delta_h' - \hat{\Lambda}' \hat{\Pi}^{-1} \Theta_h')^{\tau-1} \hat{\Lambda}' \hat{\Pi}^{-1} \hat{b}_{t+\tau}.
\]

(9.4.10)

Relation (9.4.10) is derived by applying operator identity (9.5.1) from the following section to equation (9.4.9).
9.5. An Operator Identity

For canonical household technologies, a useful matrix identity is

\[
[\Pi + \Lambda(I - \Delta h L)^{-1}\Theta h L]^{-1} = \Pi^{-1} - \Pi^{-1} \Lambda[I - (\Delta h - \Theta h \Pi^{-1} \Lambda)L]^{-1} \Theta h \Pi^{-1} L].
\]

(9.5.1)

The identity shows that for canonical representations \((\Delta h, \Theta h, \Pi, \Lambda, U_b)\), there are two equivalent ways of expressing the mapping between sequences \(\{s_t\}\) and sequences \(\{c_t\}\). To establish the identity, assume that \(h_{-1} = 0\), or equivalently that \(c_t = 0 \forall t < 0\). Note that the second equation of representation (9.2.1) implies

\[
h_t = [I - (\Delta h - \Theta h \Pi^{-1} \Lambda)L]^{-1} \Theta h \Pi^{-1} s_t.
\]

Lagging this one period and substituting into the first equation of (9.2.1) gives

\[
c_t = [\Pi^{-1} - \Pi^{-1} \Lambda[I - (\Delta h - \Theta h \Pi^{-1} \Lambda)L]^{-1} \Theta h \Pi^{-1} L] s_t.
\]

This equation shows how to obtain sequences \(\{c_t\} \in L_0^2\) that are associated with arbitrary sequences \(\{s_t\} \in L_0^2\). Now recall that the household technology implies

\[
s_t = [\Pi + \Lambda(I - \Delta h L)^{-1}\Theta h L]c_t,
\]

which expresses \(\{s_t\} \in L_0^2\) as a function of \(\{c_t\} \in L_0^2\). The assumption that \((\Lambda, \Pi)\) is canonical implies that the operator \([\Pi + \Lambda(I - \Delta h L)^{-1}\Theta h L]\) mapping sequences from \(L_0^2\) into \(L_0^2\) is invertible, which implies the identity.

Here is how to derive the ‘dual’ or transposed version of the identity, which is the one used to get (9.4.10). Use (9.3.3) to deduce

\[
\mu^h_t = (I - \beta \Delta' h L^{-1})^{-1} \beta \Lambda' L^{-1} \mu^s_{t+1}.
\]

Then use (9.3.2) to deduce

\[
\rho^w_0 p_t = [\Pi' + \Theta'_h (I - \beta \Delta'_h L^{-1})^{-1} \beta L^{-1}] \mu^s_t.
\]

(†)

Alternatively, solve (9.3.2) for \(\mu^s_t\),

\[
\mu^s_t = \Pi'^{-1}(-\Theta'_h \mu^h_t + \rho^w_0 p'_t).
\]

Substitute this into (9.3.3) to get

\[
\mu^s_t = [\Pi'^{-1} - \Pi'^{-1} \Theta'_h (I - (\Delta'_h - \Lambda' \Pi'^{-1} \Theta'_h) \beta L^{-1})^{-1} \Lambda' \Pi'^{-1} \beta L^{-1}] \rho^w_0 p'_t.
\]

(‡)
When \((\Delta_h, \Theta_h, \Pi, \Lambda)\) is canonical, the operator on the right side of (†) has an inverse equal to the operator on the right side of (‡):

\[
[\Pi' + \Theta'_{h}(I - \beta\Delta'_{h}L^{-1})^{-1} \beta L^{-1}]^{-1} = \\
\{\Pi'^{-1} - \Pi'^{-1}\Theta'_{h}[I - (\Delta'_{h} - \Lambda'\Pi'^{-1}\Theta'_{h})\beta L^{-1}]^{-1}\Lambda'\Pi'^{-1}\beta L^{-1}\}.
\]

In the appendix to this chapter, we use Fourier transforms to show that the alternative service technology \((\hat{\Lambda}, \hat{\Pi})\) and preference shock process \(\{\hat{b}_t\}\) induce the same preference ordering for consumption goods as did the original ones.

We illustrate our analysis with a discrete-time version of the habit-persistence model advocated by Becker and Murphy (1988). The household technology is a parametric version of induced preferences for consumption of the form suggested by Pollak (1970), Ryder and Heal (1973), and Stigler and Becker (1977). The household technology has a single consumption good, two services, and a single household capital stock. The household capital measures a habit stock constructed to be a geometrically weighted average of current and past consumptions:

\[
h_t = \delta_h h_{t-1} + (1 - \delta_h) c_t,
\]

where \(0 < \delta_h < 1\). The first service is proportional to consumption, and the second is a linear combination of consumption and the habit stock:

\[
s_t = \begin{bmatrix} \pi_1 & 0 \\ \pi_2 & \pi_3 \end{bmatrix} \begin{bmatrix} c_t \\ h_t \end{bmatrix}.
\]

We normalize \(\pi_1\) and \(\pi_3\) to be strictly positive. Imagine for a moment that \(c_t\) and \(h_t\) are distinct consumptions goods and that there is no intertemporal connection between them. Then recall from our discussion of preferences for multiple consumption goods in chapter 4 that the Frisch classification of complements is equivalent to requiring \(\pi_2\) to be negative.

In light of evolution equation (9.6.1) for the household capital stock, this notion of complementarity is limiting because it ignores the fact that \(h_t\) is a weighted average of current and past consumptions. For this reason, we consider a related notion of complementarity referred to by Ryder and Heal (1973) and
Becker and Murphy (1988) as *adjacent complementarity*. Substituting (9.6.1) into (9.6.2), we obtain the following service technology:

\[s_t = \Lambda h_{t-1} + \Pi c_t, \]

(9.6.3)

where

\[\Lambda = \begin{bmatrix} 0 \\ \pi_3 \delta_h \end{bmatrix} \quad \text{and} \quad \Pi = \begin{bmatrix} \pi_1 \\ \pi_2 + \pi_3(1 - \delta_h) \end{bmatrix}. \]

Service technology (9.6.3) is evidently not canonical: simply note that two services are constructed from one underlying consumption good, so we cannot construct a consumption sequence to support any hypothetical admissible service sequence.

To capture the notion of adjacent complementarity, we consider a canonical representation for household services. The canonical household service technology has a single service and can be expressed as:

\[\hat{s}_t = \hat{\Lambda} h_{t-1} + \hat{\Pi} c_t, \]

(9.6.4)

where \{\hat{s}_t\} is a scalar service process and (\hat{\Lambda}, \hat{\Pi}) satisfies:

\[|\delta_h - (1 - \delta_h)\hat{\Lambda}/\hat{\Pi}| < 1/\sqrt{\beta}. \]

(9.6.5)

We normalize the scalar \(\hat{\Pi} \) to be positive so that increases in time \(t \) consumption increase the time \(t \) canonical service \(\hat{s}_t \). When specialized to this parametric model, Ryder and Heal’s (1973) notion of adjacent complementarity becomes the restriction that \(\hat{\Lambda} \) must be negative. In this case, (9.6.5) implies that

\[0 \leq \delta_h - (1 - \delta_h)\hat{\Lambda}/\hat{\Pi} \leq 1/\sqrt{\beta}. \]

(9.6.6)

As shown by Becker and Murphy (1988), adjacent complementarity (\(\hat{\Lambda} \leq 0 \)) implies that \(\pi_2 \leq 0 \). The converse is not true, however. To see the relation between \(\hat{\Lambda} \) and \(\pi_2 \), multiply both sides of (9.6.4) by \((1 - \beta^{1/2}\zeta^{-1}\delta_h)(1 - \beta^{1/2}\zeta\delta_h)\) to obtain:

\[\Pi'\Pi \left(1 - \beta^{1/2}\zeta^{-1}\delta_h\right)(1 - \beta^{1/2}\zeta\delta_h) + \beta\Lambda'\Lambda(1 - \delta_h)^2 + \beta^{1/2}\zeta^{-1}(1 - \delta_h)(1 - \beta^{1/2}\zeta\delta_h)\Lambda'\Pi + \beta^{1/2}\zeta(1 - \delta_h)(1 - \beta^{1/2}\zeta^{-1}\delta_h)\Lambda'\Pi = \hat{\Pi}^2 \left(1 - \beta^{1/2}\zeta^{-1}\delta_h\right)(1 - \beta^{1/2}\zeta\delta_h) + \beta\hat{\Lambda}\hat{\Lambda}(1 - \delta_h)^2 + \beta^{1/2}\zeta^{-1}(1 - \delta_h)(1 - \beta^{1/2}\zeta\delta_h)\hat{\Lambda}\hat{\Pi} + \beta^{1/2}\zeta(1 - \delta_h)(1 - \beta^{1/2}\zeta^{-1}\delta_h)\hat{\Lambda}\hat{\Pi}. \]

(9.6.7)
This equality holds for all ζ except $\zeta = 0$. Evaluate both sides of (9.6.7) at $\zeta = \beta^{1/2} \delta_h$:

$$
\beta \Lambda' \Lambda (1 - \delta_h)^2 + (1 - \delta_h)(1 - \beta \delta_h^2) \Lambda' \Pi / \delta_h
= \beta \hat{\Lambda}^2 (1 - \delta_h)^2 + (1 - \delta_h)(1 - \beta \delta_h^2) \hat{\Lambda} \hat{\Pi} / \delta_h.
$$

(9.6.8)

The right side of (9.6.8) can be expressed as

$$
\beta \hat{\Lambda}^2 (1 - \delta_h)^2 + (1 - \delta_h)(1 - \beta \delta_h^2) \hat{\Lambda} \hat{\Pi} / \delta_h
= \beta (1 - \delta_h) \hat{\Lambda} \hat{\Pi} \{[(1 - \delta_h) \hat{\Lambda} / \hat{\Pi} - \delta_h] + (1 / \beta \delta_h)\}.
$$

(9.6.9)

Since $\hat{\Lambda} \hat{\Pi} < 0$ and inequality (9.6.6) is satisfied, it follows that

$$
\begin{align*}
\beta (1 - \delta_h) \hat{\Lambda} \hat{\Pi} \{[(1 - \delta_h) \hat{\Lambda} / \hat{\Pi} - \delta_h] + (1 / \beta \delta_h)\} &
\leq \beta (1 - \delta_h) \hat{\Lambda} \hat{\Pi} [-1 / \sqrt{\beta} + (1 / \beta \delta_h)] \\
&
\leq 0.
\end{align*}
$$

(9.6.10)

Combining (9.6.10) and (9.6.8), we have that if $\hat{\Lambda} \leq 0$, then

$$
\beta \Lambda' \Lambda (1 - \delta_h)^2 + (1 - \delta_h)(1 - \beta \delta_h^2) \Lambda' \Pi / \delta_h \leq 0.
$$

(9.6.11)

Inequality (9.6.11) is satisfied only when $\Lambda' \Pi \leq 0$. This in turn requires that $\pi_2 \leq 0$ because

$$
\Lambda' \Pi = \pi_3 \delta_h [\pi_2 + \pi_3 (1 - \delta_h)],
$$

(9.6.12)

$$
0 < \delta_h < 1 \text{ and } \pi_3 > 0.
$$

Inequality (9.6.6) permits $\delta_h - (1 - \delta_h) \hat{\Pi} / \hat{\Lambda}$ to exceed one. In this case, growth in consumption is required to support most constant service sequences, although this growth will be dominated by $\{\beta^{t/2} : t = 0, 1, \ldots\}$. This household technology has an extreme form of addiction to the consumption good. Note that

$$
\delta_h - (1 - \delta_h) \hat{\Lambda} / \hat{\Pi} = \delta_h (1 + \hat{\Lambda} / \hat{\Pi}) - \hat{\Lambda} / \hat{\Pi}.
$$

(9.6.13)

Therefore, instability occurs whenever $-\hat{\Lambda}$ exceeds $\hat{\Pi}$ in the canonical household service technology.
A. Fourier Transforms

This appendix applies Fourier transforms to establish some key equalities asserted in the text. We begin with some background on transform methods.

9.A.1. Primer on \(z \)-transforms

For a two-sided scalar sequence \(\{c_j\}_{j=-\infty}^{\infty} \), the \(z \)-transform is defined as the complex valued function

\[
c(z) = \sum_{j=-\infty}^{\infty} c_j z^j,
\]

where \(z \) is a scalar complex number.\(^7\) The inversion formula asserts

\[
c_k = \frac{1}{2\pi i} \int_{\Gamma} c(z) z^{-k-1} dz,
\]

where \(\Gamma \) is any closed contour around zero in the complex plane, and the integration is complex integration counterclockwise along the path \(\Gamma \). If we take \(\Gamma \) to be the unit circle and set \(z = e^{-i\omega} \), we get the following version of the inversion formula

\[
c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} c(e^{-i\omega}) e^{i\omega k} d\omega.
\]

We denote transform pairs with the notation

\[
\{c_k\} \leftrightarrow c(z).
\]

The convolution of two sequences \(\{y_k\}, \{x_k\} \), is denoted \(\{y \ast x\} \) and is defined as

\[
\{y \ast x\}_{k=-\infty}^{\infty} \equiv \left\{ \sum_{s=-\infty}^{\infty} y_s x_{k-s} \right\}_{k=-\infty}^{\infty}.
\]

Direct calculations establish the convolution property

\[
\{y \ast x\}_{k=-\infty}^{\infty} \leftrightarrow x(z)y(z).
\]

We have the linearity property that for any scalars \((a,b) \)

\[
a\{x_k\} + b\{y_k\} \leftrightarrow ax(z) + by(z).
\]

\(^7\) For descriptions of Fourier and \(z \)-transforms, see Gabel and Roberts (1973). For some of their uses in economics, see Nerlove (1967), Nerlove, Grether and Carvalho (1995), and Sargent (1987b, ch. XI).
9.A.2. Time Reversal and Parseval’s Formula

Let $\tilde{c}_{-k} = c_k$ for all k. Then $\{\tilde{c}_k\}_{k=-\infty}^{\infty}$ has transform

$$\tilde{c}(z) = \sum_{k=-\infty}^{\infty} \tilde{c}_k z^k = \sum_{k=-\infty}^{\infty} c_k z^{-k} = c(z^{-1}).$$

Applying the convolution theorem to $c(z)c(z^{-1})$ gives

$$c(z)c(z^{-1}) \leftrightarrow \{ \sum_{s=-\infty}^{\infty} c_s c_{s-k} \}_{k=-\infty}^{\infty}.$$

Applying the inversion formula gives

$$\sum_{s=-\infty}^{\infty} c_s c_{s-k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} c(e^{-i\omega})c(e^{i\omega}) e^{i\omega k} d\omega.$$

If we set $k = 0$, we obtain Parseval’s equality:

$$\sum_{s=-\infty}^{\infty} c_s^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |c(e^{-i\omega})|^2 d\omega.$$

9.A.3. One-Sided Sequences

There are two types of one-sided sequences (also called ‘half-infinite’ sequences). A sequence is called a causal sequence if $c_k = 0 \ \forall k < 0$, and is anti-causal if it has zero elements $\forall k > 1$. A one-sided causal sequence can be obtained by setting to zero all elements of a two-sided sequence with negative subscripts. Let $\{u_k\}_{k=-\infty}^{\infty}$ be the step sequence that is zero for $k < 0$, and 1 for $k \geq 0$. Evidently $\{u_k c_k\}$ is always a one-sided sequence.
9.A.4. Useful Properties

1. \(z_0 \) is said to be a pole of order \(m \geq 1 \) of \(c(z) \) if \(\lim_{z \to z_0} (z - z_0)^m c(z) \neq 0 \).
2. \(c(z) \) is the transform of a causal sequence if all of its poles lie outside the unit circle.
3. \(c(z) \) is the transform of an anti-causal sequence if all of its poles lie inside the unit circle.
4. If \(c(z) \) is either causal or anti-causal, the inversion formula can be implemented by ‘long division.’
5. Initial value theorem:
 \[
 \lim_{z \to 0} c(z) = c_0.
 \]
6. Final value theorem:
 \[
 \lim_{k \to \infty} c_k = \lim_{z \to 1} (1 - z) c(z).
 \]

9.A.5. One-Sided Transforms

A one-sided transform is defined as
\[
c^+(z) = \sum_{k=0}^{\infty} c_k z^k \equiv [c(z)]_+,
\]
where \([\quad]_+\) is the ‘annihilation operator’ that sets to zero all coefficients on negative powers of \(z \). The same inversion formulas hold, with \(c^+(z) \) replacing \(c(z) \). Notice that \(c^+(z) = c(z) \) only if \(\{c_k\} \) is causal. We shall adopt the notation
\[
\mathcal{F}(c)(z) = c^+(z).
\]

For one-sided transforms, we have the shift theorem
\[
\mathcal{F}(\{c_{t-n}\})(z) = z^n \mathcal{F}(\{c_t\})(z) + \sum_{k=1}^{n} z^{n-k} c_{-k}.
\]

For the purpose of introducing discounting, we shall work with the alternative transformation defined by

\[T(\{c_t\}_{t=0}^{\infty})(z) \equiv \mathcal{F}(\{c_t\beta^{t/2}\}_{t=0}^{\infty})(z), \]

so that \(T(y) \) is the ordinary transform of \(\{\beta^{t/2}y_t\} \). The inversion formula is then

\[\beta^{t/2}y_t = \frac{1}{2\pi} \int_{-\pi}^{\pi} T(e^{-i\omega})e^{i\omega t} d\omega, \]

and the shift theorem is

\[\mathcal{F}(\{c_{t-n}\})(z) = (\beta^{-k}z)^n \mathcal{F}(\{c_t\})(z) + \sum_{k=1}^{n} (z\beta^{-k})^n c_{-k}. \]

9.A.7. Fourier Transforms

Below we shall work with vector versions of the transforms \(\mathcal{T} \). Consider a vector sequence \(y = \{y_t\} \) satisfying

\[\sum_{t=0}^{\infty} \beta^t y_t \cdot y_t < \infty, \quad (9.A.1) \]

define the transform:

\[\mathcal{T}(y)(\zeta) \equiv \sum_{t=0}^{\infty} \beta^{t/2} y_t \zeta^t. \quad (9.A.2) \]

This transform is at least well-defined for \(|\zeta| < 1 \) and can also be defined through an appropriate limiting argument for \(|\zeta| = 1 \). For vector sequences \(\{y_t\} \) and \(\{\hat{y}_t\} \) satisfying (9.A.1), Parseval’s formula is

\[\frac{1}{2\pi} \int_{-\pi}^{\pi} \mathcal{T}(y)[\exp(i\theta)] \cdot \mathcal{T}(\hat{y})[\exp(-i\theta)] d\theta = \sum_{t=0}^{\infty} \beta^t (y_t \cdot \hat{y}_t). \quad (9.A.3) \]

\[^8 \text{The boundary of the unit circle can be parameterized by } \zeta = \exp(i\theta) \text{ for } \theta \in (-\pi, \pi]. \]

Using this parameterization, the infinite series on the right side of (9.4.6) converges in \(L^2 \) where the \(L^2 \) space is constructed using Lebesgue measure on \((-\pi, \pi] \).
We use Fourier transforms to represent our dynamic household technologies. It follows from (9.2.1) and the definitions of s_{mt} and s_{it} that

\[
\Pi \mathcal{T}(c)(\zeta) = -\beta^{1/2} \zeta \Lambda \mathcal{T}(h_m)(\zeta) + \mathcal{T}(s_m)(\zeta)
\]

\[
\mathcal{T}(h_m)(\zeta) = \beta^{1/2} \zeta (\Delta_h - \Theta_h \Pi^{-1} \Lambda) \mathcal{T}(h_m)(\zeta) + \Theta_h \Pi^{-1} \mathcal{T}(s_m)(\zeta)
\]

(9.A.4)

where $h_{m,-1} = 0$. The transforms of the consumption sequence and the market service sequence are related by

\[
\mathcal{T}(c)(\zeta) = \mathcal{C}(\zeta) \mathcal{T}(s_m)(\zeta),
\]

(9.A.5)

where

\[
\mathcal{C}(\zeta) \equiv \Pi^{-1} \left\{ I - \beta^{1/2} \zeta \Lambda [I - \beta^{1/2} \zeta (\Delta_h - \Theta_h \Pi^{-1} \Lambda)]^{-1} \Theta_h \Pi^{-1} \right\}.
\]

(9.A.6)

The matrix function \mathcal{C} of a complex variable ζ represents the mapping from desired consumption services into the consumption goods required to support those services.

9.4.8. Verifying Equivalent Valuations

Our derivation of the dynamic demand functions for consumption goods relied on two intermediate results: (a) equivalent time 0 valuations of market services and consumption goods asserted in (9.3.10); and (b) for a given specification of preferences and household technology, the existence of a canonical service technology that induces the same preference ordering over consumption streams. To establish these intermediate results we use Fourier transforms.

We now show establish the valuation equivalence asserted in (9.3.10). Applying Parseval’s formula (9.4.3), we have that

\[
\sum_{t=0}^{\infty} \beta^t p_t^0 \cdot c_t = (1/2\pi) \int_{-\pi}^{\pi} \mathcal{T}(p^0)[\exp(i\theta)] \cdot \mathcal{T}(c)[\exp(-i\theta)] d\theta
\]

\[
= (1/2\pi) \int_{-\pi}^{\pi} \mathcal{T}(p^0)[\exp(i\theta)] \cdot \{ \mathcal{C}[\exp(-i\theta)] \mathcal{T}(s_m)[\exp(-i\theta)] \} d\theta
\]

(9.A.7)

\[
= (1/2\pi) \int_{-\pi}^{\pi} \{ \mathcal{C}[\exp(-i\theta)]' \mathcal{T}(p^0)[\exp(i\theta)] \} \cdot \mathcal{T}(s_m)[\exp(-i\theta)] d\theta.
\]
Formula (9.A.7) gives us the following candidate for the transform of the rental sequence for consumption services: \(C(\zeta - 1)' \tilde{\mathcal{F}}(p^0)(\zeta) \). The rental sequence \(\{\tilde{\rho}_t^0\} \) associated with this transform is

\[
\tilde{\rho}_t^0 \equiv \Pi^{-1} \left\{ \left(I - \beta L^{-1} \Theta_h[I - \beta L^{-1} (\Delta_h - \Theta_h \Pi^{-1} \Lambda')^{-1} \Lambda' \Pi^{-1}] \right)^{t} \right\} p_t^0

= \Pi^{-1} \left[\rho_0^0 - \Theta_h \sum_{\tau=1}^{\infty} \beta^{\tau} (\Delta_h - \Theta_h \Pi^{-1} \Lambda')^{\tau-1} \Lambda' \Pi^{-1} p_{t+\tau}^0 \right].
\]

(9.A.8)

Using this rental sequence, it follows from (9.A.5) that

\[
\sum_{t=0}^{\infty} \beta^t p_t^0 \cdot c_t = \sum_{t=0}^{\infty} \beta^t \tilde{\rho}_t^0 \cdot s_t.
\]

(9.A.9)

Notice that the candidate rental sequence \(\{\tilde{\rho}_t^0\} \) violates the information constraints because \(\tilde{\rho}_t^0 \) will not necessarily be in \(J_t \). From the vantage point of valuation, all that we require is equality of the expectations of the infinite sums in (9.A.9) conditioned on \(J_0 \). It follows from the Law of Iterated Expectations that

\[
E_0 \tilde{\rho}_t^0 \cdot s_t = E_0 \rho_t^0 \cdot s_t
\]

(9.A.10)

where

\[
\rho_t^0 \equiv E_t \rho_t^0,
\]

(9.A.11)

since hypothetical service vectors \(s_t \) are restricted to be in the information set \(J_t \). Taking expectations of both sides of (9.A.11) conditioned on \(J_0 \) and substituting from (9.A.11) establishes the value equivalence asserted in (9.3.10).

We now turn to task (b), to show that the candidate canonical representation of the service technology implies the same induced preference ordering for consumption. There are two preference representations on the table \((\Lambda, \Pi), (\hat{\Lambda}, \hat{\Pi})\), where the objects with hats are canonical. Again we partition the household capital stock and the consumption service process into two components. Similar to (9.A.4) we have that

\[
\mathcal{F}(s_m)(\zeta) = \beta^{1/2} \zeta \Lambda \mathcal{F}(h_m)(\zeta) + \Pi \mathcal{F}(c)(\zeta)
\]

(9.A.12)

\[
\mathcal{F}(h_m)(\zeta) = \beta^{1/2} \zeta \Delta_h \mathcal{F}(h_m)(\zeta) + \Theta_h \mathcal{F}(c)(\zeta).
\]

Hence

\[
\mathcal{F}(s_m)(\zeta) = \mathcal{F}(\zeta) \mathcal{F}(c)(\zeta)
\]

(9.A.13)

where

\[
\mathcal{F}(\zeta) \equiv [\Pi + \beta^{1/2} \zeta \Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h].
\]

(9.A.14)

The function \(\mathcal{F}\) represents the mapping from consumption goods into market supplied consumption services. An analogous argument leads to the formula:

\[
\mathcal{F}(\hat{s}_m)(\zeta) = \hat{\mathcal{F}}(\zeta) \mathcal{F}(c)(\zeta)
\]

(9.A.15)

where

\[
\hat{\mathcal{F}}(\zeta) \equiv [\hat{\Pi} + \beta^{1/2} \zeta \hat{\Lambda} (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h],
\]

(9.A.16)

where objects with hats, including \(\hat{s}_m\), correspond to the canonical representation. It is straightforward to show that

\[
\mathcal{F}(s_i)(\zeta) = \Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} h_{-1}
\]

(9.A.17)

and

\[
\mathcal{F}(\hat{s}_i)(\zeta) = \hat{\Lambda} (I - \beta^{1/2} \zeta \Delta_h)^{-1} h_{-1}.
\]

(9.A.18)

The time \(t\) contribution to the consumers’ utility function can be expressed as:

\[
-(1/2) \beta^t \left[(b_t - s_{i,t} - s_{m,t}) \cdot (b_t - s_{i,t} - s_{m,t}) \right] = -(1/2) \beta^t \left[s_{m,t} \cdot s_{m,t} + 2s_{m,t} \cdot s_{i,t} - 2s_{m,t} \cdot b_t + (b_t - s_{i,t}) \cdot (b_t - s_{i,t}) \right].
\]

(9.A.19)
Note that the fourth term is not affected by the consumption choice, and thus can be ignored.

We now study the Fourier representations of the sums:

\[\sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot s_{m,t}, \sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot s_{i,t} \quad \text{and} \quad \sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot b_t. \tag{9.A.20} \]

9.A.10. First Term: Factorization Identity

The first infinite sum in (9.A.20) can be represented as:

\[
\sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot s_{m,t} = \\
(1/2\pi) \int_{-\pi}^{\pi} \left\{ \mathcal{F}(c)[\exp(i\theta)] \right\}' \mathcal{F}(\exp(i\theta))' \mathcal{F}(\exp(-i\theta)) \\
\mathcal{F}(c)[\exp(-i\theta)] d\theta. \tag{9.A.21} \]

To show that \((\hat{\Pi}, \hat{A})\) and \(\{\hat{b}_t\}\) imply the same induced preferences for consumption goods, we must first establish the factorization:

\[\mathcal{F}(\zeta^{-1})' \mathcal{F}(\zeta) = \hat{\mathcal{F}}(\zeta^{-1})' \hat{\mathcal{F}}(\zeta). \tag{9.A.22} \]

To verify this result, note that

\[
[\Pi + \beta^{1/2} \zeta^{-1} \Lambda(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Theta_h]'[\Pi + \beta^{1/2} \zeta \Lambda(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h] \\
= \Pi' \Pi + \beta \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Lambda' \Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
+ \beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Lambda' \Pi \\
+ \beta^{1/2} \zeta \Pi' \Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h. \tag{9.A.23} \]

Since \(P\) satisfies the algebraic Riccati equation (9.4.1), it follows that

\[
\Lambda' \Lambda = P - \beta \Delta_h P \Delta_h + \hat{\Lambda}' \hat{\Lambda} \\
= (I - \beta^{1/2} \zeta^{-1} \Delta_h)' P(I - \beta^{1/2} \zeta \Delta_h) + \beta^{1/2} \zeta^{-1} \Delta_h' P(I - \beta^{1/2} \zeta \Delta_h) \tag{9.A.24} \\
+ \beta^{1/2} \zeta (I - \beta^{1/2} \zeta^{-1} \Delta_h)' P \Delta_h + \hat{\Lambda}' \hat{\Lambda}. \]
Therefore,
\[
\Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1'} \Lambda'(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
= \Theta_h' \Theta_h + \beta^{1/2} \zeta^{-1} \Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1'} \Lambda' \Theta_h \\
+ \beta^{1/2} \zeta \Theta_h' \Lambda \Theta_h(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
+ \Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1'} \Lambda'(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h.
\tag{9.A.25}
\]

Furthermore, it follows from (9.4.4) and (9.4.5) that
\[
\hat{\Pi}' \hat{\Lambda} = \hat{\Pi}' \hat{\Pi} \hat{(\Pi)}^{-1} \hat{\Lambda} \\
= (\beta \Theta_h' \Theta_h + \Lambda' \Pi).
\tag{9.A.26}
\]

Substituting (9.A.25) and (9.A.26) into (9.A.23) results in
\[
[\Pi + \beta^{1/2} \zeta^{-1} \Lambda(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Theta_h]'[\Pi + \beta^{1/2} \zeta \Lambda(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h] \\
= \hat{\Pi}' \hat{\Pi} + \beta \Theta_h' \Theta_h + \beta \Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1'} \Lambda' \Lambda(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
+ \beta^{1/2} \zeta \Theta_h' \Lambda \Theta_h(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
+ \beta^{1/2} \zeta'(\Pi \Lambda' + \Theta_h' \Lambda)\Theta_h(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
+ \beta^{1/2} \zeta^{-1} \Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Lambda' \hat{\Pi} \\
+ \beta^{1/2} \zeta \Lambda \hat{\Pi}(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h \\
= [\hat{\Pi} + \beta^{1/2} \zeta \hat{\Lambda}(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Theta_h]'[\hat{\Pi} + \beta^{1/2} \zeta \hat{\Lambda}(I - \beta^{1/2} \zeta \Delta_h)^{-1} \Theta_h],
\tag{9.A.27}
\]

which proves factorization (9.A.22).

9.A.11. Second Term

The second infinite sum in (9.A.20) can be represented as
\[
\sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot s_{i,t} = (1/2\pi) \int_{-\pi}^{\pi} \{\mathcal{T}(\exp(i\theta))\}' \mathcal{\mathcal{J}}[\exp(i\theta)]' \Lambda \\
[1 - \beta^{1/2} \exp(-i\theta) \Delta_h]^{-1} h_{-1} d\theta.
\tag{9.A.28}
\]

We will verify that
\[
\mathcal{\mathcal{J}}(\zeta^{-1})' \Lambda \Delta_h(I - \beta^{1/2} \zeta \Delta_h)^{-1} = \\
\mathcal{\mathcal{J}}(\zeta^{-1})' \Lambda \Delta_h(I - \beta^{1/2} \zeta \Delta_h)^{-1} + \beta^{1/2} \zeta^{-1} \Theta_h'(I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1'} P \Delta_h.
\tag{9.A.29}
\]
It then follows that

\[
(1/2\pi) \int_{-\pi}^{\pi} \{T(c)[\exp(i\theta)]\}'S[\exp(i\theta)]'\Delta_h[I - \beta^{1/2} \exp(-i\theta)\Delta_h]^{-1} h_{-1} d\theta
\]

\[= (1/2\pi) \int_{-\pi}^{\pi} \{T(c)[\exp(i\theta)]\}'\hat{S}[\exp(i\theta)]'\hat{\Delta}_h[I - \beta^{1/2} \exp(-i\theta)\Delta_h]^{-1} h_{-1} d\theta\]

(9.4.30)

because

\[
(1/2\pi) \int_{-\pi}^{\pi} \{\mathcal{F}(c)[\exp(i\theta)]\}'\beta^{1/2} \exp(i\theta) \Theta_h[I - \beta^{1/2} \exp(i\theta)\Delta_h]^{-1} P\Delta_h h_{-1} d\theta = 0.\]

Relation (9.4.31) holds since \(\mathcal{F}(c)(\zeta)'\beta^{1/2}\zeta \Delta_h'(I - \beta^{1/2}\zeta \Delta_h)^{-1}\) has a power series expansion and is zero when \(\zeta = 0 \) and \(P\Delta_h h_{-1} \) can be viewed a constant function with a trivial power series expansion. Relation (9.4.31) then follows from Parseval’s formula (9.3) where \(\beta^{1/2}y_t \) is constructed from the \(t^{th} \) coefficient of the power series expansion for the first function and \(\beta^{1/2}\hat{y}_t \) from the \(t^{th} \) coefficient of the power series expansion for the second function.

It remains to establish (9.4.29). Note that the left side of (9.4.29) can be expanded as follows:

\[
[\Pi + \beta^{1/2}\zeta^{-1}\Lambda(I - \beta^{1/2}\zeta^{-1}\Delta_h)^{-1}\Theta_h]'\Lambda(I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h
\]

\[= \Pi'\Lambda(I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h + \beta^{1/2}\zeta^{-1}\Theta_h'(I - \beta^{1/2}\zeta^{-1}\Delta_h)^{-1}\zeta\Lambda'\Lambda \] (9.4.32)

\((I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h. \)

It follows from the algebraic Riccati equation (9.4.1) that

\[
\Lambda'\Lambda = P(I - \beta^{1/2}\zeta\Delta_h) + \beta^{1/2}\zeta\gamma\Delta_h P\Delta_h - \beta\Delta_h'P\Delta_h + \hat{\Lambda}'\hat{\Lambda}
\]

\[= P(I - \beta^{1/2}\zeta\Delta_h) + \beta^{1/2}\zeta(I - \beta^{1/2}\zeta^{-1}\Delta_h)P\Delta_h + \hat{\Lambda}'\hat{\Lambda}, \]

(9.4.33)

and hence

\[
\beta^{1/2}\zeta^{-1}\Theta_h'(I - \beta^{1/2}\zeta^{-1}\Delta_h)^{-1}\zeta\Lambda'\Lambda(I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h
\]

\[= \beta^{1/2}\zeta^{-1}\Theta_h'(I - \beta^{1/2}\zeta^{-1}\Delta_h)^{-1}\gamma\Delta_h + \beta\Theta_h'P\Delta_h(I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h
\]

\[+ \beta^{1/2}\zeta^{-1}\Theta_h'(I - \beta^{1/2}\zeta^{-1}\Delta_h)^{-1}\Lambda'\hat{\Lambda}(I - \beta^{1/2}\zeta\Delta_h)^{-1}\Delta_h. \]

(9.4.34)
Substituting (9.A.34) and (9.A.26) into (9.A.32) gives

\[
\begin{align*}
\Pi + \beta^{1/2} \zeta^{-1} \Lambda (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h
\end{align*}
\]

\[
= \Pi' \Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h
\]

\[
= (\Pi' \Lambda + \beta \Theta_h' P \Delta_h) (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h
\]

\[
= \hat{\Pi}' \Lambda / (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h
\]

\[
= \hat{\Pi} + \beta^{1/2} \zeta^{-1} \hat{\Lambda} (I - \beta^{1/2} \zeta^{-1} \Delta_h)^{-1} \Theta_h' \hat{\Lambda} (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h +
\]

\[
\beta^{1/2} \zeta^{-1} \Theta_h' (I - \beta^{1/2} \zeta^{-1} \Delta_h)\Lambda (I - \beta^{1/2} \zeta \Delta_h)^{-1} \Delta_h
\]

\[
(9.A.35)
\]

which establishes (9.A.29).

9.A.12. Third Term

The third sum in (9.A.20) can be represented as

\[
\begin{align*}
\sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot b_t =
\end{align*}
\]

\[
(1/2\pi) \int_{-\pi}^{\pi} \left\{ \mathcal{F}(c) [\exp(i\theta)] \right\}' \mathcal{F}(b) [\exp(-i\theta)] d\theta.
\]

\[
(9.A.36)
\]

Note that

\[
\mathcal{F}(\zeta^{-1})' \mathcal{F}(b)(\zeta) = \hat{\mathcal{F}}(\zeta^{-1})' \hat{\mathcal{F}}(\zeta^{-1})' \mathcal{F}(\zeta^{-1})' \mathcal{F}(b)(\zeta).
\]

\[
(9.A.37)
\]

With this in mind, we define

\[
\hat{b}_t = E\{[\mathcal{F}(L^{-1})]'^{-1} \mathcal{F}(L^{-1})' b_t \mid J_t\}.
\]

\[
(9.A.38)
\]

Then by reasoning similar to that leading to result (a), we have that

\[
\sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot b_t = \sum_{t=0}^{\infty} \beta^t s_{m,t} \cdot \hat{b}_t.
\]

\[
(9.A.39)
\]
Taken together (9.A.22), (9.A.29) and (9.A.37) show that the induced preference ordering for consumption is the same for \((\hat{\Lambda}, \hat{\Pi})\) and \(\{\hat{b}_t\}\) as it is for the original specification \((\Lambda, \Pi)\) and \(\{b_t\}\). This establishes result (b).
Chapter 10
Examples

10.1. Partial Equilibrium

Some of the general equilibrium models in this book can be reinterpreted as partial equilibrium models that employ the notion of a representative firm, and that generalize the preference and technology specifications of Lucas and Prescott (1971). The idea is that there is a large number of identical firms that produce the same goods and sell them in competitive markets. Because they are identical, we carry along only one of these firms, and let it produce the entire output in the industry (which is harmless under constant returns to scale). But we have to be careful in our analysis because this representative firm’s decisions play two very different roles: as a stand-in for the ‘average’ competitive producer, and as producer of the entire industry’s output. In posing its optimum problem, we want the firm to act as a price-taking competitor.

After describing the links between our earlier general equilibrium formulation and a partial equilibrium, the remainder of the chapter provides examples of models that conform to our framework. Most of these examples were originally stated as partial equilibrium models. The appendix to this chapter describes a scheme for pricing objects that until now were unpriced because they were sheltered from the market by being within the household. We use this alternative decentralization when we want to price some household capital stocks.
10.2. The Setup

Demand is governed by the chapter 9 demand system (9.3.14), with the Harrison-Kreps price p_t^b simply being replaced by the spot price of the time t consumption vector p_t, namely,

$$
c_t = -\Pi^{-1}h_{t-1} + \Pi^{-1}b_t - \Pi^{-1}\mu_0 E_t\{\Pi'^{-1} - \Pi'^{-1}\Theta'_h\}
[I - (\Delta_h' - \Lambda'\Pi'^{-1}\Theta'_h)\beta L^{-1}]^{-1}\Lambda'\Pi'^{-1}\beta L^{-1}\}p_t
$$

$$
h_t = \Delta_h h_{t-1} + \Theta_h c_t.
$$

Here c_t is a vector of consumption goods, p_t is a vector of their prices, and $(\Pi, \Theta_h, \Lambda, \Delta_h)$ form a canonical household technology. Through this demand system, the representative firm’s output decisions influence the evolution of the market price. However, we want the representative firm to ignore this influence in making its output decisions.

A representative firm takes as given and beyond its control the stochastic process $\{p_t\}_{t=0}^{\infty}$. The firm sells its output c_t in a competitive market each period. Only spot markets convene at each date $t \geq 0$. The firm also faces an exogenous process of cost disturbances d_t.

The firm chooses stochastic processes $\{c_t, g_t, i_t, k_t\}_{t=0}^{\infty}$ to maximize

$$
E_0 \sum_{t=0}^{\infty} \beta^t \{p_t \cdot c_t - g_t \cdot g_t / 2\}
$$

subject to

$$
\Phi_c c_t + \Phi_i i_t + \Phi_g g_t = \Gamma k_{t-1} + d_t
$$

$$
k_t = \Delta_k k_{t-1} + \Theta_k i_t,
$$

given k_{-1}. This problem is not completely posed until we describe perceived laws of motion for the processes $\{p_t, d_t\}_{t=0}^{\infty}$ that the firm does not control but that influence its returns. Specifying the law of motion for the exogenous process $\{d_t\}$ is easy, because the representative firm’s decisions are assumed not to influence it. The situation is different with the price process, because the price is influenced by the output decisions of the representative firm. Despite this influence, we want the firm to behave competitively, that is, to regard the price process as beyond its control. We want to specify the firm’s beliefs about the evolution of the price so that: (a) the firm has ‘rational expectations’, i.e., its beliefs about the evolution of prices allow it to forecast future prices optimally, given the information that it has at each moment; and (b) the firm acts competitively and treats the price process as given and beyond its control.
To accomplish (a) and (b), we assume that the firm takes as given laws of motion for spot prices and for the information variables that help to predict spot prices. We model these as follows. The firm observes the state of the market X_t at t, and believes that the law of motion for the spot price vector is

$$p_t = m_p X_t$$

$$X_{t+1} = a_p X_t + C w_{t+1}$$

(10.2.3)

where $X_t = [h_{t-1}', K_{t-1}', z_t']'$, where K_t is the market-wide capital stock, which the firm takes as given and beyond its control. The firm believes that the cost shock process evolves according to $d_t = S_d X_t$. The state for the firm at date t is

$$\tilde{x}_t = [X_t', k_{t-1}']'$.

The firm’s problem is a discounted linear regulator problem. Under our assumptions about the technology, the firm’s control can be taken to be i_t. The solution of the firm’s problem is a decision rule for investment of the form

$$i_t = -f_i \tilde{x}_t.$$

(10.2.4)

This decision rule and equations (10.2.2) then determine $[c_t, g_t, k_t]$ as linear functions of \tilde{x}_t. The matrix f_i in the above equation is a function of all of the matrices describing the firm’s constraints, including a_p and m_p. The firm’s decision rule for c_t, implied by (10.2.2) and (10.2.4) can be represented as

$$c_t = f_c \tilde{x}_t.$$

(10.2.5)

Equation (10.2.2) implies that the firm’s capital evolves according to

$$k_t = \Delta_k k_{t-1} - \Theta_k f_i \tilde{x}_t.$$

(10.2.6)

At this point, but not earlier, we impose that the ‘representative firm is representative’ by setting $k_t \equiv K_t$ in (10.2.6), use it to deduce the actual law of motion for K_t, and then use this to fill in the rows corresponding to K_t of the actual law of motion for X_t:

$$X_{t+1} = a_x X_t + C w_{t+1}.$$

(10.2.7)

To get the rows corresponding to h_t, we use (10.2.5) together with the law of motion $h_t = \Delta_h h_{t-1} + \Theta_h c_t$.

To get a formula for the actual law of motion of the price, use (9.1.1) and the actual law of motion (10.2.7) for \(x_t = X_t \) to solve for a consumption process. Put the consumption process and preference shock into (9.3.1) and solve for \(\mu_t^* \). Then solve (9.3.3) forward for \(\mu_t^0 \); substitute into (9.3.2) to solve for \(p_t^0 \). Set \(p_t = p_t^0 \), then express the motion of prices as

\[
p_t = m_a X_t.
\] (10.2.8)

The system (10.2.7), (10.2.8) describes the actual law of motion for spot prices that is induced by the firm’s optimizing behavior and market clearing when the firm’s perceived law of motion for the spot prices is (10.2.3). The firm’s optimization problem and market clearing thus induce a mapping from a perceived law of motion \((a_p, m_p) \) for spot prices to an actual law \((a_a, m_a) \).

Definition: A rational expectations equilibrium (or a partial equilibrium) is a fixed point of the mapping from the perceived law of motion for spot prices to the actual law of motion for spot prices.

An equivalent definition is:

Definition: A partial equilibrium is a stochastic process \(\{p_t, c_t, i_t, g_t, k_t, K_t, h_t\}_{t=0}^\infty \), each element of which belongs to \(L^2_0 \), such that:

i. Given the stochastic process \(\{p_t\}_{t=0}^\infty \), in particular given the law of motion (10.2.3), \(\{c_t, i_t, g_t, k_t\}_{t=0}^\infty \) solve the firm’s problem.

ii. \(\{p_t, c_t, h_t\}_{t=0}^\infty \) satisfy the demand system (10.2.1).

iii. \(\{k_t\}_{t=0}^\infty = \{K_t\}_{t=0}^\infty \).

This is a version of Lucas and Prescott’s (1971) rational expectations competitive equilibrium, which they used to study investment under uncertainty with adjustment costs.\(^1\) The following proposition states the relationship between a partial equilibrium and our earlier notion of competitive equilibrium:

Proposition: Let \(\{c_t, s_t, i_t, g_t, k_t, q_t, q_t^0, \omega_t^0, \omega_t, r_t^0, r_t, q_t^0, q_t^0, \omega_t^0, v_0\}_{t=0}^\infty \) be a competitive equilibrium. Then \(\{p_t^0, c_t, i_t, g_t, k_t, h_t\}_{t=0}^\infty \) is a partial equilibrium.

This proposition can be proved by verifying that the proposed partial equilibrium satisfies the first-order necessary and sufficient conditions for the firm’s

\(^1\) Also, see Lucas (1967).
problem in the partial equilibrium, and that the proposed \(\{p_t, c_t, h_t\}_{t=0}^{\infty} \) process satisfies the demand system (9.3.14).

10.3. Equilibrium Investment Under Uncertainty

Our partial equilibrium structure includes many examples of linear rational expectations models (e.g., Sargent (1987b, ch. XVI), Eichenbaum (1983), and Hansen and Sargent (1991, chapter 4). Here is how we can apply these ideas to a version of Lucas and Prescott’s (1971) model of investment under uncertainty. There is one good produced with one factor of production (capital) via a linear technology. A representative firm maximizes

\[
E \sum_{t=0}^{\infty} \beta^t \{ p_t c_t - g_t^2 / 2 \},
\]

subject to the technology

\[
c_t = \gamma k_{t-1}
\]
\[
k_t = \delta k_{t-1} + i_t
\]
\[
g_t = f_1 i_t + f_2 d_t,
\]

where \(d_t \) is a cost shifter, \(\gamma > 0 \), and \(f_1 > 0 \) is a cost parameter and \(f_2 = 1 \). Demand is governed by

\[
p_t = \alpha_0 - \alpha_1 c_t + u_t,
\]

where \(u_t \) is a demand shifter with mean zero and \(\alpha_0, \alpha_1 \) are positive parameters. Assume that \(u_t, d_t \) are uncorrelated first-order autoregressive processes.

Lucas and Prescott computed rational expectations equilibrium quantities by forming a social planning problem with criterion

\[
E \sum_{t=0}^{\infty} \beta^t \left\{ \int_0^{c_t} (\alpha_0 - \alpha_1 \nu + u_t) d \nu - .5 g_t^2 \right\},
\]

where the integral under the demand curve is ‘consumer surplus.’ Consumer surplus equals

\[
(\alpha_0 + u_t) c_t - \frac{\alpha_1}{2} c_t^2.
\]
To map this model into our framework, set $\Lambda = 0, \Delta h = 0, \Theta = 0, \Pi^2 = \alpha_1, b_t = \frac{\alpha_1}{\Pi} + \frac{1}{\Pi} u_t$. Notice that with this specification,

$$(s_t - b_t)^2 / 2 = (\alpha_0 + u_t) c_t - \frac{\alpha_1}{2} c_t^2 + b_t^2 / 2.$$

The term in b_t^2 can be ignored because it influences no decisions. With this specification, our social planning problem is equivalent with Lucas and Prescott’s.

After we have computed the equilibrium quantities by solving the social planning problem, we can compute the ‘marginal utility price’

$$p_t = \Pi (b_t - s_t)$$

$$= \alpha_0 + u_t - \alpha_1 c_t,$$

where we are using $\alpha_1 = \Pi^2$.

10.4. A Housing Model

Rosen and Topel (1988) formulated a partial equilibrium model of a housing market consisting of a linear demand curve relating a stock of housing inversely to a rental rate; an equilibrium condition relating the price of houses to the discounted present value of rentals, adjusted for depreciation; and a quadratic cost curve for producing houses.

10.4.1. Demand

We can capture Rosen and Topel’s specification by sweeping house rentals into the household sector. The appendix of this chapter describes a decentralization that supports this interpretation. Rosen and Topel expressed the demand side of their model in terms of the two equations

$$R_t = b_t + \alpha h_t$$

$$p_t = E_t \sum_{\tau=0}^{\infty} (\beta \delta)^\tau R_{t+\tau}$$

where h_t is the stock of housing at time t, R_t is the rental rate for housing, p_t is the price of new houses, and b_t is a demand shifter; $\alpha < 0$ is a demand
parameter, and δ_h is a depreciation factor for houses. We cast this demand specification within our class of models by letting the stock of houses h_t evolve according to

$$h_t = \delta_h h_{t-1} + c_t, \quad \delta_h \in (0, 1),$$

where c_t is the rate of production of new houses. Houses produce services s_t according to $s_t = \lambda h_t$ or $s_t = \lambda h_{t-1} + \pi c_t$, where $\lambda = \bar{\lambda} \delta_h$, $\pi = \bar{\lambda}$. We can take $\bar{\lambda} \rho_t^0 = R_t$ as the rental rate on housing at time t, measured in units of time t consumption (housing).

Demand for housing services is

$$s_t = b_t - \mu_0 \rho_t^0,$$

where the price of new houses p_t is related to ρ_t^0 by $\rho_t^0 = \pi^{-1} [p_t - \beta \delta_h E_t \rho_{t+1}]$. This equation is a special case of equation (9.3.7) from chapter 9. It imposes the feature of the present specification that $\delta_h - \lambda \pi^{-1} \theta_h = 0$ and is a version of Rosen and Topel’s equation (12). It can be solved to yield $p_t = \bar{\lambda} E_t \sum_{\tau=0}^{\infty} (\beta \delta_h)^{\tau} \rho_t^0$, a version of Rosen and Topel’s equation (14). The parameter λ governs the slope of the demand curve for housing as a function of the rental rate for housing.

10.4.2. House Producers

Rosen and Topel’s representative firm maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t [p_t c_t - \Omega(c_t, c_{t-1}, e_t)],$$

where $\Omega(c_t, c_{t-1}, e_t)$ is the cost of producing new houses and $\{e_t\}$ is a cost shifter. The function Ω describes costs of adjusting the rate of production of new houses. The firm takes the stochastic process for p_t as given. Costs are

$$\Omega(c_t, c_{t-1}, e_t) = g_t \cdot g_t$$

where

$$g_{1t} = f_1 c_t + f_2 e_t$$
$$g_{2t} = f_3 (c_t - c_{t-1}).$$
and e_t is our cost-shifter. To map this into our general formulation, we use the technology

\begin{align*}
 f_1c_t - g_{1t} &= 0k_{t-1} - f_2e_t \\
 c_t - i_t &= 0 \\
 f_3c_t - g_{2t} &= f_3k_{t-1} \\
 k_t &= 0k_{t-1} + i_t.
\end{align*}

10.5. Cattle Cycles

Rosen, Murphy, and Scheinkman (1994) used a partial equilibrium model to interpret recurrent cycles in U.S. cattle prices. Their model features a static linear demand curve and a ‘time-to-grow’ structure for cattle. Let p_t be the price of freshly slaughtered beef, m_t the feeding cost of preparing an animal for slaughter, \hat{h}_t the one-period holding cost for a mature animal, $\gamma_1\hat{h}_t$ the one-period holding cost for a yearling, and $\gamma_0\hat{h}_t$ the one-period holding cost for a calf. The cost processes $\{\hat{h}_t, m_t\}_{t=0}^\infty$ are exogenous, while the stochastic process $\{p_t\}_{t=0}^\infty$ is determined by a rational expectations equilibrium. Let \tilde{x}_t be the breeding stock, and \tilde{y}_t be the total stock of animals. The law of motion for cattle stocks is

\[\tilde{x}_t = (1 - \delta)\tilde{x}_{t-1} + g\tilde{x}_{t-3} - c_t, \quad (10.5.1) \]

where c_t is a rate of slaughtering. The total head count of cattle,

\[\tilde{y}_t = \tilde{x}_t + g\tilde{x}_{t-1} + g\tilde{x}_{t-2}, \quad (10.5.2) \]

is the sum of adults, calves, and yearlings, respectively.

A representative farmer chooses $\{c_t, \tilde{x}_t\}$ to maximize

\[E_0 \sum_{t=0}^\infty \beta^t \{ p_t c_t - \tilde{h}_t \tilde{x}_t - (\gamma_0\tilde{h}_t)(g\tilde{x}_{t-1}) - (\gamma_1\tilde{h}_t)(g\tilde{x}_{t-2}) - m_t c_t - \Psi(\tilde{x}_t, \tilde{x}_{t-1}, \tilde{x}_{t-2}, c_t) \}, \quad (10.5.3) \]

where

\[\Psi = \frac{\psi_1}{2}\tilde{x}_t^2 + \frac{\psi_2}{2}\tilde{x}_{t-1}^2 + \frac{\psi_3}{2}\tilde{x}_{t-2}^2 + \frac{\psi_4}{2}c_t^2. \quad (10.5.4) \]
The maximization is subject to the law of motion (10.5.1), taking as given the stochastic laws of motion for the exogenous random processes and the equilibrium price process, and the initial state \(\tilde{x}_{-1}, \tilde{x}_{-2}, \tilde{x}_{-3} \). Here \(\psi_j, j = 1, 2, 3 \) are small positive parameters that represent quadratic costs of carrying stocks and \(\psi_4 \) is a small positive parameter. The costs in (10.5.4) are implicitly taken into account by Rosen, Murphy, and Scheinkman and motivate their decision to “solve stable roots backwards and unstable roots forwards.” To capture Rosen, Murphy, and Scheinkman’s solution, we shall set each of the \(\phi_j \)’s to a positive but very small number.

Demand is governed by

\[
(5) \quad c_t = \alpha_0 - \alpha_1 p_t + \tilde{d}_t,
\]

where \(\alpha_0 > 0, \alpha_1 > 0 \), and \(\{\tilde{d}_t\}_{t=0}^\infty \) is a stochastic process with mean zero representing a demand shifter.

10.5.1. Mapping Cattle Farms into our Framework

We show how to map the model of Rosen, Murphy, and Scheinkman into our general setup.

10.5.2. Preferences

Set \(\Lambda = 0, \Delta_h = 0, \Theta_h = 0, \Pi = \alpha_1^{-1} b_t = \Pi \tilde{d}_t + \Pi \alpha_0 \). With these settings, first-order condition (6.13) for the household’s problem becomes

\[
 c_t = \Pi^{-1} b_t - \Pi^{-2} p_t,
\]

or

\[
 c_t = \alpha_0 - \alpha_1 p_t + \tilde{d}_t.
\]
10.5.3. Technology

The law of motion for capital is

\[
\begin{bmatrix}
\ddot{x}_t \\
\dot{x}_{t-1} \\
\dot{x}_{t-2} \\
\end{bmatrix} =
\begin{bmatrix}
(1 - \delta) & 0 & g \\
1 & 0 & 0 \\
0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\ddot{x}_{t-1} \\
\dot{x}_{t-2} \\
\dot{x}_{t-3} \\
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
0 \\
\end{bmatrix} i_t,
\]

or

\[
k_t = \Delta k_{t-1} + \Theta_{k}i_t.
\]

Here \(i_t = -c_t \).

We use adjustment costs to capture holding and slaughtering costs. We set

\[
g_{1t} = f_1\ddot{x}_t + f_2\dot{h}_t,
\]

or

\[
g_{1t} = f_1[(1 - \delta)\ddot{x}_{t-2} + g\ddot{x}_{t-3} - c_t] + f_2\dot{h}_t.
\]

We set

\[
g_{2t} = f_3\ddot{x}_{t-1} + f_r\dot{h}_t
\]

\[
g_{3t} = f_5\ddot{x}_{t-1} + f_\theta\dot{h}_t.
\]

Notice that

\[
g_{1t}^2 = f_1^2\ddot{x}_t^2 + f_2^2\dot{h}_t^2 + 2f_1f_2\ddot{x}_t\dot{h}_t
\]

\[
g_{2t}^2 = f_3^2\ddot{x}_{t-1}^2 + f_r^2\dot{h}_t^2 + 2f_3f_r\ddot{x}_{t-1}\dot{h}_t
\]

\[
g_{3t}^2 = f_5^2\ddot{x}_{t-2}^2 + f_\theta^2\dot{h}_t^2 + 2f_5f_\theta\ddot{x}_{t-2}\dot{h}_t.
\]

Thus, we set

\[
f_1^2 = \frac{\psi_1}{2} \quad f_2^2 = \frac{\psi_2}{2} \quad f_3^2 = \frac{\psi_3}{2}
\]

\[
2f_1f_2 = 1 \quad 2f_3f_r = \gamma_0g \quad 2f_5f_\theta = \gamma_1g.
\]
To capture feeding costs, we set $g_t = f_{7}c_{t} + f_{8}m_{t}$, and set $f_{7}^2 = \frac{\psi_{1}}{2}, \quad 2f_{7}f_{8} = 1$. Thus, we set

$$
\begin{bmatrix}
1 \\
f_{1} \\
0 \\
-f_{7}
\end{bmatrix} c_{t} +
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix} i_{t} +
\begin{bmatrix}
0 \\
1 \\
0 \\
0
\end{bmatrix} 0 =
\begin{bmatrix}
g_{1t} \\
g_{2t} \\
g_{3t} \\
g_{4t}
\end{bmatrix}.
$$

$$
\begin{bmatrix}
0 & 0 & 0 \\
f_{1}(1 - \delta) & 0 & g_{f_{1}} \\
f_{3} & 0 & 0 \\
0 & f_{5} & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\tilde{x}_{t-1} \\
\tilde{x}_{t-2} \\
\tilde{x}_{t-3}
\end{bmatrix} +
\begin{bmatrix}
0 \\
f_{2}\tilde{h}_{t} \\
f_{4}\tilde{h}_{t} \\
f_{6}\tilde{h}_{t} \\
f_{8}m_{t}
\end{bmatrix}.
$$

We set $d_{t} = U_{d}z_{t}$, where

$$
U_{d} =
\begin{bmatrix}
0 \\
f_{2}U_{h} \\
f_{4}U_{h} \\
f_{6}U_{h} \\
f_{8}U_{m}
\end{bmatrix},
$$

and $[U_{h}, U_{m}]$ are vectors that pick off \tilde{h}_{t} and m_{t} from the exogenous state vector z_{t}. We specify the information matrices $[A_{22}, C_{2}]$ to incorporate Rosen, Murphy, and Scheinkman’s specification that $[\tilde{h}_{t}, m_{t}, d_{t}]$ consists of three uncorrelated first-order autoregressive processes.\(^{2}\)

\(^{2}\) Anderson, Hansen, McGrattan, and Sargent (1996) estimated this model.
10.6. Models of Occupational Choice and Pay

Aloyisius Siow (1984) and J. Ryoo and Sherwin Rosen (2004) have used pure time-to-build structures to represent entry cycles into occupations, and also inter-occupational wage movements. It is easiest to incorporate their models into our framework by putting production into the household technology, using the decentralization described in the appendix to this chapter to generate prices.

10.6.1. A One-Occupation Model

Ryoo and Rosen’s (2004) partial equilibrium model determines a stock of ‘engineers’ N_t; the number of new entrants into engineering school, n_t; and the wage level w_t of engineers. It takes k periods of schooling to become an engineer. The model consists of the following equations: first, a demand curve for engineers

$$w_t = -\alpha_d N_t + \epsilon_{1t}, \alpha_d > 0; \quad (10.6.1)$$

second, a time-to-build structure of the education process

$$N_{t+k} = \delta_N N_{t+k-1} + n_t, \quad 0 < \delta_N < 1; \quad (10.6.2)$$

third, a definition of the discounted present value of each new engineering student

$$v_t = \beta^k E_t \sum_{j=0}^{\infty} (\delta_N)^j w_{t+k+j}; \quad (10.6.3)$$

and fourth, a supply curve of new students driven by v_t

$$n_t = \alpha_s v_t + \epsilon_{2t}, \quad \alpha_s > 0. \quad (10.6.4)$$

Here $\{\epsilon_{1t}, \epsilon_{2t}\}$ are stochastic processes of labor demand and supply shocks. A partial equilibrium is a stochastic process $\{w_t, N_t, v_t, n_t\}_{t=0}^{\infty}$ satisfying these four equations, and initial conditions $N_{-1}, n_{-s}, s = 1, \ldots, -k$.

We can represent this model by sweeping the time-to-build structure and the demand for engineers into the household technology and putting the supply of new engineers into the technology for producing goods. Here is how. We take
the household technology to be

\[s_t = [\lambda_1 \ 0 \ \ldots \ 0] \begin{bmatrix} h_{1t-1} \\ h_{2t-1} \\ \vdots \\ h_{k+1,t-1} \end{bmatrix} + 0 \cdot c_t \]

\[
\begin{bmatrix}
 h_{1t} \\
 h_{2t} \\
 \vdots \\
 h_{k,t} \\
 h_{k+1,t} \\
\end{bmatrix} = \begin{bmatrix}
 \delta_N & 1 & 0 & \ldots & 0 \\
 0 & 0 & 1 & \ldots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & \ldots & \ldots & 0 \\
 0 & 0 & 0 & \ldots & 0 \\
\end{bmatrix} \begin{bmatrix}
 h_{1t-1} \\
 h_{2t-1} \\
 \vdots \\
 h_{k,t-1} \\
 h_{k+1,t-1} \\
\end{bmatrix} + \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 1 \\
\end{bmatrix} c_t
\]

\[b_t = c_{1t} \]

This specification sets Ryoo and Rosen’s \(N_t = h_{1t-1} \), \(n_t = c_t, h_{\tau+1,t-1} = n_{t-\tau}, \tau = 1, \ldots, k \), and uses the home-produced service to capture the demand for labor. Here \(\lambda_1 \) embodies Ryoo and Rosen’s demand parameter \(\alpha_d \).

To capture Ryoo and Rosen’s supply curve, we use the physical technology

\[c_t = i_t + d_{1t} \]
\[\varphi_1 i_t = g_t \]

where \(d_{1t} \) is proportional to Ryoo and Rosen’s supply shock \(\epsilon_{2t} \), and where the adjustment cost parameter \(\varphi_1 \) varies directly with Rosen’s supply curve parameter \(\alpha_s \).

Rosen showed that the equilibrium decision rule for new entrants (our \(c_t \)) must satisfy the condition

\[n_t = f_1 E_t N_{t+k} + f_2 \epsilon_{1t} + f_3 \epsilon_{2t} \]

where \(f_1 < 0 \).

3 Notice that this representation of the household technology is not canonical.

4 In the definition of \(\Lambda \) in the household technology, we would replace the zeros with \(\epsilon > 0 \) as a trick to acquire detectability; see chapter 3 and its appendix A for the definition and role of detectability.
10.6.2. Skilled and Unskilled Workers

We can generalize the preceding model to two occupations, called skilled and unskilled, to obtain alternative versions of a model estimated by A. Siow (1984). The model consists of the following elements: first, a demand curve for labor

\[
\begin{bmatrix}
w_{ut} \\
w_{st}
\end{bmatrix} = \alpha_d \begin{bmatrix}
N_{ut} \\
N_{st}
\end{bmatrix} + \epsilon_{1t};
\]

where \(\alpha_d \) is a \((2 \times 2)\) matrix of demand parameters and \(\epsilon_{1t} \) is a vector of demand shifters; second, time-to-train specifications for skilled and unskilled labor, respectively:

\[
\begin{align*}
N_{st+k} &= \delta_N N_{st+k-1} + n_{st} \\
N_{ut} &= \delta_N N_{ut-1} + n_{ut};
\end{align*}
\]

where \(N_{st}, N_{ut} \) are stocks of the two types of labor, and \(n_{st}, n_{ut} \) are entry rates into the two occupations; third, definitions of discounted present values of new entrants to the skilled and unskilled occupations, respectively:

\[
\begin{align*}
v_{st} &= \mathbb{E}_t \beta^k \sum_{j=0}^{\infty} (\beta \delta_N)^j w_{st+k+j} \\
v_{ut} &= \mathbb{E}_t \sum_{j=0}^{\infty} (\beta \delta_N)^j w_{ut+j},
\end{align*}
\]

where \(w_{ut}, w_{st} \) are wage rates for the two occupations; and fourth, supply curves for new entrants:

\[
\begin{bmatrix}
n_{st} \\
n_{ut}
\end{bmatrix} = \alpha_s \begin{bmatrix}
v_{ut} \\
v_{st}
\end{bmatrix} + \epsilon_{2t}. \quad (10.6.5)
\]

As an alternative to (10.6.5), Siow simply used the ‘equalizing differences’ condition

\[
v_{ut} = v_{st}. \quad (10.6.6)
\]

We capture this model by pushing most of the action into the household sector. Households decide what kind of durable good to accumulate, namely, unskilled labor or skilled labor. Unskilled labor and skilled labor can be combined to produce services, which we specify to generate the demands for labor. We let \(c_{1t}, c_{2t} \) be rates of entry \(n_{ut}, n_{st} \) into unskilled and skilled labor, and constrain them to satisfy \(c_{1t} + c_{2t} = i_t + d_{1t} \), the rate of total new entrants. To generate
the upward sloping supply curves (10.6.5), we specify that $\phi_1 t + \phi_2 c_2 t = g_t$. The technology is thus

$$
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
0 & -\phi_2 & \cdots & 0 \\
0 & 1 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
c_1 t \\
c_2 t
\end{bmatrix}
+ \begin{bmatrix}
-1 & 0 & \cdots & 0 \\
-\phi_1 & 0 & \cdots & -1 \\
0 & 1 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
i_1 t \\
i_2 t
\end{bmatrix}
+ \begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
g_t
= \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
d_{1t}
\end{bmatrix},
$$

where d_{1t} is a supply shifter. To get Siow’s model, we set $\phi_1 = \phi_2 = 0$, in which case d_{1t} becomes an exogenous supply of new entrants into the labor force.

We specify the law of motion for household capital

$$
\begin{bmatrix}
h_{1t} \\
h_{2t} \\
h_{3t} \\
\vdots \\
h_{k+1,t} \\
h_{k+2,t}
\end{bmatrix}
= \begin{bmatrix}
\delta_N & 0 & 0 & \cdots & 0 \\
0 & \delta_N & 1 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
h_{1t-1} \\
h_{2t-1} \\
h_{3t-1} \\
\vdots \\
h_{k+1,t-1} \\
h_{k+2,t-1}
\end{bmatrix}
+ \begin{bmatrix}
1 & 0 \\
0 & 0 \\
0 & 0 \\
\vdots & \vdots \\
0 & 0 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
c_1 t \\
c_2 t
\end{bmatrix},
$$

where

$$
\begin{bmatrix}
h_{1t-1} \\
h_{2t-1} \\
h_{j+2,t-1}
\end{bmatrix}
= \begin{bmatrix}
N_{ut-1} \\
N_{st} \\
N_{st+j-1}
\end{bmatrix},
$$

We generate the demand for labor by specifying services as

$$
\begin{bmatrix}
s_{1t} \\
s_{2t}
\end{bmatrix}
= \tilde{\Lambda}
\begin{bmatrix}
h_{1t} \\
h_{2t}
\end{bmatrix}
= \tilde{\Lambda} e \Delta h_{t-1} + \tilde{\Lambda} e \Theta h_{c t}
$$

where e is a selector vector that verifies

$$
\begin{bmatrix}
h_{1t} \\
h_{2t}
\end{bmatrix}
= e h_t.
$$

We set the preference shock process $b_t = [b_{1t} \ b_{2t} \ 0 \ 0]$ to capture the shifters in the demands for labor.
A. Decentralizing the Household

It can be useful to decentralize the household sector in order to price household services and stocks. Suppose that the household buys a vector of services from firms of type III at the price of services ρ_t^0. The household sells its initial stocks of both physical and household capital and also its labor and endowment process to firms. The price of the initial stock of household capital is \tilde{v}_0. The household maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t [(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2]$$

subject to the budget constraint

$$E_0 \sum_{t=0}^{\infty} \beta^t \rho_t^0 \cdot s_t = E_0 \sum_{t=0}^{\infty} \beta^t (w_t^0 \ell_t + \alpha_t^0 \cdot d_t) + (v_0 \cdot k_{t-1} + \tilde{v}_0 \cdot h_{t-1}).$$ \hspace{1cm} (10.A.1)

Firms of type III

Firms of type III purchase the consumption vector c_t, rent household capital, and produce and sell household services and additions to the stocks of household capital. Type III firms sell s_t to households at price ρ_t^0 and new household capital $\Theta_h c_t$ to firms of type IV at price p_{ht}^0. Firms of type III rent household capital from firms of type IV at a rental price r_{ht}^0, and maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t \{\rho_t^0 \cdot s_t + p_{ht}^0 \Theta_h c_t - r_{ht}^0 \cdot h_{t-1} - p_t^0 \cdot c_t\}$$

subject to

$$s_t = \Lambda h_{t-1} + \Pi c_t.$$

Firms of type IV

Firms of type IV purchase new household capital from firms of type III, and rent existing household capital to firms of type III at rental price r_{ht}^0. Firms of type IV maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t \{r_{ht}^0 \cdot h_{t-1} - p_{ht}^0 \Theta_h c_t\} - \tilde{v}_0 \cdot h_{t-1}$$

subject to

$$h_t = \Delta h_{t-1} + \Theta_h c_t.$$
Computing Prices

If we formulate the optimum for a firm of type III, obtain the associated first-order necessary conditions and rearrange, we get the following restrictions on prices:

\[p_t^0 = \Theta_h p_{ht} + \Pi' \rho_t^0 \]
\[r_{ht}^0 = \Lambda' \rho_t^0. \]

(10.A.2)

From the first-order conditions for a firm of type IV, obtain

\[p_{ht}^0 = E_t \beta [\Delta_h p_{ht+1}^0 + r_{ht+1}^0]. \]

(10.A.3)

We can use (10.A.2) with (10.A.3) to obtain

\[p_t^0 = \Theta_h E_t \sum_{j=1}^{\infty} \beta^{(j)} \Delta^{(j-1)} r_{ht+j}^0 + \Pi' \rho_t^0. \]

This is a generalization of Siow’s equilibrium condition (10.6.6). For us \(p_t^0 = M_c x_t \) is the vector of shadow prices of new entrants into the two types of profession.

We have already shown how to compute the price \(\rho_t^0 \). Indeed, this decentralization is a way to set up an explicit market in the implicit services priced by \(\rho_t^0 \). The prices of stocks of household capital can be computed from the multipliers on \(h_{t-1} \) and \(c_t \) in the social planning problem.
Chapter 11
Permanent Income Models

This chapter describes a class of permanent income models of consumption. These models stress connections between consumption and income implied by present value budget balance and generate interesting predictions about responses of components of consumption to shocks to consumers’ information sets. The models allow us to characterize how consumption of durables act as a form of savings and how habit persistence alters consumption-savings profiles.

11.1. Technology

To focus on dynamics induced by a household technology, it serves our purposes to adopt the following specification of a production technology:

\[\phi_c \cdot c_t + i_t = \gamma k_{t-1} + e_t \]
\[k_t = k_{t-1} + i_t \]

(11.1.1)

where \(\phi_c \) is a vector of positive real numbers with \(n_c \) elements, \(e_t \) is a scalar exogenous endowment of consumption, and \(k_{t-1} \) is a scalar capital stock. We set \(\delta_k = 1 \), thereby ignoring depreciation in capital so that \(i_t \) is net investment. Introducing depreciation in capital would add nothing to our analysis because we shall eliminate any additional input requirement for making new capital productive. With no intermediate inputs required for investment, even if there were depreciation in the capital stock, a version of the first equation of (11.1.1) would apply to net investment by suitably altering the marginal product of capital parameter \(\gamma \).

The empirical counterpart to the scalar endowment process \(\{e_t\} \) is typically labor income (e.g., see Flavin (1981) and Deaton (1993)). Labor is supplied inelastically and produces \(c_t \) units of output independently of the level of capital. The absence of curvature in technology (11.1.1) has some troublesome implications for equilibrium prices that we will discuss later. Nevertheless, technology (11.1.1) provides a good laboratory for studying how the household technology alters consumption-savings profiles. Moreover, this specification has played a
permanent role in the empirical literature on the permanent income theory of consumption.

To make the model behave well, we impose the restriction that \((1+\gamma)\beta = 1\). Relaxing this restriction to make capital more or less productive has unpleasant implications. Thus, reducing the marginal product of capital \(\gamma\) makes the capital stock eventually become negative,\(^5\) while increasing the marginal product of capital \(\gamma\) typically implies asymptotic satiation in a deterministic version of the model; stochastic versions yield a marginal utility vector with mean zero in a stochastic steady state. Accepting this razor’s edge linkage between the marginal product of capital and subjective discount factor in \((1 + \gamma)\beta = 1\) is the price we pay for eliminating the role of intermediate goods in making new capital productive.

To put this technology within the general specification of Chapter 5, we include an additional equation

\[
\phi_i i_t - g_t = 0, \tag{11.1.2}
\]

where \(\phi_i\) is a small positive number. Strictly speaking, this introduces a form of adjustment cost by requiring that a household input be used to make capital productive. This small penalty makes capital satisfy the square summability constraint that keeps it in \(L_0^2\). When there are multiple consumption goods, to make the matrix \([\Phi_c \Phi_g]\) nonsingular, we introduce \(n_c - 1\) additional investment goods equal to the last \(n_c - 1\) entries of \(c_t\) Thus, combining these constraints, when \(n_c\) equals 1, we form

\[
\Phi_c = \begin{pmatrix} \phi_c \\ 0 \end{pmatrix}, \Phi_i = \begin{pmatrix} 1 \\ \phi_i \end{pmatrix}, \Phi_g = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \tag{11.1.3}
\]

\[
\Gamma = \begin{pmatrix} \gamma \\ 0 \end{pmatrix}, \Delta_k = 1, \Theta_k = 1;
\]

and when \(n_c\) exceeds 1,

\[
\Phi_c = \begin{pmatrix} \phi'_c \\ 0 \\ 0 - I \end{pmatrix}, \Phi_i = \begin{pmatrix} 1 & 0 \\ \phi_i & 0 \\ 0 & I \end{pmatrix}, \Phi_g = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}, \tag{11.1.4}
\]

\(^5\) A more interesting solution of the model imposes a period-by-period nonnegativity constraint on capital. Instead we limit the terminal behavior of the capital stock by imposing square summability.
Thus, to embed this model into the general setup of Chapter 5, we have n_c investment goods (the original good and $n_c - 1$ additional goods introduced for technical purposes) and one intermediate good (used to enforce square summability of the capital stock).

11.2. Two Implications

We extract two sharp implications of our class of permanent income models of consumption. We obtain the first by substituting $k_t - k_{t-1}$ for i_t in (11.1.1) and solving the resulting difference equation forward for k_{t-1}:

$$k_{t-1} = \beta \sum_{j=0}^{\infty} \beta^j (\phi_c \cdot c_{t+j} - e_{t+j}).$$

(11.2.1)

From this formula, it follows that

$$k_{t-1} = \beta \sum_{j=0}^{\infty} \beta^j E(\phi_c \cdot c_{t+j} - e_{t+j})|J_t.$$

(11.2.2)

Formula (11.2.2) will help us to find recursive representations of decision rules and also has important implications for how consumption and (endowment) income respond to the underlying shocks, as displayed by a set of dynamic multipliers - or impulse responses - $\{\chi_j\}$ and $\{\epsilon_j\}$ for $\{c_t\}$ and $\{e_t\}$, respectively, where $\chi_j w_t$ gives the response of c_{t+j} to w_t and $\epsilon_j w_t$ the response of e_{t+j} to w_t. Since the capital stock k_{t-1} cannot depend on w_t it follows from (11.2.1) that the shock must be present-value neutral. In other words, the impact of w_t on current and future values of e_t must be offset in a present-value sense by its impact on current and future values of c_t:

$$\sum_{j=0}^{\infty} \beta^j (\phi_c)' \chi_j = \sum_{j=0}^{\infty} \beta^j \epsilon_j.$$

(11.2.3)

Equality (11.2.3) is the present-value relation studied by Flavin (1981), Hamilton and Flavin (1986), Sargent (1987b, ch. XIII), Hansen, Roberds and Sargent (1991), and Gali (1991).
The second implication pertains to the martingale behavior of shadow price vectors for consumption and capital. To begin, note that the forward evolution equation for the shadow price of capital is

\[\mathcal{M}_t^k = E(\beta \mathcal{M}_{t+1}^k | J_t) + E(\beta \gamma \mathcal{M}_{t+1}^c | J_t). \]

(11.2.4)

The first-order conditions for the first component of investment imply that

\[\mathcal{M}_t^e + \phi_i \mathcal{M}_t^g = \mathcal{M}_t^k, \]

(11.2.5)

where the left side captures the cost of an additional unit of investment and the right side the benefit. The second term on the left side reflects the adjustment cost, and is zero in the limiting \(\phi_i = 0 \) case. By substituting (11.2.5) into (11.2.4) and using the fact that \(\beta(1 + \gamma) = 1 \), we obtain the martingale implication for the shadow price of capital:

\[\mathcal{M}_t^k = E(\mathcal{M}_{t+1}^k | J_t), \]

(11.2.6)

and likewise for the multiplier process \(\{\mathcal{M}_t^e\} \).

Finally, the shadow price of consumption is

\[\mathcal{M}_t^c = (\Phi_c)' \mathcal{M}_t^d = \phi_c \mathcal{M}_t^c, \]

(11.2.7)

since the last \(n_c - 1 \) components of \(\mathcal{M}_t^d \) are zero because these are the multipliers on a set of bookkeeping identities. Hence, the shadow price process for consumption depends on a single scalar multiplier process \(\{\mathcal{M}_t^e\} \), a martingale that we call the marginal utility process for income. We shall pursue the present-value budget balance and martingale implications further and use them to find and represent decision rules.
11.3. Allocation Rules

To solve the model, we begin by deriving allocation rules for consumption and investment that can be represented in terms of the scalar martingale process \(\{M^*_t\} \). Then we use present-value relation (11.2.2) to compute \(M^*_t \). Our focus on the marginal utility of income follows an aspect of an analysis of Bewley (1977).

To accomplish the first step, we use the notion of a canonical household technology from chapter 9. Recall that the household technology determines the sequence of consumption services associated with a given sequence of consumption goods and an initial condition for the household capital stock. When the household technology is canonical, we can construct an inverse system that maps a given sequence of consumption services and an initial condition on the household capital stock uniquely into a sequence of consumption goods required to support that service sequence. For a household technology to be canonical, there must be the same number of services as goods, the matrix \(\Pi \) must be non-singular, and the absolute values of the eigenvalues of the matrix \((\Delta_h - \Theta_h \Pi^{-1} \Lambda) \) must be strictly less than \(\beta^{-1/2} \). Under these restrictions, the inverse system can be represented recursively as:

\[
\begin{align*}
 c_t &= \Lambda^* h_{t-1} + \Pi^* s_t \\
 h_t &= \Delta_h^* h_{t-1} + \Theta_h^* s_t,
\end{align*}
\]

where

\[
\Lambda^* \equiv -\Pi^{-1} \Lambda, \quad \Pi^* \equiv \Pi^{-1},
\]

and

\[
\Delta_h^* \equiv (\Delta_h - \Theta_h \Pi^{-1} \Lambda), \quad \Theta_h^* \equiv \Theta_h \Pi^{-1}.
\]

In chapter 9, we showed that there always exists a representation of induced preferences for consumption goods in terms of a canonical technology.

An analogous dual system governs the multipliers

\[
\begin{align*}
 M^*_t &= E[\beta(\Delta_h)'M^*_{t+1}|J_t] + E[\beta \Lambda^* M^*_{t+1}|J_t] \\
 M^h_t &= (\Theta_h)'M^*_{t+1} + \Pi'M^*_t,
\end{align*}
\]

and there is an associated inverse system

\[
M^*_t = E[\beta(\Delta_h)'M^*_{t+1}|J_t] - E[\beta(\Lambda^*)'M^*_{t+1}|J_t]
\]
\[\mathcal{M}_t^r = -(\Theta_k^*)'\mathcal{M}_t^b + (\Pi^*)'\mathcal{M}_t^c. \]

Since \(\{\mathcal{M}_t^c\} \) is a martingale sequence, it follows from the inverse dual system (11.3.3) that \(\{\mathcal{M}_t^b\} \) and \(\{\mathcal{M}_t^r\} \) are both martingales. In fact, they are linear combinations of the scalar martingale sequence \(\mathcal{M}_t^e \). For instance,

\[M_s = -\Theta_k^* \mathcal{M}_t^b + (\Pi^*)'\mathcal{M}_t^c. \]

(11.3.4)

where

\[M_s \equiv (\Pi^*)' + (\Theta_k^*)'[I - \beta(\Delta_k^*)']^{-1}\beta\Lambda^*\phi_c. \]

(11.3.5)

Consequently, we can solve for the service sequence in terms of the scalar martingale \(\{\mathcal{M}_t^e\} \) from the simple link between the vector of services and the corresponding marginal utility vector:

\[s_t = -M_s\mathcal{M}_t^e + b_t. \]

(11.3.6)

From this relation and from the inverse household technology (11.3.1) it follows that

\[c_t = \Lambda^* h_{t-1} - \Pi^* M_s \mathcal{M}_t^e + \Pi^* b_t \]

(11.3.7)

\[h_t = \Delta_k^* h_{t-1} - \Theta_k^* M_s \mathcal{M}_t^e + \Theta_k^* b_t. \]

To characterize a decision rule for investment, we solve (11.1.1) for \(i_t \) and substitute the right side of (11.3.7) for \(c_t \):

\[i_t = \gamma k_{t-1} + e_t - \phi_c \cdot c_t \]

(11.3.8)

\[= \gamma k_{t-1} + e_t - (\phi_c)'\Lambda^* h_{t-1} - (\phi_c)'\Pi^* (b_t - M_s\mathcal{M}_t^e). \]

So far, we have derived a recursive representation for consumption, investment, and household capital in terms of the scalar multiplier process \(\{\mathcal{M}_t^e\} \). However, we have not derived initial conditions for this sequence, and we do not yet have a formula relating the time \(t \) increment of this process to the underlying martingale difference sequence \(\{w_t\} \). We now derive formulas for both of these objects.

To find an expression for the marginal utility of income process, we exploit the present-value budget balance restriction (11.2.2). In light of the inverse system (11.3.1) for the household technology, we compute the expected discounted sums of services and household capital:

\[\sum_{j=0}^{\infty} \beta^j E(s_{t+j}|J_t) = -[1/(1 - \beta)]M_s\mathcal{M}_t^e + \sum_{j=0}^{\infty} \beta^j E(b_{t+j}|J_t), \]

(11.3.9)
and
\[\beta \sum_{j=0}^{\infty} \beta^j E(h_{t+j}|J_t) = \beta \sum_{j=0}^{\infty} \beta^j E(\Delta h_{t+j-1} + \Theta s_{t+j}|J_t). \] (11.3.10)

Rewriting (11.3.10), we obtain
\[(I - \beta \Delta h) \sum_{j=0}^{\infty} \beta^j E(h_{t+j-1}|J_t) = h_{t-1} + \beta \Theta s \sum_{j=0}^{\infty} \beta^j E(s_{t+j}|J_t), \]
or
\[\sum_{j=0}^{\infty} \beta^j E(h_{t+j-1}|J_t) = \]
\[(I - \beta \Delta h)^{-1} h_{t-1} + \beta (I - \beta \Delta h)^{-1} \Theta s \sum_{j=0}^{\infty} \beta^j E(s_{t+j}|J_t). \] (11.3.11)

Since \(\phi_c \cdot c_t = (\phi_c)'(\Lambda^* h_{t-1} + \Pi^* s_t) \), it follows from equation (11.3.1) and (11.3.9) that
\[(1 + \gamma)k_{t-1} - (\phi_c)'\Lambda^*(I - \beta \Delta h)^{-1} h_{t-1} = \] \[- M'_s M_s \gamma k_{t-1} + (1 - \beta) \sum_{j=0}^{\infty} \beta^j E(M'_b h_{t+j} - e_{t+j}|J_t). \] (11.3.12)

Solving for \(\{M'_t\} \) results in
\[M'_t = 1/(M'_s M_s) [(1 - \beta) \sum_{j=0}^{\infty} \beta^j E(M'_b h_{t+j} - e_{t+j}|J_t) - \gamma k_{t-1} + (1 - \beta)(\phi_c)'\Lambda^*(I - \beta \Delta h)^{-1} h_{t-1}]. \] (11.3.13)

To interpret (11.3.13), it is useful to decompose the right side into three components. First, we follow the permanent income literature by defining permanent income to be that amount of income to be spent on consumption that can be expected to persist in the future and still satisfy (11.2.2):
\[y^p_t = \gamma k_{t-1} + (1 - \beta) \sum_{j=0}^{\infty} E(\beta^j e_{t+j}|J_t). \] (11.3.14)

Formally, this is obtained by letting \(\{y^p_t\} \) be a hypothetical expenditure process for consumption, assuming it is a martingale, substituting \(y^p_{t+j} \) for \(\phi_c \cdot e_{t+j} \) in equation (11.2.2), and solving for \(y^p_t \).
Note that this measure of permanent income does not adjust for risk in the endowment sequence and hence even when divided by \((1 - \beta)\) is distinct from equilibrium wealth. Nevertheless, it is an important component of the solution to the model. In fact, \(c_t = y_p^t\) is the solution for consumption in the in the special case of single good, no preference shocks \((b_t\) constant), and time separable preferences \((\Lambda = 0)\), which is Hall’s (1978) permanent income model of consumption. In this special case, the marginal utility process for endowment income is formed by translating the negative of permanent income: \(M_e^t = b - y_p^t\).

More generally, when the preference shock process is not expected to be constant, the term of interest is a ‘permanent’ measure of the preference shock sequence:

\[
b_p^t \equiv (1 - \beta) \sum_{j=0}^{\infty} E[\beta^j (M_s)'b_{t+j}|I_t].
\]

(11.3.15)

Finally, when preferences are not separable over time, the household capital stock also enters the solution for the marginal utility of endowment income. To interpret its coefficient, consider the sequence of consumption goods required to support zero consumption services from now into the future. To compute this sequence, simply feed a sequence of zeros into the inverse of the household technology. Discounting the resulting consumption sequence and premultiplying by \((\phi_c)'\) results in:

\[
y_h^t \equiv (1 - \beta)(\phi_c)'\Lambda^*(I - \beta\Delta_h^*)^{-1}h_{t-1}.
\]

(11.3.16)

Hence, \(y_h^t\) adjusts the permanent income measure to account for implicit consumption associated with a “baseline” zero service sequence.

To summarize, the marginal utility of endowment income can be represented as:

\[
M_e^t = (1 - \beta)(1/M_s'M_s)(b_p^t - y_p^t + y_h^t).
\]

(11.3.17)

Relation (11.3.17) gives a decomposition of the marginal utility of income into three components: \(b_p^t, y_p^t,\) and \(y_h^t\). Increases in \(b_p^t\) result in an increased preference for consumption, which increases the marginal utility of income; increases in \(e_p^t\) correspond to an increase of permanent income, which reduces the marginal utility of income; and alterations in \(y_h^t\) reflect movements in the initial household capital stock. This third component is the discounted endowment-equivalent consumption sequence associated with a baseline (zero) sequence of services.
Increasing it has an opposite impact on the marginal utility of income from increasing permanent income.

The final task of this section is to deduce a formula for the increment of M_e of the form μw_t for some μ. Note that y^b_t depends on time $t-1$ information. Hence only the b^p_t and y^p_t terms enter into consideration. Let $\{\psi_j\}$ denote the sequence of matrices of dynamic multipliers for the preference shock process $\{b_t\}$. It follows from (11.3.13) that

$$\mu = [(1-\beta)/(M'_s M_s)] \sum_{j=0}^{\infty} \beta^j [([M_s]'\psi_j - \epsilon_j].$$

(11.3.18)

The dynamic multipliers $\{\chi_j\}$ for consumption can then be computed recursively from (11.3.7). By construction they satisfy the present-value budget balance restriction (11.2.3).

11.4. Deterministic Steady States

It is useful to study consumption in a deterministic steady state, partly to verify that there exist configurations of the model for which consumption of all goods is positive in this steady-state. Otherwise, the stochastic versions of the model would be likely to have some perverse implications. We consider cases in which $\{b_t\}$ and $\{e_t\}$ are constants set at the values b and e, respectively.

For a deterministic version of the model, the marginal utility of income is constant over time. Of course, we are only interested in initial conditions such that the initial marginal utility is positive and hence the entire sequence is positive. Thus, from equation (11.3.17), we are led to require that

$$M'_0 = (1/M'_s M_s)(M'_sb - e - \gamma k^{-1} + y^b_0) > 0.$$

(11.4.1)

Since $1/(M'_s M_s)$ is positive by construction, we require only that $(M'_sb - e - \gamma k^{-1} + y^b_0)$ be positive. Any changes in (b, e, h, k) that alter the right side of (11.4.1) will clearly change the marginal utility of income (in all time periods).

Since the preference shifter sequence is fixed at a constant level, the constant marginal utility of income sequence implies a constant service sequence

$$s = b - M_s M'_0.$$

(11.4.2)
The corresponding sequences of consumption goods and household capital need not be constant. We now investigate the limiting behavior of these objects. Armed with the consumption service sequence, the consumption and household capital sequences can be computed from the inverse household technology.

The absolute values of the eigenvalues of Δ_h^* are less than $\beta^{-1/2}$ but can be greater than or equal to one. Without further restricting the eigenvalues of Δ_h^* to have absolute values that are strictly less than one, the consumption sequence may not converge to a steady state. With the additional restriction that the absolute values of eigenvalues are strictly less than one, the consumption and household capital sequences will converge to the following limits:

$$
h_\infty = (I - \Delta_h^*)^{-1}\Theta_h^*s$$
$$c_\infty = \Lambda^*h_\infty + \Pi^*s, \quad (11.4.3)$$

where variables with subscript ∞ denote limit points. By combining (11.4.2) and (11.4.3), it can be checked whether the limiting consumption vector is strictly positive.

As an illustration, consider a setting with a single consumption good, a single physical capital stock, and the following household technology:

$$h_t = \delta h_{t-1} + (1 - \delta) c_t$$
$$s_t = \lambda h_{t-1} + c_t, \quad (11.4.4)$$

where δ is a depreciation factor between zero and one. Notice that the household capital stock is constructed to be a weighted average of current and past consumption. The inverse system is

$$h_t = [\delta - \lambda (1 - \delta)]h_{t-1} + (1 - \delta) s_t$$
$$c_t = -\lambda h_{t-1} + s_t. \quad (11.4.5)$$

In this simple case, the eigenvalue of Δ_h^* is simply the coefficient on the lagged capital stock in the evolution equation for household capital. This coefficient has an absolute value less than one if:

$$-1 < \lambda < (1 + \delta)/(1 - \delta). \quad (11.4.6)$$

When these inequalities are satisfied, consumption and the household capital stock both converge to $s/(1 + \lambda)$.
Negative values of λ that violate the inequalities in (11.4.6) display a form of ‘rational addiction’ analyzed by Becker and Murphy (1988). For instance, when λ is -1, the coefficient on lagged capital is unity, and the consumption sequence required to support a constant service sequence must grow linearly over time. Lower values of λ (i.e., negative ones with larger absolute values) imply geometric growth in consumption.

Simply requiring the limiting value of consumption to be positive guarantees that consumption will be positive for initial levels of household capital close to the steady state, but it would be good to obtain a stronger result. One strategy would require entries of the matrices of the inverse household technology all to be positive. Unfortunately, this restriction would eliminate some important examples in which there is substitutability across goods or over time. For instance, in (11.4.4), when λ is positive, as in the case of a durable good, the inverse household technology has a negative coefficient. Nevertheless, starting from an initial level of household capital below the steady state will result in a positive consumption sequence.

11.5. Cointegration

A key feature of our solution is that the marginal utility of income process is a martingale, which implies via (11.3.6) that the consumption service process is nonstationary. If in addition the preference shock process $\{b_t\}$ is asymptotically stationary, then the service process and consumption are cointegrated.

Suppose that the preference shock process $\{b_t\}$ is asymptotically stationary, but unobservable to the econometrician. This implies that there are $n_s - 1$ linear combinations of consumption services that are asymptotically stationary. To show this, take any vector ψ that is orthogonal to M_s. It follows from (11.3.6) that

$$\psi' s_t = \psi' b_t.$$

Evidently there are $n_s - 1$ linearly independent ψ’s. Each such ψ is called a cointegrating vector by Granger and Engle (1987).

An extensive literature treats the efficient estimation of cointegrating vectors. However, what interest us are not the cointegrating vectors but rather
the vector M_s that is orthogonal to all cointegrating vectors for consumption services.

The cointegrating vectors for consumption services differ from the cointegrating vectors for consumption goods. To deduce the cointegrating vectors for the consumption flows, we shall exploit the deterministic steady-state calculations reported in (11.4.3). From (11.4.3), we know that for a deterministic steady state

$$c_\infty = \left[\Lambda^* (I - \Delta^*)^{-1} \Theta^* + \Pi^* \right] s_\infty.$$ \hspace{1cm} (11.5.2)

The matrix on the right side of (11.5.2) also gives the transformation mapping a date t shock to consumption services to the limiting response of consumption. Any vector ψ satisfying

$$\psi' \left[\Lambda^* (I - \Delta^*)^{-1} \Theta^* + \Pi^* \right] M_s = 0$$ \hspace{1cm} (11.5.3)

is a cointegrating vector for consumption. Let Ψ denote an $n_c - 1 \times n_c$ matrix with rows that are linearly independent cointegrating vectors. Notice that the implied model for Ψc_t and $c_{1,t} - c_{1,t-1}$ contains only stationary endogenous variables, so that it can be estimated using methods that require asymptotic stationarity, like the frequency-domain methods of chapter 8. An estimation strategy based on recursive formulations of the Gaussian conditional likelihood function would not require such a transformation to a stationary set of endogenous variables, but it would require confronting the nonexistence of an asymptotically stationary distribution of the state vector from which to draw an initial estimator of the state. In appendix A to chapter 8, we described a method based on ideas of Kohn and Ansley (1985) designed to construct an initial estimator of the state in such a circumstance.

If we were to assume that the preference shock process is itself nonstationary and that there does not exist a nontrivial cointegrating vector for this process, then it would follow that there exist no cointegrating vectors for either the service process or the consumption process. In this case, to utilize estimation methods requiring stationary, we would base parameter estimation on the model’s implications for the differenced processes for consumption and household capital.
11.6. Constant Marginal Utility of Income

In the absence of uncertainty, the marginal utility of income process will be constant. In this section, we introduce uncertainty in the endowment and preference shock processes, and ask: when will the marginal utility of income process remain constant through time? Constancy of the marginal utility of income is an extreme version of the prediction of permanent income theory that the ability to transfer consumption over time results in “smoothness of consumption” over time. In the absence of preference shocks, a constant marginal utility of income process implies that consumption services will also be constant through time.

We attack our question from two angles. Initially, we investigate limiting behavior as the subjective discount factor β approaches unity, and provide conditions on the stochastic structure sufficient to imply constant marginal utilities of income in the limit. In taking this limit, we will not concern ourselves with interpreting the limit economy directly. Instead, we will study the limiting behavior of optimal resource allocations along with the associated marginal utility of income processes. Our second line of attack on the question is to characterize specifications of uncertainty that imply a constant marginal utility of income process for a given β that is strictly less than one.

The initial part of our investigation will imitate and replicate parts of Bewley’s (1977) study of the permanent income model of consumption. Our analysis differs from Bewley’s and is mechanically simpler. As we drive β to 1, we maintain the link between the subjective discount factor and the marginal product of capital. Hence, in our analysis as β tends to 1, the marginal product of capital as measured by γ is simultaneously being driven to zero. In contrast, Bewley considered setups in which the counterpart to the marginal product of capital is always zero. Since capital is less productive, nonnegativity constraints were a central feature of his analysis of economies with β strictly less than one.

Suppose that $\{z_t\}$ is a stationary stochastic process and that z_t has a finite second moment. Then it is known that the time series average $(1/N) \sum_{j=0}^{N-1} z_{t+j}$ converges. Moreover, the limit vector is invariant to the starting date t of the average. Consistent with our setup in previous chapters, we assume that b_t and e_t are both linear functions of z_t. Recall that the portion of the solution

\[6\] Convergence occurs both with probability one and in mean square, where mean-square convergence is defined using the square root of the second moment as a norm. We use mean-square convergence in our subsequent analysis.
for the marginal utility of income that is not predetermined (the portion that can respond to a current-period shock) is a linear combination, say \(\nu \), of a conditional expectation of the geometric average \((1 - \beta) \sum_{j=0}^{\infty} \beta^j z_{t+j} \), where

\[
\nu \equiv \frac{1}{(M_s' M_s)} (M_s U_b - U_e),
\]

(11.6.1)

\(b_t = U_b z_t \), and \(e_t = U_e z_t \) [see (11.3.13)]. While the simple time-series average and the geometric average will not typically agree, they can be made arbitrarily close by driving \(N \) to infinity and \(\beta \) to one. Under both limits, tail terms in the average become relatively more important as the limit point is approached. Formally, it follows from the theory of Cesaro and Abel summability that

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{j=0}^{N-1} z_{t+j} = \lim_{\beta \to 1} (1 - \beta) \sum_{j=0}^{\infty} \beta^j z_{t+j}
\]

(11.6.2)

(e.g., see Zygmund (1979, Theorem 1.33, p. 80)). Therefore, as the discount factor tends to one, the right side of (11.6.2) converges to a vector that is independent of \(t \). Moreover, for the information structures that we impose, the limit vector must be in the initial period’s information set. The constancy of the marginal utility of income as \(\beta \) goes to unity follows immediately.

The argument just provided relies on stationarity but does not require linearity in the evolution equation for \(\{z_t\} \). In fact, stationarity can often be replaced by a weaker notion of “asymptotic stationarity” as we now illustrate using the linear specification

\[
z_{t+1} = A_{22} z_t + C_2 w_{t+1}
\]

(11.6.3)

imposed frequently in this book. This specification can be exploited to obtain an alternative demonstration of the constancy of the marginal utility of income. Recall that

\[
(1 - \beta) \sum_{j=0}^{\infty} \beta^j E(z_{t+j}|J_t) = (1 - \beta)(I - \beta A_{22})^{-1} z_t.
\]

(11.6.4)

\footnote{This follows because the limiting random variable has a finite second moment. So long as the forecast error variance is independent of calendar time and information accumulates over time, the forecast error variance must be zero.}
To investigate the limit as β tends to one, it is convenient to uncouple the
dynamics according to eigenvalues. Let

$$ A_{22} = TDT^{-1} \quad (11.6.5) $$

be the Jordan decomposition, and suppose that D can be partitioned as:

$$ D = \begin{pmatrix} I & 0 \\ 0 & D_2 \end{pmatrix}, \quad (11.6.6) $$

where the absolute values of the diagonal entries of D_2 are all strictly less than
one. Using the Jordan decomposition, it follows that

$$ (1 - \beta)(I - \beta A_{22})^{-1} = T \begin{pmatrix} I & 0 \\ 0 & (1 - \beta)(I - \beta D_2)^{-1} \end{pmatrix} T^{-1}. \quad (11.6.7) $$

Taking limits, we see that

$$ \lim_{\beta \to 1} (1 - \beta)(I - \beta A_{22})^{-1} = T \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} T^{-1}. \quad (11.6.8) $$

Therefore, $(1 - \beta) \sum_{j=0}^{\infty} \beta^j E(z_{t+j}|J_t)$ depends only on

$$ z^*_t \equiv (I \quad 0) T^{-1} z_t, \quad (11.6.9) $$

where z^*_t has law of motion

$$ z_{t+1}^* = z_t^* + C^* w_{t+1}, \quad (11.6.10) $$

and where

$$ C^* \equiv (I \quad 0) T^{-1} C_2. \quad (11.6.11) $$

Sufficient conditions for the marginal utility of income to be constant are
that the Jordan decomposition of A_{22} satisfies $(11.6.6)$ and that C^* be zero.
When these restrictions are satisfied, the process $\{z_t\}$ will be asymptotically
stationary because the process $\{z^*_t\}$ will be constant over time and because
$\{(0 \quad I) T^{-1} z_t\}$ will converge to a stationary process. This latter result follows
since the diagonal entries of D_2 have absolute values that are strictly less than
unity. Stationarity is implied only when $\{z_t\}$ is initialized appropriately.

The arguments just given cannot be extended to $\{z_t\}$ processes with more
fundamental forms of nonstationarity. For instance, time trends or unit roots
in the endowment process would suffice to overturn constancy of the marginal utility of income in the limit. In the case of time trends, the averages may diverge when limits are taken. For unit root processes (without drifts) the limits are well defined, but uncertainty in the marginal utility of income process does not vanish.

We now change experiments by holding fixed the subjective discount factor and asking if it is still possible for the marginal utility of income to be constant. The answer to this question turns out to be yes. Assume the Jordan decomposition (11.6.5) and (11.6.6) along with restriction (11.6.11), except that D_2 can now have eigenvalues with absolute values that are equal or even greater than one (but less than $\beta^{-1/2}$). If

$$\nu(I - \beta A_{22})^{-1} = (\nu^* 0) \quad (11.6.12)$$

for some vector ν^*, then the marginal utility of income will be constant over time. While this clearly imposes a restriction on the matrix A_{22}, it is one that is satisfied by some stationary and nonstationary specifications of the endowment and preference shock processes.

11.7. Consumption Externalities

A motivation for intertemporal complementarities put forth by Ryder and Heal (1973) is that individual consumers are concerned in part about their consumption relative to the past community average; that is, there is an externality in consumption. This motivation is in contrast to that given by Becker and Murphy (1988) in which the complementarities are purely private. The solution described earlier is applicable even if this consumption externality is present as a solution to an optimal resource allocation problem. However, the link between optimal resource allocation and competitive equilibrium may vanish when there is a consumption externality. We now investigate this issue.

To capture the externality, we endow the consumer with the household technology:

$$H_t = \Delta h H_{t-1} + \Theta h C_t$$

$$s_t = \Lambda H_{t-1} + \Pi C_t \quad (11.7.1)$$
where \(H_t, H_{t-1} \) and \(C_t \) are interpreted as community-wide vectors that individual private consumers view as beyond their control but that equal their individually chosen lower case counterparts in a competitive equilibrium.

Our earlier argument leading to the martingale properties of the marginal utilities of income and consumption relied only on the technology specification and still applies when the externality is present. In light of the externality interpretation, the marginal utility of services now satisfies:

\[
\begin{align*}
M^*_t &= (\Pi^*)'M^*_t \\
&= (\Pi^*)'\phi_c M^*_t.
\end{align*}
\] (11.7.2)

Recall that \(\Pi^* \) is equal to \(\Pi^{-1} \). Although the link between the marginal utility of services and marginal utility of consumption goods is altered, the marginal utility of service process remains a martingale. Our earlier solution method can now be imitated by substituting the matrix \((\Pi^*)'\phi_c M^*_t \) for \(M^*_t \) given by (11.3.4).

When there is a single consumption good and the household technology is canonical, the two solutions coincide. This assertion can be verified by taking the previous solution for the marginal utility of income and showing that all of the equilibrium conditions and first-order conditions remain satisfied. While the marginal utility of services is altered by a constant scale factor over time, this clearly has no impact on the implied marginal rates of substitution for consumption services and therefore the original quantity allocation remains intact with the externality interpretation. When there are multiple consumption goods, the quantity allocations can be altered. Also, when the original household technology is not canonical in the sense of chapter 9, the quantity allocations can be altered even when there is a single consumption good. While there generally exists a canonical household technology that implies the same induced preferences for consumption goods, the externality version of the specification can give rise to a fundamentally different canonical technology, breaking the simple link between competitive equilibrium allocations and allocations that solve a planning problem.

To elaborate on this last point, suppose the original household technology is not canonical. In chapter 9, we showed how to find the corresponding canonical technology to be used in solving an optimal resource allocation problem. In the presence of consumption externalities, we can find the analogue to a canonical household technology by first noting that

\[
b_t - s_t = B_t - \Pi C_t.
\] (11.7.3)
where
\[B_t \equiv b_t - \Lambda H_{t-1}. \]

Consequently,
\[(b_t - s_t) \cdot (b_t - s_t) = B_t \cdot B_t - 2(B_t)'\Pi c_t + (c_t)'\Pi'\Pi c_t. \] (11.7.4)

Suppose that \(\Pi'\Pi \) is nonsingular and obtain a factorization
\[\hat{\Pi}'\hat{\Pi} = \Pi'\Pi \] (11.7.5)

where \(\hat{\Pi} \) is nonsingular. Also, define
\[\hat{\Lambda} \equiv \hat{\Pi}^{-1}\Pi'\Lambda \]
\[\hat{b}_t \equiv \hat{\Pi}^{-1}\Pi' b_t \] (11.7.6)
\[\hat{s}_t \equiv \hat{\Lambda} H_{t-1} + \hat{\Pi} c_t. \]

Then \((b_t - s_t) \cdot (b_t - s_t) \) and \((\hat{b}_t - \hat{s}_t) \cdot (\hat{b}_t - \hat{s}_t) \) agree except for a term that is not controllable by the individual consumer. Consequently, technology (11.7.6) and the implied preferences for the original household technology are the same.

For this solution method to apply, we require the transformed version of the household technology to be canonical. Since the matrix \(\hat{\Pi} \) is nonsingular by construction, it suffices for the matrix \(\Delta_h - \Theta_h \hat{\Pi}^{-1}\hat{\Lambda} \) to have eigenvalues with absolute values that are strictly less than \(\beta^{-1/2} \). If this restriction is not satisfied, then there fails to exist a competitive equilibrium.

A. Exotic Tax Smoothing Models

By reinterpreting variables, our model can represent a class of linear models of optimal taxation, versions of which were studied by Barro (1979) and Judd (1989).\(^8\) Let \(\tau_t \) be a vector of taxes collected from various sources (e.g., capital, labor, imports, etc.); \(G_t \) a scalar stochastic process of government expenditures; \(B_{t-1} \) the stock of risk-free one-period government debt bearing net one-period interest rate of \(\gamma = \frac{1}{\beta} - 1 \); and def\(_t \) the gross-of-interest 0 deficit. Match up variables as follows: \(c_t \sim \tau_t, e_t \sim G_t, k_{t-1} \sim B_{t-1}, i_t \sim \text{def}_t \). Set \(\phi_e \) to a vector

\(^8\) Also see Sargent (1987b, ch. XIII).
of ones, so that $\phi'_c \tau_t$ measures total time t government tax revenues. With these associations, (11.1.1) become

$$\text{def}_t = \gamma B_{t-1} + G_t - \phi'_c \tau_t$$

$$B_t = B_{t-1} + \text{def}_t.$$

The preference ordering is interpreted as minus the loss function associated with taxation, and measures the dynamics of tax distortions.

Consider three special cases of this model, each of which sets b_t to a vector of zeroes.

1. **Random walk taxes.** To capture Robert Barro’s specification, set $\phi_c = 1$ (so there is only one kind of tax revenues), $\Lambda = 0, \Pi = 1, \Theta_h = \Delta_h = 0$. This version makes taxes follow a random walk. It is a relabelling of Hall’s model of consumption.

2. **White noise taxes.** To capture a one-tax version of Judd’s (1989) specification, again set $\phi_c = 1$, but now set $\Pi = \Delta_h = 1, \Theta_h = \Lambda = -1$. With these settings, the government’s objective function is $-5E_0 \sum_{t=0}^{\infty} \beta^t (\sum_{j=0}^{t} \tau_{t-j})^2$. This specification is intended to capture the long-lived adverse effects of taxation on capital. The optimal policy makes taxes a white noise process, a feature that characterizes the asymptotic behavior of capital taxation in the model of Chari, Christiano, and Kehoe (1994). To deduce the white noise property for this model, use (11.3.7) and the relations defining $\Lambda^*, \Pi^*, \Delta_h^*, \Theta_h^*$ under (11.3.1). In particular, we obtain $\tau_t = -M_h(M_v - M_{v-1})$.

3. **Two taxes.** Set $\phi_c = [1 \ 1]$, and specify two taxes whose ‘distortion technology’ is obtained by stacking the two technologies described in examples 1 and 2. This is the kind of setup advocated by Judd (1989), and makes one tax a random walk, the other a white noise.
Chapter 12
Gorman Heterogeneous Households

12.1. Introduction
This chapter and the next describe methods for computing equilibria of economies with consumers who have heterogeneous preferences and endowments. In both chapters, we adopt simplifications that facilitate coping with heterogeneity. In the present chapter, we describe a class of heterogeneous consumer economies that satisfy M. W. Gorman’s (1953) conditions for aggregation, which lets us compute equilibrium aggregate allocations and prices before computing allocations to individuals.¹

In chapter 13, we adopt a more general kind of heterogeneity that causes us to depart from the framework of Gorman. In particular, we adapt an idea of Negishi (1960), who described a social welfare function that is maximized, subject to resource and technological constraints, by a competitive equilibrium allocation. For Negishi, that social welfare function is a “linear combination of the individual utility functions of consumers, with the weights in the combination in inverse proportion to the marginal utilities of income.” Because Negishi’s weights depend on the allocation through the marginal utilities of income, computing a competitive equilibrium via constrained maximization of a Negishi-style welfare function requires finding a fixed point in the weights. In chapter 13, we apply that fixed point approach. When they apply, the beauty of Gorman’s aggregation conditions is that time series aggregates and market prices can be computed without resorting to Negishi’s fixed point approach.²

In the present chapter, consumers differ only with respect to their endowments and the processes \(\{b_t\} \) that disturb their preferences. We assume that all consumers have a common information set that includes observations on past values of the economy-wide capital stocks \(h_{t-1}, k_{t-1} \), and the common exogenous state variables in \(z_t \) that drive each of the individual preference shock

¹ The discussion in this chapter is patterned after section 3 of Hansen (1987).
² Blundell, Pashardes, and Weber (1993) and Blundell and Stoker (2007) and the references there provide evaluations of empirical performances of models cast in terms of aggregates versus those that acknowledge heterogeneity.
processes and the technology shock process \(\{ d_t \} \). Preferences of individual consumers can be aggregated by summing both preference shocks and initial endowments across consumers, thereby forming a representative shocks. We can compute all aggregate aspects of a competitive equilibrium by forming the representative consumer and proceeding as in chapter 7. We show how to calculate individual allocations by using the demand functions described in chapter 9.

In the next section, we briefly describe Gorman aggregation in a static setting before extending it to our dynamic setting.

12.2. Gorman Aggregation (Static)

Suppose for the moment that there are \(n \) consumption goods, taking into account indexation by dates and states, and that consumption of person \(j = 1, \ldots, J \) is denoted \(c_j \). Let \(c^a \) denote the aggregate amount of consumption to be allocated among consumers. Associated with \(c^a \) is an Edgeworth box and a set of Pareto optimal allocations. From the Pareto optimal allocations, one can construct utility allocation surfaces that describe the frontier of alternative feasible utility assignments to individual consumers. Imagine moving from the aggregate vector \(c^a \) to some other vector \(\tilde{c}^a \) and hence to a new Edgeworth box.

If neither the original box nor the new box contains the other, then it is possible that the utility allocation surfaces for the two boxes may cross, in which case there exists no ordering of aggregate consumption that is independent of the utility weights assigned to individual consumers.

Before describing a special case in which an aggregate social preference ordering does exist, we illustrate a situation in which there doesn’t exist a social preference ordering that is independent of the aggregate allocation. Figures

3 Eichenbaum, Hansen, and Richard (1987) represent consumption goods as bundles of claims to current and future consumption service flows. They then price consumption goods as securities that are claims to future consumption services. They deduce equilibrium prices of state contingent consumption services and goods by exploiting a representative consumer formulation like Gorman’s. Eichenbaum, Hansen, and Richard explore preferences other than quadratic ones. As in this chapter, they establish that when conditions like Gorman’s prevail, equilibrium prices are invariant to redistributions of wealth among consumers.
12.2.1 and 12.2.2 describe efficient allocations in a two-person, two-good, pure-exchange economy with a structure of preferences that violates the Gorman aggregation conditions. Agent A has utility function $U_A = X_A^{1/3} Y_A^{2/3}$, while consumer B has utility function $U_B = X_B^{2/3} Y_B^{1/3}$ and the aggregate endowment pair is $E = (X_A + X_B, Y_A + Y_B)$. Figure 12.2.1 shows two utility possibility frontiers, one associated with $E = (8, 3)$, a second associated with $E = (3, 8)$.

The fact that the utility possibility frontiers in figure 12.2.1 cross indicates that the two aggregate endowment vectors $(8, 3), (3, 8)$ cannot be ranked in a way that ignores how utility is distributed between consumers A and B.

For the same economy, Figure 12.2.2 shows Edgeworth boxes and contract curves with the two allocations $E = (8, 3)$ and $E = (3, 8)$.

For a given endowment, the slope of the consumers’ indifference curves at the tangencies between indifference curves that determines the contract curve varies as one moves along the contract curve. This means that for a given aggregate endowment, the competitive equilibrium price depends on the allocation between consumers A and B. It follows that for this economy, one cannot determine equilibrium prices independently of the equilibrium allocation.

4 A locus of pairs (U_A, U_B) that solve $U_A = \max_{X_A, Y_A} X_A^{1/3} Y_A^{2/3}$ subject to the constraints $X_B^{2/3} Y_B^{1/3} \geq U_B$, $(X_A + X_B, Y_A + Y_B) = E$ is called a utility possibility frontier.
Figure 12.2.2: Overlapping Edgeworth Boxes for endowment vectors \(E = (8,3) \) and \(E = (3,8) \).

Gorman (1953) described restrictions on preferences under which it is possible to obtain a community preference ordering. Whenever Gorman’s conditions are satisfied, there occur substantial simplifications in solving multiple-consumer optimal resource allocation problems: in intertemporal contexts, it becomes possible first to determine the optimal allocation of aggregate resources over time. Then the aggregate consumption can be allocated among consumers by assigning utility levels to each person.

The following construction is based on Gorman (1953). There is flexibility in the choice of monotonic transformations that we can use to represent utility levels. We restrict the utility level to be either nonnegative or nonpositive. In both cases, we define an individual specific baseline indifference curves, \(\psi_j(p) \) associated with a utility level of zero. The functions \(\psi_j \) are gradients of concave functions that are positively homogeneous of degree one. To represent a common departure for all consumers from their baseline indifference curves, we introduce a function \(\psi_c(p) \). This lets the compensated demand function for person \(j \) be represented as

\[
c^j = \psi_j(p) + u^j \psi_c(p), \tag{12.2.1}
\]

where \(u^j \) is a scalar utility index for person \(j \). The function \(\psi_c \) is the gradient of a positively homogeneous of degree one function that is concave when the individual utility indices are restricted to nonnegative and is convex when
the individual indices are restricted to be nonpositive. It follows that the \(\psi_j \)'s and \(\psi_c \) are homogenous of degree zero in prices, which means that the implied indifference curves depend only on ratios of prices to an arbitrarily chosen numeraire. The baseline indifference curves are either the highest or lowest indifference curves, corresponding respectively to cases in which the utility indices \(u_j \) are restricted to be nonpositive or nonnegative. As noted by Gorman, when preferences are of this form, there is a well defined compensated demand function for a fictitious representative consumer obtained by aggregating (12.2.1):

\[
c^a = \psi_a(p) + u^a \psi_c(p)
\]

where

\[
u^a = \sum u_j \text{ and } \psi_a = \sum \psi_j.
\]

In this case, optimal resource allocation in a heterogeneous consumer economy simplifies as follows. Preferences (12.2.2) define a community preference ordering for aggregate consumption. This preference ordering can be combined with a specification of the technology for producing consumption goods to determine the optimal allocation of aggregate consumption.

Mapping (12.2.2) can be inverted to obtain a gradient vector \(p \) that is independent of how utilities are allocated across consumers. Since \(\psi_c \) and \(\psi_a \) are homogeneous of degree zero, gradients are determined only up to a scalar multiple. Armed with \(p \), we can then allocate utility among \(J \) consumers while respecting the adding up constraint (12.2.3). The allocation of aggregate consumption across goods and the associated gradient are determined independently of how aggregate utility is divided among consumers.

A decentralized version of this analysis proceeds as follows. Let \(W_j \) denote the wealth of consumer \(j \) and \(W^a \) denote aggregate wealth. Then \(W^j \) should satisfy

\[
W^j = p \cdot c^j = p \cdot \psi_j(p) + u^j \cdot \psi_c(p).
\]

Solving (12.2.4) for \(u^j \) gives

\[
u^j = \frac{[W^j - p \cdot \psi_j(p)]}{p \cdot \psi_c(p)}.
\]

Hence, the Engel curve for consumer \(j \) is

\[
c^j = \psi_j(p) - \frac{p \cdot \psi_j(p)}{p \cdot \psi_c(p)} + \frac{W^j \psi_c(p)}{p \cdot \psi_c(p)}.
\]
Notice that the coefficient on W^j is the same for all j since $\psi_c(p)/p \cdot \psi_c(p)$ is a function only of the price vector p. The individual allocations can be determined from the Engel curves by substituting for p the gradient vector obtained from the representative consumer’s optimal allocation problem. Individual consumption c^j as given by (12.2.6) depends on prices directly through the functions ψ_j and ψ_c and indirectly through the evaluation of wealth.

For the specifications of preferences adopted in this book, the baseline indifference curves are degenerate because they do not depend on p. A finite-dimensional counterpart to this degenerate situation occurs when

$$\psi_j(p) = \chi^j,$$ \hfill (12.2.7)

where χ^j is a vector with the same dimension as c^j. With this specification, the rules for allocating consumption across individuals become linear in aggregate consumption. To see this, observe that an implication of (12.2.2) is

$$\psi_c(p) = (c^a - \chi^a)/u_a.$$ \hfill (12.2.8)

Substituting (12.2.8) into (12.2.1) gives

$$c^j - \chi^j = (u^j/u^a)(c^a - \chi^a),$$ \hfill (12.2.9)

so that there is a common scale factor (u^j/u^a) across all goods for person j. Hence the fraction of total utility assigned to consumer j determines his fraction of the vector $(c^a - \chi^a)$.

Here is an example. Suppose that the preferences of consumer j are represented by the utility function:

$$U^j(c^j) = -[(c^j - \chi^j)'V(c^j - \chi^j)]^{1/2}.$$ \hfill (12.2.10)

The compensated demand schedule is then obtained by solving the first-order conditions

$$V(c^j - \chi^j)/U^j(c^j) = \mu^j p$$ \hfill (12.2.11)

$$U^j(c^j) = u^j,$$

where μ^j is a Lagrange multiplier. Substitute the second equation into the first and solve for $c^j - \chi^j$:

$$c^j - \chi^j = u^j \mu^j V^{-1} p.$$ \hfill (12.2.12)
Substitute the right side of (12.2.12) into the utility function and solve for the multiplier μ^j:

$$\mu^j = 1/(p'V^{-1}p)^{1/2}. \quad (12.2.13)$$

Hence the compensated demand function is

$$c^j = b^j + u^j V^{-1}p/(p'V^{-1}p)^{1/2}. \quad (12.2.14)$$

In this example,

$$\psi_j(p) = \chi^j \quad \text{and} \quad \psi_c(p) = V^{-1}p/(p'V^{-1}p)^{1/2}. \quad (12.2.15)$$

Notice that to obtain a representation of preferences that is linear in the utility index requires using a particular monotonic transformation of the utility function. In our example, the quadratic form on the right side of (12.2.10) is raised to the one-half power.

12.3. An Economy with Heterogeneous Consumers

We now specify a multi-consumer version of a dynamic linear economy designed to satisfy counterparts to Gorman’s conditions for aggregation. There is a collection of consumers, indexed by $j = 1, 2, \ldots, \bar{J}$. Consumers differ in their preferences and in their endowments, but not in their information. Consumer j has preferences ordered by

$$-\left(\frac{1}{2}\right) E \sum_{t=0}^{\infty} \beta^t \left[(s_{jt} - b_{jt}) \cdot (s_{jt} - b_{jt}) + \ell_{jt}^2 \right] | J_0 \quad (12.3.1)$$

where $\{s_{jt}\}$ is linked to $\{h_{jt}\}$ and $\{c_{jt}\}$ via the common household technology

$$s_{jt} = \Lambda h_{j,t-1} + \Pi c_{jt} \quad (12.3.2)$$

$$h_{jt} = \Delta_h h_{j,t-1} + \Theta_h c_{jt}, \quad (12.3.3)$$

and $h_{j,-1}$ is given. In (12.3.1), (12.3.2), (12.3.3), the j superscript pertains to consumer j. The preference disturbance b_{jt} is

$$b_{jt} = U_{b,j} z_t, \quad (12.3.4)$$
where \(z_t \) continues to be governed by (3.2). The \(j \)th consumer maximizes (12.3.1) subject to (12.3.2), (12.3.3), and the budget constraint

\[
E \sum_{t=0}^{\infty} \beta^t p_t^0 \cdot c_{jt} \mid J_0 = E \sum_{t=0}^{\infty} \beta^t (w_t^0 \cdot \ell_{jt} + \alpha_t^0 \cdot d_{jt}) \mid J_0 + v_0 \cdot k_{j,-1}, \tag{12.3.5}
\]

where \(k_{j,-1} \) is given. The \(j \)th consumer owns an endowment process \(d_{jt} \), governed by the stochastic process \(d_{jt} = U_{dj} z_t \). Each consumer observes aggregate information \(J_t \) at time \(t \), as well as the idiosyncratic capital stocks \(k_{j,t-1} \) and \(h_{j,t-1} \). The information set \(J_t \) continues to be \(J_t = [w^t, x_0] \).

This specification confines heterogeneity among consumers to: (a) differences in the preference processes \(\{b_{jt}\} \), represented by different selections of \(U_{bj} \); (b) differences in the endowment processes \(\{d_{jt}\} \), represented by different selections of \(U_{dj} \); (c) differences in \(h_{j,-1} \); and (d) differences in \(k_{j,-1} \). The matrices \(\Lambda, \Pi, \Delta_h, \Theta_h \) do not depend on \(j \). This makes everybody’s demand system have the form of (9.3.14), with different \(\mu_{w0}^w \)'s (reflecting different wealth levels) and different \(b_{jt} \) preference shock processes and different initial conditions for household capital stocks.\(^5\)

Prices and the aggregate real variables can be computed by synthesizing a representative consumer and solving a version of the planning problem described in chapter 5. Use the settings \(h_{-1} = \sum_j h_{j,-1}, \) \(k_{-1} = \sum_j k_{j,-1} U_h, = \sum_j U_{bj} \), and \(U_d = \sum_j U_{dj} \). This gives aggregate quantities and prices. We let \(\mu_{w0}^w \) denote the multiplier on wealth in the budget constraint of the representative (or average) household. To compute individual individual allocations requires more work, to which we now turn.

\(^{5}\) Chapter 13 describes a setting with heterogeneous preferences where the matrices \(\Lambda, \Pi, \Delta_h, \Theta_h \) all are allowed to depend on \(j \).
12.4. Allocations

A direct way to compute allocations to individuals would be to solve the problem each household faces in the competitive equilibrium at the competitive equilibrium prices. For a fixed Lagrange multiplier on the household’s budget constraint, the household’s problem can be expressed as an optimal linear regulator, with a state vector augmented to reflect the aggregate state variables determining the scaled Arrow-Debreu prices. It is possible to compute the allocation assigned to a particular household by using an iterative scheme to calculate the Lagrange multiplier that assures that the household’s budget constraint is satisfied. But this is not the procedure that we recommend. Instead, note that the allocation rule for the household input ℓ_{jt} (“labor”) is

$$\ell_{jt} = (\mu_{0j}^u / \mu_{0a}^u) \ell_{at}. \quad (12.4.1)$$

If we substitute this expression for ℓ_{jt} into counterparts of (9.3.12) and (9.3.13) from chapter 9 for the jth consumer, we get the following version of the household’s budget constraint:

$$\mu_{0j}^u E_0 \sum_{t=0}^{\infty} \beta^t \{ \rho^0_t \cdot \rho^0_t + (u^0_t / \mu_{0a}^u) \ell_{at} \} = E_0 \sum_{t=0}^{\infty} \beta^t \{ \rho^0_t \cdot (b_{jt} - s_{jt}^i) - \alpha^0_t \cdot d_{jt} \} - v_0 k_{j,-1},$$

where s_{jt}^i is consumer j’s flow of services from its initial household capital $h_{j,-1}$. Solve this equation for μ_{0j}^u by using a doubling algorithm. With μ_{0j}^u in hand, we can use the first-order conditions for services and the canonical service technology to solve for the equilibrium allocation to household j. For a canonical service technology, the first-order conditions for consumption services are:

$$s_{jt} - b_{jt} = \mu_{0j}^u \rho^0_t. \quad (12.4.2)$$

Given ρ^0_t, which we know from the aggregate allocation and (9.3.7), we can solve (12.4.2) for s_{jt}, then plug s_{jt} into the inverse system associated with a canonical household technology to solve for c_{jt}:

$$c_{jt} = -\Pi^{-1} \Delta h_{j,t-1} + \Pi^{-1} s_{jt}$$

$$h_{jt} = (\Delta_h - \Theta_h \Pi^{-1} A) h_{j,t-1} + \Pi^{-1} \Theta_h s_{jt}, \quad (12.4.3)$$

$h_{j,-1}$ given.
12.4.1. Consumption Sharing Rules

Our preference specification is an infinite-dimensional generalization of the one described in our section 12.2 on Gorman aggregation in a static context, a version in which goods are indexed by both dates and states of the world. The counterpart to the matrix V from section 12.2 is determined by the probability distribution over states of the world conditioned on J_0 and on parameters of the household technology. The counterpart to χ^j from section 12.2 is determined by the preference shock process $\{b_{jt}\}$ and the initial endowment of household capital $h_{j,-1}$. The allocation rule for consumption has the form:

$$c_{jt} - \chi_{jt} = \left(\frac{u_j}{u_a}\right)(c_{at} - \chi_{at}), \quad (12.4.4)$$

where the ratio (u_j/u_a) is time invariant and depends only on information available at time zero. We can express (12.4.4) as

$$c_{jt} = \left(\frac{u_j}{u_a}\right)c_{at} + \tilde{\chi}_{jt}$$
$$\tilde{c}_{jt} = \tilde{\chi}_{jt},$$

where $\tilde{\chi}_{jt} \equiv \chi_{jt} - \left(\frac{u_j}{u_a}\right)\chi_{at}$. Our goal is to compute $\tilde{\chi}_{jt}$ and (u_j/u_a). We shall show that the utility indexes can be set at consumers’ marginal utilities of wealth μ^w_0, and that the ‘deviation’ baseline process for consumption $\{\tilde{\chi}_{jt}\}$ can be computed by initializing the inverse canonical representation at a vector $\tilde{h}_{j,-1}$ and using a ‘deviation’ preference shock process $\{\tilde{b}_{jt}\}$ as the ‘driving’ service process.

In terms of ‘deviation’ processes, the allocation rule for consumption services is

$$s_{jt} - b_{jt} = \left(\frac{\mu^w_{0j}}{\mu^w_{0a}}\right)(s_{at} - b_{at}) \quad (12.4.5)$$

or

$$\tilde{s}_{jt} = \tilde{b}_{jt},$$

where $\tilde{y}_{jt} \equiv y_{jt} - \left(\frac{\mu^w_{0j}}{\mu^w_{0a}}\right)y_{at}$. The beauty of this representation is that it does not involve prices directly. The (c) version of (12.4.3) is

$$\tilde{c}_{jt} = -\Pi^{-1}\Delta\tilde{h}_{j,t-1} + \Pi^{-1}\tilde{s}_{jt}$$
$$\tilde{h}_{jt} = (\Delta_h - \Theta_h\Pi^{-1}\Lambda)\tilde{h}_{j,t-1} + \Pi^{-1}\Theta_h\tilde{s}_{jt}, \quad (12.4.6)$$
\(\tilde{h}_{j,-1} \) given. Associated with \(\tilde{s}_{jt} \) is a synthetic consumption process \(\tilde{\chi}_{jt} \) such that \(\tilde{c}_{jt} = \tilde{\chi}_{jt}^{t} \) is the optimal sharing rule. To construct \(\tilde{\chi}_{jt} \), we simply substitute \(\tilde{s}_{jt} = \tilde{b}_{jt} \) into the inverse canonical representation

\[
\tilde{\chi}_{jt} = -\Pi^{-1}\Lambda \tilde{n}_{jt,t-1} + \Pi^{-1} \tilde{b}_{jt} \\
\tilde{n}_{jt} = (\Delta h - \Theta h \Pi^{-1} \Lambda) \tilde{n}_{jt,t-1} + \Pi^{-1} \Theta h \tilde{b}_{jt}
\]

(12.4.7)

Since \(\tilde{s}_{jt} = \tilde{b}_{jt} \) and \(\tilde{n}_{jt,-1} = \tilde{h}_{j,-1} \), it follows from (12.4.6) and (12.4.7) that \(\tilde{c}_{jt} = \tilde{\chi}_{jt} \). Equivalently, allocation rule (12.4.4) holds with \(\{\chi_{jt}\} \) given by recursion (12.4.7), \(\{\chi_{at}\} \) by its aggregate counterpart, and \((u_{j}/u_{a}) = (\mu_{w_{j}}^{w}/\mu_{w_{a}}^{w}) \).

Since the allocation rule for consumption can be expressed as

\[c_{jt} = (\mu_{0j}^{w}/\mu_{0a}^{w})c_{at} + \tilde{\chi}_{jt}, \]

(12.4.8)

we can append the recursion in (10.27) for \(c_{t} \) and \(\chi_{t} \) from the aggregate, single-consumer economy to obtain a recursion generating \(c_{jt} \).

12.5. Risk Sharing

Because the coefficient \((u_{j}/u_{a}) \) is invariant over time and across goods, allocation rule (12.4.4) implies a form of risk pooling in the deviation process \(\{c_{jt} - \chi_{jt}\} \). Nonseparabilities (either over time or across goods) in the induced preference ordering for consumption goods affect only the construction of the baseline process \(\{\chi_{jt}\} \) and the calculation of the risk-sharing coefficient \((u_{j}/u_{a}) \) implied by the distribution of wealth. In the special case in which the preference shock processes \(\{b_{jt}\} \) are deterministic in the sense that they reside in the information set \(J_{0} \), individual consumption goods will be perfectly correlated with their aggregate counterparts (conditioned on \(J_{0} \)).
12.6. Implementing the Allocation Rule with Limited Markets

We have seen that one way to implement allocation rule (12.4.4) is to introduce a complete set of markets in state- and date- contingent consumption. In some environments, a much smaller set of security markets suffices. An example occurs where a single consumption good is produced according to the linear technology:

\[c_{at} + i_{at} = \gamma k_{a,t-1} + d_{at} \]
\[k_{at} = \delta k_{a,t-1} + i_{at}, \quad \beta = 1/(\gamma + \delta_k). \tag{12.6.1} \]

Each consumer has a common household technology with a heterogeneous preference shock process \(\{b_{jt}\} \) and a heterogeneous initial endowment of household capital \(h_{j, -1} \). The preference shock process is constrained to be in \(J_0 \).

Instead of introducing a full array of contingent claims markets, there is as t o c km a r k e t f o r \(J_r \) risky securities, one for each endowment process \(\{d_{jt}\} \), \(j = 1, \ldots, J \). The \(j \)th such security pays a stream of dividends \(\{d_{jt}\} \). In addition, one-period riskless claims to consumption are traded. To devise a way to implement allocation rule (12.4.4), note that

\[c_{jt} - \chi_{jt} + (u_j/u_a)\chi_{at} + (u_j/u_a)k_{at} = (u_j/u_a)[(\delta_k + \gamma)k_{a,t-1} + d_{at}] - \chi_{jt}. \tag{12.6.2} \]

Let consumer \(j \) sell all its initially owned shares of stock \(j \) at time 0 and purchase \((u_j/u_a) \) shares of all securities traded in the stock market. Once purchased at date zero, let consumer \(j \) hold this portfolio for all time periods. Total dividends paid in period \(t \) will be \((u_j/u_a)d_{at} \). Suppose that the consumer purchases fraction \((u_j/u_a) \) of the capital stock each period in a one-period bond market. The time \(t \) payoff to the \(t - 1 \) purchase will be \((u_j/u_a)(\delta_k + \gamma)k_{a,t-1} \) and the time \(t \) purchase will be \((u_j/u_a)k_{at} \). Taken together, these market transactions have a time \(t \) receipt of \((u_j/u_a)[(\delta_k + \gamma)k_{a,t-1} + d_{at}] \) and a time \(t \) payout of \((u_j/u_a)k_{at} \) for \(t = 1, 2, \ldots, T \). The difference between payouts and receipts in time \(t \) is not equal to \(c_{jt} \), but rather to \(c_{jt} - \chi_{jt} + (u_j/u_a)\chi_{at} \). This deviation induces trading in the bond market. Note that \(\chi_{jt} - (u_j/u_a)\chi_{at} \) is in the time zero information set \(J_0 \) by assumption. Let \(\hat{k}_{jt} \) denote additional purchases in the bond market by person \(j \) at time \(t \). Construct \(\hat{k}_{jt} \) so that

\[\chi_{jt} - (u_j/u_a)\chi_{at} + \hat{k}_{jt} = (\delta_k + \gamma)\hat{k}_{j,t-1}, \quad t = 1, 2, \ldots \tag{12.6.3} \]
Solve this equation forward to determine an initial value \hat{k}_{j0}:

$$\hat{k}_{j0} = \sum_{t=1}^{\infty} \beta^t [\chi_{jt} - (u_j/u_a) \chi_{at}].$$ \hspace{1cm} (12.6.4)

Notice that \hat{k}_{j0} is in J_0 so that it is feasible to construct the sequence $\{\hat{k}_{jt}\}$. Modify the previous investment strategy so that the bond market purchases of person j at time t equals $(u_j/u_a)k_{at} + \hat{k}_{jt}$ for $t = 1, 2, \ldots$. The time t receipts from the previous period purchases in the bond and stock markets equal $(\delta_k + \gamma)[(u_j/u_a)k_{a,t-1} + \hat{k}_{j,t-1}]$. In light of (12.6.2) and (12.6.3), the difference between time t payouts and receipts is c_{jt} for $t = 1, 2, \ldots$. The coefficient (u_j/u_a) in the allocation rules is determined so that initial period consumption c_{j0} can be purchased from the difference between time zero receipts and payouts.

In this implementation, all consumers perpetually hold the same stock portfolio or mutual fund, but they make a sequence of person-specific trades in the market for one-period bonds. We have allowed for nonseparabilities over time in the induced preference ordering for consumption goods. These have important effects on bond market transactions.

This construction displays a multiperiod counterpart to an aggregation result for security markets derived by Rubinstein (1974). In a two-period model, Rubinstein provided sufficient conditions on preferences of consumers and asset market payoffs for the implementation of an Arrow-Debreu contingent claims allocation with incomplete security markets. In Rubinstein’s implementation, all consumers hold the same portfolio of risky assets. In our construction, consumers also hold the same portfolio of risky assets, and portfolio weights do not vary over time. All changes over time in portfolio composition take place through transactions in the bond market.
A. Computer Example

The MATLAB program heter.m computes the allocation to individual \(i \) by executing the computations described above. The program heter.m requires that solvea.m be run first, and that its output reside in memory. The program heter.m computes individual allocations in the form

\[
c_i^t = S_i^c X_t, \quad h_i^t = S_i^h X_t,
\]

and so on. The matrices \(S_i^j \) are returned. The program also computes the matrices \(S_a^c, S_a^h \), and so on, which determine the aggregate allocations \(c_t, h_t, \ldots \) as functions of the augmented state variable \(X_t \):

\[
c_t = S_a^c X_t
\]

\[
h_t = S_a^h X_t,
\]

and so on. The MATLAB program simulh.m can then be used to simulate the allocation to individual \(i \) and the aggregate allocation. The programs heter.m and simulh.m must both be run for each individual \(i \) in a heterogeneous consumer economy.

We illustrate the workings of these programs with the following pure exchange economy. There are two households, each with identical preferences

\[
- \frac{1}{2} \sum_{t=0}^\infty \beta^t \left((c_i^t - b_i^t)^2 + \ell_i^2 \right) | J_0, \ i = 1, 2
\]

We specify that \(b_i^t = 15 \) for \(i = 1, 2 \). The aggregate preference shock is \(b_t = \sum_i b_i^t = 30 \). We specify the following endowment processes. For consumer 1,

\[
d_1^t = 4 + .2 w_1^t,
\]

where \(w_1^t \) is a Gaussian white noise with variance \(.2^2 \). For consumer 2, we specify

\[
d_2^t = 3 + \tilde{d}_2^t
\]

\[
\tilde{d}_2^t = 1.2 \tilde{d}_2^{t-1} - .22 \tilde{d}_2^{t-2} + .25 w_2^t
\]

where \(w_2^t \) is a Gaussian white noise with variance \(.25^2 \). To capture the pure exchange setup, we specify \(\Delta_k = 0, \Theta_k = 0, \Delta_h = 0, \Theta_h = 0, \Lambda = 0, \Pi = 1 \). We set \(\beta = 1/1.05 \).
Figure 12.A.1: Consumption allocations of consumers one and two in pure endowment economy.

We have used `heter.m` and `simulh.m` to simulate a realization of this economy. Figure 12.A.1 reports the individual allocations to consumers 12.2.1 and 12.2.2. Notice how they appear perfectly correlated. Household one is wealthier than the other and so always consumes more (notice that the mean of the first household’s endowment process is 4, while the mean of the second household’s is 3). The perfect correlation between the two consumption services reflects the sharing present in Arrow-Debreu models with time separable preferences. Figure 12.A.2.a graphs \(d_t^1 - c_t^1 \) while figure 12.A.2.b graphs \(d_t^2 - c_t^2 \). These figures indicate the “balance of payments” between the two households.
Fig. 12.A.2.a. Saving of consumer one.

Fig. 12.A.2.b. Saving of consumer two.
Chapter 13
Complete Markets Aggregation

13.1. Introduction

Chapter 12 studied a setting in which households have heterogeneous endowments and preference shocks, but otherwise have identical preferences and household technologies, implying that all households share linear Engel curves with the same slopes. The property of identically sloped linear Engel curves delivers a tidy and tractable theory of aggregation that assures the existence of a representative household. This theory applies when different households share the same household technology \((\Lambda, \Pi, \Delta_h, \Theta_h)\).

In this chapter, we maintain the linearity of households’ Engel curves, but permit their slopes to vary across classes of households. In particular, we now allow the households technology matrices \((\Lambda_i, \Pi_i, \Delta_{hi}, \Theta_{hi})\) to differ across classes of households indexed by \(i\). This alteration causes the existence of a representative household, in the sense of there being a preference ordering over stochastic processes for aggregate consumption that is independent of the initial wealth distribution, to vanish. Nevertheless, the structure still fits within a class that readily yields to linear quadratic dynamic programming algorithms. Competitive equilibria can be calculated using an algorithm based on Negishi’s idea of finding a fixed point within a class of Pareto problems, where the fixed point is a list of Pareto weights that deliver budget balance at candidate equilibrium prices. In this chapter, we describe how the algorithm can be applied efficiently within our class of economies. We also describe how a more limited form of aggregation than Gorman’s can be carried out for this economy. In particular, implementation of the Negishi algorithm enables us to uncover a ‘mongrel’ preference ordering over aggregate consumption streams, where the preference ordering depends on the initial distribution of wealth, as do the parameters of any household technology that represents those preferences.\(^1\)

\(^1\) Werning (2007) exploits a creative application of complete markets aggregation to characterize optimal affine taxes in a dynamic stochastic general equilibrium model.
13.2. Preferences and Household Technologies

There are equal numbers of two types of households, indexed by $i = 1, 2$. Households of type i have preferences ordered by

$$-\frac{1}{2} E \sum_{t=0}^{\infty} \beta^t \left[(s_{it} - b_{it}) \cdot (s_{it} - b_{it}) + \ell_{it}^2 \right] | J_0. \quad (13.2.1)$$

Here s_{it} is a consumption service vector for household i, b_{it} is a preference shock process, and ℓ_{it} is the productive input or labor supplied by household i. Services s_{it} are produced via the technology

$$s_{it} = \Lambda_i h_{it-1} + \Pi_i c_{it} \quad (13.2.2)$$
$$h_{it} = \Delta_{hi} h_{it-1} + \Theta_{hi} c_{it}, \ i = 1, 2. \quad (13.2.3)$$

Here h_{it} is household i’s stock of household durables at the end of period t and c_{it} is household i’s rate of consumption. The preference shock process b_{it} is governed by

$$b_{it} = U_{bi} z_t \quad (13.2.4)$$

where z_t continues to be governed by

$$z_{t+1} = A_{22} z_t + C_2 w_{t+1}.$$

This specification permits each class of households to have its own list of matrices $(\Lambda_i, \Pi_i, \Delta_{hi}, \Theta_{hi})$ that describe a technology for converting consumption goods and household capital into services.
13.2.1. Production Technology

Consumption goods \((c_{1t}, c_{2t})\) are produced via the technology

\[
\Phi(c_{1t} + c_{2t}) + \Phi_g g_t + \Phi_i i_t = \Gamma k_{t-1} + d_{1t} + d_{2t} \tag{13.2.5}
\]

\[
k_t = \Delta_k k_{t-1} + \Theta k_i \tag{13.2.6}
\]

\[
g_t \cdot g_t = \ell_1^2, \quad \ell_t = \ell_{1t} + \ell_{2t}. \tag{13.2.7}
\]

As before, \(g_t\) denotes the quantity of labor-using intermediate production activities; \(d_{it}\) is the amount of the endowment vector of household \(i\) used in the production process. We assume that

\[
d_{it} = U_d z_t, \quad i = 1, 2. \tag{13.2.8}
\]

13.3. A Pareto Problem

The social welfare function is a weighted average of the utilities of the two households, with weight on household 1’s utility being \(\lambda\), \(0 < \lambda < 1\). For fixed \(\lambda\), we seek an allocation that maximizes

\[
-\frac{1}{2} \lambda \beta_0 \sum_{t=0}^{\infty} \beta^t [(s_{1t} - b_{1t}) \cdot (s_{1t} - b_{1t}) + \ell_{1t}^2]
\]

\[
-\frac{1}{2} (1 - \lambda) \beta_0 \sum_{t=0}^{\infty} \beta^t [(s_{2t} - b_{2t}) \cdot (s_{2t} - b_{2t}) + \ell_{2t}^2]
\]

subject to the constraints that describe household and production technologies. By way of fitting it into an optimal linear regulator, it is convenient to note a property of this problem that permits us to avoid carrying along \(\ell_{1t}\) and \(\ell_{2t}\) as variables and to replace them with functions of \(\ell_t\). The solution of the social planning problem implies a pair of simple ‘sharing rules’ for labor. We deduce these sharing rules before solving the full problem in order to economize the number of control variables.

Let \(\mathcal{M}_t^\ell\) be the stochastic Lagrange multiplier associated with the constraint \(\ell_{1t} + \ell_{2t} = \ell_t\). With respect to \(\ell_{1t}\) and \(\ell_{2t}\), the first-order conditions are \(\mathcal{M}_{1t}^\ell = \lambda \ell_{1t}\) and \(\mathcal{M}_{2t}^\ell = (1 - \lambda) \ell_{2t}\). These conditions imply that
\(\ell_t = \ell_{1t} + \ell_{2t} = M^t/\lambda(1 - \lambda) \), or \(M^t = \lambda(1 - \lambda)\ell_t \). Substituting this last equality for \(M^t \) into the marginal conditions for \(\ell_{1t} \) and \(\ell_{2t} \) gives the ‘sharing rules’

\[
\ell_{1t} = (1 - \lambda)\ell_t, \quad \ell_{2t} = \lambda\ell_t.
\]

Use these two equations to represent the terms in \(\ell_{1t} \) and \(\ell_{2t} \) in the social planning criterion as

\[
\lambda\ell_{2t} + (1 - \lambda)\ell_{1t} = \lambda(1 - \lambda)\ell_t^2.
\]

Substituting in the constraint \(g_t \cdot g_t = \ell_t^2 \), we can represent the social planning criterion as

\[
-\frac{1}{2}E_0^\infty \sum_{t=0}^\infty \beta^t [\lambda(s_{1t} - b_{1t}) \cdot (s_{1t} - b_{1t}) + (1 - \lambda)(s_{2t} - b_{2t}) \cdot (s_{2t} - b_{2t}) + \lambda(1 - \lambda)g_t \cdot g_t].
\]

The objective function (13.3.1) is to be maximized subject to the following constraints:

\[
s_{it} = \Lambda_{hi} h_{i(t-1)} + \Pi_{hi} c_{it}, \quad i = 1, 2 \quad (13.3.2)
\]

\[
h_{it} = \Delta_{hi} h_{i(t-1)} + \Theta_{hi} c_{it}, \quad i = 1, 2 \quad (13.3.3)
\]

\[
\Phi_c(c_{1t} + c_{2t}) + \Phi_g g_t + \Phi_i i_t = \Gamma k_{i(t-1)} + d_{1t} + d_{2t} \quad (13.3.4)
\]

\[
k_t = \Delta_k k_{i(t-1)} + \Theta_k i_t \quad (13.3.5)
\]

\[
d_{it} = U_d z_t, \quad b_{it} = U_b z_t, \quad i = 1, 2 \quad (13.3.6)
\]

\[
z_{t+1} = A_{22} z_t + C_2 w_{t+1}. \quad (13.3.7)
\]

This problem can be set up as an optimal linear regulator problem by following steps paralleling those for the single-household economy described in chapter 5.

Define the state and controls as

\[
x_t = \begin{pmatrix} h_{1(t-1)} \\ h_{2(t-1)} \\ k_{i(t-1)} \\ z_t \end{pmatrix}, \quad u_t = \begin{pmatrix} i_t \\ c_{1t} \end{pmatrix}.
\]

Notice that from (13.2.5), \((c_{2t}, g_t)\) can be expressed as functions of the state and controls at \(t \):

\[
\begin{bmatrix} c_{2t} \\ g_t \end{bmatrix} = [\Phi_c \Phi_g]^{-1} \left\{ \Gamma k_{i(t-1)} + (U_d + U_d) z_t - \Phi_c c_{1t} - \Phi_i i_t \right\}. \quad (13.3.8)
\]
Substitution from the above equation into (13.2.3) for \(i = 2 \) shows that the law of motion for \(x_{t+1} \) can be represented

\[
\begin{pmatrix}
 h_{1t} \\
 h_{2t} \\
 k_{t+1}
\end{pmatrix}
=
\begin{pmatrix}
 \Delta h_1 & 0 & 0 \\
 0 & \Delta h_2 & 0 \\
 0 & 0 & \Delta_k
\end{pmatrix}
\begin{pmatrix}
 \Theta_{h2} U_c[\Phi_c \Phi_g]^{-1} \Gamma \\
 \Theta_{h2} U_c[\Phi_c \Phi_g]^{-1} (U_{d1} + U_{d2}) \\
 0
\end{pmatrix}
\begin{pmatrix}
 h_{1t-1} \\
 h_{2t-1} \\
 k_{t-1}
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
 0 & \Theta_{h2} U_c[\Phi_c \Phi_g]^{-1} \Phi_i \\
 \Theta_k & -\Theta_{h2} \\
 0 & 0
\end{pmatrix}
\begin{pmatrix}
 i_t \\
 c_{1t}
\end{pmatrix}
\begin{pmatrix}
 0 \\
 0 \\
 0
\end{pmatrix}
w_{t+1}
\]

or

\[
x_{t+1} = Ax_t + Bu_t + C w_{t+1}.
\]

(13.3.9)

Here \(U_c \) is a matrix that selects the first \(n_c \) rows of the right side of (13.3.8), the rows corresponding to \(c_{2t} \), and \(U_g \) is a matrix that selects the rows of (13.3.8) corresponding to \(g_{1t} \). Here and below, we use the equalities \(U_c[\Phi_c \Phi_g]^{-1} \Phi_c = \Pi_1 \), \(U_g[\Phi_c \Phi_g]^{-1} \Phi_g = \Pi_2 \), \(U_c[\Phi_c \Phi_g]^{-1} \Phi_c = \Pi_3 \), and \(U_g[\Phi_c \Phi_g]^{-1} \Phi_g = \Pi_4 \). Now substitute from (13.3.8) into (13.2.2) for \(i = 2 \) to get

\[
s_{2t} = \Lambda_2 h_{2t-1} + \Pi_2 U_c[\Phi_c \Phi_g]^{-1} \{ \Gamma k_{t-1} + (U_{d1} + U_{d2}) z_t - \Phi_c c_{1t} - \Phi_c i_t \}.
\]

Use this equation and (13.2.2) for \(i = 1 \) to deduce

\[
(s_{1t} - b_{1t}) =
\begin{pmatrix}
 \Lambda_1 \\
 0 \\
 0 \\
 -U_{b1} \\
 \Pi_1
\end{pmatrix}
\begin{pmatrix}
 h_{1t-1} \\
 h_{2t-1} \\
 k_{t-1} \\
 z_t \\
 i_t \\
 c_{1t}
\end{pmatrix}
\]

\[
(s_{2t} - b_{2t}) =
\begin{pmatrix}
 0 \\
 \Pi_2 U_c[\Phi_c \Phi_g]^{-1} \Gamma \\
 \Pi_2 U_c[\Phi_c \Phi_g]^{-1} (U_{d1} + U_{d2}) - U_{b2} \\
 -\Pi_2 U_c[\Phi_c \Phi_g]^{-1} \Phi_i \\
 -\Pi_2
\end{pmatrix}
\begin{pmatrix}
 h_{1t-1} \\
 h_{2t-1} \\
 k_{t-1} \\
 z_t \\
 i_t \\
 c_{1t}
\end{pmatrix}
\]

or

\[
(s_{1t} - b_{1t}) = H_1 \begin{pmatrix}
 x_t \\
 u_t
\end{pmatrix}
\]

(13.3.10)
\begin{equation}
(s_{2t} - b_{2t}) = H_2 \begin{pmatrix} x_t \\ u_t \end{pmatrix},
\end{equation}
(13.3.11)

Similarly, we have
\begin{equation}
g_t = U_g \Phi_g^{-1} \begin{pmatrix} 0 \\ 0 \\ \Gamma \\ (U_{d1} + U_{d2}) \\ -\Phi_t \\ 0 \end{pmatrix} \begin{pmatrix} h_{1t-1} \\ h_{2t-1} \\ k_{t-1} \\ z_t \\ i_t \\ c_{it} \end{pmatrix}
\end{equation}
or
\begin{equation}
g_t = G \begin{pmatrix} x_t \\ u_t \end{pmatrix}.
\end{equation}
(13.3.12)

Now notice that the current return function in (13.3.1) can be represented as
\begin{align}
\lambda(s_{1t} - b_{1t}) & \cdot (s_{1t} - b_{1t}) \\
+ & (1 - \lambda)(s_{2t} - b_{2t}) \cdot (s_{2t} - b_{2t}) + \lambda(1 - \lambda)g_t \cdot g_t
\end{align}
(13.3.13)

where
\begin{equation}
S = \lambda H_1' H_1 + (1 - \lambda) H_2' H_2 + \lambda(1 - \lambda)G' G.
\end{equation}
(13.3.14)

Let \(x_t' S x_t = x_t' R x_t + u_t' Q u_t + 2 x_t' W u_t\), and write the law of motion in the form (13.3.9). This converts the Pareto problem with weight \(\lambda\) into a discounted optimal linear regulator problem. The solution of the Pareto problem is a law of motion
\begin{equation}
x_{t+1} = A_0(\lambda)x_t + CW_{t+1}
\end{equation}
(13.3.15)
and a list of matrices \(S_j(\lambda)\) such that optimal allocations are
\begin{align}
c_{it} & = S_{ci}(\lambda)x_t, \ i = 1, 2 \\
i_t & = S_i(\lambda)x_t,
\end{align}
(13.3.16)
\begin{align}
h_{it} & = S_{hi}(\lambda)x_t, \ i = 1, 2 \\
s_{it} & = S_{si}(\lambda)x_t, \ i = 1, 2.
\end{align}

The value function for the Pareto problem has the form
\begin{equation}
V(x_t) = x_t' V_1(\lambda)x_t + V_2(\lambda).
\end{equation}
(13.3.17)
Associated with the solution of the Pareto problem for a given λ is a set of Lagrange multiplier processes given by

\[
\begin{align*}
M_{\text{h}1}^t(\lambda) &= 2\beta[I 0 0] V_1(\lambda) A^0(\lambda) x_t \\
M_{\text{h}2}^t(\lambda) &= 2\beta[I 0 0] V_1(\lambda) A^0(\lambda) x_t \\
M_{\text{k}}^t(\lambda) &= 2\beta[I 0 0] V_1(\lambda) A^0(\lambda) x_t \\
M_{\text{i}1}^t(\lambda) &= \lambda(S_{b1} - S_{s1}(\lambda)) x_t \\
M_{\text{i}2}^t(\lambda) &= (1 - \lambda)(S_{b2} - S_{s2}(\lambda)) x_t \\
M_{\text{c}1}^t(\lambda) &= \Theta'_{h} M_{\text{h}1}^t(\lambda) + \Pi'_{h} M_{\text{s}1}^t(\lambda) \\
M_{\text{c}2}^t(\lambda) &= \Theta'_{h} M_{\text{h}2}^t(\lambda) + \Pi'_{h} M_{\text{s}2}^t(\lambda) \\
M_{\text{i}}^t(\lambda) &= M_{\text{i}}(\lambda) x_t, \quad M_{\text{i}}(\lambda) = \Theta'_{h} M_{\text{k}}(\lambda) \\
M_{\text{d}}^t(\lambda) &= \begin{bmatrix} \Phi'_{c} \\ \Phi'_{d} \end{bmatrix}^{-1} \begin{bmatrix} \Theta'_{h} M_{\text{h}1}^t(\lambda) + \Pi'_{h} M_{\text{s}1}^t(\lambda) \\ -\lambda(1 - \lambda) g_t \end{bmatrix}.
\end{align*}
\]

From the structure of the Pareto problem and the fact that c_{1t}, c_{2t} appear additively in the technology (13.2.5), it follows that $M_{\text{c}1}^t(\lambda) = M_{\text{c}2}^t(\lambda)$.

13.4. Competitive Equilibrium

We use the following standard definitions:

Definition: A *price system* is a list of stochastic processes $\{p_{it}^0, w_{it}^0, q_{it}^0, r_{it}^0, \alpha_{it}^0\}_{t=0}^{\infty}$, each element of which belongs to L_0^2, and a vector v_0 of values assigned to physical capital.

Definition: An *allocation* is a list of stochastic processes $\{c_{it}, s_{it}, h_{it}, \ell_{it}, i = 1, 2; k_{it}\}_{t=0}^{\infty}$, each element of which is in L_0^2.

Definition: A *competitive equilibrium* is an allocation and a price system such that, given the price system, the allocation solves the optimum problems of households of each type and firms of each type.
13.4.1. Households

Households of type i face the problem of maximizing

$$-\frac{1}{2} E \sum_{t=0}^{\infty} \beta^t [(s_{it} - b_{it}) \cdot (s_{it} - b_{it}) + t^2_{it}] | J_0$$

subject to the budget constraint

$$E \sum_{t=0}^{\infty} \beta^t p^0_{it} \cdot c_{it} | J_0 = E \sum_{t=0}^{\infty} \beta^t [w^0_{it} \ell_{it} + \alpha^0_{it} \cdot d_{it}] | J_0 + v_0 k^z_{-1},$$

the household technology

$$s_{it} = \Lambda_i h_{it-1} + \Pi_i c_{it}$$

$$h_{it} = \Delta_i h_{it-1} + \Theta_i c_{it},$$

and the initial conditions $h_{i,-1}, k_{i,-1}$.

13.4.2. Firms of Types I and II

Firms of types I and II face the same problems described in chapter 7, with $c_t = c_{1t} + c_{2t}$ and $d_t = d_{1t} + d_{2t}$.

13.5. Computation of Equilibrium

To compute an equilibrium, we use an iterative algorithm based on an idea of Negishi (1960). For a given Pareto weight λ, we know that there exists a competitive equilibrium, though it will typically be associated with some distribution of wealth other than the one associated with the allocation of ownership of capital and endowment processes that we have assigned. An algorithm for computing an equilibrium with a pre-assigned distribution of ownership is to search for a $\lambda \in (0, 1)$ that delivers budget balance for each household.
13.5.1. Candidate Equilibrium Prices

For a given λ, candidate equilibrium prices can be computed from the Lagrange multipliers associated with the solution of the Pareto problem for that value of λ. By pursuing arguments paralleling those of chapter 7, we find

$$
\hat{p}_t^0 = \mathcal{M}_t^{c_1}(\lambda)/\mu_0^w \\
\tilde{v}_t^0 = \Gamma^r \mathcal{M}_t^d(\lambda)/\mu_0^w \\
\tilde{q}_t^0 = \Theta_k' \mathcal{M}_t^k(\lambda) \\
\tilde{\alpha}_t^0 = \mathcal{M}_t^d(\lambda)/\mu_0^w \\
v_0 = \Gamma^r \mathcal{M}_0^d(\lambda)/\mu_0^w + \Delta_k \mathcal{M}_0^k(\lambda)/\mu_0^w \\
w_0^0 = \lambda(1 - \lambda) | S_\lambda(x_t) | / \mu_0^w .
$$

These prices and the associated allocations are inputs into the Negishi algorithm.

13.5.2. A Negishi Algorithm

The algorithm consists of the following steps.

1. For a given $\lambda \in (0, 1)$, solve the Pareto problem. Compute Lagrange multipliers from (13.3.18) and use them to compute the candidate competitive equilibrium prices and quantities via (13.5.1).

2. At the candidate equilibrium prices and quantities, compute the left and right side of each household’s budget constraint (13.4.2). In particular, use the method described in chapter 9 to compute

$$
\mathcal{G}_i = E \sum_{t=0}^{\infty} \beta^t [w_0 t_\ell + \alpha_0 \cdot d_\ell] \mid J_0 + v_0 \cdot k_{i, -1} - E \sum_{t=0}^{\infty} \beta^t p_0^0 \cdot c_\ell \mid J_0 .
$$

For our two-household economy, \mathcal{G}_1 and \mathcal{G}_2 will either be of opposite signs, or both will equal zero.

3. If $\mathcal{G}_1 > 0$, increase λ and return to step 1. If $\mathcal{G}_1 = \mathcal{G}_2 = 0$, terminate the search and accept the allocation and price system associated with the current value of λ as equilibrium objects.\(^2\)

\(^2\) The Negishi algorithm is implemented in the MATLAB program \texttt{solvehet.m}. Some trial inputs are contained in the file \texttt{clex11h.m}, which inputs a two-agent version of the economy in
In practice, one can improve this algorithm by using any of a number of root finders to find the zero of the function $G_i(\lambda)$ defined in step 2. We have found it efficient to use a ‘secant method.’

13.6. Complete Markets Aggregation

Except in the special case that $\Lambda_1 = \Lambda_2$, $\Pi_1 = \Pi_2$, $\Delta_h1 = \Delta_h2$, $\Theta_h1 = \Theta_h2$, the specification of household technologies (13.2.2) – (13.2.3) violates the Gorman conditions for aggregation, so there does not exist a representative household in the sense described in chapter 12. However, for each Pareto weight λ, there does exist a representative household in the sense of a mongrel preference ordering over total consumption $(c_{1t} + c_{2t})$. This mongrel preference ordering depends on the distribution of wealth, i.e., the value of initial endowments and capital stocks evaluated at equilibrium prices.

13.6.1. Static Demand

Complete markets aggregation of preferences is easiest to analyze in the special case that the demand curve is ‘static’ in the sense that time t demand is a function only of the current price p_t^0. Let the household technology be determined by a nonsingular square matrix Π, where each of $\Lambda, \Delta_h, \Theta_h$ are matrices of zeros of the appropriate dimensions. For this specification, a demand curve is

$$c_t = \Pi^{-1}b_t - \mu_0^{'}\Pi^{-1}\Pi^{'0}p_t,$$

where μ_0 is the Lagrange multiplier on the household’s budget constraint. The inverse demand curve is

$$p_t = \mu_0^{-1}\Pi^{'0}b_t - \mu_0^{-1}\Pi^{'1}c_t.$$ \hspace{1cm} (13.6.2)

clex11.m, the one good stochastic growth model. As a benchmark, clex11h.m has the economy start out with identical endowments for the two households, and has them share identical household technologies. With these inputs, solvehet.m should find Pareto weight (which the program calls ‘alpha’) equal to .5, and should recover the same solution that solvea.m does with inputs clex11.m. Modify the inputs to get a complete markets aggregatable example. The program simulhet.m simulates the equilibrium computed by solvehet.m.
In equations (13.6.1) and (13.6.2), the price vector \(p_t \) can be interpreted as the marginal utility vector of the consumption vector \(c_t \). Integrating the marginal utility vector shows that preferences can be taken to be

\[
(-2\mu_0)^{-1}(\Pi c_t - b_t) \cdot (\Pi c_t - b_t). \tag{13.6.3}
\]

From (13.6.2) or (13.6.3), it is evident that the preference ordering is determined only up to multiplication of \(\Pi \) and \(b_t \) by a common scalar. We are free to normalize preferences by setting \(\mu_0 = 1 \).

Now suppose that we have two consumers, \(i = 1, 2 \), with demand curves

\[
c_{it} = \Pi_i^{-1}b_{it} - \mu_0 \Pi_i^{-1} \Pi_i^{-1} p_t.
\]

Adding these gives the total demand

\[
c_{1t} + c_{2t} = (\Pi_1^{-1}b_{1t} + \Pi_2^{-1}b_{2t}) - (\mu_0 \Pi_1^{-1} \Pi_1^{-1} + \mu_0 \Pi_2^{-1} \Pi_2^{-1})p_t. \tag{13.6.4}
\]

Setting \(c_{1t} + c_{2t} = c_t \) and solving (13.6.4) for \(p_t \) gives

\[
p_t = (\mu_0 \Pi_1^{-1} \Pi_1^{-1} + \mu_0 \Pi_2^{-1} \Pi_2^{-1})^{-1}(\Pi_1^{-1}b_{1t} + \Pi_2^{-1}b_{2t}) - (\mu_0 \Pi_1^{-1} \Pi_1^{-1} + \mu_0 \Pi_2^{-1} \Pi_2^{-1})^{-1}c_t. \tag{13.6.5}
\]

We want to interpret (13.6.5) as an aggregate preference ordering associated with an aggregate demand curve of the form (13.6.2). To do this, we shall evidently have to choose the \(\Pi \) associated with the aggregate ordering to satisfy

\[
\mu_0^{-1} \Pi' \Pi = (\mu_0 \Pi_1^{-1} \Pi_1^{-1} + \mu_0 \Pi_2^{-1} \Pi_2^{-1})^{-1}. \tag{13.6.6}
\]

To find a matrix \(\Pi \) determining an aggregate preference ordering, we have to form and then factor the matrix on the right side of (13.6.6). This matrix looks like the inverse of a weighted sum of two moment matrices. Even after normalizing \(\Pi \) by setting \(\mu_0 = 1 \), a solution \(\Pi \) will in general depend on the ratio \(\mu_{01}/\mu_{02} \), which functions like a relative Pareto weight.

There is a special case for which the aggregate or mongrel preference matrix \(\Pi \) is independent of \(\mu_{01}/\mu_{02} \), namely:

\[
\Pi_1 = k\Pi_2 \quad \text{for scalar} \quad k > 0 \tag{13.6.7}
\]
Notice that when \(\Pi_1 \) and \(\Pi \) are scalars, condition (13.6.7) is automatically satisfied. So for the one consumption good case with this special specification (i.e., with \(\Lambda \) being zero), Gorman aggregation obtains.

In the more general case that demand curves are dynamic, meaning that quantities demanded at \(t \) depend on future prices, finding a mongrel preference ordering becomes more demanding. In place of the problem of factoring a moment matrix as required in (13.6.6), we have to factor something that mathematically resembles a spectral density matrix, frequency by frequency. For studying mongrel preference orderings in the general dynamic case, it is convenient to work with a frequency domain representation of preferences.

13.6.2. Frequency Domain Representation of Preferences

From chapter 9 on canonical household technologies, recall the decomposition of services \(s_t = s_{mt} + s_{it} \), where \(s_{mt} \) are services resulting from market purchases of consumption and \(s_{it} \) are services flowing from the initial household capital stock. Let \((\Delta_h, \Theta_h, \Lambda, \Pi) \) be a canonical household service technology, and recall that

\[
s_{mt} = \sigma(L)c_t
\]

where

\[
\sigma(L) = [\Pi + \Lambda L[I - \Delta_h L]^{-1}\Theta_h]
\]

\[
\sigma(L)^{-1} = \Pi^{-1} - \Pi^{-1}\Lambda[I - (\Delta_h - \Theta_h \Pi^{-1}\Lambda)L]^{-1}\Theta_h \Pi^{-1}L,
\]

and

\[
s_{it} = \Lambda \Delta_h^{-1} h_{-1}.
\]

We use the transform methods described in the appendix to chapter 9. For any matrix sequence \(\{y_t\} \) satisfying \(\sum_{t=0}^{\infty} \beta^t y_t y_t' < +\infty \), define \(T(y)(\zeta) = \sum_{t=0}^{\infty} \beta^{t/2} y_t \zeta^t \). Define \(S(\zeta) = \sigma(\beta^{1/2} \zeta) \). Evidently, the transforms obey

\[
T(s_m)(\zeta) = S(\zeta) T(c)(\zeta)
\]

\[
T(s_{it})(\zeta) = \Lambda [I - \beta^{1/2} \Delta_h \zeta]^{-1} h_{-1}.
\]

As in chapter 9, express the one-period return as

\[
(s_t - b_t) \cdot (s_t - b_t) = s_{mt} \cdot s_{mt} + 2s_{mt} \cdot s_{it} - 2s_{mt} \cdot b_t + (b_t - s_{it}) \cdot (b_t - s_{it}).
\]

(13.6.8)
The term \((b_t - s_{it}) \cdot (b_t - s_{it})\) is beyond the consumer’s control and therefore influences no decisions. So it can be ignored in describing a preference ordering.

In terms of Fourier transforms, we have

\[
\sum_{t=0}^{\infty} \beta^t s_{mt} \cdot s_{mt} = \frac{1}{2\pi} \int_{-\pi}^{\pi} T(c)'S'ST(c) \, d\theta
\]

(13.6.9)

\[
\sum_{t=0}^{\infty} \beta^t s_{mt} \cdot s_{it} = \frac{1}{2\pi} \int_{-\pi}^{\pi} T(c)'S'T(s_i) \, d\theta
\]

(13.6.10)

\[
\sum_{t=0}^{\infty} \beta^t s_{mt} \cdot b_t = \frac{1}{2\pi} \int_{-\pi}^{\pi} T(c)'S'T(b) \, d\theta,
\]

(13.6.11)

where it is understood that \(S = S(\zeta), T(c) = T(c)(\zeta), T(b) = T(b)(\zeta), \) and \(\zeta = e^{-i\theta}\). Here (’) denotes transposition and complex conjugation.

13.7. A Programming Problem for Complete Markets Aggregation

To find a preference ordering over aggregate consumption, we can pose a non-stochastic optimization problem.\(^3\) We rely on a certainty equivalence result to assert that a preference ordering over random consumption streams is described by the conditional expectation of the optimized value of the nonstochastic objective function. Thus, our strategy for deducing the mongrel preference ordering over \(c_t = c_{1t} + c_{2t}\) is to solve the programming problem: choose \(\{c_{1t}, c_{2t}\}\) to maximize the criterion

\[
\sum_{t=0}^{\infty} \beta^t \left[\lambda(s_{1t} - b_{1t}) \cdot (s_{1t} - b_{1t}) + (1 - \lambda)(s_{2t} - b_{2t}) \cdot (s_{2t} - b_{2t}) \right]
\]

(13.7.1)

subject to

\[
\begin{align*}
h_{jt} &= \Delta h_{jt-1} + \Theta h_{jt} e_{jt}, \quad j = 1, 2 \\
s_{jt} &= \Delta s_{jt-1} + \Pi s_{jt}, \quad j = 1, 2 \\
c_{1t} + c_{2t} &= c_t,
\end{align*}
\]

\(^3\) These calculations are done by the MATLAB program dog.m.
and subject to \((h_{1,1}, h_{2,1}) \) given, and \(\{b_{1t}\}, \{b_{2t}\}, \{c_t\} \) being known and fixed sequences. Substituting the \(\{c_{1t}, c_{2t}\} \) sequences that solve this problem as functions of \(\{b_{1t}, b_{2t}, c_t\} \) into the objective (13.7.1) will determine the mongrel preference ordering over \(\{c_t\} \). In solving this problem, it is convenient to proceed by using Fourier transforms.

Using versions of (13.6.8), (13.6.9), (13.6.10), and (13.6.11) for households 1 and 2, in terms of transforms we can represent the Pareto-weighted average of discounted utility from consumption as

\[
- \sum_{t=0}^{\infty} \beta^t \left[\lambda (s_{1t} - b_{1t}) \cdot (s_{1t} - b_{1t}) + (1 - \lambda)(s_{2t} - b_{2t}) \cdot (s_{2t} - b_{2t}) \right] \\
= -\frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ \lambda T(c_1)'S_1' S_1 T(c_1) + (1 - \lambda)T(c_2)'S_2' S_2 T(c_2) \right\} \, d\theta \\
+ 2[\lambda T(c_1)'S_1' T(s_{1t}) + (1 - \lambda)T(c_2)'S_2' T(s_{2t})] \\
- 2[\lambda T(c_1)'S_1' T(b_1) + (1 - \lambda)T(c_2)'S_2' T(b_2)] \\
+ \text{terms not involving } T(c_1) \text{ or } T(c_2),
\]

where it is understood that each transform on the right side is to be evaluated at \(\zeta = e^{-i\theta} \).

We want to maximize the right side of (13.7.2) over choice of \(\{c_{1t}, c_{2t}\}_{t=0}^{\infty} \) or equivalently, over choice of \(T(c_1), T(c_2) \), subject to the constraint \(c_{1t} + c_{2t} = c_t \), or equivalently the restriction

\[
T(c_1) + T(c_2) = T(c).
\]

To do this optimization, we form the Lagrangian

\[
J = -\frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ \lambda T(c_1)'S_1' S_1 T(c_1) + (1 - \lambda)T(c_2)'S_2' S_2 T(c_2) \right\} \\
+ 2[\lambda T(c_1)'S_1' T(s_{1t}) + (1 - \lambda)T(c_2)'S_2' T(s_{2t})] \\
- 2[\lambda T(c_1)'S_1' T(b_1) + (1 - \lambda)T(c_2)'S_2' T(b_2)] \\
+ \mu [T(c) - T(c_1) - T(c_2)] \, d\theta,
\]

where it is understood that there is a Lagrange multiplier \(\mu = \mu(e^{-i\theta}) \) for each frequency \(\theta \in [-\pi, \pi] \). We can perform this maximization “frequency by frequency” (i.e., pointwise for each \(\theta \in [-\pi, \pi] \)). First-order necessary conditions with respect to \(T(c_1) \) and \(T(c_2) \), respectively, are...
The fact that the Lagrange multiplier is the derivative of the return function with respect to \(T(c) \) implies that the mongrel return function has the representation

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \begin{pmatrix}
T(c) \\
T(s_{1i}) - T(b_1) \\
T(s_{2i}) - T(b_2)
\end{pmatrix}'
\begin{pmatrix}
S'S & S'SS_1^{-1} & S'SS_2^{-1} \\
S_1^{-1}S'S & - & - \\
S_2^{-1}S'S & - & -
\end{pmatrix}
\begin{pmatrix}
T(c) \\
T(s_{1i}) - T(b_1) \\
T(s_{2i}) - T(b_2)
\end{pmatrix} d\theta
\]
where the blank terms do not involve $T(c)$ and do not affect the choice of $T(c)$.

Therefore, we can represent the mongrel preference ordering over $T(c)$ by

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ T(c)S' ST(c) + (2T(c)' S') SS_1^{-1}(T(s_{i1}) - T(b_1)) \
+ (2T(c)'S') SS_2^{-1}(T(s_{i2}) - T(b_2)) \right\} d\theta. \quad (13.7.6)$$

Compare this with the single agent case of chapter 9, in which the preference ordering was shown to be

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left\{ T(\tilde{c})' \tilde{S}' \ ST(\tilde{c}) + 2T(\tilde{c})' \tilde{S}' (T(\tilde{s}_i) - T(\tilde{b})) \right\} d\theta, \quad (13.7.7)$$

where we have put bars ($\tilde{\cdot}$) over the objects in (13.7.7) to represent the corresponding single agent-objects. Evidently, for the mongrel preference ordering (13.7.6) to match a single agent ordering (13.7.7), we can match objects as

$$T(c) \sim T(\tilde{c})$$
$$S \sim \tilde{S}$$

$$SS_1^{-1}(T(s_{i1}) - T(b_1)) + SS_2^{-1}(T(s_{i2}) - T(b_2)) \sim T(\tilde{s}_i) - T(\tilde{b}), \quad (13.7.8)$$

where the object on the right of the \sim is in each case the single-agent counterpart.

We have two major tasks yet to complete. First, we have to show how to achieve the factorization (13.7.5). Second, we have to show how to interpret and to implement the correspondences in (13.7.8).
13.7.1. Factoring $s'T$s

To achieve the spectral factorization (13.7.5), we notice that we can regard $\frac{1}{\lambda}(S_1^t S_1)^{-1} + \frac{1}{1-\lambda}(S_2^t S_2)^{-1}$ as the spectral density matrix of a stochastic process c_t^λ, that is generated by the state space system

\[
\begin{align*}
 h_{1t} &= \beta^5 (\Delta h_1 - \Theta h_1 \Pi_1^{-1} \Lambda_1) h_{1t-1} + \Theta h_1 \Pi_1^{-1} s_{1t} \\
 h_{2t} &= \beta^5 (\Delta h_2 - \Theta h_2 \Pi_2^{-1} \Lambda_2) h_{2t-1} + \Theta h_2 \Pi_2^{-1} s_{2t} \\
 c_t^\lambda &= \beta^5 [-\frac{1}{\sqrt{\lambda}} \Pi_1^{-1} \Lambda_1, -\frac{1}{\sqrt{1-\lambda}} \Pi_2^{-1} \Lambda_2] \begin{bmatrix} h_{1t-1} \\ h_{2t-1} \end{bmatrix} + (\frac{1}{\sqrt{\lambda}} \Pi_1^{-1}, \frac{1}{\sqrt{1-\lambda}} \Pi_2^{-1}) \begin{bmatrix} s_{1t} \\ s_{2t} \end{bmatrix}
\end{align*}
\]

where $(\Delta h_i, \Theta h_i, \Lambda_i, \Pi_i)$ are each associated with a canonical representation, and where $s_t = \begin{bmatrix} s_{1t} \\ s_{2t} \end{bmatrix}$ is a white noise with covariance $E s_t s_t' = I$. Write this system compactly as

\[
\begin{align*}
 h_t &= \Delta h h_{t-1} + H s_t \\
 c_t^\lambda &= G \lambda h_{t-1} + M \lambda s_t.
\end{align*}
\]

The spectral density of c_t^λ can be directly computed to be $\frac{1}{\lambda}(S_1^t S_1)^{-1} + \frac{1}{1-\lambda}(S_2^t S_2)^{-1}$.\(^4\)

We can factor the inverse of $\frac{1}{\lambda}(S_1^t S_1)^{-1} + \frac{1}{1-\lambda}(S_2^t S_2)^{-1}$ by obtaining an innovations representation for the system (13.7.9), then using it to form a ‘whitener’. The innovations representation is

\[
\begin{align*}
 \hat{h}_t &= \Delta h \hat{h}_{t-1} + K a_t \\
 c_t^\lambda &= G \lambda h_{t-1} + a_t
\end{align*}
\]

where $E a_t a_t' = \Omega = G \lambda \Sigma G \lambda' + M \lambda M \lambda'$, and $[K, \Sigma] = \text{kfilter} (\Delta h, G \lambda, HH', M \lambda M \lambda', HM \lambda')$, where kfilter is the matrix valued function defined in chapter 8.

\(^4\) To verify this, we make use of the fact that

\[
\sigma_j(\zeta)^{-1} = (\Pi_j^{-1} - \Pi_j^{-1} \Lambda_j [I - (\Delta h_j - \Theta h_j \Pi_j^{-1} \Lambda_j)\zeta]^{-1} \Theta h_j \Pi_j^{-1} \Lambda_j)^{-1}.
\]
To get the inverse of \(\left[\frac{1}{\lambda} (S_1^t S_1)^{-1} + \frac{1}{\lambda} (S_2^t S_2)^{-1} \right] \), let \(r^r = \Omega \) be the Cholesky decomposition of \(\Omega \), and define \(\hat{s}_t \) by \(\hat{s}_t = r^{-1} \alpha_t \). Then use (13.7.10) to get the ‘whitener’

\[
\begin{align*}
\hat{h}_t &= (\hat{\Delta}_h - KG_\lambda) \hat{h}_{t-1} + Kc_\lambda^t \\
\hat{s}_t &= -r^{-1} G_\lambda \hat{h}_{t-1} + r^{-1} c_\lambda^t
\end{align*}
\]

or

\[
\begin{align*}
\hat{h}_t &= \hat{\Delta}_h \hat{h}_{t-1} + \hat{\Theta}_h c_\lambda^t \\
\hat{s}_t &= \hat{\Lambda} \hat{h}_{t-1} + \hat{\Pi} c_\lambda^t
\end{align*} \tag{13.7.11}
\]

where

\[
\begin{align*}
\hat{\Delta}_h &= (\hat{\Delta}_h - KG_\lambda) \\
\hat{\Theta}_h &= K \\
\hat{\Lambda} &= -r^{-1} G_\lambda \\
\hat{\Pi} &= r^{-1}.
\end{align*} \tag{13.7.12}
\]

As a consequence of the factorization identity and associated matrix identities described in chapter 8,\(^5\) we have that \(S' S \) satisfies (13.7.5) where

\[
S(\zeta) = \left[\Pi + \hat{\Lambda} \zeta [I - \Delta_h \zeta]^{-1} \hat{\Theta}_h \right] = \left[\Pi + \Lambda \beta^{-5} \zeta [I - \Delta_h \beta^{-5} \zeta]^{-1} \Theta_h \right].
\]

It follows that a (canonical) representation of a mongrel household technology is

\[
\begin{align*}
h_t &= \Delta_h h_{t-1} + \Theta_h (c_{1t} + c_{2t}) \\
s_t &= \Lambda h_{t-1} + \Pi (c_{1t} + c_{2t}),
\end{align*} \tag{13.7.13a}
\]

where

\[
\begin{align*}
\Delta_h &= \beta^{-5} \hat{\Delta}_h, \quad \Theta_h = \hat{\Theta}_h \\
\Lambda &= \beta^{-5} \hat{\Lambda}, \quad \Pi = \hat{\Pi}.
\end{align*} \tag{13.7.13b}
\]

\(^5\) In effect, we are using the factorization identity (8.5.5) and the matrix inversion identity (8.B.3). We are expressing \(S' S \) from (13.7.5) first in a form like (8.5.4), then via the factorization identity in a form like (8.5.5). Then we apply the inversion formula (8.B.3) to the two factors of (8.5.5), replacing \(\Omega \) with its Cholesky factorization, to construct a factored version of \(S' S \).
Collecting results, we have that the canonical household technology is determined by the matrices
\[
\Delta_h = \beta^{-5}(\Delta_h - KG_\lambda) \\
\Theta_h = K \\
\Lambda = -r'^{-1}G_\lambda\beta^{-5} \\
\Pi = r'^{-1}.
\]
These equalities imply that
\[
\Delta_h - \Theta_h\Pi^{-1}\Lambda = \begin{bmatrix}
\Delta_{h1} - \Theta_{h1}\Pi_1^{-1}\Lambda_1 & 0 \\
0 & \Delta_{h2} - \Theta_{h2}\Pi_2^{-1}\Lambda_2
\end{bmatrix}.
\]
It follows that for the mongrel household technology, the counterpart to the canonical representation (9.2.1) from chapter 9 is
\[
c_t = \begin{bmatrix}
-\frac{1}{\sqrt{\lambda}}\Pi_1^{-1}\Lambda_1, & -\frac{1}{\sqrt{1-\lambda}}\Pi_2^{-1}\Lambda_2
\end{bmatrix}h_{t-1} + r's_t
\]
\[
h_t = \begin{bmatrix}
\Delta_{h1} - \Theta_{h1}\Pi_1^{-1}\Lambda_1 & 0 \\
0 & \Delta_{h2} - \Theta_{h2}\Pi_2^{-1}\Lambda_2
\end{bmatrix}h_{t-1} + Kr's_t.
\]
Notice how the weight \(\lambda\) influences this representation: \(\lambda\) appears in the ‘observer’ matrix multiplying \(h_{t-1}\) in the first equation, and it appears indirectly through its influence on the matrices \([r', K]\). However, the state transition matrix \(\Delta_h - \Theta_h\Pi^{-1}\Lambda\) is independent of \(\lambda\).

13.8. Summary of Findings

The operator \(\sigma_j(L)^{-1}\) is implemented by the state space system defined by the four matrices\(^6\) \([\Delta_{hj} - \Theta_{hj}\Pi_j^{-1}\Lambda_j, \Theta_{hj}\Pi_j^{-1}, \Pi_j^{-1}\Lambda_j, \Pi_j^{-1}]\). The operator \(\sigma(L)\) associated with the mongrel household technology is realized by the state space system \([\Delta_h, \Theta_h, \Lambda, \Pi]\) determined by (13.7.12) and (13.7.6). We can use these state space systems to derive a state space system for the mongrel preference shock.

\(^6\) Here the state space system is presented as usual as the matrices in the state equation followed by the matrices in the observation equation.
13.9. The Aggregate Preference Shock Process

Our next goal is to construct a mongrel preference shock process that achieves the match up given in (13.7.8). Evidently, from (13.7.6), we have to operate on \(T(s_{i1}) - T(b_1) \) with the filter \(SS_1^{-1} \), operate on \(T(s_{21}) - T(b_2) \) with the filter \(SS_2^{-1} \), then add the results to get a process that we can interpret as the mongrel \(T(s_i) - T(b) \). The following cascading of state space systems evidently implements the required filtering and adding:

\[
A \left\{ \begin{array}{l}
z_{t+1} = A_{22} z_t + C_2 w_{t+1} \\
b_{1t} = U_{11} z_t \\
b_{2t} = U_{22} z_t \\
h_{jt} = \Delta h_j h_{jt-1} \\
s_{jt} = \Lambda h_j h_{jt-1}
\end{array} \right.
\]

\[
B \left\{ \begin{array}{l}
x_{jt} = (\Delta h_j - \Theta h_j \Pi_j^{-1} \Lambda_j)x_{jt-1} + \Theta h_j \Pi_j^{-1} (b_{jt} - s_{jt}) \\
y_{jt} = -\Pi_j^{-1} \Lambda_j x_{jt-1} + \Pi_j^{-1} (b_{jt} - s_{jt})
\end{array} \right.
\]

\[
C \left\{ \begin{array}{l}
g_t = \Delta h g_{t-1} + \Theta h (y_{1t} + y_{2t}) \\
(b_t - \hat{s}_t) = \Lambda g_{t-1} + \Pi (y_{1t} + y_{2t})
\end{array} \right.
\]

System \(A \) generates the “inputs” \((b_{1t}, b_{2t})\), \((s_{1t}, s_{2t})\). System \(B \) operates on \((b_{jt} - s_{jt})\) with \(\sigma_j^{-1} \). System \(C \) operates on \(\sum_j \sigma_j^{-1} (b_{jt} - s_{jt}') \) with \(\sigma \), as required by (13.7.8). In system \(C \), we are free to set \(\hat{s}_t = 0 \), and to regard the resulting \(b_t \) as our mongrel preference shock process. A recursive representation of \(b_t - s_t \) is attained by linking the three systems in a series.\(^7\)

It is evident how to use similar methods to break out the processes \(b_t \) and \(\hat{s}_t \) separately.

\(^7\) The MATLAB command \texttt{series} can be used to link the systems.
13.9.1. Interpretation of \(\hat{s}_t \) Component

The term \(SS^{-1}_1T(s_{1t}) \) has the following interpretation. \(T(s_{1t}) \) is (the transform of) the contribution of services flowing to the household from the initial household capital stock \(h_{-1} \). Then \(SS^{-1}_1T(s_{1t}) \) is the (transform of the) equivalent amount of consumption that it would have taken to generate those services had they been acquired through new market purchases. The term \(SS^{-1}_1T(s_{1t}) \) amounts to a consumption goods equivalent of the transient component of services flowing to the first household.

13.10. Initial Conditions

Our calculations do not tell us how to choose the correct initial condition at time 0 for the mongrel household capital stock vector \(h_{t-1} \). Here is the reason. The first-order necessary conditions leading to (13.7.4)–(13.7.5) imply the following solution for the transform \(T(c_1) \):

\[
T(c_1) = \frac{1}{\lambda} (S'_1S_1)^{-1}(S'S)T(c) + \frac{1}{\lambda} (S'_1S_1)^{-1}(S'S)S_2^{-1}(T(s_{2t}) - T(b_2)) \\
+ \left(\frac{1}{\lambda} (S'_1S_1)^{-1}(S'S) - I \right) S_1^{-1}(T(b_1) - T(s_{1t})).
\]

(13.10.1)

A similar expression holds for \(T(c_2) \). Our calculations assure that \(T(c_1) + T(c_2) = T(c) \). We assume that \(T(c) \) is the transform of a sequence that is one-sided (i.e., \(c_t = 0 \ \forall t < 0 \)), but this does not guarantee that \(T(c_1) \) and \(T(c_2) \) are each transforms of one-sided sequences, only that their sum is. When \(S'_jS_j \) is not a constant times \(S'S \) for \(j = 1, 2 \), as will generally be the case when the two household technologies are not identical, then \(T(c_1) \) given by (13.10.1) will be the transform of a sequence that is nonzero for \(t < 0 \). Thus, our frequency domain programming problem allows the ‘mongrel planner’ to reallocate past consumptions between the two types of households, subject to the restriction \(c_{1t} + c_{2t} = 0 \) for \(t < 0 \). These choices of \(c_j \)s for \(s < 0 \) translate into choices of initial conditions for \(h_{-1} \), the vector of mongrel household capital stocks at date \(t = -1 \).

\[8\] The operator \((S'_1S_1)^{-1}(S'S) \) is two-sided except when it is proportional to the identity operator.
We will not pursue calculations of the initial conditions here, because they are intricate and only effect the transient responses of services. Our main interest is not in the selection of the initial conditions but in the ‘nontransient’ part of the mapping from total consumption $c_t = c_{1t} + c_{2t}$ to the mongrel service vector s_t, which is given by (13.7.6).
Chapter 14
Periodic Models of Seasonality

14.1. Three Models of Seasonality

Until now, each of the matrices defining preferences, technologies, and information flows has been specified to be constant over time. In this chapter, we relax this assumption and let the matrices be strictly periodic functions of time. Our interest is to apply and extend an idea of Denise Osborn (1988) and Richard Todd (1983, 1990) to arrive at a model of seasonality as a hidden periodicity.

Seasonality can be characterized in terms of a spectral density. A variable is said to “have a seasonal” if its spectral density displays peaks at or in the vicinity of the frequencies commonly associated with the seasons of the year, e.g., every twelve months for monthly data, every four quarters for quarterly data.

Within a competitive equilibrium, it is possible to think of three ways of modelling seasonality. The first two ways can be represented within the time-invariant setup of our previous chapters, while the third way departs from the assumption that the matrices that define our economies are time invariant.

The first model of seasonality specifies the matrices \([A_{22}, C_{22}, U_b, U_d]\) that determine the information structure to induce seasonality in outcomes for quantities and prices. We can exogenously inject a seasonal preference shock into the model by specifying \([A_{22}, U_b]\) in such a way that components of the shock process \(b_t\) have seasonals. Similarly, we can specify \([A_{22}, U_d]\) so that components of the endowment shock process \(d_t\) have seasonals. The seasonality of these exogenous processes will be transmitted to the prices and quantities determined in equilibrium. The ways in which this seasonality are transmitted can be subtle, determined as they are by the restrictions across the parameters of the \(\{b_t, d_t\}\) processes and the equilibrium price and quantity processes.\(^1\)

\(^1\) Sargent (1978b, 1987b, ch. XI) described some of the ways in which the cross equation restrictions of linear rational expectations models determine the kind of seasonality in endogenous variables induced by seasonality in variables that agents forecast.
The second model of seasonality specifies the matrices \([\Delta_h, \Theta_h, \Lambda, \Pi]\) that determine a household technology and the matrices \([\Phi_c, \Phi_i, \Phi_c, \Gamma, \Delta_k, \Theta_k]\) that determine the production technology so that they make prices and quantities display seasonality even when the preference shocks \(b_t\) and the endowment shocks \(d_t\) do not display seasonality. Seasonality can come either from the production technology side or from the household technology side. Notice that in the first kind of model the source of seasonality is imposed exogenously, while in this second kind of model the idea is that preferences and technology are such that the equilibrium of the economy creates a “propagation mechanism” that converts nonseasonal impulses into seasonal responses in prices and quantities.

This chapter is devoted to studying a third model of seasonality following Todd. Here we specify an economy in terms of matrices whose elements are periodic functions of time. This specification captures the idea, for example, that the technology is different in Winter than it is in Spring. You will get less corn in Minnesota if you plant in January than if you plant in May. As we shall see, this model of seasonality has properties that contrast in interesting ways to the other two models of seasonality.

14.2. A Periodic Economy

The social planner now faces the problem of maximizing

\[
-0.5 \sum_{t=0}^{\infty} \beta^t \left[(s_t - b_t) \cdot (s_t - b_t) + l_t^2 \right]
\]

subject to

\[
\begin{align*}
\Phi_{c,t}(s_t) c_t + \Phi_{i,t}(s_t) i_t + \Phi_{g,t}(s_t) g_t &= \Gamma_{s,t} k_{t-1} + d_t \\
k_t &= \Delta_{k,t}(s_t) k_{t-1} + \Theta_{k,s,t} i_t \\
h_t &= \Delta_{h,s,t} h_{t-1} + \Theta_{h,s,t} c_t \\
s_t &= \Lambda_{s,t} h_{t-1} + \Pi_{s,t} c_t \\
z_{t+1} &= A_{22,s}(s_t) z_t + C_{22,s,t} w_{t+1} \\
b_t &= U_b z_t \\
d_t &= U_d z_t
\end{align*}
\]

(14.2.1)
In (14.2.2), \(s(t) \) is a periodic function that assigns integers to integers. In particular,
\[
s : (\ldots, -1, 0, 1, \ldots) \rightarrow [1, 2, \ldots, p]
\]
\(s(t + p) = s(t) \quad \forall t \)
\(s(t) = t \quad \text{for} \quad t = 1, 2, \ldots, p. \)

A consequence of (14.2.3) is that the constraints in (14.2.2) can be represented in the form
\[
\Phi_{c,j} c_{p \cdot t + j} + \Phi_{i,j} i_{p \cdot t + j} + \Phi_{g,j} g_{p \cdot t + j} = \Gamma_j k_{p \cdot t + j - 1} + d_{p \cdot t + j}
\]
\(k_{p \cdot t + j} = \Delta_{k,j} k_{p \cdot t + j - 1} + \Theta_{k,j} i_{p \cdot t + j} \)
\(h_{p \cdot t + j} = \Delta_{h,j} h_{p \cdot t + j - 1} + \Theta_{h,j} c_{p \cdot t + j} \)
\(s_{p \cdot t + j} = \Lambda_j h_{p \cdot t + j - 1} + P \varepsilon_j c_{p \cdot t + j} \)
\(z_{p \cdot t + j + 1} = A_{22,j} z_{p \cdot t + j} + C_{22,j} w_{p \cdot t + j} \)
\(b_{p \cdot t + j} = U_b z_{p \cdot t + j} \)
\(d_{p \cdot t + j} = U_d z_{p \cdot t + j} \)

where \(t = 0, 1, 2, \ldots, \) and \(j = 1, 2, \ldots, p. \) Notice that for \(t = 0, \) as \(j \) goes
from 1 to \(p, \) \(p \cdot t + j \) goes from 1 to \(p; \) that for \(t = 1, \) as \(j \) goes from 1 to \(p, \)
\(p \cdot t + j \) goes from \(p + 1 \) to \(2p, \) and so on.

Thus, (14.2.4) describes a setting in which the matrices that represent preferences and the technology are periodic with period \(p. \)

The social planning problem can be expressed in the form of a periodic optimal linear regulator problem (see chapter 3).\(^2\) of this problem are The social planner chooses a sequence of functions expressing \(u_t \) as functions of \(x_t, \)
for all \(t \geq 0, \) to maximize
\[
-E \sum_{t=0}^{\infty} \beta^t \left\{ x_t' R_{s(t)} x_t + u_t' Q_{s(t)} u_t + 2u_t' W_{s(t)} x_t \right\}
\]
subject to the constraints
\[
x_{t+1} = A_{s(t)} x_t + B_{s(t)} + C_{s(t)} w_{t+1}
\]

\(^2\) Related technical features appear in the Markov-Jump-Linear-Quadratic models used by Svennson and Williams (2008), where the system randomly jumps among \(p \) transition laws governed by a \(p \) state Markov chain.
where $x'_t = [h'_t, k'_t, z_t]$. In (14.2.5), (14.2.6), the matrices $[R_s(t), Q_s(t), W_s(t), A_s(t), B_s(t), C_s(t)]$ are the same functions of the matrices $[\Phi_e, s(t), \Phi_i, s(t), \Phi_g, s(t), \Gamma_s(t), \Delta_k, s(t), \Theta_k, s(t), \Delta_h, s(t), \Theta_h, s(t), \Lambda_s(t), \Pi_s(t), A_{22, s(t)}, C_{22, s(t)}, U_b, U_d]$ that the matrices $[R, Q, W, A, B, C]$ are of the matrices $[\Phi_e, \Phi_i, \Gamma, \Delta_k, \Theta_h, \Delta_h, \Theta_h, \Lambda, \Pi, A_{22}, C_{22}, U_b, U_d]$ in the constant coefficient case. These functions were described in chapter 5.

The Bellman equations for this problem are

$$V_t(x_t) = \max_{u_t} \{ x'_t R_s(t) x_t + u'_t Q_s(t) u_t + 2 u'_t W_s(t) x_t \} + \beta E_t V_{t+1}(x_t)$$

(14.2.7)

where the maximization is subject to

$$x_{t+1} = A_s(t) x_t + B_s(t) + C_s(t) u_{t+1}.$$

(13.6)

In (14.2.7), $V_t(x_t)$ is defined as the optimal value of the problem starting from state x_t at time t.

For the periodic optimal linear regulator problem, the optimal value function is quadratic but time varying:

$$V_t(x_t) = x'_t P_t x_t + \rho_t,$$

(14.2.8)

where the $n \times n$ matrix P_t satisfies the matrix Riccati difference equation

$$P_t = R_s(t) + \beta A'_s(t) P_{t+1} A_s(t) - (\beta A'_s(t) P_{t+1} B_s(t) + W'_s(t))$$

$$\times (Q_s(t) + \beta B'_s(t) P_{t+1} B_s(t))^{-1} (\beta B'_s(t) P_{t+1} A_s(t) + W_s(t)),$$

(14.2.9)

while the scalar ρ_t satisfies

$$\rho_t = \beta \rho_{t+1} + \beta \text{trace}(P_{t+1} C_s(t) C'_s(t)).$$

(14.2.10)

Now think of solving the Bellman equation by iterating backwards on (14.2.9), (14.2.10), starting from some terminal values for P and ρ. Because the matrices $[R_s(t), Q_s(t), W_s(t), A_s(t), B_s(t)]$ are all functions of time when $p \geq 2$, it is too much to hope that $\{P_t, \rho_t\}$ will converge as $t \to -\infty$ to objects that are independent of time. What is reasonable to hope for, and what will indeed obtain under assumptions we make, is that iterations on (14.2.9) and (14.2.10) will each produce p convergent subsequences. In particular, backwards
iterations on (14.2.9) and (14.2.10) will converge to a sequence that oscillates periodically among \(p \) value functions associated with the \(p \) seasons of the year. Thus, after enough iterations, we will eventually have \(V_t(x_t) = V_{s(t)}(x_t) \), where

\[
V_{s(t)}(x_t) = x_t^t P_{s(t)} x_t + \rho_{s(t)}
\]

(14.2.11)

We can also represent these value functions as

\[
V_j(x_{p \cdot t+j}) = x_{p \cdot t+j}^t P_j x_{p \cdot t+j} + \rho_j,
\]

(14.2.12)

where \(t = 0, 1, 2, \ldots \) and \(j = [1, 2, \ldots, p] \). Equation (14.2.12) summarizes the outcome that there are \(p \) value functions, one for each of the \(p \) seasons of the year. The optimal decision rules can be represented as

\[
u_t = -F_{s(t)} x_t
\]

(14.2.13)

where

\[
F_{s(t)} = -(Q_{s(t)} + \beta B'_{s(t)} P_{s(t+1)} B_{s(t)})^{-1} \beta B'_{s(t)} P_{s(t+1)} A_{s(t)}.
\]

(14.2.14)

The optimal decision rules are thus periodic with period \(p \). Substituting (14.2.13) into the law of motion (14.2.6) gives the following “closed loop” representation of the solution of the social planning problem:

\[
x_{t+1} = (A_{s(t)} - B_{s(t)} F_{s(t)}) x_t + C_{s(t)} w_{t+1}
\]

(14.2.15)

or

\[
x_{t+1} = A_{s(t)}^o x_t + C_{s(t)} w_{t+1},
\]

(14.2.16)

where \(A_{s(t)}^o = A_{s(t)} - B_{s(t)} F_{s(t)} \). We can also represent (14.2.16) in the form

\[
x_{p \cdot t+j+1} = A_{s(t)}^o x_{p \cdot t+j} + C_{s(t)} w_{p \cdot t+j+1}
\]

(14.2.17)

for \(t = 0, 1, 2, \ldots \) and \(j = [1, 2, \ldots, p] \). Thus, the laws of motion are periodic with a periodicity \(p \) that is inherited from that of the matrices specifying preferences, technology, and information flows.

The matrices \([A_{s(t)}^o, P_j] \) for \(j \in [1, 2, \ldots, p] \) can be used to construct the quantities and prices associated with a competitive equilibrium. Formulas for the matrices determining an equilibrium, namely, the \(M \) and \(S \) matrices, are
Periodic Models of Seasonality

given by the very same formulas described in chapters 5 and 7, with the proviso that in the periodic case $s(t)$ or j subscripts appear on all objects in those formulas. Thus, we have that the quantities determined in our equilibrium satisfy

\[h_t = S_{h,s(t)} x_t \quad d_t = S_{d,s(t)} x_t \]
\[k_t = S_{k,s(t)} x_t \quad c_t = S_{c,s(t)} x_t \]
\[k_{t-1} = S_{k1,s(t)} x_t \quad g_t = S_{g,s(t)} x_t \quad (14.2.18) \]
\[i_t = S_{i,s(t)} x_t \quad s_t = S_{s,s(t)} x_t \]

where

\[
\begin{bmatrix}
S_{h,s(t)} \\
S_{k,s(t)} \\
S_{k1,s(t)} \\
S_{i,s(t)} \\
S_{d,s(t)} \\
S_{b,s(t)} \\
S_{c,s(t)} \\
S_{g,s(t)} \\
S_{s,s(t)}
\end{bmatrix} =
\begin{bmatrix}
A_{11,s(t)} \\
A_{12,s(t)} \\
0 \\
0 \\
0 \\
0 \\
U_{c,s(t)} [\Phi_{c,s(t)} \Phi_{g,s(t)}]^{-1} [\Phi_{i,s(t)} S_{i,s(t)} + \Gamma_{s(t)} S_{k1,s(t)} + S_{d,s(t)}] \\
U_{g,s(t)} [\Phi_{c,s(t)} \Phi_{g,s(t)}]^{-1} [\Phi_{i,s(t)} S_{i,s(t)} + \Gamma_{s(t)} S_{k1,s(t)} + S_{d,s(t)}] \\
\Lambda_{s(t)} [I 0 0] + \Pi_{s(t)} S_{c,s(t)}.
\end{bmatrix}
\]

The Lagrange multipliers associated with the social planning problem are determined by the following counterparts of formulas in chapters 5 and 7:

\[
M_{k,s(t)} = 2\beta[0 1 0] P_{s(t)} A_{11,s(t)} \\
M_{h,s(t)} = 2\beta[1 0 0] P_{s(t)} A_{12,s(t)} \\
M_{s,s(t)} = S_{h,s(t)} - S_{s,s(t)} \\
M_{d,s(t)} = \left[\begin{array}{c}
\Phi_{c,s(t)} \\
\Phi_{g,s(t)}
\end{array} \right]^{-1} \left[\begin{array}{c}
\Theta'_{h,s(t)} M_{h,s(t)} + \Pi'_{s(t)} M'_{s,s(t)} \\
-\Pi'_{s(t)} M_{s,s(t)}
\end{array} \right] \quad (14.2.20) \\
M_{c,s(t)} = \Theta'_{h,s(t)} M_{h,s(t)} + \Pi'_{s(t)} M_{s,s(t)} \\
M_{i,s(t)} = \Theta_{k,s(t)} M_{k,s(t)}
\]

Formulas for the equilibrium price system can be stated in terms of the objects defined in (14.2.20):
These formulas give the time t price system for goods to be delivered at all $t' \geq t$.

14.3. Asset Pricing

With the above formulas in hand, we can derive formulas for pricing assets. These formulas generalize those described in chapter 7 to the case in which the economy is strictly periodic. We begin by pricing an asset that entitles its owner to a stream of returns in the form of a vector of consumption goods described by $y_t = U_{a,s(t)}x_t$, where $U_{a,s(t)}$ is a periodic sequence of matrices. We let a_t denote the price of this asset at time t. By the same reasoning applied in chapter 7, a_t satisfies

$$a_t = E_t \sum_{h=0}^{\infty} \beta^h x'_{t+h} Z_{a,s(t+h)x_{t+h}/[\bar{e}_j M_{c,s(t)}x_t]},$$

(14.3.1)

where $Z_{a_j} = U'_{a,j} M_{c,j}$. We shall show that (14.2.5) can be represented as

$$a_t = [x'_t \mu_{a,s(t)} x_t + \sigma_{a,s(t)}]/[\bar{e}_j M_{c,s(t)}x_t],$$

(14.3.2)

where $\mu_{a,s(t)}$ and $\sigma_{a,s(t)}$ satisfy

$$\mu_{a,1} = Z_{a,1} + \beta A'_{1} Z_{a,2} A_2^0 + \beta^2 A'_{1} A_2^0 Z_{a,3} A_2^0 A_1^0 + \cdots$$

$$+ \beta^{p-1} A'_{1} A_2^0 \cdots A_{p-2}^0 A_{p-1}^0 Z_{a,p} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

(14.3.3)

$$+ \beta^p A'_{1} A_2^0 \cdots A_{p-1}^0 \mu_{a,1} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$+ \beta A'_{1} A_2^0 \cdots A_{p-2}^0 A_{p-1}^0 \mu_{a,1} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$\mu_{a,p} = Z_{a,p} + \beta A'_{p} \mu_{a,1} A_2^0$$

$$\mu_{a,p-1} = Z_{a,p-1} + \beta A'_{p-1} \mu_{a,p} A_2^0$$

$$\vdots$$

$$\mu_{a,2} = Z_{a,2} + \beta A'_{2} \mu_{a,3} A_2^0$$

$$\mu_{a,1} = Z_{a,1} + \beta A'_{1} Z_{a,2} A_2^0 + \beta^2 A'_{1} A_2^0 Z_{a,3} A_2^0 A_1^0 + \cdots$$

$$+ \beta^{p-1} A'_{1} A_2^0 \cdots A_{p-2}^0 A_{p-1}^0 Z_{a,p} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$+ \beta^p A'_{1} A_2^0 \cdots A_{p-1}^0 \mu_{a,1} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$+ \beta A'_{1} A_2^0 \cdots A_{p-2}^0 A_{p-1}^0 \mu_{a,1} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$+ \beta^p A'_{1} A_2^0 \cdots A_{p-1}^0 \mu_{a,1} A_1^0 A_2^0 \cdots A_2^0 A_1^0$$

$$\mu_{a,p} = Z_{a,p} + \beta A'_{p} \mu_{a,1} A_2^0$$

$$\mu_{a,p-1} = Z_{a,p-1} + \beta A'_{p-1} \mu_{a,p} A_2^0$$

$$\vdots$$

$$\mu_{a,2} = Z_{a,2} + \beta A'_{2} \mu_{a,3} A_2^0$$
and

\[
\begin{align*}
\sigma_{a,1} &= \beta \text{trace}(\mu_{a,2}C_1C_1') + \beta \sigma_{a,2} \\
\sigma_{a,2} &= \beta \text{trace}(\mu_{a,3}C_2C_2') + \beta \sigma_{a,3} \\
&\vdots \\
\sigma_{a,p} &= \beta \text{trace}(\mu_{a,1}C_pC_p') + \beta \sigma_{a,1}.
\end{align*}
\]

(14.3.4)

The matrix \(\mu_{a,1} \) can be computed from the first equation of (14.3.3) by using a doubling algorithm. Then the remaining equations of (14.3.3) can be used to compute the remaining \(\mu_{a,j} \)'s. Given the \(\mu_{a,j} \)'s, (14.3.4) is a system of \(p \) equations that can be solved for the \(p \sigma_{a,j} \)'s.

To verify (14.3.3), (14.3.4), we can proceed as follows. Let the numerator of (14.3.1), (14.3.2) be denoted

\[
\tilde{a}_t = E_t \sum_{h=0}^{\infty} \beta^h x_{t+h}'Z_{a,s(t+h)}x_{t+h} = x_t'\mu_{a,s(t)}x_t + \sigma_{a,s(t)}.
\]

(14.3.5)

Recall the equilibrium transition laws (14.2.16):

\[
x_{t+1} = A^o_{s(t)}x_t + C_{s(t)}w_{t+1}.
\]

(13.19)

Evidently, (14.3.5) and (14.2.16) imply that

\[
\tilde{a}_t = x_t'Z_{a,s(t)}x_t + \beta E_t \tilde{a}_{t+1}
\]

or

\[
x_t'\mu_{a,s(t)}x_t + \sigma_{a,s(t)} = x_t'Z_{a,s(t)}x_t \\
+ \beta E_t (A_{s(t)}^o x_t + C_{s(t)}w_{t+1})'\mu_{a,s(t+1)}(A_{s(t)}^o x_t + C_{s(t)}w_{t+1}) \\
+ \beta \sigma_{a,s(t+1)}.
\]

The above equation implies that

\[
\mu_{a,s(t)} = Z_{a,s(t)} + \beta A_{s(t)}^o \mu_{a,s(t+1)}A_{s(t)}^o
\]

(14.3.6)

\[
\sigma_{a,s(t)} = \beta \sigma_{a,s(t+1)} + \beta \text{trace}(\mu_{a,s(t+1)}C_{s(t)}C_{s(t)}').
\]

(14.3.7)

Equation (14.3.4) is equivalent with (14.3.7). The first equation of (14.3.3) is the result of recursions on (14.3.6) starting from \(s(t) = 1 \), while the remaining
equations of (14.3.3) are simply (14.3.6) for \(s(t) = 2, 3, \ldots, p \). This completes the verification of (14.3.3), (14.3.4).

We shall give a formula for the term structure of interest rates after we have described a prediction theory associated with (14.2.16).

14.4. Prediction Theory

For a model with period \(p \geq 2 \), there are two natural alternative ways of specifying the information sets on which means, covariances, and linear least squares predictions are conditioned. First, we can calculate conditional moments and forecasts by conditioning on the season. This amounts to computing different moments and different forecasting formulas for each of the \(p \) seasons. In the appendix to this chapter, we formally describe a sigma algebra \(I_p \) that contains the information that corresponds to conditioning on the season. Second, we can calculate moments and forecasts by disregarding information about the season, which amounts to averaging data across seasons in a particular way. In the appendix, we formally describe another sigma algebra \(I \) that corresponds to not conditioning on the season.

In this section, we describe parts of the prediction theory for our periodic models that correspond to conditioning on the season. We use the notation \(E_t(\cdot) \) to denote a mathematical expectation conditioned on \(x_t \), under the assumption that we are also conditioning on the information in \(I_p \). We are assuming that the fictitious social planner uses this information to compute all relevant prices.

Recursions on (14.2.16) can be used to deduce the linear least squares predictions of the state vector \(x_t \). There are \(p \) different sets of formulas for the \(j \)-step ahead predictions of \(x_{t+k} \) conditioned on \(x_t \), one for each season of the year. Recursions on (14.2.16) lead directly to

\[
x_{t+k} = A_{s(t+k-1)}^o A_{s(t+k-2)}^o \cdots A_{s(t)}^o x_t \\
+ A_{s(t+k-1)}^o A_{s(t+k-2)}^o \cdots A_{s(t+1)}^o C_{s(t)} w_{t+1} + \cdots \\
+ A_{s(t+k-1)}^o C_{s(t+k-2)} w_{t+k-1} + C_{s(t+k-1)} w_{t+k}.
\]

(14.4.1)

Equation (14.4.1) implies

\[
E_t x_{t+k} = A_{s(t+k-1)}^o A_{s(t+k-2)}^o \cdots A_{s(t)}^o x_t
\]

(14.4.2)
and

\[E(x_{t+k} - E_t x_{t+k})(x_{t+k} - E_t x_{t+k})' \equiv \Sigma_{k,s(t)} = \]

\[A^o_{s(t+k-1)}A^o_{s(t+k-2)} \cdots A^o_{s(t+1)}C^s(t)A^{o\prime}_{s(t)} \cdots A^{o\prime}_{s(t+k-2)}A^{o\prime}_{s(t+k-1)} \]

\[+ \cdots + A^o_{s(t+k-1)}C^s(t+k-2)A^{o\prime}_{s(t+k-1)} + C^s(t+k-1)A^{o\prime}_{s(t+k-1)}. \]

Recursive versions of (14.4.2) and (14.4.3) are available. Equation (14.4.2) implies

\[E_t x_{t+k} = A^o_{s(t+k-1)}E_t x_{t+k-1}. \]

Equation (14.4.3) implies

\[\Sigma_{k,s(t)} = A^o_{s(t+k-1)}\Sigma_{k-1,s(t)}A^{o\prime}_{s(t+k-1)} + C^s(t+k-1)A^{o\prime}_{s(t+k-1)}. \]

The prediction formulas (14.4.2), (14.4.3) are evidently predicated on the assumption that we know the matrices \([A^o_j, C_j]\) for \(j = 1, \ldots, p\). They also assume that \(x_t\) is in the information set of the forecaster.

Later in this chapter, we shall briefly describe how the Kalman filter can be used to compute the linear least squares forecast of \(y_t\), conditioned only on the history of observed \(y_t's\), and also on \(I_p\). We shall also describe a different theory of prediction that assumes that we do not know the values of \([A^o_j, C_j]\), and that we cannot condition on the season, so that all that we possess is a time-invariant representation for the \(\{x_t, y_t\}\) process.

14.5. Term Structure of Interest Rates

In light of formula (14.4.2), the same logic that led to formula (5.65) for the reciprocal of the risk-free interest rate on \(j\)-period loans, \(R^j_t\), now leads to the following formula:

\[R^j_t = \beta^j \bar{e}_1 M_{c,s(t+j)} A^o_{s(t+j-1)}A^o_{s(t+j-2)} \cdots A^o_{s(t)}x_t/[\bar{e}_j M_{c,s(t)}x_t] \quad (14.5.1) \]

This formula gives the price at time \(t\) of a sure claim on the first consumption good \(j\) periods ahead.
14.6. Conditional Covariograms

In this section, we present formulas for the covariance function of \(x \) and \(y \), conditioned on season, i.e., conditioned on \(\mathcal{T}^p \). The conditional covariogram of \(\{x_t\} \) can be expressed in terms of the conditional contemporaneous covariance function \(c_{x,t}(0) = E x_t x_t' | \mathcal{T}^p \) via the formulas

\[
c_{x,t}(-k) = E x_t x_{t+k} | \mathcal{T}^p = E x_t x_t' | \mathcal{T}^p A_{x(t)}^0 A_{s(t+1)}^{or} \cdots A_{s(t+k-2)}^{or} A_{s(t+k-1)}^{or}, \quad k \geq 1
\]
or

\[
c_{x,t}(-k) = c_{x,t}(0) A_{s(t)}^{or} A_{s(t+1)}^{or} \cdots A_{s(t+k-2)}^{or} A_{s(t+k-1)}^{or}, \quad k \geq 1. \tag{14.6.1}
\]

To compute the matrices \(c_{x,t}(0) \), we can solve the equations

\[
E x_{t+1} x_{t+1}' | \mathcal{T}^p = A_{s(t)}^o E x_t x_t' | \mathcal{T}^p A_{s(t)}^{or} + C_{s(t)} C_{s(t)}'
\]
or

\[
c_{x,t+1}(0) = A_{s(t)}^o c_{x,t}(0) A_{s(t)}^{or} + C_{s(t)} C_{s(t)}'. \tag{14.6.2}
\]

By solving the system formed by (14.6.2) for \(t = 1, 2, \ldots, p \), we can determine the \(p \) contemporaneous covariance matrices \(c_{x,1}(0), c_{x,2}(0), \ldots, c_{x,p}(0) \). Here is a fast way of solving this system. Iterating on (14.6.2) \(p \) times yields

\[
c_{x,t+p}(0) = A_{s(t+p-1)}^o A_{s(t+p-2)}^o \cdots A_{s(t)}^o c_{x,t}(0) A_{s(t+p-2)}^{or} A_{s(t+p-1)}^{or} + A_{s(t+p+1)}^o A_{s(t+p-2)}^o \cdots A_{s(t+1)}^o C_{s(t)} C_{s(t)} A_{s(t+1)}^{or} A_{s(t+p-1)}^{or} + \cdots + A_{s(t+p-1)}^o C_{s(t+p-2)} C_{s(t+p-2)} A_{s(t+p-1)}^{or} A_{s(t+p-1)}^{or} + C_{s(t+p-1)} C_{s(t+p-1)}'. \tag{14.6.3}
\]

We compute \(c_{x,t}(0) \) by setting \(c_{x,t+p}(0) \) equal to \(c_{x,t}(0) \) in (14.6.3). Equation (14.6.3) is a discrete Lyapunov equation that can be solved by a doubling algorithm of a type described in chapter 3. Once (14.6.3) is solved for \(t = 1 \) to compute \(c_{x,1}(0) \), (14.6.2) can be used to compute \(c_{x,t}(0) \) for \(t = 2, \ldots, p \). There is one covariance matrix \(c_{x,t}(0) \) for each of the \(p \) seasons of the year.

Given \(c_{x,t}(-k) \) for \(k \geq 0 \), we can compute \(c_{y,t+k}(-k) = E y_t y_{t+k} | \mathcal{T}^p \) by using (14.6.1). We obtain

\[
E y_t y_{t+k} | \mathcal{T}^p = G_{s(t)} c_{x,k}(-k) G_{s(t+k)}', \quad k \geq 0. \tag{14.6.4}
\]
Although we are starting calendar time at \(t = 0 \), \(c_{x,t}(k) \) and \(c_{y,t}(k) \) are both defined for positive \(k \) so long as \(t \geq k \). For any such \(t \), \(c_{x,t}(k) = c_{x,t-k}(-k)' \) and \(c_{y,t}(k) = c_{y,t-k}(-k)' \), implying that \{\(c_{x,t}(k) \)\} and \{\(c_{y,t}(k) \)\} are both periodic starting from \(t = k \). For notational convenience, we extend this construction for \(0 \leq t \leq k \) by defining \(c_{x,t}(k) = c_{x,t+\ell p}(k) \) and \(c_{y,t}(k) = c_{y,t+\ell p}(k) \) for any \(\ell \) such that \(t + \ell p \geq k \). This guarantees that the conditional covariograms are periodic for all values of \(k \).

14.7. A Stacked and Skip-Sampled System

A competitive equilibrium has the system of periodic transition laws described in (14.2.16) or (14.2.17). The equilibrium stochastic process for \(x_t \) is time-varying, albeit in a highly structured way. We have seen that conditional on knowledge of the season, there are \(p \) covariograms and \(p \) sets of formulas for linear least squares predictions that apply in the \(p \) seasons of the year. Using these formulas requires knowledge of the set of matrices \([A_j^p, C_j]\) for \(j = [1, \ldots, p] \) that characterize the transition laws (14.2.16).

In this section, we describe a time-invariant representation that also characterizes the system. We shall use this representation to deduce two kinds of impulse response functions or moving average representations that can be defined for periodic models.\(^3\) We shall also use it to compute a population version of a time-invariant vector autoregression for \(x_t \).

The \(p \) distinct covariograms described by equations (14.6.1) and (14.6.4) are conditional covariograms, meaning that they are computed by conditioning on the season of the year. Sample counterparts of these conditional covariograms are computed by creating \(p \) distinct averages, averaging each over \(p \) periods apart. Sample covariograms can also be computed ‘unconditionally’, i.e., in a way that ignores the seasonal structure of the transition laws. This amounts to computing sample moments in a standard way, simply by averaging over adjacent observations, namely, as \(T^{-1} \sum_{t=1}^{T} y_t \, y_t'_{-j} \). For a periodic model, such averages will converge as \(T \to \infty \), and they will converge to well defined functions of the parameters of the model. In particular, as

\(^3\) Each of these impulse response functions conditions on knowledge of the season. Later we shall describe yet another moving average representation that does not condition on season.
$T \to \infty$, $T^{-1} \sum_{t=1}^{T} y_t y_{t-k}'$ would converge to an average of the p covariograms, namely, $p^{-1}[c_{y,1}(k) + c_{y,2}(k) + \ldots + c_{y,p}(k)]$. The convergence of these sample auto-covariances assures the existence of a time-invariant vector autoregressive representation for y_t.

We begin by defining for $t = 0, 1, \ldots$ the vector

$$X_t' = [x_{p \cdot t+1}', x_{p \cdot t+2}', \ldots, x_{p \cdot t}'].$$

Evidently, we have

$$X_{t+1}' = [x_{p \cdot t+1}', x_{p \cdot t+2}', \ldots, x_{p \cdot t+p}'].$$

To verify this, substitute $(t+1)$ for t everywhere that t appears on the right side of (14.7.1). We also define

$$W_{t+1}' = [w_{p \cdot t+1}', w_{p \cdot t+2}', \ldots, w_{p \cdot t+p}'].$$

It follows from (14.2.17) that

$$DX_{t+1} = FX_t + GW_{t+1},$$

where

$$D = \begin{bmatrix}
I & 0 & 0 & \cdots & 0 & 0 \\
-A_1^o & I & 0 & \cdots & 0 & 0 \\
0 & -A_2^o & I & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -A_{p-1}^o & I
\end{bmatrix}$$

(14.7.5)

$$F = \begin{bmatrix}
0 & A_p^o \\
0 & 0
\end{bmatrix}$$

(14.7.6)

$$G = \begin{bmatrix}
C_p & 0 & 0 & \cdots & 0 \\
0 & C_1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & C_{p-1}
\end{bmatrix}$$

(14.7.7)

Solving (14.7.4) for X_{t+1} gives

$$X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1}$$

(14.7.8)
where \(\hat{A} = D^{-1}F \) and \(\hat{C} = D^{-1}G \). Define \(Y_t' = [y_{p,t-p+1}', y_{p,t-p+2}', \ldots, y_{p,t}'] \).

Then we have that

\[
X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1}
\]

(14.7.10)

\[
Y_t = HX_t.
\]

(14.7.11)

Notice that while \(\{x_t, y_t\} \) is governed by a time-varying linear state space system, the stacked and skip sampled process \(\{X_t, Y_t\} \) is governed by a time-invariant system.\(^4\)

From representation (14.7.10) – (14.7.9), we can use standard formulas to deduce the moving average representation of \(Y_t \) in terms of \(W_t \):

\[
Y_t = \sum_{j=0}^{\infty} \bar{C}_j W_{t-j}.
\]

(14.7.12)

The moving average representation (14.7.12) implies the following representation for components of \(Y_t \) in terms of components of \(W_t \):

\[
y_{pt-p+k} = \sum_{j=0}^{\infty} \sum_{h=1}^{p} \bar{C}_j(k,h)w_{p(t-j)-p+h}, \quad k = 1, \ldots, p,
\]

(14.7.13)

where \(\bar{C}_j(k,h) \) denotes the \((k,h) \)th \((m \times m)\) block of \(\bar{C}_j \), where \(m \) is the dimension of \(y_t \).

According to representation (14.7.13), there are two distinct concepts of a moving average representation, and \(p \) embodiments of each of these concepts.

\(^4\) In terms of the language introduced in the appendix to this chapter, because \(S \) is of period \(p \), \(Sp \) is of period one.
The first concept is a representation of \(y_{pt-p+k} \) in terms of current and lagged \(w \)'s. The response of \(y_{pt-p+k} \) to lagged \(w \)'s is evidently given by the sequence\(^5\)

\[
\{d_{k,v}\}_{v=0}^{\infty} = \{\bar{C}_0(k,k), \bar{C}_0(k,k-1), \ldots, \bar{C}_0(k,1)\bar{C}_1(k,p), \bar{C}_1(k,p-1), \ldots, \bar{C}_1(k,1)\}.
\] (14.7.14)

In particular, we have from (14.7.13) that

\[
y_{pt-p+k} = \sum_{v=0}^{\infty} d_{k,v} w_{pt-p+k-v}.
\] (14.7.15)

Notice that there is a different moving average of type (14.7.15) for each season \(k = 1, \ldots, p \).

The second concept of a moving average is the response of the \(\{y_t\} \) process to an innovation \(w_{pt-p+k} \) in a particular season \(k \). The response of \(\{y_t\} \) to \(w_{pt-p+k} \) is evidently given by the sequence

\[
\{g_{k,v}\}_{v=0}^{\infty} = \{\bar{C}_0(k,k), \bar{C}_0(k+1,k), \ldots, \bar{C}_0(p,k), \bar{C}_1(1,k), \bar{C}_1(2,k), \ldots, \bar{C}_1(p,k)\}.
\] (14.7.16)

In the special case that the true periodicity is one, it is straightforward to verify that for any \(p > 1 \), the impulse functions constructed from the stacked system (14.7.10) – (14.7.9) satisfy the restrictions:

\[
\begin{align*}
\bar{C}_j(1,1) &= \bar{C}_j(2,2) = \ldots = \bar{C}_j(p-1,p-1) = \bar{C}_j(p,p) \\
\bar{C}_j(2,1) &= \bar{C}_j(3,2) = \ldots = \bar{C}_j(p,p-1) = \bar{C}_{j+1}(1,p) \\
\bar{C}_j(3,1) &= \bar{C}_j(4,2) = \ldots = \bar{C}_{j+1}(1,p-1) = \bar{C}_{j+1}(2,p) \\
&\vdots \\
\bar{C}_j(p-1,1) &= \bar{C}_j(p,2) = \ldots = \bar{C}_{j+1}(p-2,p-1) = \bar{C}_j(p-2,p) \\
\bar{C}_j(p,1) &= \bar{C}_{j+1}(1,2) = \ldots = \bar{C}_{j+1}(p-2,p-1) = \bar{C}_{j+1}(p-1,p)
\end{align*}
\] (4.14)

Under these restrictions, it follows that

\[
\begin{align*}
g_{k,v} &= g_{j,v} \quad \text{for all } j, k, \text{ for all } v \\
d_{k,v} &= d_{j,v} \quad \text{for all } j, k, \text{ for all } v \\
d_{k,v} &= g_{k,v} \quad \text{for all } k, \text{ for all } v.
\end{align*}
\]

\(^5\) Notice that by construction \(\bar{C}_0(k,j) = 0 \) for \(k < j \).
Thus, in the case that the hidden periodicity is truly one, all of the impulse response functions defined in (14.7.15) and (14.7.16) are equal.

However, when the hidden periodicity is truly some \(p > 1 \), there are \(p \) distinct impulse response functions \(\{d_{k,v}\} \) of \(y_{pt-p+k} \) to lagged \(w \)'s, and \(p \) distinct impulse responses \(\{g_{k,v}\} \) of \(y_t \) to \(w_{pt-p_k} \), for \(k = 1, \ldots, p \). In general the \(\{d_{k,v}\} \) are different from one another and from the \(\{g_{k,v}\} \)'s for \(k = 1, \ldots, p \). These differences provide a useful way of describing how the operating characteristics of a periodic model with \(p \geq 2 \) differ from a period one model.\(^{6}\)

Later in this chapter, we compute the impulse response functions \(\{d_{k,v}\} \) and \(\{g_{k,v}\} \) for investment for a period 4 version of Hall’s (1978) model. These impulse response functions are depicted in figures 14.10.1.a and 14.10.1.b. The impulse responses are with respect to the one shock in the model, a white noise endowment process. Figure 14.10.2 depicts the impulse responses \(\{d_{k,v}\} \) for \(k = 1, \ldots, 4 \). Notice that they are smooth, but that they vary across quarters. Figure 14.10.3 shows the impulse response \(\{g_{k,v}\} \) for \(k = 1, \ldots, 4 \). They vary across quarters \(k \) and have shapes that are jagged, in contrast to the smooth \(\{d_{k,v}\} \)'s. Notice how the amplitude of the oscillations in \(\{d_{k,v}\} \) grows as \(v \) increases from \(v = 0 \) to \(v \) about 30.

14.8. Covariances of the Stacked and Skip Sampled Process

The stacked, skip-sampled process \(\{Y_r\} \) is constructed to have periodicity one. We can compute for \(k \geq 1 \),

\[
C_r(-k) \equiv E(Y_r Y_r'_{r+k} \mid I^p) = \\
\begin{bmatrix}
 c_{y,pr}(-pk) & c_{y,pr+1}(-pk) & \cdots & c_{y,pr+1}(-pk+1) \\
 c_{y,pr+1}(-pk+1) & c_{y,pr+1}(-pk) & \cdots & c_{y,pr+1}(-pk+p) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{y,pr+p-1}(-pk+p-1) & c_{y,pr+p-1}(-pk+p) & \cdots & c_{y,pr+p-1}(-pk+2)
\end{bmatrix}
\]

(14.8.1)

\(^{6}\) A MATLAB program \texttt{simpulse} performs these calculations.
An implication of the period 1 nature of \(\{Y_r\} \) is that \(C_r(-k) \) is independent of \(r \). This follows immediately from (14.8.1). In particular, we have for \(k \geq 1 \),

\[
C(k) = C_0(-k) = \begin{bmatrix}
 c_{y,0}(-pk) & c_{y,0}(-pk - 1) & \cdots & c_{y,0}(-pk - p + 1) \\
 c_{y,1}(-pk + 1) & c_{y,1}(-pk) & \cdots & c_{y,1}(-pk - p + 2) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{y,p-1}(-pk + p - 1) & c_{y,p-1}(-pk + p - 2) & \cdots & c_{y,p-1}(-p) \\
\end{bmatrix}.
\]

(14.8.2)

The \(k = 0 \) term must be treated separately. It is given by

\[
C_r(0) = E(Y_r Y_r' | I^p) = \begin{bmatrix}
 c_{y,pr}(0) & c_{y,pr}(-1) & \cdots & c_{y,pr}(-p + 1) \\
 c_{y,pr}(-1)' & c_{y,pr+1}(0) & \cdots & c_{y,pr+1}(-2) \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{y,pr}(-p + 1)' & c_{y,pr+1}(-p + 2)' & \cdots & c_{y,pr+p-1}(0) \\
\end{bmatrix}.
\]

(14.8.3)

which can also be shown to be independent of \(r \).

The covariance generating function of the \(\{Y_r\} \) process is

\[
S(z) = C(0) + \sum_{k=1}^{\infty} [C(-k)z^{-k} + C(-k)'z^k].
\]

(14.8.4)

It is useful to calculate the covariance generating function \(S(z) \) of \(\{Y_r\} \) by substituting (14.8.2) - (14.8.3) into (14.8.4). We obtain

\[
S(z) = \begin{bmatrix}
 s_{11}(z) & s_{12}(z) & s_{13}(z) & \cdots & s_{1p}(z) \\
 s_{21}(z) & s_{22}(z) & s_{23}(z) & \cdots & s_{2p}(z) \\
 s_{31}(z) & s_{32}(z) & s_{33}(z) & \cdots & s_{3p}(z) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 s_{p1}(z) & s_{p2}(z) & \cdots & \cdots & s_{pp}(z) \\
\end{bmatrix}.
\]

(14.8.5)

where

\[
s_{j,j+\ell}(z) = c_{j-1}(-\ell) + \sum_{k=1}^{\infty} [c_{y,j-1}(-pk - \ell)z^{-k} + c_{y,j+\ell-1}(-pk - \ell)'z^k],
\]

(14.8.6)

and where the lower triangular terms of \(S(z) \) are obtained from the upper by setting \(S(z) = S(z^{-1})' \) for \(z = e^{-i\omega} \).
The hypothesis that \(\{y_t\} \) is of period one places restrictions on \(S(z) \). Period one of \(\{y_t\} \) implies that \(c_{y,j}(k) = c_{y,1}(k) \) for all \(j \). By using this equality in (14.8.6) it can be shown that

\[
\begin{align*}
 s_{11}^f(z) &= s_{22}^f(z) = \cdots = s_{pp}^f(z) \\
 s_{12}^f(z) &= s_{23}^f(z) = \cdots = s_{p-1,p}^f(z) = z^{-1}s_{p,1}^f(z) \\
 s_{13}^f(z) &= s_{24}^f(z) = \cdots = s_{p-2,p}^f(z) = z^{-1}s_{p-1,1}^f(z) = z^{-1}s_{p,2}^f(z) \\
 &\vdots \\
 zs_{1p}^f(z) &= s_{21}^f(z) = s_{32}^f(z) = \cdots = s_{p-1,p}^f(z) = z^{-1}s_{p,p-1}^f(z).
\end{align*}
\]

(14.8.7)

The first line of equalities in (14.8.7) asserts that the blocks of matrices along the diagonal of \(S(z) \) are equal to each other, and to a folded spectrum of the original unsampled \(\{y_t\} \) process.\(^7\)

14.9. Tiao-Grupe Formula

Define

\[
 r_{y,t}(-k) = E(y_t y_{t+k} \mid \mathcal{I}).
\]

It follows that \(r_{y,t}(-k) = r_{y,1}(-k) = r_y(-k) \) for all \(t \). Furthermore, by the law of iterated expectations

\[
 r_y(-k) = r_{y,t}(-k) = E[c_{y,t}(-k) \mid \mathcal{I}].
\]

(14.9.1)

It follows from (14.9.1) that \(r_y(-k) \) can be computed either by computing covariances without skip sampling or by averaging across covariances that have been computed after skip sampling. That is,

\[
 r_y(-k) = p^{-1} \sum_{j=1}^{p} c_{y,j}(-k),
\]

\(^7\) For a continuous time covariance stationary process vector process \(\{y_t\} \), let \(C_y(\tau) = E(y_t y_{t-\tau}^\prime) \) be its matrix covariogram for \(\tau \in \mathbb{R} \) and let \(S_y(e^{i\omega}) = \int_{-\infty}^{\infty} C_y(\tau) e^{i\omega \tau} \) for \(\omega \in \mathbb{R} \) be its spectral density. Then the spectral density of the \(\{y_t\} \) process discretely sampled at \(t = 0, \pm 1, \pm 2, \ldots \) is \(\tilde{S}_y(e^{i\omega}) = \sum_{k=-\infty}^{\infty} S_y(e^{i(\omega + 2\pi k)}) \) for \(\omega \in [-\pi, \pi] \). This so-called folding formula concisely summarizes effects of aggregation over time known as aliasing.
and by a law of large numbers

\[r_y(-k) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} y_t y_{t+k}. \]

It is useful to derive Tiao and Grupe’s (1980) formula for the covariance generating function of \(\{y_t\} \) not conditioned on season as a function of the covariance generating function conditioned on season. Tiao and Grupe’s formula expresses the generating function for the covariances not conditioned on season in terms of the (conditional on season) covariance generating function of the stacked and skip sampled process \(Y_t \).\(^8\) We define the generating function for the covariances not conditioned on season to be:

\[
s_y(z) = \sum_{k=-\infty}^{\infty} r(k)z^k = p^{-1} \sum_{k=-\infty}^{\infty} z^k \sum_{j=1}^{p} c_{y,j}(k). \tag{14.9.2}\]

To compute \(s_y(z) \), define the operator

\[
Q(z) = [I \ z I \ldots z^{p-1} I], \tag{14.9.3}\]

where each of the \(p \) identity matrices in (14.9.3) is \((n \times n)\). Note that for \(k \geq 1 \),

\[
Q(z)C(k)Q(z^{-1})' = [c_{y,0}(-pk) + c_{y,0}(-pk+1)z^{-1} + \cdots + c_{y,0}(-pk-p+1)z^{-p+1} + c_{y,1}(-pk+1)z + c_{y,1}(-pk) + \cdots + c_{y,1}(-pk-p+2)z^{-p+2} + \cdots + c_{y,p-1}(-pk+p-1)z^{p-1} + c_{y,p-1}(-pk+p-2)z^{p-2} + \cdots + c_{y,p-1}(-pk)] \tag{14.9.4a}\]

\(^8\) Gladysev (1961) states a formula restricting the Cramer representations for \(Y_t \) and \(y_t \) that has the same content as the Tiao-Grupe formula.
Notice also that for \(k = 0 \), we have

\[
Q(z)C(0)Q(z^{-1})' = [I \ z \ I \ ... \ z^{p-1}I]C(0) \begin{bmatrix} I \\
zI^{p-1} \\
\vdots \\
z^{-p+1}I \end{bmatrix}
\]

\[
= c_{y,0}(0) + c_{y,1}(0) + \ldots + c_{y,p-1}(0) \\
+ z[c_{y,0}(-1)' + c_{y,1}(-1)' + \ldots + c_{y,p-2}(-1)'] \\
+ z^{-1}[c_{y,0}(-1) + c_{y,1}(-1) + \ldots + c_{y,p-2}(-1)] + \\
\vdots \\
+ z^{p-1}c_{y,0}(-p+1)' + z^{-p+1}c_{y,0}(-p+1).
\]

Equation (14.9.4b)

Applying (13.67) to (14.9.2) gives

\[
s_y(z) = p^{-1} \sum_{h=-\infty}^{\infty} z^{ph}Q(z)C(h)Q(z^{-1})' \\
s_y(z) = p^{-1}Q(z)[\sum_{h=-\infty}^{\infty} z^{ph}C(h)]Q(z^{-1})' \\
s_y(z) = p^{-1}Q(z)S(z^p)Q(z^{-1})',
\]

where \(S(z) \) is the generating function for the \(\{Y_r\} \) process, which is defined in (14.7.9) and (14.8.4). Equation (14.9.5) is the Tiao-Grupe formula.

Equation (14.9.5) shows how the generating function of the \(\{y_t\} \) process can be obtained by transforming the generating function of the stacked, skip sampled process \(\{Y_r\} \). Equation (14.9.5) is helpful in displaying the types of fluctuations that occur in a periodic process \(\{y_t\} \). Suppose that we were to take a realization \(\{y_t\}_{t=1}^{T} \) of the \(\{y_t\} \) process, compute the sample covariances as

\[
\hat{r}(k) = \frac{1}{T} \sum_{t=k+1}^{T} y_t y_{t-k}, \quad (14.9.6)
\]

and the sample spectrum as

\[
\hat{s}(e^{-i\omega_h}) = \sum_{k=-T+1}^{T} \zeta(k)\hat{r}(k)e^{-i\omega_hj}, \omega_h = \frac{2\pi h}{T}, \ h = 1, \ldots, T \quad (14.9.7)
\]
where \(\{\zeta(k)\}\) is one of the popular spectrum smoothing windows. Notice that in computing (14.9.6) and (14.9.7), we are ignoring the hidden periodicity. In large samples, \(\hat{r}(k)\) given by (14.9.6) will converge to \(r(k)\) defined in (14.9.1), and \(\hat{s}(e^{-i\omega h})\) will converge to \(s_y(e^{-i\omega h})\).

14.9.1. State-Space Realization of Tiao-Grupe Formula

We now return to representation (14.7.10) – (14.7.9). We will use this representation in conjunction with formula (14.9.3) to get a representation for the generating function \(s_y(z)\) in terms of the parameters of our economic model. Then we shall describe how to use state space methods to factor this covariance generating function, thereby obtaining a Wold representation for \(y_t\).

If the eigenvalues of \(\hat{A}\) are bounded in modulus by unity,\(^9\) then \(\{X_t, Y_t\}\) will be asymptotically covariance stationary, with covariance generating matrices \(S_X(z)\) and \(S_Y(z)\) given by

\[
S_X(z) = \sum_{k=-\infty}^{\infty} R_X(k)z^k = (I - \hat{A}z)^{-1}\hat{C}\hat{C}'(I - \hat{A}z^{-1})^{-1}', \tag{14.9.8}
\]

and

\[
S_Y(z) = \sum_{k=-\infty}^{\infty} R_Y(k)z^k = HS_X(z)H', \tag{14.9.9}
\]

where \(R_X(k) = EX_tX'_{t-k}\), \(R_Y(k) = EY_tY'_{t-k}\).

By substituting \(S_X(z)\) or \(S_Y(z)\) for \(S(z)\) in formula (14.9.2), we can compute the covariance generating function for the process \(\{y_t\}\) by averaging across covariograms for different periods. For the \(y_t\) process under study here, we have\(^{10}\)

\[
s_y(z) = Q(z)S_Y(z^p)Q(z^{-1})' \quad \text{or} \quad s_y(z) = Q(z)H(I - \hat{A}z^p)^{-1}\hat{C}\hat{C}'(I - \hat{A}z^{-p})^{-1}H'Q(z^{-1})'. \
\]

\(^{9}\) This is the condition alluded to in section 1.

\(^{10}\) A MATLAB program `spectrs` implements (14.9.10) for the equilibrium of one of our periodic general equilibrium models.
We now show how to use (14.9.10) to deduce a state-space representation for \(\{y_t\} \). The first step involves recognizing that (14.9.10) is realized by the system

\[
Z_{t+p} = \hat{A}Z_t + \hat{C}V_{t+p}
\]

\[
y_t = Q(L)HZ_t,
\]

(14.9.11)

where \(L \) is the lag operator and \(\{V_t\} \) is a vector white noise with identity contemporaneous covariance matrix.

It is convenient to stack (14.9.11) into the first-order system

\[
\begin{bmatrix}
Z_{t+p} \\
Z_{t+p-1} \\
Z_{t+p-2} \\
\vdots \\
Z_{t+1}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & \ldots & 0 & \hat{A} \\
I & 0 & \ldots & 0 & 0 \\
0 & I & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & I & 0
\end{bmatrix}
\begin{bmatrix}
Z_{t+p-1} \\
Z_{t+p-2} \\
Z_{t+p-3} \\
\vdots \\
Z_t
\end{bmatrix}
+ \begin{bmatrix}
\hat{C} \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
V_{t+p}
\]

(14.9.12)

\[
y_{t+p-1} = \tilde{H}
\begin{bmatrix}
Z_{t+p-1} \\
Z_{t+p-2} \\
Z_{t+p-3} \\
\vdots \\
Z_t
\end{bmatrix}
\]

where

\[
\tilde{H} = p^{-5}[G_1 \ 0 \ 0 \ \ldots \ 0 \ : \ 0 \ G_2 \ 0 \ \ldots \ 0 \ : \ \ldots \ : \ 0 \ 0 \ \ldots \ 0 \ G_p].
\]

To see why \(\tilde{H} \) takes this form, recall that the operator \(Q(L) \) is defined as

\[
p^5Q(L) = [I \ IL \ \ldots \ IL^{p-1}]
= [I \ 0 \ \ldots \ 0]
+ [0 \ I \ \ldots \ 0]L + \ldots
+ [0 \ 0 \ \ldots \ I]L^{p-1}.
\]

This structure for \(Q(L) \) and the form of \(H \) dictates that \(\tilde{H} \) take the form that it does and that the state in (14.9.12) takes the form that it does in order to map (14.9.11) into a first-order system. Notice that the structure of \(\tilde{H} \) implies that \(y_t \) is formed by averaging over linear combinations of the first \(n \) rows of \(Z_{t+p-r} \), the second \(n \) rows of \(Z_{t+p-2} \), \ldots, and the \(p^{th} \) rows of \(Z_t \).
Furthermore, notice that according to (14.9.12), the $np \times np$ process Z_t consists of p completely uncoupled systems, each of which depends on its own past in exactly the same way as do the others. That is, (14.9.12) has the property that Z_t is independent of $Z_{t-1}, Z_{t-2}, \ldots, Z_{t-p+1}$ for all t; and that Z_t is correlated with Z_{t-p} in exactly the same way for all t. Thus, the “state equations” of (14.9.12) in effect describe p “parallel realizations” of the process Z_{t+p} defined in (14.9.11). Running p parallel processes is a way of realizing in the time domain the randomization over laws of motion that is involved in adopting a description of $\{y_t\}$ in terms of a stationary probability distribution. As noted above, y_t is formed by averaging across these p uncoupled realizations.

We can use Kalman filtering methods to derive a Wold representation for $\{y_t\}$. Modify and represent system (14.9.12) as

\[
\tilde{Z}_{t+1} = \tilde{A} \tilde{Z}_t + \tilde{C} \tilde{V}_{t+1} \\
y_t = \tilde{H} Z_t + \tilde{\epsilon}_t, \tag{14.9.13}
\]

where $\tilde{Z}_t' = [\tilde{Z}_{t+p-1}, \tilde{Z}_{t+p-2}, \ldots, \tilde{Z}_t]$ and

\[
\tilde{A} = \begin{bmatrix} 0 & 0 & \ldots & 0 & \hat{A} \\ I & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \ldots & I & 0 \\ 0 & 0 & \ldots & 0 & 0 \end{bmatrix}, \quad \tilde{C} = \begin{bmatrix} \hat{C} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix},
\]

where $\{\tilde{V}_t\}$ is a white noise, and where ϵ_t is a (potentially very small) measurement error that is a white noise process orthogonal to $\{\tilde{V}_t\}$ and satisfies $E \tilde{\epsilon}_t \tilde{\epsilon}_t' = R$.

To obtain a Wold representation for y_t that achieves the factorization of the spectral density matrix (14.9.10) for y_t, we use the Kalman filter to obtain an innovations representation associated with system (14.9.13). The innovations representation is

\[
\hat{Z}_{t+1} = \hat{A} \hat{Z}_t + \hat{K} \hat{a}_t \\
y_t = \tilde{H} \hat{Y}_t + \hat{\epsilon}_t, \tag{14.9.14}
\]

where $\hat{a}_t = y_t - E[y_t \mid y_{t-1}, y_{t-2}, \ldots], \hat{Z}_t = E[Z_t \mid y_{t-1}, y_{t-2}, \ldots]$, \Sigma = $E(Z_t - Z_t)(Z_t - \hat{Z}_t)'$, and where Σ and \hat{K} are the state covariance matrix and the Kalman gain computed via the Kalman filter for system (14.9.13). The covariance matrix of the innovations is $E\hat{a}_t\hat{a}_t' = \tilde{H} \Sigma \tilde{H}' + R$.11

11 These calculations are performed by the MATLAB program seasla.m.
14.10. Periodic Hall Model

We use a periodic version of Hall’s (1978) model as an example. The model is identical to the version of Hall’s model described in chapters 3 and 5, except that the productivity parameter γ now varies periodically. The social planner chooses contingency plans $\{c_t, k_t, i_t\}_{t=0}^\infty$ to maximize the utility functional

$$-\left(\frac{1}{2}\right)E \sum_{t=0}^\infty \beta^t [(c_t - b_t)^2 + \ell_t^2] | J_0$$

subject to the technology

$$c_t + i_t = \gamma s(t) k_{t-1} + d_t, \quad \gamma s(t) \geq 0$$
$$k_t = \delta k_{t-1} + i_t, \quad 0 < \delta_k < 1$$
$$\phi_1 i_t = g_t, \quad \phi_1 > 0, \quad \phi_1 > 0$$
$$g_t^2 = \ell_t^2,$$
$$s(t+p) = s(t), \quad \forall t, \quad s(t) = t \text{ for } t = 1, \ldots, p$$

and subject to the (exogenous) laws of motion

$$b_t = 30$$
$$d_t = .8 d_{t-1} + w_{1t} + 5 * (1 - .8).$$

We set $p = 4, \gamma_1 = .13, \gamma_2 = .1, \gamma_4 = .08$. We set $\phi_1 = .3, \delta_k = .95, \beta = 1/1.05$. The only source of disturbances is the endowment shock, which is a first-order autoregression. The variance of the innovation w_{1t} is unity.

The following MATLAB programs can be used to analyze the model.

- solves.m: computes the equilibrium of a periodic model;
- simuls.m: simulates a periodic equilibrium;
- steadsts.m: computes the means of variables from a periodic equilibrium, conditional on the season;
- assets.m: computes the objects in the formulas for equilibrium assets prices and the term structure of interest rates for a periodic model;
- assetss.m: simulates the asset prices in a periodic equilibrium;
seasla.m: computes the time-invariant state-space representation for the stacked, skip sampled version of a periodic model;
simpulse.m: computes the two different concepts of period-dependent impulse response functions;
spectrs.m: computes the spectral density of a periodic model, using the Tiao-Grupe formula;
factors.m: factors a univariate spectral density computed via the Tiao-Grupe formula in order to obtain a univariate Wold representation for a single variable of a periodic equilibrium model.

We computed the equilibrium of the periodic version of Hall’s model using solves.m. Figures 14.10.1.a and 14.10.1.b report the spectral density of consumption and investment, computed by using the Tiao-Grupe formula. Both consumption and investment display seasonality, it being more pronounced in investment than in consumption. This reflects the consumption-smoothing property of the model. For the impulse response functions of investment with respect to the innovation in the endowment sequence, we used simpulse.m to compute the \(\{d_{k,v}\} \) and \(\{g_{k,v}\} \) sequences corresponding to the moving average representations defined in (14.7.15) and (14.7.16). Figure 14.10.3 reports \(\{d_{k,v}\} \). The coefficients for each quarter are smooth functions of the lag length \(v \), but they vary across quarters. Figure 14.10.3 reports \(\{d_{k,v}\} \), which are each oscillatory functions of the lag length \(v \). Recall that our periodic version of Hall’s model is a one-shock model, with the only source of stochastic disturbances being the white noise endowment process. It follows that if we were to shut down the periodic time variation in the productivity of capital, all impulse response functions displayed in figure 14.10.3 and 14.10.4 would equal one another.\(^{12}\) The discrepancies across these impulse response functions is a convenient window revealing the hidden periodic structure present in investment in this model.

Figure 14.10.4 reports the moving average coefficients associated with the univariate Wold representation for investment, which we have normalized by setting the innovation variance equal to unity (so that it is comparable in units with the impulse response functions in figures 14.10.2 and 14.10.3. The coefficient at zero lag in this moving average is .7528, while the coefficients at zero lag

\(^{12}\) For this statement to be true in general requires checking that the first of the “two difficulties” discussed by Hansen and Sargent (1991, ch. 4) is not present.
for the moving average kernels in figures 14.10.2 and 14.10.3 are (by quarters) .7075, .7069, .7062, .7002. The squared values of each of these coefficients are the one-step ahead forecast error variances in investment, by quarter, when we condition on knowledge of the quarter. The squared value of the coefficient .7528 from the (time-invariant) Wold representation formed by not conditioning on quarter is larger, as we would expect.

Fig. 14.10.1.a. Spectral density of consumption for a periodic version of Hall’s model, calculated by applying the Tiao-Grupe formula.

Fig. 14.10.1.b. Spectral density of investment for a periodic version of Hall’s model, calculated by applying the Tiao-Grupe formula.

13 The zero lag coefficients are equal for both the \(\{d_{k,v}\} \) and the \(\{g_{k,v}\} \) sequences.
Figure 14.10.2: The response of the investment component of $y_{p-t-p+k}$ to an innovation in the endowment shock in a periodic version of Hall’s model.

Figure 14.10.3: The response of investment to $w_{p-t-p+k}$ in a periodic version of Hall’s model.
Figure 14.10.4: The moving average coefficients for a Wold moving average representation of investment, calculated by factoring the spectral density of investment implied by the Tiao-Grupe formula.
14.11. Periodic Innovations Representations for a Periodic Model

A competitive equilibrium can be represented as

\[x_{t+1} = A_{s(t)}^o x_t + C_{s(t)} w_{t+1} \] \hspace{1cm} (14.11.1)

\[y_t = G_{s(t)} x_t + \varepsilon_{yt} \] \hspace{1cm} (14.11.2)

where \(y_t \) is a vector of objects that are linear combinations of the state \(x_t \), plus a white noise measurement error \(\varepsilon_{yt} \). The matrix \(G_{s(t)} \) is built up from components of the matrices \(S_{.,s(t)} \) and \(M_{.,s(t)} \) described above. We assume that the measurement error \(\varepsilon_{yt} \) is orthogonal to the \(w_{t+1} \) process, and that it is serially uncorrelated with contemporaneous covariance matrices

\[E \varepsilon_{yt} \varepsilon'_{yt} = \tilde{R}_{s(t)}. \] \hspace{1cm} (14.11.3)

Associated with system (14.11.1) – (14.11.2) is a periodic innovations representation

\[\hat{x}_{t+1} = A_{s(t)}^{o'} \hat{x}_t + K_{s(t)} a_t \]

\[y_t = G_{s(t)} \hat{x}_t + a_t \] \hspace{1cm} (14.11.4)

where \(\hat{x}_t = E[x_t \mid y_{t-1}, \ldots, y_1, \hat{x}_0] \), \(a_t = y_t - E[y_t \mid y_{t-1}, \ldots, y_1, \hat{x}_0] \), and \(E a_t a'_t = \Sigma_{s(t)} \). In (14.11.4), \(K_{s(t)} \) is the periodic Kalman gain. The matrices \(\{\Sigma_{s(t)}, K_{s(t)}\} \) are limits of the \(p \) convergent subsequences of the Kalman filtering equations:

\[
\Sigma_{t+1} = A_{s(t)}^o \Sigma_t A_{s(t)}^{o'} + C_{s(t)} C_{s(t)}^{o'}
- A_{s(t)}^o \Sigma_t G_{s(t)}^o (G_{s(t)} \Sigma_t G_{s(t)}^o + \tilde{R}_{s(t)})^{-1} G_{s(t)}^o \Sigma_t A_{s(t)}^{o'}
\]

\[
K_t = A_{s(t)}^o \Sigma_t G_{s(t)}^o (G_{s(t)} \Sigma_t G_{s(t)}^o + \tilde{R}_{s(t)})^{-1}.
\] \hspace{1cm} (14.11.5)

Because the matrices \([A_{s(t)}^o, C_{s(t)}, G_{s(t)}, \tilde{R}_{s(t)}] \) are time-varying, system (14.11.5) will not converge. But because the matrices \([A_{s(t)}^o, C_{s(t)}, G_{s(t)}, \tilde{R}_{s(t)}] \) are periodic, there is a prospect that \(\{\Sigma_t, K_t\}_{t=1}^\infty \) will consist of \(p \) convergent subsequences. This prospect is realized under regularity conditions that typically obtain for our economies.

The innovation covariance matrix associated with (14.11.4) is

\[E a_t a'_t = \Omega_{s(t)} = G_{s(t)} \Sigma_{s(t)} G_{s(t)}^{o'} + \tilde{R}_{s(t)}. \] \hspace{1cm} (14.11.6)
Periodic Models of Seasonality

Given a sample of observations for \(\{y_t\}_{t=1}^T \), the likelihood function conditioned in \(\hat{x}_0 \) can be expressed as

\[
L^* = -T \ln 2\pi - 0.5 \sum_{t=1}^T \ln |\Omega_{s(t)}| - 0.5 \sum_{t=1}^T \alpha_t' \Omega_{s(t)}^{-1} \alpha_t. \tag{14.11.7}
\]

A. Disguised Periodicity

This appendix characterizes a notion of hidden periodicity in a stationary time series, and describes a strategy for detecting its presence in a given vector time series. The notion of hidden periodicity permits realizations of a stochastic process to be aperiodic, but requires that some functions of the tail of the stochastic process be periodic. As we shall see, these functions are time series averages of skip-sampled versions of the underlying process. Averaging and skip sampling causes hidden periodicity to drop its veil.

Because the apparatus introduced in this appendix is abstract, we begin with a heuristic account designed to indicate the motivation behind the formal apparatus introduced in the second part of this appendix.

Two Illustrations of Disguised Periodicity

Let \(\{y_t\} \) be an \(n \)-dimensional stochastic process observed by an econometrician. We can use the Kolmogorov Extension Theorem to construct such a process on a sample space \(\Omega = (\mathbb{R}^n)^\infty \), which is the infinite product space formed by taking copies of an \(n \)-dimensional Euclidean space. A sample point in \(\Omega \) can be expressed as an infinite-dimensional vector \((r_0, r_1, \ldots) \), where \(r_j \) is in \(\mathbb{R}^n \) for each \(j \). Probabilities are defined over the product sigma algebra generated by taking products of the Borel sets of \(\mathbb{R}^n \). Armed with this construction, for any \(\omega = (r_0, r_1, \ldots) \), let

\[y_t(\omega) = r_t. \]

Thus, \(y_t(\omega) \) is simply the \(t \)th component of the sample point \(\omega = (r_0, r_1, \ldots) \).

An alternative way to represent the process \(\{y_t\} \) is in terms of a shift operator \(S \). First, define a random variable \(y : \Omega \to \mathbb{R}^n \) as

\[y(\omega) = r_0. \]

\footnote{Breiman (1968) is a useful background for the material presented in this section.}
Define the shift transformation S via:

$$S[(r_0, r_1, r_2, \ldots)] = (r_1, r_2, r_3, \ldots).$$

Then because $y_t(\omega) = r_t$, an alternative representation of y_t is

$$y_t(\omega) = y[S^t(\omega)],$$

where S^t is interpreted as applying S t times in succession.

In thinking about hidden periodicity, the following example is of pedagogical interest.

Example 1: Suppose that n is one and that all of the probability on Ω is concentrated onto two points, say a and b. Let a be an infinite sequence of alternating ones and minus ones, beginning with a one. Let b be a similar sequence except that it begins with a minus one. Note that $S(a) = b$, and $S(b) = a$.

There are many probability structures that we can impose on Ω in Example 1. We can assign any probability between zero and one to a and the remaining probability to b. This amounts to initializing the process. Unless we assign probability one half each to a and b, the resulting process will not be stationary.

In one sense, the assignment of probabilities to a and b is quite irrelevant. The $\{y_t\}$ process is deterministic in the sense that given knowledge of the y_0, the entire future of process can be forecast perfectly. Since the initial condition tells the whole story, one might just as well condition on it.

However, from the vantage point of interpreting time averages of the process, the assignment of probability one half to points a and b is convenient. Independently of how we initialize the stochastic process, it obeys a Law of Large Numbers. Thus, take any Borel measurable function ϕ mapping Ω into \mathbb{R} and form the sequence $\{z_t\}$ where

$$z_t = \phi(y_t, y_{t+1}, \ldots). \quad (14.A.1)$$

Then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{t=0}^{N-1} z_t = (1/2)z(a) + (1/2)z(b) \quad (14.A.2)$$

where $z_0 \equiv z$. The equality holds when the left side of equation (14.A.2) is evaluated at either a or b. When we assign probability one half to each of a
Periodic Models of Seasonality

and \(b \), the right side of (14.A.2) can be expressed as \(Ez \), so that we have the usual characterization of the limit points of sample averages as mathematical expectations. With this assignment of probabilities, the process \(\{y_t\} \) is both stationary and ergodic.

For this particular example, realizations of the original process \(\{y_t\} \) and the constructed process \(\{z_t\} \) are both periodic sequences. While realizations of \(\{y_t\} \) have period two, realizations of the constructed process \(\{z_t\} \) can have period one for particular choices of \(z_t \). For instance, let

\[
z_t = y_t + y_{t+1}.
\]

Then for either \(a \) or \(b \), \(\{z_t\} \) is a sequence of zeroes and hence it has period one. More generally, for this example the periodicity of \(\{z_t\} \) can never exceed two. This follows from the fact that \(S^2(a) = a \) and \(S^2(b) = b \) implying that \(z_{t+2}(\omega) = z_t[S^2(\omega)] = z_t(\omega) \). Since the maximum periodicity of any constructed process \(\{z_t\} \) is two, we will say that the periodicity of \(S \) is two.

There is something very special about Example 1. Since realizations of the original \(\{y_t\} \) process are periodic, every constructed process \(\{z_t\} \) turns out to be periodic. Here we are interested in more general circumstances in which the periodicity is disguised. We do not wish to confine attention to processes \(\{y_t\} \) whose realizations have an exact periodicity. The following example embodies what we mean by a hidden periodicity.

Example 2: Let \(\{w_t\} \) be an \(n_w \)-dimensional Gaussian white noise with covariance matrix \(I \). Construct an \(n_x \)-dimensional stochastic process \(\{x_t\} \) recursively via

\[
x_{t+1} = A_t x_t + B_t w_{t+1},
\]

where \(\{(A_t, B_t)\} \) is a periodic sequence with period two, \(A_t \) is an \((n_x \times n_x)\) matrix, and \(\{B_t\} \) is an \((n_x \times n_w)\) matrix. Let \(\{y_t\} \) be an \(n \)-dimensional process generated by a time-varying function of \(\{x_t\} \)

\[
y_t = f_t(x_t)
\]

where \(\{f_t\} \) is a sequence of Borel measurable functions mapping \(n_x \)-dimensional Euclidean space into \(n \)-dimensional Euclidean space. Let \(f_t \) be a sequence of period two. Realizations of \(\{y_t\} \) will not be periodic, but will inherit a sort of disguised periodicity from \(\{(A_t, B_t, f_t)\} \).
We have left two aspects of the process \(\{y_t\} \) unspecified, namely, the initial condition \(x_0 \) and the periodic sequence \(\{(A_t, B_t, f_t)\} \). As in Example 1, we have some flexibility in the probabilistic specification of \(\{(A_t, B_t, f_t)\} \). One possibility is, in effect, to condition on \(\{(A_t, B_t, f_t)\} \), in which case the resulting process \(\{y_t\} \) will not, in general, be stationary. Alternatively, we can view \(\{(A_t, B_t, f_t)\} \) as emerging from a random draw from two possible sequences indexed by, say, \(a \) and \(b \) where \([A_t(b), B_t(b), f_t(b)] = [A_{t+1}(a), B_{t+1}(a), f_{t+1}(a)] \) for all \(t \). As in Example 1, if we assign probability one half to each of these outcomes, under a restriction\(^{15}\) on a matrix that is a function of \(A_t(a) \) and \(A_t(b) \), we can find an initial specification of \(x_0 \) under which \(\{y_t\} \) is a stationary stochastic process. In this case, we can apply the Law of Large Numbers for stationary processes both to show that time series averages converge and to obtain a characterization of the limit points.

Suppose that it is possible to complete the specification in Example 2 so that \(\{y_t\} \) is stationary. Consider how the hidden periodicity can be characterized and detected. Let \(\psi \) be a Borel measurable function mapping \(\Omega \rightarrow \mathbb{R} \) and form a scalar stochastic process \(\{z^*_t\} \) via

\[
\begin{align*}
z^*_t &\equiv \psi(y_t, y_{t+1}, \ldots) \\
or \quad z^*_t &= z^*(S^t(\omega)).
\end{align*}
\]

(14.A.3)

We assume that

\[
E | z^*(\omega) | < +\infty,
\]

where \(z^*(\omega) = z^*_0 \).

In contrast to Example 1, when the periodicity is hidden, there is no necessity that \(\{z^*_t\} \) form a periodic sequence. Hence, we must have a weaker notion of periodicity if the \(S \) implied by Example 2 is to be classified as periodic with period 2. A workable notion of hidden periodicity can be formulated in terms of a reduced class of constructed processes. Given an integer \(j \geq 1 \) and given \(\psi \), define \(\phi : \Omega \rightarrow \mathbb{R} \), via \(\phi(y_t, y_{t+1}, \ldots) = z_t \), where

\[
\begin{align*}
z_t &\equiv \lim_{N \rightarrow \infty} \left(1/N\right) \sum_{\tau=0}^{N-1} z^*_{t+\tau \cdot j},
\end{align*}
\]

(14.A.4)

\(^{15}\) The restriction is that the matrix \(\hat{A} \) in equation (4.7) below have eigenvalues that are bounded in modulus by unity.
and where the right side of (14.A.4) is defined as an almost sure limit. Note that
the process \(\{z_t\} \) is constructed by taking time series averages of skip samples of
the process \(\{z^*_t\} \) with skip interval \(j \). Notice that \(z_t \) depends only on the tail
of the stochastic process \(\{y_t\} \). It follows by construction that \(z_t \) is a periodic
process with a period not exceeding \(j \). Time series averages of skip samples will
reveal the hidden periodicity. The idea is to compute (14.A.4) for \(j = 2, 3, 4, \ldots \),
and then to determine the period \(\hat{p} \) of this sequence for each \(j \). Thus, in
example 2, it will turn out that for \(j = 1, 3, 5, \ldots \) the number \(\hat{p} \) is one. For
\(j = 2, 4, 6, 8, \ldots \), the number \(\hat{p} \) will turn out to be 2. We shall define the hidden
periodicity \(p \) as the maximum of these numbers \(\hat{p} \) over \(j = 1, 2, 3, \ldots \), where
the maximum is also understood to be taken over a class of “test functions” \(\psi \).

Thus, the notion of hidden periodicity in a stochastic process that we shall
use is the periodicity to be found in time series averages of skip sampled versions
of the data. In the next section, we develop these ideas formally, and define
hidden periodicity precisely in terms of the properties of iterates of the shift
operator \(S \).

Mathematical Formulation of Disguised Periodicity

We use a familiar formalism for stationary stochastic processes.\(^{16}\) As in the
previous section, let \((\Omega, F, Pr)\) denote the underlying probability space, and let
\(S \) be a measurable, measure-preserving transformation mapping \(\Omega \) into itself.

Definition 1: A transformation \(S \) is measure preserving if \(Pr(f) = Pr(S^{-1}f) \)
for all \(f \in F \).

Let \(\mathcal{I} \) be the collection of invariant sets of the transformation \(S \).

Definition 2: \(f \in F \) is an invariant set of \(S \) if \(S^{-1}(f) = f \).

The collection \(\mathcal{I} \) turns out to be a sigma algebra of events (see Breiman (1968,
chapter 6)), so expectations conditioned on \(\mathcal{I} \) are well defined. The invariant
events of the transformation \(S \) in example 1 are the null set and any set
containing \(\{a, b\} \).

Definition 3: \(S \) is ergodic if all invariant events have probability zero or one.

Notice that \(S \) in example 1 is ergodic.

Let \(\mathcal{L} \) be the space of random variables with finite absolute first moments,
and let \(\mathcal{M} \) be the subspace of \(\mathcal{L} \) consisting of the random variables that are

\(^{16}\) See Breiman (1968, chapter 6).
The expectation operator $E(\cdot | \mathcal{I})$ maps \mathcal{L} into \mathcal{M}. Throughout this section, we use the common convention that equality between random variables is interpreted formally as equality with probability one. Hence, the equivalence class of random variables in \mathcal{L} that are equal almost surely are treated as one element. Similarly, for a random variable to be in \mathcal{M}, it suffices for it to be in \mathcal{L} and to be equal almost surely to a random variable that is measurable with respect to \mathcal{I}. When S is ergodic, \mathcal{M} contains only random variables that are constant almost surely.

A transformation S that is measure-preserving can be used to construct processes that are strictly stationary. Let z be a random variable in \mathcal{L}, and construct

$$z_t(\omega) \equiv z[S^t(\omega)]. \quad (14.5)$$

Then $\{z_t\}$ is strictly stationary and hence obeys a Law of Large Numbers. The limit point of the time series averages is $E(z|\mathcal{I})$. A $z \in \mathcal{L}$ has two interpretations. First, it indexes a stochastic process via (14.5); and second it denotes the time zero component of that stochastic process.

Our purpose is to define a notion of periodicity for the transformation S. Suppose there exists a random variable z such that the realizations of the resulting process $\{z_t\}$ are periodic. That is, for some j the resulting process satisfies:

$$z_{t+j} = z_t \text{ for all } t \geq 0. \quad (14.6)$$

The fact that (14.6) holds for a particular stochastic process is informative about the periodicity of S but falls short of determining the periodicity of S. Notice that one can always find a random variable z such that (14.6) is satisfied for $j = 1$. In particular, let z be constant over states of the world. Since S is measure-preserving, $z_t = z$ for all t. Heuristically, we shall define the periodicity of S by forming a large set of periodic stochastic processes defined as in (14.5) and satisfying (14.6) for some j, and then calling the periodicity S the maximum j over these processes. Notice that all transformations S have periodicity of at least one.

To define the periodicity of S formally, we investigate the collection of invariant events of integer powers of the transformation S. Evidently, if S is measure-preserving, then S^j is measure-preserving for any positive integer j.

We can think of S^j as corresponding to skip-sampling every j time periods. Let \mathcal{I}^j denote the collection of invariant events of S^j, and let \mathcal{M}^j denote the
corresponding subspace of \mathcal{L} of random variables that are \mathcal{I}^j measurable. Any invariant event of S is also an invariant event of S^j. Consequently $\mathcal{M} \subset \mathcal{M}^j$.

The converse is not true, however. Consider example 1. Note that $S^2(a) = a$ and $S^2(b) = b$. Consequently, $\{a\}$ and $\{b\}$ are invariant events of S^2 but not of S. In this case, $\mathcal{I}^2 = F$. When \mathcal{M} consists only of random variables that have the same values on a and b, $\mathcal{M}^2 = \mathcal{L}$. Processes that are generated by elements of \mathcal{M} are constant over time and hence have period one. On the other hand, processes generated by elements of \mathcal{M}^2 can oscillate with period two.

It of interest to obtain a characterization of \mathcal{M}^j that applies more generally.

Lemma 1: For any $z \in \mathcal{M}^j$, $z_{t+j} = z_t$ for all $t \geq 0$. Conversely, for any $z \in \mathcal{L}$ such that $z_t = z_{t+j}$ for all $t \geq 0$, $z_t \in \mathcal{M}^j$ for all $t \geq 0$.

Proof: Suppose that $z \in \mathcal{M}^j$. Then $S^{-j}(\{z \in b\}) = \{z \in b\}$ for any Borel set b of \mathcal{B}. Note that $S^{-j}(\{z \in b\}) = \{z_j \in b\}$. Consequently for any Borel set b, \{z \in b\} = \{z_j \in b\}. Equivalently, $z_j = z$. Repeating this argument, it follows that $z = z_{\tau \cdot j}$ for any positive integer τ.

Recall that S is measure-preserving, as is S^j. Consequently, for any Borel set b,

$$Pr(\{z_t \in b\} \cap \{z_{t+j} \in b\}) = Pr(\{z \in b\} \cap \{z_{\tau \cdot j} \in b\}),$$

$$Pr(\{z_t \in b\}) = Pr(\{z \in b\}), \text{ and } Pr(\{z_{t+j} \in b\}) = Pr(\{z_{\tau \cdot j} \in b\}).$$

Since $z = z_{\tau \cdot j}$, it follows that $Pr\{z_t = z_{t+j}\} = 1$ for any positive integer τ.

Next consider the converse. Suppose that $z \in \mathcal{L}$ such that $z_t = z_{t+j}$ for all $t \geq 0$. It remains to show that $z_t \in \mathcal{M}^j$. The sequence of time series averages

$$\{(1/N) \sum_{\tau=0}^{N-1} z_{t+j}\}$$

converges almost surely to z_t as well as to $E(z_t \mid \mathcal{I}^j)$. Therefore, $Pr\{z_t = E(z_t \mid \mathcal{I})\} = 1$. ■

In light of Lemma 1, processes generated by elements of \mathcal{M}^j are periodic with a period no greater than j. We wish to use this insight to construct a formal definition of periodicity. Let $\mathcal{M}^{\mathcal{E}_j}$ be the closed linear space generated by $\{\mathcal{M}^j\}_{j=1}^{\infty}$ where closure is defined using the standard norm on $\mathcal{L}, E(|\cdot|)$.

Definition 4: The transformation S is said to have *periodicity* p if p is the smallest integer such that $\mathcal{M}^p = \mathcal{M}^{\mathcal{E}_j}$. Under this definition, random variables
in \mathcal{M}^{ℓ} generate periodic processes with maximum period p. Applying this definition to the transformation S in example 1, we verify that S has period 2.

Next we describe an alternative way to deduce the periodicity of S. Mimicking the previous logic, we can show that for any positive integer j,

$$\mathcal{M}^j \subset \mathcal{M}^\tau \text{ for } \tau = 1, 2, \ldots$$ \hspace{1cm} (14.A.7)

It turns out that if \subset in (14.A.7) can be replaced by $=\text{,}$ the period of S is no greater than j, and in fact j must be an integer multiple of the actual periodicity p. In other words, the point at which further skip-sampling fails to increase the collection of invariant events is an integer multiple of the periodicity of S.

Lemma 2: Let j be any positive integer such that $\mathcal{M}^j = \mathcal{M}^\tau$ for $\tau = 1, 2, \ldots$. Then $\mathcal{M}^{\ell} = \mathcal{M}^j$ and S has periodicity p where $j = \ell \cdot p$ for some positive integer ℓ.

Proof: First, we show that $\mathcal{M}^{\ell} = \mathcal{M}^j$. Suppose to the contrary that there is some random variable in \mathcal{M}^{ℓ} that is not in \mathcal{M}^j. Since \mathcal{M}^j is closed and random variables in \mathcal{M}^{ℓ} are limit points of sequences of random variables in $\bigcup \mathcal{M}^\tau$, there exists a positive integer τ and a random variable z such that z is in \mathcal{M}^τ but not in \mathcal{M}^j. However, $\mathcal{M}^\tau \cdot j = \mathcal{M}^j$ by assumption, a contradiction. Therefore, $\mathcal{M}^{\ell} = \mathcal{M}^j$ and $p \leq j$.

It remains to show that $j = p \cdot \ell$ for some integer ℓ. Note that $\mathcal{M}^p = \mathcal{M}^j = \mathcal{M}^{\ell}$. In light of Lemma 1, random variables in \mathcal{M}^j generate processes with period p and period j. Let ℓ be the smallest integer such that $\ell \cdot p \leq j$ and suppose that $\ell \cdot p < j$. Then $p > k > 0$ where $k \equiv j - \ell \cdot p$. For any $z \in \mathcal{M}^p$, with probability one $z = z_{\ell \cdot p} = z_{\ell \cdot p + k}$. Since S is measure-preserving, $\{z_i\}$ is periodic with period k. It follows from Lemma 1 that $z \in \mathcal{M}^k$. Consequently, $\mathcal{M}^k = \mathcal{M}^p$ which is a contradiction. This in turn implies that the period of S is at least $j - \ell \cdot p$, which is a contradiction. Therefore $j = \ell \cdot p$.

An implication of Lemma 2 is that processes generated by random variables in \mathcal{M}^{ℓ} are periodic with period equal to j, where $j = \ell \cdot p$ for some integer ℓ. Note that if S has periodicity p, then S^p has periodicity one.

Definition 4 of periodicity can be applied to any S transformation that is measure-preserving. Our interest is in the case in which S is the shift transformation described in our very first example $S(a) = b, S(b) = a$. This transformation is measure-preserving by construction as long as the probability measure
induced on Ω comes from a process $\{y_t\}$ that is strictly stationary. When the shift transformation is periodic with period p, we say that the process $\{y_t\}$ has hidden periodicity p.

Consider again constructions (14.A.3) and (14.A.4). The processes $\{z_t\}$ constructed via (14.A.4) are periodic by construction and hence it follows from Lemma 1 (or from the Law of Large Numbers for Stationary Processes) that the corresponding random variable z is in \mathcal{M}. The periodicity of $\{z_t\}$ can, in fact, be less than j. By choosing a sufficiently rich collection of test functions, we can span \mathcal{M}. Let $\hat{p}\,(j)$ be the maximum periodicity over such a class of functions. The hidden periodicity p of $\{y_t\}$ is then the supremum of the sequence $\{\hat{p}(j) : j = 1, 2, \ldots\}$. Lemma 2 describes a particular feature of subsequences of $\{\hat{p}(j) : j = 1, 2, \ldots\}$. For instance, for any $j = p \cdot \ell$ for some ℓ, the subsequence $\{\hat{p}(\tau \cdot j) : \tau = 1, 2, \ldots\}$ is constant. Turning around this observation, if one finds a constant subsequence of the form $\{p(\tau \cdot j) : \tau = 1, 2, \ldots\}$, then the hidden periodicity of $\{y_t\}$ must satisfy $j = p \cdot \ell$.
Appendix A.
MATLAB Programs

This chapter consists of a manual of MATLAB programs that implement the calculations described in earlier chapters. Many of the programs use programs in MATLAB’s Control Toolkit. You should load our programs into a subdirectory of MATLAB, and put this subdirectory on the matlabpath statement in your matlab.bat file.

There is a demonstration facility for some of our programs, which supplies a small course on how to use many of our programs. To use this program, just get into MATLAB, type \texttt{hsdemo}, and choose one of the options that the menu offers you.
aarma

Purpose:
Creates arma representation for a recursive linear equilibrium model.

Synopsis:
`[num,den,p,z]=aarma(ao,c,sy,i)`

Description:
The equilibrium is computed by first running solvea. The equilibrium is

\[x_{t+1} = ao \cdot x_t + c \cdot w_{t+1} \]

A vector of observables is given by

\[y_t = sy \cdot x_t, \]

where \(sy \) is formed to pick off the described variables. For example, if we want \(y_t = [c'_t, i'_t] \), we set \(sy=[sc; si] \). aarma creates \(num \) and \(den \), which pertain to the representation

\[den (F)y_t = num (F)w_{it} \]

where \(F \) is the forward shift operator defined by \(Fy_t = y_{t+1} \). This is an arma representation for the response of \(y_t \) to the \(i \)-th component of \(w_t \). \(num(F) \) and \(den(F) \) are each stored with the coefficients being arranged in order of descending powers of \(F \). The poles (zeros of \(den(F) \)) are returned in the vector \(p \). The zeros of \(num(F) \) for each variable are returned in a column vector \(z \), where each column corresponds to a variable.
aggreg

Purpose:
Computes state space representation of sampled (time aggregated) data.

Synopsis:
\[
[A_r, C_r, aa, bb, cc, dd, V1] = \text{agreg}(A,C,G,D,R).
\]

Description:
The underlying model is
\[
x_{t+1} = Ax_t + Cw_{t+1} \\
y_t = Gx_t
\]
where \(w_{t+1}\) is a martingale difference sequence. Error ridden observations on \(y\) are available only every \(r\) periods. The state space model for the data is then
\[
x_{s+1} = A_rx_s + C_rw_{rs+1} \\
y_s = Gx_s + v_s \\
v_{t+1} = Dv_s + u_{s+1}
\]
where \(s = t\cdot r\), \(Eu_tu'_t = R, A_r = A^r, C_r = I, Eu_rw'_r = V_rV'_r = CC' + ACC'A' + \cdots A'^{-1}CC'A' r^{-1}\). The program uses `innov` to create an innovations representation for the sampled process \(\{y_t, t = 0, 2r, 3r, \ldots\} = \{y_s, s = 0, 1, 2, \ldots\}\). `varma2` can be used to compute an `arma` representation for the sampled data.
aimpulse

Purpose:
Computes impulse response function for a recursive linear equilibrium model

Synopsis:
\[z = \text{aimpulse}(ao, c, sy, ii, ni) \]

Description:
The equilibrium is computed by first running \texttt{solvea}. The equilibrium is

\[x_{t+1} = ao \ x_t + c \ w_{t+1}. \]

A vector of observables is given by

\[y_t = sy \ x_t \]

where \(sy \) is formed to pick off the desired variables. For example, if we want \(y_t = [c_t', i_t']' \), we set \(sy = [sc; si] \). \texttt{aimpulse} computes the impulse response of \(y_t \) with respect to component \(ii \) of \(y_t \) for \(ni \) periods.
asimul

Purpose:
Simulate a recursive linear equilibrium model

Synopsis:
asimul, a script file. The outputs of solvea must be in memory, as must the matrix sy and the integer t1.

Description:
The equilibrium is

\[x_{t+1} = A^o x_t + C w_{t+1} \]

A vector of observables \(y_t \) obeys

\[y_t = s y * x_t, \]

where \(s y \) is to be specified by the user. If we want \(y_t = (c_t' i_t')' \), we would set \(s y = [s c; s i] \). asimul computes a simulation of \(y \) of length \(t_1 \) and stores the output in the matrix \(y \).
asseta

Purpose:
Computes and simulates asset prices for a recursive equilibrium model.

Synopsis:
asseta is a script file which requires that pay and nt, as well as the output of solvea, reside in memory.

Description:
Run solvea and asimul first. An asset pays out a stream of returns

\[y_t = pay \times x_t \]

where pay is a vector and where \(x_t \) is governed by the equilibrium law of motion

\[x_{t+1} = A^o x_t + C w_{t+1} \]

The asset is priced by

\[\text{asset price at } t = E_t \sum_{t=0}^{\infty} \beta^t p_t^A y_{t+j}. \]

The program computes the intertemporal marginal rate of substitution, the payoff, the asset price, and the gross rate of return on the asset. A simulation of these of length nt is stored in y. The program also calculates the prices of claims on sure j-period forward consumption for j = 1, 2, 5. A simulation of length nt of these for j = 1, 2, 5 are stored in R1, R2, and R5, respectively.
assets

Purpose:
Creates matrices and scalars needed to price an asset in a strictly periodic equilibrium model of period p.

Synopsis:
assets is a script file. solves must be run first and its output must be in memory.

Description:
An asset with payoff $pay_t = U_a \times x_t$ is to be priced, where x_t is the state vector for a dynamic linear equilibrium model that is periodic with period p. The asset price a_t is given by

$$x_t = \left[x_t^T \mu_{a,s(t)} x_t + \sigma_{a,s(t)} \right] \left[i \cdot M_{c,s(t)} x_t \right].$$

This program computes the matrices $\mu_{a,s(t)}$ and the scalars $\sigma_{a,s(t)}$ for $s(t) = 1, 2, \ldots, p$. These matrices and scalars are stored in memory. To simulate the asset price, use the program assetss.

See also:
simuls, assetss.
assetss

Purpose:
Simulates asset price and term structure of interest rates for a strictly periodic equilibrium model with period \(p \).

Synopsis:
assetss is a script file. The programs solves, simuls, and assets must be run first and their outputs must reside in memory.

Description:
A simulation is constructed for the asset priced in assets. The term structure of interest rates is also computed.

The output of the simulation is returned in the vector \(y \), which equals \([\text{mrs}, \text{pays}, \text{as}, \text{ret}]\). Here \(\text{mrs} \) is the marginal rate of substitution at time, \(\text{pays} \) is the payoff of the asset, \(\text{as} \) is the price of the asset and \(\text{ret} \) is the return on the asset. The prices of risk free claims on consumption 1, 2, and 5 periods forward are returned in \(R1, R2, R5 \), respectively.

See also:
simuls, solves, assets
assetx

Purpose:
Computes and simulates asset prices for a recursive equilibrium model with Gaussian Exponential Quadratic specification.

Synopsis:
`assetx` is a script file which requires that `pay` and `nt`, as well as the output of `solvex`, reside in memory.

Description:
Run `solvex` and `asimul` first. An asset pays out a stream of returns

\[y_t = pay \times x_t \]

where `pay` is a vector and where `x_t` is governed by the equilibrium law of motion

\[x_{t+1} = A^0 x_t + C u_{t+1} \]

The asset is priced by

\[\text{asset price at } t = E_t \sum_{t=0}^{\infty} \beta^t p_{t+j} y_{t+j} . \]

The program computes the intertemporal marginal rate of substitution, the payoff, the asset price, and the gross rate of return on the asset. A simulation of these of length `nt` is stored in `y`. The program also calculates the prices of claims on sure `j`-period forward consumption for `j = 1, 2, 5`. A simulation of length `nt` of these for `j = 1, 2, 5` are stored in `R1`, `R2`, and `R5`, respectively.

See also:
`asseta`, `solvex`
avg

Purpose:
Prepares linear system for analysis of aggregation over time with “integrated” or “summed” data

Synopsis:
\[[AA, CC] = \text{avg}(A, C, m) \]

Description:
The state \(x_t \) evolves according to
\[
x_{t+1} = Ax_t + Cw_{t+1}
\]

Let \(z_t = [x_t', x_{t-1}', \ldots, x_{t-m+1}']' \). Then \(z_t \) evolves according to
\[
z_{t+1} = AA * z_t + CC * w_{t+1}
\]

where
\[
AA = \begin{bmatrix}
A & 0 & \cdots & 0 \\
I & 0 & \cdots & 0 \\
0 & I & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \cdots & I & 0
\end{bmatrix},
CC = \begin{bmatrix}
C \\
0 \\
\vdots \\
0
\end{bmatrix}.
\]

The program forms \(AA \) and \(CC \).

See also:
aggre
canonpr

Purpose:
Computes canonical representation of preferences.

Synopsis:
[lamh, pihh] = canonpr (beta, lamba, pih, deltab, thetab)

Description:
The program computes a canonical representation of preferences by solving the
auxiliary consumer choice problem, maximize

\[-\frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t s_t \cdot s_t\]

subject to

\[h_t = \Delta h_{t-1} + \Theta h c_t\]
\[s_t = \Lambda h_{t-1} + \Pi c_t,\]

\(h_1\) given. The solution is a feedback rule \(c_t = -F h_{t-1}\) where \(F = (\Pi' \Pi + \beta \Theta + h' P \Theta_h)^{-1} (\beta \Theta_h' P \Delta_h + \Pi' \Lambda)\), and where \(P\) is the nonnegative definite \(P\) that solves the algebraic Riccati equation for the problem. A canonical \((\hat{\Pi}, \hat{\Lambda})\) is chosen for the equations

\[\hat{\Pi}^{-1} \hat{\Lambda} = F\]
\[\hat{\Pi}' \hat{\Pi} = (\Pi' \Pi' + \beta \Theta_h' P \Theta_h).\]
MATLAB Programs

clex 10, 11, 13, 14, 18, 35, 101c, 101f

Purpose:
Read in matrices defining an economy.

Synopsis:
clex*.m is always a script file.

Description:
Each clex*.m file creates a list of matrices Φ_c, Φ_g, Φ_i, Γ, Δ_k, Φ_k, Δ_h, Φ_h, Γ, Π, A_{22}, U_d, U_b, and U_d that define an economy. The economies are as follows:

clex 10 The Jones-Manuelli examples of chapter 5.
clex 11 Hall’s model of chapter 5.
clex 13 Hall’s model with higher adjustment costs.
clex 14 Lucas’s model of chapter 5.
clex 18 The “seasonal preferences” model of chapter 14.
clex 35 The “heterogeneous agent” example of chapter 12.
clex 101c The hog model of chapter 10.
clex 101f The corn-hog model of chapter 10.
Purpose:
compn creates companion matrix.

Synopsis:
\[[B] = \text{compn}([a]) \]

Description:
The companion matrix \(B \) of the \(1 \times n \) row vector \(a \) is defined as

\[
B = \begin{bmatrix}
a_1 & a_2 & \cdots & a_{n-1} & a_n \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{bmatrix}.
\]
MATLAB Programs

disthet

Purpose:
Compute equilibrium of general equilibrium with two types of households, externalities, distorting taxes, and exogenous government expenditures.

Synopsis:
disthet is a script file. All matrices must be in memory.

Description:
disthet computes a competitive equilibrium of a distorted heterogeneous economy. Two types of agents live in an economy with a government. There are externalities. Type i agent’s problem is to maximize:

\[
E_0 - 0.5 \sum_{t=0}^{\infty} \beta^t [(s_i(t) - b_i(t)) \cdot (s_i(t) - b_i(t)) + \ell_i(t)^2]
\]

subject to:

\[
s_i(t) = \Lambda_{i1} h_i(t - 1) + \Lambda_{i2} H_1(t - 1) + \Lambda_{i3} H_2(t - 1) + \Pi_{i1} c_1(t) + \Pi_{i2} C_1(t) + \Pi_{i3} C_2(t)
\]

\[
h_i(t) = \Delta_{hi} * h_i(t - 1) + \Delta_{H1i} H_1(t - 1) + \Delta_{H2i} H_2(t - 1) + \Theta_{hi} c_1(t) + \Theta_{H1i} C_1(t) + \Theta_{H2i} C_2(t)
\]

\[
E \{ \sum_{t=0}^{\infty} \beta^t [(I + \tau_c) p(t) \cdot c_i(t) + (1 - \tau_l) w(t) l_i(t) - \alpha(t) \cdot d_i(t) - f_i \cdot (P_1(t) + P_2(t) - T_i(t))] \} I_0 - v_0 * k_{0i} = 0
\]

where $s_i, h_i, \ell_i, c_i, T_i, P_i$ are consumption services, household capital stock, labor, consumption, government transfer of type i agent and firms of type i’s profit at t, $i=1,2$. Capital letters denote aggregate variables. τ_j is tax on j, $j=c,l,k,i$. Firms of type 1’s problem is to maximize expected profit:

\[
E \sum_{t=0}^{\infty} [\beta^t [p(t) [c(t) + E(t)] + q(t) \cdot i(t) - r(t) \cdot k(t - 1) - \alpha(t) \cdot d(t) - w(t) \ell(t)]]
\]

subject to:

\[
\Phi_c(c(t) + E(t)) + \Phi_i i(t) + \Phi_g g(t) = \Gamma_k k(t - 1) + \Gamma_{K} * K(t - 1) + d(t)
\]

\[
g(t) \cdot g(t) = \ell(t)^2
\]
where \(c(t) = c_1(t) + c_2(t)\), and similarly for \(d(t), \ell(t)\). \(E(t), g(t)\) are government spending and intermediate goods, respectively. Firms of type 2’s problem is to maximize expected profit:

\[
E \sum_{t=0}^{\infty} \beta^t [(I - \tau_k) r(t) \cdot k(t - 1) - (I + \tau_i) q(t) \cdot i(t)] - v_0 * k_0
\]

subject to:

\[
k(t) = \Delta_k k(t - 1) + \Delta_K K(t - 1) + \Theta_k i(t),
\]

where \(k_0 = k_{01} + k_{02}\). The state vector in this program is defined as \([z(t); z(t); h1(t-1); h2(t-1); k(t-1)]\).
MATLAB Programs

dog

Purpose:
Computes a ‘mongrel’ (i.e., complete markets aggregate) preference ordering over aggregate consumption for two households.

Synopsis:

\[
[Deltah, Thetah, Lambdah, Pih, Am3, Bm3, Cm3] = dog(alpha, beta, lambda1, pih1, deltah1, thetah1, lambda2, pih2, deltah2, thetah2, a22, c2, ub1, ub2)
\]

Description:
Computes the canonical mongrel service technology for two households with parameter alpha (the Pareto weight on the first consumer). The mongrel household technology is

\[
H(t) = \Delta_h H(t-1) + \Theta_h c(t)
\]

\[
s(t) = \Lambda H(t-1) + \Pi c(t)
\]

The mongrel preference shock is given by the series connection of the three state space systems \((A1, B1, C1, D1), (Aa, Ba, Ga, Ha), (\Delta_h, \Theta_h, \Lambda, \Pi)\). We calculate a system representation \((Am, Bm, Cm, Dm)\) for the mongrel shock. The mongrel shock is thus described by

\[
Z(t+1) = Am2 Z(t) + Bm3 w(t+1)
\]

\[
bb(t) = Cm3 Z(t).
\]

In using this program, it is important to set the initial condition for the state appropriately. The given initial conditions for h01 and h02 are loaded into the SHOCK process, and the initial conditions for the MONGREL h01,h02 are set to zero.

Type \([Amm, Bmm, Cmm, Dmm]=\text{minreal}(Am, Bm, Cm, Dm)\) to find minimal realization for preference shock.
doubleo

Purpose:
Computes time-invariant Kalman filter or time-invariant linear optimal control.

Synopsis:
\[[K, S] = \text{double}(A, C, Q, R) \]

Description:
The program creates the Kalman filter for the following system:
\[
x_{t+1} = Ax_t + e_{t+1} \\
y_t = Cx_t + v_t
\]
where \(Ee_{t+1}e_{t+1}' = Q, Ev_tv_t' = R \), and \(v_t \) is orthogonal to \(e_t \) for all \(t \) and \(s \).
Here \(A \) is \(n \times n \), \(C \) is \(k \times n \), \(Q \) is \(n \times n \), and \(R \) is \(k \times k \). The program creates the observer system
\[
\dot{x}_{t+1} = A\hat{x}_t + Ka_t \\
y_t = C\hat{x}_t + a_t,
\]
where \(K \) is the Kalman gain, and \(S = E(x_t - \hat{x}_t)(x_t - \hat{x}_t)' \) where \(\hat{x}_t = Ex_t | y_{t+1}y_{t-2}, \ldots \). Also, \(a_t = y_t - Ey_t | y_{t-1}, y_{t-2}, \ldots \).

By using duality, the program can be used to solve optimal linear control problems. Let the control problem be to choose a feedback law \(u_t = -Fx_t \) to maximize
\[
-\sum_{t=0}^{\infty} \{x_t'Qx_t + u_t'Ru_t\}
\]
subject to
\[
x_{t+1} = A'x_t + B'u_t,
\]
with \(x_0 \) given. The optimum control is then given by \(F = K' \), where
\[[K, S] = \text{double}(A, B, Q, R) \]
and where the optimal value function is \(x_t'Sx_t \).

The **doubling algorithm** is used to compute the solution.

See also:
\texttt{mult} and \texttt{double3}.

References:
doublex

Purpose:
Solves recursive undiscounted Gaussian Quadratic Exponential control problem.

Synopsis:
\[\{K, S, ST\} = \text{doublex}(A, C, Q, R, c, \text{sig}) \]

Description:
This program uses the “doubling algorithm” to solve the Riccati matrix difference equations associated with the undiscounted quadratic-Gaussian linear optimal control problems. The control problem has the form

\[
S(t) = \max_{u(t)} \{ x(t)'Qx(t) + u(t)'Ru(t) + (2/\sigma) \log E_t \exp(\sigma/2)S(x(t+1)) \},
\]

subject to

\[
x(t+1) = A'x(t) + C'u(t) + cw(t+1),
\]

where \(w(t+1)\) is a Gaussian martingale difference sequence with unit covariance matrix. The program returns the steady state value function in \(S\). The optimal control law is \(u(t) = -K' x(t)\) The program also returns \(ST\), which is the quadratic form in \(E_t \exp(\text{sig}/2)S(x(t+1))\).

See also:
mult and double and solvex.

References:
doublej

Purpose:
Computes infinite matrix sums of squares.

Synopsis:
\(V = \text{double}(a_1, b_1) \)

Description:
The program computes the infinite sum \(V \) in
\[
V = \sum_{j=0}^{\infty} a_1^j b_1 a_1^j,
\]
where \(a_1 \) and \(b_1 \) are each \(n \times n \) matrices. The program iterates to convergence on the following \textit{doubling algorithm}, starting from \(V_0 = 0 \):
\[
a_{1j} = a_{1j-1} \ast a_{1j-1}
\]
\[
V_j = V_{j-1} + a_{1j-1} \ast V_{j-1} \ast a_{1j-1}.
\]
The limiting value of \(V_j \) is returned in \(V \).
doublej2

Purpose:
Computes infinite matrix sums of squares.

Synopsis:
\[V = \text{doublej2} \left(a_1, b_1, a_2, b_2 \right) \]

Description:
The program computes the infinite sum \(V \) in
\[
V = \sum_{j=0}^{\infty} a_1^j (b_1 b_2) a_2^j
\]
where \(a_1 \) and \(a_2 \) are each \(n \times n \) matrices, \(b_1 \) is \(n \times k \) and \(b_2 \) is \(k \times n \). The program iterates to convergence on the following *doubling algorithm*, starting from \(V_0 = 0 \):
\[
\begin{align*}
 a_{1j} &= a_{1j-1} * a_{1j-1} \\
 a_{2j} &= a_{2j-1} * a_{2j-1} \\
 V_j &= V_{j-1} + a_{1j-1} V_{j-1} a_{2j-1}.
\end{align*}
\]
The limit point is returned in \(V \).
double3

Purpose:
Raw doubling algorithm for raising a symplectic matrix to higher and higher powers.

Synopsis:
\[[aa, bb, gg] = \text{double3} (a, b, g) \]

Description:
The algorithm iterates to convergence of \(g_j \) in the following recursions:

\[
a_{j+1} = a_j(I + b_jg_j)^{-1}g_j \\
g_{j+1} = g_j + a'_jg_j(I + b_jg_j)^{-1}a_j , \\
b_{j+1} = b_j + a_j(I + b_jg_j)^{-1}b_ja_j' \\
\]

where \(a_j, b_j, g_j \) are each \(n \times n \) matrices. If we let \(E_j \), be the symplectic matrix

\[
\begin{bmatrix}
a_j^{-1} & a_j^{-1}b_j \\
g_ja_j^{-1} & a'_j + g_ja_j^{-1}b_j \\
\end{bmatrix}
\]

then \(E_j = (E_0)^{2^j} \).

References:
heter

Purpose:
Computes allocation to an individual who lives within a recursive linear equilibrium model.

Synopsis:
\texttt{heter} is a script file. The program \texttt{solvea} must be run first, and its inputs and outputs must be in memory. The matrices U_{id} and U_{ib}, and the scalars k_{0i}, h_{0i}, and $tol > 0$ must all be in memory.

Description:
The consumer maximizes

$$-\frac{1}{2}E \sum_{t=0}^{\infty} \beta^t [(s^i_t - b^i_t) \cdot (s^i_t - b^i_t) + \ell^2_t], \ 0 < \beta < 1$$

subject to

$$s^i_t = \Lambda h^i_{t-1} + \Pi c^i_t$$

$$h^i_t = \Delta h^i_{t-1} + \Theta c^i_t$$

$$E \sum_{t=0}^{\infty} \beta^t p^i_t c^i_t \mid I_o = E \sum_{t=0}^{\infty} \beta^t (w^0_t \ell_t^i + \alpha^0_t d^i_t) \mid I_o$$

$$+ \nu_0 k^i_{-1}$$

$$b^i_t = U_{ib}^i z_t$$

$$d^i_t = U_{id}^i z_t$$

where $k^i_{-1} = k_{0i}, h^i_{-1} = h_{0i}$ are parameters to be fed in. The matrices $U_{id} = u_{di}$ and $U_{ib} = u_{bi}$ must also be fed in. The

parameter $tol > 0$ must be fed in. The program computes the optimal solution for consumer i in the form $c^i_t = S^c_t x_t, h^i_t = S^h_t x_t, s^i_t = S^s_t x_t, b^i_t = S^b_t x_t, d^i_t = S^d_t x_t$, where x_t is the state variable of the economy augmented by the state variables k^i_{-1}, h^i_{-1} ideosyncratic to the individual. The program also computes the aggregate allocations $c_t = S^c_t x_t, h_t = S^h_t x_t$, and so on. The individual allocations are determined by the matrices sci, shi, \ldots, which are placed in memory. The aggregate allocation are placed in the matrices sea, sha, \ldots, which are placed in memory.

See also:
simulh
innov

Purpose:
Compute the innovations representation for a recursive linear model whose observations are corrupted by first-order serially correlated measurement errors.

Synopsis:
\[[aa, bb, cc, dd, V_1] = \text{innov}(ao, c, s_y, D, R) \]

Description:
The model is assumed to have the state space representation
\[
\begin{align*}
x_{t+1} &= a_0 x_t + cw_{t+1} \\
y_t &= S_y x_t + e_{t+1}
\end{align*}
\]
where \(w_t \) is a white noise with \(Ew_t w_t' = I \) and \(e_t \) is a measurement error process governed by
\[
e_{t+1} = De_t + \eta_{t+1}
\]
where \(\eta_t \) is a white noise with contemporaneous covariance matrix \(R \). The matrices \(R \) and \(D \) must each be \(m \times m \) where \([m, n] = \text{size}(S_y) \). The program forms the innovations representation for \(y_t \),
\[
\begin{align*}
\hat{z}_{t+1} &= aa \hat{z}_t + bbu_t \\
y_t &= cc \hat{z}_t + ddu_t
\end{align*}
\]
where \(u_t = y_{t+1} - E[y_{t+1} \mid y_t, y_{t-1}, \ldots], \) and \(Eu_t u'_t = V_1 \).

Algorithm:
\[
\begin{align*}
aa &= \begin{bmatrix} ao & 0 \\ GG & D \end{bmatrix}, \quad bb = \begin{bmatrix} k1 \\ I \end{bmatrix} \\
cc &= \begin{bmatrix} 0 & I \end{bmatrix}, \quad dd = [0],
\end{align*}
\]
where \(k1 \) is the Kalman gain associated with the Kalman filter for the original system.

References:
mult

Purpose:
Multiplies two symplectic matrices.

Synopsis:
\[[a, b, g] = \text{mult}(a_1, b_1, g_1, a_2, b_2, g_2)\]

Description:
A symplectic matrix E_i is represented in the form
\[
E_i = \begin{bmatrix}
a_i^{-1} & a_i^{-1}b_i \\
g, a_i^{-1} & a_i' + g, a_i^{-1}b_i
\end{bmatrix}.
\]

We desire to form $E = E_2E_1$. We can compute
\[
a = a_2(I + b_1g_2)^{-1}g_1 \\
g = g_1 + a_1'g_2(I + b_1g_2)^{-1}a_1 \\
b = b_2 + a_2(I + b_1g_2)^{-1}b_1a_2',
\]

and represent E as in representation $(*)$.

References:
seasla

Purpose:
Creates a time-invariant representation for a strictly periodic, time-varying linear equilibrium model

Synopsis:
seasla is a script file, which requires that the output of simuls reside in memory.

Description:
Let x_t be the state vector for a strictly periodic seasonal process of period p. Let $X_t' = [x_{pt}^t, x_{pt+p}^t, \ldots, x_{pt+p}^t]$. The law of motion for X_t is

$$X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1}$$

where W_{t+1} is a vector white noise and \hat{A} and \hat{C} are defined as simuls. The spectral density matrix of the X_t process is given by $S(z) = (I - \hat{A}z)^{-1}\hat{C}\hat{C}'(I - \hat{A}z)^{-1}'$. Embedded in the spectral density matrix of the stacked process X_t are the spectral density matrices $s_1(z), s_2(z), \ldots, s_p(z)$ for the periodic process $\{x_t\}$. The process x_t whose spectral density is defined to be $s(z) = p^{-1} \sum_{k=1}^{p} s_k(z)$. It can be shown that

$$s(z) = p^{-1}Q(z)(I - \hat{A}z^p)^{-1}\hat{C}\hat{C}'(I - \hat{A}z^{-p})^{-1}'$$

where $Q(z) = [I \ zI \ \cdots \ z^{p-1}I]$. A state space representation for a process x_t with spectral density matrix (*) is

$$(\dagger)$$

$$Y_{t+p} = \hat{A}Y_t + \hat{C}V_{t+p}$$

$$x_t = p^{-5}Q(L)Y_t$$

where V_t is a vector white noise with identity covariance matrix.

The program seasla creates the spectral density for a univariate process that is a linear function of the state. Let the process be $c_t = sc_{s(t)}x_t$. We form the time-invariant, averaged process, as \tilde{c}_t which is determined by the system

$$(\ddagger)$$

$$Y_{t+p} = \hat{A}Y_t + \hat{C}V_{t+p}$$

$$c_t = p^{-1}Q_c(L)Y_t$$

where $Q_c(z) = [sc_1 : sc_2z : \cdots : sc_pz^{p-1}]$.
The program maps into a first-order system, then deduces the impulse response of c_t with respect to innovations V_t corresponding to representation (‡). This is stored in z_1. The program also uses the Kalman filter to obtain an innovations representation corresponding to (†), and returns the impulse response of c_t with respect to the innovation in c_t in the vector z_2.

See also:
simuls, assets, assetss
seas1

Purpose:
To aid in creating the matrices that define a periodic recursive linear equilibrium model.

Synopsis:
seas1.m is a script file.

Description:
seas1 creates matrices $\Phi_{cs}(t)$, $\Phi_{gs}(t)$, $\Phi_{ls}(t)$, $\Gamma_s(t)$, $\Delta_{ks}(t)$, $\Delta_{hs}(t)$, $A_{22s}(t)$, $C_s(t)$, $\Phi_{ks}(t)$, $\Phi_{hs}(t)$, $\Lambda_s(t)$, and $\Pi_s(t)$ that are needed to define a periodic linear recursive model. It creates time-invariant versions of these matrices as follows. It first reads in Φ_c, Φ_I, Φ_y, Γ, Δ_k, Δ_h, A_{22}, C, Φ_k, Φ_h, Λ_1 and Π for a time-invariant economy. One of our clex*.m files can be used to read in such matrices. Then seas1 simply sets the matrices $\Phi_{cs}(t) = \Phi_c$, and so on.

To create a periodic model, the user may find it useful to run seas1 first, and then to modify the resulting time-invariant setup, rather than building up all of the matrices from scratch. In a typical periodic model, many of the matrices may in fact be time invariant.

See also:
solves.m
simpulse

Purpose:
Creates different impulse response functions for a periodic linear equilibrium model.

Synopsis:
simpulse is a script file. solves must be run first, and its outputs must be in memory.

Description:
A stacked version of a periodic model has state space form

\[
X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1}
\]

\[
Y_t = HX_t,
\]

where \(X_t^\prime = [x_{tp-p+1}, x_{tp-p+2}, \ldots, x_{tp}], Y_t^\prime = [y_{tp-p+1}, \ldots, y_{tp}], W_t^\prime = [w_{tp-p+1}, \ldots, w_{tp}].\) and where \(\hat{A}, \hat{C},\) are as defined in simuls.

This program first uses dimpulse to compute the impulse response function of the stacked system \((\dagger)\). From this impulse response function, it forms two impulse response functions for the periodic process \(y_t\). First, it computes \(\{d_{k,\nu}\}\) in the representation

\[
y_{pt-p+k} = \sum_{\nu=0}^{\infty} d_{k,\nu} w_{pt-p+k-\nu}.
\]

This is the response of \(y_{pt-p+k}\) (i.e., \(y_t\) in a particular season) to lagged \(w\)'s. Second, the program computes the \(\{h_{k,\nu}\}\) that give the response of \(\{y_t\}\) to \(w_{pt-p+k}\) (i.e., an innovation in a particular season). The value of \(p\) must be in memory. The program prompts the user for the index of the innovation whose response functions are to be computed.

See also:
solves, simuls
simulh

Purpose:
Simulates allocation of individual i who lives within a recursive linear equilibrium model.

Synopsis:
simulh is a script file. heter must be run first and its output must be in memory.

Description:
The user is asked to specify which series he wants to simulate; e.g., to simulate the consumption allocation to agent i and the aggregate consumption allocation, respond $[sci; sca]$.

See also:

heter
Purpose:
Simulates heterogeneous agent economy.

Synopsis:
simulhet is a script file, not a function.

Description:
Simulates the prices and quantities for a recursive linear equilibrium model with non-Gorman heterogeneity. solvehet must be run first and its output must be in memory. To simulate the individual consumption allocations, set sy=[sc1;sc2] when asked what series you want to simulate. To simulate the individual consumption service allocations, set sy=[ss1:ss2].

See also:
solvea and heter.
Purpose:
To simulate a strictly periodic recursive linear model.

Synopsis:
simuls is a script file, which requires that all of the outputs of solves be in memory.
simuls prompts the user for the number of “years” to simulate.

Description:
simuls creates a simulation of the state vector \(x_t \) for a strictly periodic model of period \(p \). The stacked state vector \(X_t \) is formed, where \(X_t = [x_{pt-p+1}', x_{pt-p+2}', \ldots, x_p'] \).
The law of motion for \(X_t \) is
\[
X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1}
\]
where \(\hat{A} = D^{-1}F, \hat{C} = D^{-1}G \), where
\[
D = \begin{bmatrix}
I & 0 & 0 & \cdots & 0 & 0 \\
-A_1^0 & I & 0 & \cdots & 0 & 0 \\
0 & -A_2^0 & I & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & -A_{p-1}^0 & 1
\end{bmatrix}
\]
\[
F = \begin{bmatrix}
0 & A_p^0 \\
0 & 0
\end{bmatrix}
\]
\[
G = \begin{bmatrix}
C_p & 0 & 0 & \cdots & 0 \\
0 & C_1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & C_{p-1}
\end{bmatrix},
\]
and where \(W_t = [w_{pt+1}', w_{pt+2}', \ldots, w_{pt+p}]' \).
The output of simuls is returned in the matrix \(X \). The matrix \(X \) is arranged as follows:
\[
X = \begin{bmatrix}
x_1' & x_2' & \cdots & x_p' \\
x_{p+1}' & x_{p+2}' & \cdots & x_{2p}' \\
\vdots & \vdots & \ddots & \vdots \\
x_{Tp+1}' & x_{Tp+2}' & \cdots & x_{Tp+p}'
\end{bmatrix}
\]
where T is the number of “years” specified by the user.

To simulate c_t, i_t, etc., the user can write a program to put the relevant linear combinations off X. Alternatively, the user can edit the files simulc, simulk, simuli, simulg, simulb, or simuld.
solvea

Purpose:
Computes solution of recursive linear equilibrium model

Synopsis:
solvea is a script file. The matrices $A_{22}, C_2, U_d, U_b, \Phi_c, \Phi_g, \Phi_i, \Gamma, \Delta_k, \Theta_k, \Delta_h, \Theta_h, \Lambda$, and Π and the scalar β must be in memory.

Description:
The social planning problem is to maximize

\[-\frac{1}{2}E \sum_{t=0}^{\infty} \beta^t [(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2], \quad 0 < \beta < 1\]

subject to

\[
\begin{align*}
\Phi_c c_t + \Phi_g g_t + \Phi_i i_t &= \Gamma k_{t-1} + d_t \\
g_t \cdot g_t &= \ell_t^2 \\
k_t &= \Delta_k k_{t-1} + \Theta_k i_t \\
h_t &= \Delta_h h_{t-1} + \Theta_h c_t \\
s_t &= \Lambda h_{t-1} + \Pi c_t \\
z_{t+1} &= A_{22} z_t + C_2 w_{t+1} \\
b_t &= U_b z_t, \quad d_t = U_d z_t
\end{align*}
\]

Here s_t is consumption services, b_t a stochastic bliss process, ℓ_t is labor services, c_t is consumption rates, g_t is "intermediate goods", i_t is investment goods, d_t is an endowment shock process, k_t is physical capital, h_t is household capital, z_t is a vector of exogenous information variables, and w_{t+1} is a martingale difference sequence. Each of these is a vector, except for ℓ_t, which is scalar. Let $x_t = [h'_{t-1}, k'_{t-1}, z'_t]'$. The program computes the solution of the social planning problem in the form

\[
\begin{align*}
x_{t+1} &= A^o x_t + C w_{t+1} \\
k_t &= S_k x_t, \quad g_t = S_g x_t \\
h_t &= S_h x_t, \quad i_t = S_i x_t \\
c_t &= S_c x_t, \quad b_t = S_b x_t \\
s_t &= S_s x_t, \quad d_t = S_d x_t
\end{align*}
\]
The program also computes Lagrange multipliers $\mu_j^t = M_j x_t$ for variable $j = k, c, h, s, i$. The program computes and leaves in memory A^o, C, S_j (for $j = k, h, c, s, g, i, b$, and d) and M_j (for $j = k, c, h, s, i$).

Algorithm:
The social planning problem is formulated and solved as an optimal linear regulator problem.
MATLAB Programs

solvdist

Purpose:
Computes equilibrium of representative agent economy with distorting taxes, exogenous govenment expenditures, and externalities.

Synopsis:
solvdist is a script file.

Description:
solvdist, a script file (not a function), finds a competitive equilibrium for a representative agent economy with distortions. Households maximize:

\[E_0 - 0.5 \sum \beta^t [(s(t) - b(t)) \cdot (s(t) - b(t)) + \ell(t)^2] \]

subject to

\[g(t) \cdot g(t) = \ell(t)^2 \]
\[z(t + 1) = a22 * z(t) + c2 * w(t + 1) \]
\[b(t) = ub * z(t), \quad d(t) = ud * z(t), \quad E(t) = ue * z(t) \]
\[h(t) = \Delta_h h(t - 1) + \Delta_H H(t - 1) + \Theta_h c(t) + \theta_H C(t) \]
\[s(t) = \Delta_h h(t - 1) + \Delta_H H(t - 1) + \Pi_h c(t) + \Pi_H C(t) \]
\[k(t) = \Delta_k k(t - 1) + \Theta_k i(t) \]
\[\sum_{t=0}^{\infty} \beta^t [(I + \tau_c)p(t) \cdot c(t) + (I + \tau_i)q(t) \cdot i(t) - (1 - \tau_c)w(t) \cdot g(t) \]
\[-\alpha(t) \cdot (d(t) + \gamma_K K(t - 1)) - (I - \tau_k) r(t) \cdot k(t - 1) - T(t)] = 0 \]

Firms maximize profits:

\[E_0 \sum_{t=0}^{\infty} \beta^t [p(t) \cdot (c(t) + E(t)) + q(t) \cdot i(t) - r(t) \cdot k(t - 1) - \alpha(t) \cdot d(t) - w(t) \cdot g(t)] \]

subject to

\[g(t) \cdot g(t) = \ell(t)^2 \]
\[\Phi_c(c(t) + E(t)) + \Phi_g g(t) + \Phi_i i(t) = \Gamma_k k(t - 1) + \Gamma_H H(t - 1) + d(t) \]

Where \(x(t) = [h(t - 1)', k(t - 1)', z(t)']' \), the solution of the problem is

\[x(t + 1) = ao * x(t) + c * w(t + 1) \]
\[j(t) = sj * x(t), \]

where \(j = k, h, c, e, s, g, i, b, d, p, q, w, r,\alpha \). The program also computes the household’s Lagrange multipliers \(\mu_j = mj \) \(x(t) \) for \(j = k, h, s, z \). (\(\mu_0 \) is set to 1.)
solvehet

Purpose:
Solves Pareto problem for two-agent preferences not satisfying conditions for Gorman aggregation.

Description:
solvehet solves the pareto problem for two agents with heterogeneous household production functions, i.e. to maximize

\[
E \sum_{t=0}^{\infty} \beta^t \left(-0.5 \alpha (\{(s_1(t) - b_1(t)) \cdot (s_1(t) - b_1(t)) + \ell_1(t)^2\} + (1 - \alpha) \{(s_2(t) - b_2(t)) \cdot (s_2(t) - b_2(t)) + \ell_2(t)^2\})
\]

subject to

\[
\Phi_c c(t) + \Phi_g g(t) + \Phi_i i(t) = \Gamma k(t-1) + d(t)
\]

\[
g_i(t) \cdot g_i(t) = \ell_i(t)^2, \quad i = 1, 2
\]

\[
g_1(t) + g_2(t) = g(t)
\]

\[
k(t) = \Delta_k k(t-1) + \Theta_k i(t)
\]

\[
h_i(t) = \Delta_{hi} h_i(t-1) + \Theta_{hi} c_i(t)
\]

\[
s_i(t) = \Lambda_i \ast h_i(t-1) + \Pi_{hi} c_i(t), \quad i = 1, 2
\]

\[
c_1(t) + c_2(t) = c(t)
\]

\[
z(t+1) = a22 \ast z(t) + c2 \ast w(t + 1)
\]

\[
i(t) = ubi \ast z(t), \quad i = 1, 2; d(t) = ud \ast z(t)
\]

The state vector is \(x(t) = [h_1(t-1), h_2(t-1), k(t-1), z(t)]^t\). The control vector is \(u(t) = [c_1(t), i(t)]^t\). The solution of the problem is given by:

\[
x(t+1) = ao \ast x(t) + c \ast w(t + 1)
\]

\[
j(t) = sj x(t)
\]

for \(j = k, c, g, i, d\), and \(c_i, b_i, g_i, h_i, s_i\), for \(i=1, 2\). The program also computes Lagrange multipliers.
MATLAB Programs

solvex

Purpose:
Computes solution of recursive linear equilibrium model with Gaussian Quadratic Exponential preference specification.

Synopsis:
solvex is a script file. The matrices $A_{22}, C_2, U_d, U_b, \Phi_c, \Phi_g, \Phi_i, \Gamma, \Delta_k, \Theta_k$, $\Delta_h, \Theta_h, \Lambda$, and Π and the scalars σ and β must be in memory.

Description:
Let $x_t = [h_{t-1}', k_{t-1}', z_t']'$, and let the law of motion for x_t be $x_{t+1} = Ax_t + Bu_t + Cw_{t+1}$. The social planning problem is to find a value function

$$ V(x(t)) = \max \{-0.5[(s(t) - b(t))(s(t) - b(t)) + l(t)^2]$$

$$ + \beta \ast (2/\sigma) \ast \log E_t \exp(\sigma/2 \ast (V(x(t+1))) \}

subject to

$$ \Phi_c c_t + \Phi_g g_t + \Phi_i i_t = \Gamma k_{t-1} + d_t $$

$$ g_t \cdot g_t = l_t^2 $$

$$ k_t = \Delta_k k_{t-1} + \Theta_k i_t $$

$$ h_t = \Delta_h h_{t-1} + \Theta_h c_t $$

$$ s_t = \Lambda h_{t-1} + \Pi c_t $$

$$ z_{t+1} = A_{22} z_t + Cw_{t+1} $$

$$ b_t = U_b z_t, \quad d_t = U_d z_t $$

Here s_t is consumption services, b_t a stochastic bliss process, l_t is labor services, c_t is consumption rates, g_t is “intermediate goods”, i_t is investment goods, d_t is an endowment shock process, k_t is physical capital, h_t is household capital, z_t is a vector of exogenous information variables, and w_{t+1} is a martingale difference sequence. Each of these is a vector, except for l_t, which is scalar.

The program computes the solution of the social planning problem in the form

$$ x_{t+1} = A^o x_t + Cw_{t+1} $$

$$ k_t = S_k x_t, g_t = S_g x_t $$

$$ h_t = S_h x_t, i_t = S_i x_t $$

$$ c_t = S_c x_t, b_t = S_b x_t $$

$$ s_t = S_s x_t, d_t = S_d x_t $$
The program also computes Lagrange multipliers $\mu^t_j = M_j x_t$ for variable $j = k, c, h, s, i$. The program computes and leaves in memory A^o, C, S_j (for $j = k, h, c, s, g, i, b$, and d) and M_j (for $j = k, c, h, s$, and i).

Algorithm:
The social planning problem is formulated and solved using `doublex`.
Purpose:
Computes the solution of recursive linear equilibrium model with periodic coefficients.

Synopsis:
solves is a script file. The matrices $A_{22s(t)}$, $C_{2s(t)}$, U_d, U_b, $\Phi_{cs(t)}$, $\Phi_{gs(t)}$, $\Phi_{ls(t)}$, $\Gamma_{s(t)}$, $\Delta_{ks(t)}$, $\Theta_{ks(t)}$, $\Delta_{hs(t)}$, $\Theta_{hs(t)}$, $\Lambda_{s(t)}$, and $\Pi_{s(t)}$ and the scalar β must be in memory.

Description:
The social planning problem is to maximize

$$-(\frac{1}{2})E \sum_{t=0}^{\infty} \beta^t [(s_t - b_t) \cdot (s_t - b_t) + \ell_t^2], \ 0 < \beta < 1$$

subject to

$$\Phi_{cs(t)} c_t + \Phi_{gs(t)} g_t + \Phi_{is(t)} i_t = \Gamma_{s(t)} k_{t-1} + d_t$$

$$g_t \cdot g_t = \ell_t^2$$

$$k_t = \Delta_{ks(t)} k_{t-1} + \Phi_{ks(t)} i_t$$

$$h_t = \Delta_{hs(t)} h_{t-1} + \Phi_{hs(t)} c_t$$

$$s_t = \Lambda_{s(t)} h_{t-1} + \Pi_{s(t)} c_t$$

$$z_{t+1} = A_{22s(t)} z_t + C_{2s(t)} w_{t+1}$$

$$b_t = U_b z_t, d_t = z_t.$$

where $s(t+p) = s(t)$, where p is the period of the model. Here s_t is consumption services, b_t is a stochastic bliss process, ℓ_t is labor services, c_t is a vector of consumption rates, g_t is “intermediate goods”, i_t is investment goods, d_t is an endowment shock process, k_t is physical capital, h_t is household capital, z_t is a vector of exogenous information variables, and w_{t+1} is a martingale difference sequence. Each of these is a vector, except for ℓ_t, which is a scalar. Let $x_t = [h'_{t-1}, k'_{t-1}, z'_t]$. The program computes the solution of the social
planning problem in the form

\[x_{t+1} = A_o^x x_t + C_s(t) w_{t+1} \]

\[k_t = S_{ks(t)} x_t, g_t = S_{gs(t)} x_t \]

\[h_t = S_{hs(t)} x_t, i_t = S_{is(t)} x_t \]

\[c_t = S_{cs(t)} x_t, b_t = S_{hs(t)} x_t \]

\[s_t = S_{ss(t)} x_t, d_t = S_{ds(t)} x_t \]

The program also computes Lagrange multipliers \(\mu_j^t = M_j(t) x_t \) for variables \(j = k, c, h, s, i \). The program computes and leaves in memory \(A_o^x, C_s(t), S_{js(t)} \) for \(j = k, h, c, s, g, i, b, \) and \(d \), and \(M_j \) for \(j = k, c, h, s, \) and \(i \).

The user is advised to use the MATLAB program `seas1` as an aid in creating the matrices that must be fed into `solves`.

The user must edit `solves` to set the period \(p \). Also, it will vastly accelerate computations if the user will load either the file `seas4.mat` (in the case \(p = 4 \)) or the file `seas12.m` (in the case \(p = 4 \)). The lines to edit occur immediately after the information provided by the help command, i.e. the first lines without \(% \).

Algorithm:
The social planning problem is formulated as a periodic optimal linear regulator problem and solved using doubling algorithms.
spectr1

Purpose:
Computes spectral density of endogenous variables of a dynamic linear equilibrium model.

Synopsis:
spectr1 is a script file. The matrices \(ao, c, sy, R, D\), and the scalar \(nnc\) must be in memory.

Description:
The equilibrium model is of the form

\[
\begin{align*}
x_{t+1} &= ao \ x_t + cw_{t+1} \\
y_t &= sy \ x_t + v_t \\
v_{t+1} &= Dv_t + u_{t+1}
\end{align*}
\]

where \(Ew_i w'_i = I, E, u_i u'_i = R\). The constant corresponds to row number \(nnc\) of the state vector \(x_t\). The eigenvalues of \(D\) and the eigenvalues of \(A\) (except for the unit eigenvalue associated with the constant term) must be less than unity in modulus. spectr1 computes the spectral densities variables in \(y_t\).

Algorithm:
spectr1 deletes the \(nnc^{th}\) row and/or column of \(ao, c,\) and \(sy\), which correspond to the constant term. Then spectral is used to compute the spectral density matrix of \(y_t\).

See also:
spectral
spectral

Purpose:
Computes spectral density matrix for a linear system.

Synopsis:

Description:
Let the system be

\[
\begin{align*}
 x_{t+1} &= Ax_t + Ce_{t+1} \\
 y_t &= Gx_t + v_t \\
 v_{t+1} &= Dv_t + u_t
\end{align*}
\]

where $Ee_te'_t = I, Eu_su'_s = R$, and where e_t and u_s are orthogonal for all t and s. The vector y_t is $rg \times 1$. The spectral density matrix for y is computed for ordinates $\omega_j = 2\pi j/T, j = 0, 1, \ldots, T - 1$. The spectral density matrix for ordinate j is stored in $Sy_j, j = 0, 1, \ldots, T-1$. The spectral densities (diagonals of the spectral density matrices) are stored in the matrix S. The matrix S has rg rows and T columns, and $S(k,j) = S_{yj}(k,k)$. The eigenvalues of A and D must all be less than unity in modulus.

Algorithm:
Let $Sy(e^{-i\omega_j})$ be the spectral density matrix at frequency ω_j. Then

\[

S_y(e^{-i\omega_j}) = G(I - Ae^{-i\omega_j})^{-1}CC'(I - Ae^{i\omega_j})^{-1}G'

+ (I - De^{-i\omega_j})^{-1}R(I - De^{i\omega_j})^{-1}

\]

spectrs

Purpose:
Computes spectral density matrix for set of variables determined by a periodic linear equilibrium model.

Synopsis:
spectrs is a script file. solves and simuls must be run first, and their outputs must reside in memory. The integer nnc (the index of the constant in the state vector) must be in memory.

Description:
The spectral density of a process y_t with hidden periodicity p is given by the Tiao-Grupe formula

$$ S_y(z) = Q(z)H(I - \hat{A}z^p)^{-1}\hat{C}\hat{C}(I - \hat{A}z^{-p})^{-1'}H'Q(z^{-1})', $$

where $z = e^{-i\omega_j}$; where $\hat{A}, \hat{C},$ and \hat{H} are from the stacked state space system

$$ X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1} $$
$$ Y_t = HX_t, $$

and where $X_t' = [x_{pt-p+1}^{'}x_{pt-p+2}^{',}...,x_{pt}^{'}], Y_t' = [y_{pt-p+1}^{'}y_{pt-p+2}^{',}...,y_{pt}^{'}], W_t' = [w_{pt-p+1}^{'}w_{pt-p+2}^{',}...,w_{pt}^{'}]$. The program returns the spectral density matrices for frequencies $\omega_j = 2\pi j/T$, for $j = 0, 1, ..., T - 1$ in the matrices $S_y0, S_y1, ..., S_yT - 1$. The spectral densities of the individual series are returned in the matrix S.

The user can edit the file to specify T and the particular series whose spectrum is computed.

See also:
solves, simuls
steadst

Purpose:
steadst computes steady state values of observable variables determined by a recursive linear equilibrium model.

Synopsis:
steadst is a script file which requires that the scalar nnc and matrices ao, sc, ss, si, sd, sb, sk, sh reside in memory.

Description:
The equilibrium model is represented as
\[x_{t+1} = ao \cdot x_t + c \cdot w_{t+1} \]
\[y_t = G x_t \]
where \(G = [sc; ss; si; sd; sb; sk; sh] \). The integer nnc gives the row in the state vector \(x_t \) that corresponds to the constant term. steadst assumes that except for the eigenvalue associated with the constant term, all eigenvalues of \(ao \) are less than unity in modulus. The program calculates the steady state value of \(x_t \), putting its value in zs. Then the program successively calculates the steady state values of c, s, i, d, b, k, and h, which are the components of y.

Algorithm:
The steady state value of \(x \) is obtained as a basis vector for the null space of \((I - ao)\), normalized so that the component corresponding to the constant equals unity.

See also:
null
steadsts

Purpose:
Computes seasonal steady states and seasonal means for a periodic recursive linear equilibrium model.

Synopsis:
steadsts is a script file. solves and simuls must be run first, and their outputs must be in memory. So must nnc, the index of the constant term in the state vector.

Description:
The equilibrium for the stacked version of a periodic model can be represented as

\[X_{t+1} = \hat{A}X_t + \hat{C}W_{t+1} \]

where \(X'_t = [x'_{tp-p+1},...,x'_{tp}] \), \(W'_t = [w'_{pt-p+1},...,w_{pt}] \). The program computes the null space of \((I - \hat{A})\), which gives the steady for \(X_t = \bar{X} \). Then seasonal means for individual variables are formed by pre-multiplying \(\bar{X} \) by matrices formed from appropriate seasonal decision rules. The user must edit the file to compute seasonal means of the particular variables he is interested in.

See also:
steadt, solves, simuls.
vardec

Purpose:
Calculates variance of k-step ahead prediction errors in z_t for $k = 1, 2, \ldots, N$ for an “innovations system”.

Synopsis:
\[\text{[tab]} = \text{vardec} \ (A, C, K, V, N) \]

Description:
Consider the innovations system
\[
\begin{align*}
 x_{t+1} &= Ax_t + Ku_t \\
 z_t &= Cx_t + u_t \\
 Eu_t u'_t &= V
\end{align*}
\]
vardec prepares a table of diagonal elements of the covariance matrices of k-step ahead errors in predicting z_t, $k = 1, \ldots, N$. The output is returned in tab, which has N rows and max(size(V)) columns. The (k, h) element of tab gives the variance of the k-step ahead prediction errors for the h^{th} variable in z_t.

Algorithm:
Let the covariance matrix of k-step ahead prediction error in z be V_k. Then
\[
\begin{align*}
 V_1 &= V \\
 V_2 &= CKVK'C' + V \\
 V_k &= V_{k-1} + CA^{k-1}KVK'A^{k-1}C'.
\end{align*}
\]

References:
vardeci

Purpose:
Compute decomposition of k-step ahead prediction error variances for an “innovations system”.

Synopsis:
\[\text{[tab]} = \text{vardeci}(A, C, K, V, N, j) \]

Description:
Consider an innovations system
\[
\begin{align*}
x_{t+1} &= Ax_t + K u_t \\
z_t &= C x_t + u_t
\end{align*}
\]
where $Eu_t u_t' = V$. Let $r'r = V$ be a Cholesky decomposition of V. Form the innovations system with orthogonalized innovations
\[
\begin{align*}
x_{t+1} &=Ax_t + Bv_t \\
z_t &= Cx_t + Dv_t
\end{align*}
\]
where $B = K \cdot r'$, $D = r'$, and $Ev_tv_t' = I$. The program prepares a table of the part of the diagonal elements of the covariance matrix of the k-step ahead prediction errors, $k = 1, \ldots, N$, that is attributable to the j^{th} innovation. The table is returned in tab, which has dimension $N \times \max(\text{size}(V))$. The (k, h) element of tab gives the variance in the k-step ahead variance in predicting the h^{th} component of z due to the j^{th} orthogonalized innovation in v_t.

Algorithm:
Let S_j be a selector matrix for j, equal to an $m \times m$ matrix of zeros except of a one in the (j, j) element. Let V_k be the covariance of the k-step ahead prediction error in z due the j^{th} orthogonalized innovation. The V_k are calculated using the ecursions
\[
\begin{align*}
V_1 &= DS_j S_j' D' \\
V_2 &= CBS_j S_j' B' C' + V_1 \\
V_k &= V_{k-1} + CA^{k-1}BS_j S_j' B' A^{k-1} C'
\end{align*}
\]

References:
[1] Sims, Christopher “Macroeconomics and Reality,”
varma

Purpose:
varma computes an innovations representation for a recursive linear model whose observations are corrupted by first-order serially correlated measurement errors.

Synopsis:
varma is a script file, which requires that the matrices ao, c, sy, D, and R reside in memory.

Description:
The model is assumed to have the state space representation

\[x_{t+1} = ao \cdot x_t + c \cdot w_{t+1} \]
\[y_t = Sy \cdot x_t + e_{t+1} \]

where \(w_t \) is a white noise with \(Ew_t w_t' = I \), and \(e_t \) is a measurement error process governed by

\[e_{t+1} = De_t + \eta_{t+1}, \]

where \(\eta_{t+1} \) is a vector white noise with contemporaneous covariance matrix \(R \). The matrices \(R \) and \(D \) must each be \(m \times m \), where \([m, n] = \text{size}(sy) \). The program uses the Kalman filter to form the innovations representation

\[\hat{x}_{t+1} = ao \hat{x}_t + k_1 \cdot u_t \]
\[\tilde{y}_{t+1} = GG \hat{x}_t + u_t \]

where \(GG = [sy ao' - DSy], \tilde{y}_t = y_{t+1} - Dy_t, \) and \(u_t \) is the innovation in \(y_{t+1} \), \(u_t = y_{t+1} - E[y_{t+1} \mid y_t, y_{t-1}, \ldots] \). The program uses evardec to compute a decomposition of variance for the innovations system.

References:
varma2

Purpose:
varma2 creates impulse response functions associated with an innovations representation.

Synopsis:
varma2 is a script file which requires that the matrices $aa, bb, cc, dd,$ V_1 be in memory.

Description:
varma2 takes the output of innov and creates impulse response functions of y with respect to components of u. Impulse response functions with respect to the orthogonalized innovations $v_t = r'^{-1} u_t$ are also computed, where $r' r = V_1$ is a Cholesky decomposition of V_1.

Algorithm:
dimpulse is applied.

References:
Purpose:
Computes a vector autoregressive representation from a state space model with serially correlated measurement errors.

Synopsis:
function [AA,V1]=varrep(ao,c,sy,D,R,nj,nnc)

Description:
Computes (an infinite order) vector autoregressive representation for a recursive linear model whose observations are corrupted by first-order serially correlated measurement errors. The model occurs in the state space form

\[
x(t + 1) = a_0 \cdot x(t) + c \cdot w(t + 1)
\]
\[
y(t) = s_y \cdot x(t) + e(t + 1)
\]

where \(e(t) \) is a measurement error process

\[
e(t + 1) = D \cdot e(t) + e_e(t + 1)
\]

and where \(ee(t+1) \) is a vector white noise with covariance matrix \(R \). We assume that \(ee(t+1) \) and \(w(t+1) \) are orthogonal at all leads and lags. The program computes the autoregressive representation

\[
y(t) = \sum_{j=1}^{\infty} A(j)y(t - j) + a(t)
\]

where \(a(t) = y(t) - E[y(t) - y(t-1), y(t-2), ...] \), and the \(A(j) \) are square matrices. The program creates the covariance matrix of \(a \), which it stores in \(V1 \). The program returns \(nj \) of the matrices \(A(j) \), stacked into the \((m \times nj)\) by \(m \) matrix \(AA \), where \(m \) is the number of rows of \(y \). \(A(j) \) occurs in rows \((j-1)*m+1\) to row \(j*m \) of \(AA \). \(nnc \) is the location of the constant term in the state vector.
white1

Purpose:
Creates a state space system \([AA, BB, CC, DD]\) that accepts the innovation to the (information) state vector \(w_{t+1}\) as input and puts out the innovation \(u_t\) to \(y_t\) as an output.

Synopsis:
function\([AA, BB, CC, DD]=white1(ao, c, sy, D, R)\)

Description:
The program couples the systems
\[
\begin{align*}
x(t+1) &= ao * x(t) + c * w(t + 1) \\
y(t) &= sy * x(t) + v(t) \\
v(t) &= D * v(t - 1) + \eta(t) \\
\mathbb{E}\eta(t)\eta(t)' &= R.
\end{align*}
\]
and
\[
\begin{align*}
xh(t+1) &= (ao - k1 * GG) * xh(t) + k1 * y(t) \\
u(t) &= -GG * xh(t) + u(t)
\end{align*}
\]
where \(w(t+1)\) is the innovation to agents’ information sets and where \(u(t)\) is the fundamental (Wold) representation innovation. A (minimum-realization) state space system \([AA, BB, CC, DD]\) for the coupled system is returned. To compute the impulse response function, use \texttt{dimpulse}.
white2

Purpose:
Creates the state space system $[A_A, B_B, C_C, D_D]$ that accepts the measurement error $v(t+1)$ as input and puts out the innovation $u(t)$ to $y(t)$ as an output.

Synopsis:
function $[A_A, B_B, C_C, D_D] = \text{white2}(a_o, c, s_y, D, R)$

Description:
The program couples the systems

\[
\begin{align*}
x(t + 1) &= a_o \ast x(t) + c \ast w(t + 1) \\
y(t) &= s_y \ast x(t) + v(t) \\
v(t) &= D \ast v(t - 1) + \eta(t) \\
E \eta(t) \eta(t)' &= R.
\end{align*}
\]

and

\[
\begin{align*}
xh(t + 1) &= (a_o - k_1 \ast GG) \ast xh(t) + k_1 \ast y(t) \\
u(t) &= -GG \ast xh(t) + u(t)
\end{align*}
\]

where $w(t + 1)$ is the innovation to agents’ information sets, $\eta(t)$ is the innovation to measurement error, and where $u(t)$ is the fundamental (Wold) representation innovation. The (minimum-realization) state space system $[A_A, B_B, C_C, D_D]$ for the coupled system is returned. To compute the impulse response function, use dimpulse.
References

References

References

References

References

References

References

References

References

Subject Index

adjacent complementarity, 211
aggregation
 complete markets, 9, 288
 Gorman, 264
 over time, 175
aliasing, 318
allocation rules, 271
anti-causal sequence, 214
approximation theory, 174
arma
 autoregressive, moving average processes, 29
Arrow-Debreu competitive equilibrium, 5
asset pricing
 periodic version, 307
 via arbitrage, 149
Bellman equation, 35, 96
canonical
 household technology, 199
 computation, 205
cattle, 232
Cauchy-Schwarz inequality, 140
causal sequence, 214
certainty equivalence, 53, 291
choice
 household’s, 141
cointegrating vector, 254
cointegration, 253
commodity space, 131
competitive equilibrium, 139
definition, 142
computed example
 a Jones–Manuelli like economy, 104
 an economy with a durable consumption good, 104
 Brock and Mirman’s model, 103
 Brock-Mirman model with adjustment costs, 113
 Lucas’s pure exchange economy, 104
 periodic Hall model, 324
 continuation, 204
covariance generating function, 169
covariance stationarity, 28
covariogram
 periodic model, 311
cross-equation restrictions
 rational expectations, 33
cross-products between states and controls
 removal of, 38
curse of dimensionality, 5
demand schedules
 dynamic, 199
demand shocks
 interpretation, 204
detectability, 39, 166
directional derivatives, 86
discounted control problem
 replacement by undiscounted problem, 39
disguised periodicity, 330
two illustrations, 330
doubling algorithm, 35, 43, 101, 151, 271, 308, 311
 periodic regulator, 49
dynamic programming, 36
 linear quadratic, 90
dynare, 5, 7
eigenvalues
 endogenous, 92
 exogenous, 92
Engel curve, 267
exogenous state vector, 64
externality
 consumption, 259
firms
 leasing, 142
 producing, 141
 type I, 141
 type II, 142
folding formula
 spectral, 318
Fourier transforms, 217
frequency domain
 approximation criterion, 175
estimation, 172
representation of preferences, 290
frequency domain estimation, 172
Frisch demand functions, 79
fundamental theorems of welfare economics, 139
Gateaux derivative, 86
generalized method of moments, 180
Gorman aggregation, 264
growth condition
Jones–Manuelli, 114
heterogeneous consumers, 269
household technology, 73
adjustment costs, 77
canonical, 199
consumer durables, 75
habit persistence, 76
multiple consumption goods, 78
seasonal habit persistence, 76
housing market, 230
impulse response, 19
inner-product representation, 132
innovation, 163
innovation accounting, 21
innovations
functions of model noises, 191
innovations representation, 161
as whitener, 191
periodic version, 329
serially correlated measurement errors, 187
invariant subspace method, 35, 41
Kalman filter, 161, 167
Lagrange multipliers, 83, 84
expressed in terms of gradient of value function, 93
Lagrangian
firm of type I, 144
firm of type II, 145
household, 143
learning by doing, 71
linear functional, 132, 136
Lyapunov equation, 166
discrete, 27
martingale difference sequence, 18
measurement errors
serially correlated, 187
moving average representation, 19
Negishi weights for planning problem, 263
occupational choice, 236
optimal linear regulator problem, 36
periodic version, 48
optimal resource allocation problem, 83
Parseval’s equality, 214
Parseval’s formula, 216
partial equilibrium, 225
partitioning state vector, 45
periodic models, 301
periodic optimal linear regulator problem, 35
planning problem, 83
as optimal linear regulator problem, 95
periodic version, 302
variational approach, 84
policy functions
dynamic programming, 90
prediction theory
linear difference equations, 19
periodic version, 309
preferences, 73
examples, 75
time separable, 75
price system, 146
production technology
examples, 66
rational expectations
hyperinflation model, 32
stock price model, 32
reciprocal pairs property, 57
recursive dynamic competitive economies, 5
representative household, 73, 263, 270
Riccati equation, 6, 37, 101, 207, 220
convergence conditions, 166
Riesz Representation Theorem, 136
...
Subject Index

risk premium, 150
risk sharing, 273
limited markets, 274
risk-sensitive control theory, 53
Schur decomposition, 42
seasonality
periodic, 301
sharing rules, 271
simulation estimators, 179
skip-sampled system, 312
spectral factorization identity, 10, 11, 162,
169, 170, 205, 293
proof, 186, 220
spectrum
folded, 318
square summability, 80
stability conditions, 166
stabilizability, 39, 166
stacked system, 312
stochastic difference equation
linear first-order, 17
summation by parts, 128
Sylvester equation, 47, 166
symplectic matrices, 42, 44, 57
technology, 64
depletable resource, 70
growth, 69
interrelated factor demand, 72
learning by doing, 71
multi-period adjustment costs, 68
pure endowment, 66
single-period adjustment costs, 67
time to build, 68
term structure of interest rates, 150, 152
periodic, 310
Tiao-Grupe formula, 318, 320
state space realization, 321
two-fund theorem, 275
uncontrollable stochastic process, 84
utility possibility frontier, 265
value function
dynamic programming, 90
iterations on, 37
Vaughan's method, 40
vector autoregression, 5, 24
whitener, 191
whitening filter, 165, 166
Wold representation, 171
z-transform, 170, 213
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson, Brian D. O.</td>
<td>5, 43, 57, 187</td>
</tr>
<tr>
<td>Ansley, C.F.,</td>
<td>169, 189, 254</td>
</tr>
<tr>
<td>Arrow, Kenneth</td>
<td>5</td>
</tr>
<tr>
<td>Barro, Robert</td>
<td>260</td>
</tr>
<tr>
<td>Becker, Gary</td>
<td>103, 199, 210, 253, 258</td>
</tr>
<tr>
<td>Bellman, Richard</td>
<td>5, 91</td>
</tr>
<tr>
<td>Blundell, Richard</td>
<td>263</td>
</tr>
<tr>
<td>Breiman, Leo</td>
<td>330</td>
</tr>
<tr>
<td>Brock, William</td>
<td>70, 121</td>
</tr>
<tr>
<td>Browning, Martin</td>
<td>78</td>
</tr>
<tr>
<td>Cagan, Phillip</td>
<td>32</td>
</tr>
<tr>
<td>Canova, Fabio</td>
<td>174</td>
</tr>
<tr>
<td>Carvalho, Jose</td>
<td>213</td>
</tr>
<tr>
<td>Cass, David</td>
<td>70</td>
</tr>
<tr>
<td>Chari, V. V.</td>
<td>261</td>
</tr>
<tr>
<td>Christiano, Lawrence</td>
<td>261</td>
</tr>
<tr>
<td>Coleman, Wilbur</td>
<td>6</td>
</tr>
<tr>
<td>Dave, Chetan</td>
<td>174</td>
</tr>
<tr>
<td>Deaton, Angus</td>
<td>78</td>
</tr>
<tr>
<td>Debreu, Gerard</td>
<td>5, 132</td>
</tr>
<tr>
<td>DeJong, David</td>
<td>174</td>
</tr>
<tr>
<td>Donaldson, and J. B.</td>
<td>152</td>
</tr>
<tr>
<td>Eichenbaum, Martin S.</td>
<td>229, 264</td>
</tr>
<tr>
<td>Engle, Robert F.</td>
<td>253</td>
</tr>
<tr>
<td>Fackler, Paul L.</td>
<td>6</td>
</tr>
<tr>
<td>Fernandez-Villaverde, Jesus</td>
<td>192, 196</td>
</tr>
<tr>
<td>Flavin, M.A.</td>
<td>245</td>
</tr>
<tr>
<td>Flavin, Marjorie</td>
<td>70</td>
</tr>
<tr>
<td>Frisch, Ragnar</td>
<td>78</td>
</tr>
<tr>
<td>Gabel, R. A.</td>
<td>213</td>
</tr>
<tr>
<td>Gali, Jordi</td>
<td>245</td>
</tr>
<tr>
<td>Gladyshev, E. G.</td>
<td>319</td>
</tr>
<tr>
<td>Gorman, W.M.</td>
<td>9, 74, 203, 263, 266</td>
</tr>
<tr>
<td>Granger, C. W. J.</td>
<td>253</td>
</tr>
<tr>
<td>Grether, David</td>
<td>213</td>
</tr>
<tr>
<td>Grupe, M. R.</td>
<td>319</td>
</tr>
<tr>
<td>Hall, Robert E.</td>
<td>70, 121</td>
</tr>
<tr>
<td>Hamilton, J.D.</td>
<td>245</td>
</tr>
<tr>
<td>Hansen, Lars Peter</td>
<td>135, 174, 192, 196, 245, 263, 264</td>
</tr>
<tr>
<td>Harris, Milton</td>
<td>5</td>
</tr>
<tr>
<td>Harrison, Michael</td>
<td>135</td>
</tr>
<tr>
<td>Harvey, A.C.</td>
<td>182</td>
</tr>
<tr>
<td>Heckman, Geoffrey</td>
<td>76, 210</td>
</tr>
<tr>
<td>Houthakker, Hendrik</td>
<td>78</td>
</tr>
<tr>
<td>Ingram, Beth Fisher</td>
<td>180</td>
</tr>
<tr>
<td>Irish, Margaret</td>
<td>78</td>
</tr>
<tr>
<td>Johnsen, T. H.</td>
<td>152</td>
</tr>
<tr>
<td>Jones, Larry</td>
<td>70, 76, 113</td>
</tr>
<tr>
<td>Judd, Kenneth</td>
<td>6, 260</td>
</tr>
<tr>
<td>Juillard, Michel</td>
<td>5</td>
</tr>
<tr>
<td>Kehoe, Patrick</td>
<td>261</td>
</tr>
<tr>
<td>Kohn, R.</td>
<td>169, 189, 254</td>
</tr>
<tr>
<td>Koopmans, T.C.</td>
<td>70</td>
</tr>
<tr>
<td>Kreps, David</td>
<td>135</td>
</tr>
<tr>
<td>Kullback, S.</td>
<td>174</td>
</tr>
<tr>
<td>Kwakernaak, Huibert</td>
<td>5, 46</td>
</tr>
<tr>
<td>Kydland, Finn</td>
<td>69</td>
</tr>
<tr>
<td>Lancaster, Kelvin</td>
<td>74</td>
</tr>
<tr>
<td>Lee, Bong-Soo</td>
<td>180</td>
</tr>
<tr>
<td>Leibler, R.A.</td>
<td>174</td>
</tr>
<tr>
<td>LeRoy, Stephen</td>
<td>32</td>
</tr>
<tr>
<td>Ljungqvist, Lars</td>
<td>17</td>
</tr>
<tr>
<td>Lucas, Robert E., Jr.</td>
<td>5, 90, 104, 150, 228</td>
</tr>
<tr>
<td>Luenberger, David G.</td>
<td>86</td>
</tr>
<tr>
<td>MaCurdy, Thomas</td>
<td>78</td>
</tr>
<tr>
<td>Mankiw, Gregory</td>
<td>103</td>
</tr>
<tr>
<td>Manuelli, Rodolfo</td>
<td>70, 76, 113</td>
</tr>
<tr>
<td>Marcet, Albert</td>
<td>6</td>
</tr>
<tr>
<td>Marshall, David A.</td>
<td>6</td>
</tr>
<tr>
<td>Miranda, Mario J.</td>
<td>6</td>
</tr>
<tr>
<td>Mirman, Leonard</td>
<td>70, 121</td>
</tr>
<tr>
<td>Moore, J.B.</td>
<td>5, 43, 57, 187</td>
</tr>
<tr>
<td>Mortensen, Dale</td>
<td>73</td>
</tr>
<tr>
<td>Murphy, Kevin</td>
<td>103, 199, 210, 232, 253, 258</td>
</tr>
<tr>
<td>Muth, John F.</td>
<td>31</td>
</tr>
<tr>
<td>Negishi, T.</td>
<td>263</td>
</tr>
<tr>
<td>Nerlove, Marc</td>
<td>213</td>
</tr>
</tbody>
</table>
Author Index

Osborn, Denise, 9, 301
Park, Jong Ahn, 69
Pashardes, Panos, 263
Pierse, R.G., 182
Pollak, Robert, 210
Porter, Richard, 32
Prescott, Edward C., 5, 69, 90, 228
Richard, Scott, 135
Richard, Scott F., 264
Roberds, William, 194, 245
Roberts, R. A., 213
Rosen, Sherwin, 205, 230, 232, 236
Rubinstein, Mark, 275
Rubio-Ramirez, Juan F., 192, 196
Ryder, Harl, 76, 210
Ryoo, J., 205, 236
Sargent, Thomas J., 174, 192, 196, 245
Scheinkman, Jose, 232
Shiller, Robert, 32
Sims, Christopher A., 5, 19, 174
Siow, Aloyisius, 205, 236
Sivan, Raphael, 5, 46
Slutsky, Eugen, 19
Stigler, George, 210
Stoker, Thomas M., 263
Stokey, Nancy L., 5, 90
Svensson, Lars E.O., 303
Tauchen, George, 6
Taylor, Lester, 78
Tiao, George, 319
Tobin, James, 12
Todd, Richard, 9, 301
Topel, Robert, 230
Vaughan, D. R., 35
Watson, Mark W., 192, 196
Weber, Guglielmo, 263
Werning, Ivan, 279
White, Halbert, 174
Williams, Noah, 303
<table>
<thead>
<tr>
<th>Function</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>aarma.m</td>
<td>101</td>
</tr>
<tr>
<td>aggreg.m</td>
<td>178</td>
</tr>
<tr>
<td>aimpulse.m</td>
<td>101</td>
</tr>
<tr>
<td>asimul.m</td>
<td>101</td>
</tr>
<tr>
<td>asseta.m</td>
<td>101, 155</td>
</tr>
<tr>
<td>assets.m</td>
<td>324</td>
</tr>
<tr>
<td>assetss.m</td>
<td>325</td>
</tr>
<tr>
<td>avg.m</td>
<td>176, 178</td>
</tr>
<tr>
<td>canonpr.m</td>
<td>205</td>
</tr>
<tr>
<td>clex11.m</td>
<td>98, 178, 287, 288</td>
</tr>
<tr>
<td>clex11h.m</td>
<td>287</td>
</tr>
<tr>
<td>clex14.m</td>
<td>154, 157</td>
</tr>
<tr>
<td>dimpulse.m</td>
<td>20, 178</td>
</tr>
<tr>
<td>dlyap.m</td>
<td>27</td>
</tr>
<tr>
<td>dog.m</td>
<td>291</td>
</tr>
<tr>
<td>double2j.m</td>
<td>48, 52, 101</td>
</tr>
<tr>
<td>doublej.m</td>
<td>27, 28</td>
</tr>
<tr>
<td>doublej2.m</td>
<td>28</td>
</tr>
<tr>
<td>doubleo.m</td>
<td>101</td>
</tr>
<tr>
<td>evardec.m</td>
<td>21</td>
</tr>
<tr>
<td>factors.m</td>
<td>325</td>
</tr>
<tr>
<td>heter.m</td>
<td>276</td>
</tr>
<tr>
<td>kfilter.m</td>
<td>295</td>
</tr>
<tr>
<td>seasla.m</td>
<td>323, 325</td>
</tr>
<tr>
<td>series.m</td>
<td>298</td>
</tr>
<tr>
<td>simpulse.m</td>
<td>325</td>
</tr>
<tr>
<td>simulh.m</td>
<td>276</td>
</tr>
<tr>
<td>simulhet.m</td>
<td>287</td>
</tr>
<tr>
<td>simuls.m</td>
<td>324</td>
</tr>
<tr>
<td>solvea.m</td>
<td>100, 101, 121, 178, 276, 288</td>
</tr>
<tr>
<td>solvehet.m</td>
<td>287</td>
</tr>
<tr>
<td>solves.m</td>
<td>324, 325</td>
</tr>
<tr>
<td>solvex.m</td>
<td>100</td>
</tr>
<tr>
<td>spectrs.m</td>
<td>325</td>
</tr>
<tr>
<td>steadst.m</td>
<td>100, 324</td>
</tr>
<tr>
<td>varrep.m</td>
<td>191</td>
</tr>
<tr>
<td>white1.m</td>
<td>192</td>
</tr>
<tr>
<td>white2.m</td>
<td>192</td>
</tr>
</tbody>
</table>