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Econometrica, Vol. 39, No. 3 (May, 1971) 

IDENTIFICATION IN PARAMETRIC MODELS 

BY THOMAS J. ROTHENBERG' 

A theory of identification is developed for a general stochastic model whose probability 
law is determined by a finite number of parameters. It is shown under weak regularity con- 
ditions that local identifiability of the unknown parameter vector is equivalent to non- 
singularity of the information matrix. The use of "reduced-form" parameters to establish 
identifiability is also analyzed. The general results are applied to the familiar problem of 
determining whether the coefficients of a system of linear simultaneous equations are 
identifiable. 

1. INTRODUCTION 

THE IDENTIFICATION PROBLEM concerns the possibility of drawing inferences 
from observed samples to an underlying theoretical structure. An important part 
of econometric theory involves the derivation of conditions under which a given 
structure will be identifiable. The basic results for linear simultaneous equation 
systems under linear parameter constraints were given by Koopmans and Rubin 
[10] in 1950. Extensions to nonlinear systems and nonlinear constraints were made 
by Wald [15], Fisher [4, 5, 6], and others. A summary of these results can be found 
in Fisher's comprehensive study [7]. The identification problem has also been 
thoroughly analyzed in the context of the classical single-equation errors-in-vari- 
ables model. The basic papers here are by Neyman [12] and Reiers0l [13]. 

Most of this previous work on the identification problem has emphasized the 
special features of the particular model being examined. This has tended to 
obscure the fact that the problem of structural identification is a very general one. 
It is not restricted to simultaneous-equation or errors-in-variables models. As 
Koopmans and Reiers0l [9] emphasize, the identification problem is "a general 
and fundamental problem arising, in many fields of inquiry, as a concomitant of 
the scientific procedure that postulates the existence of a structure." In their 
important paper Koopmans and Reiers0l define the basic characteristics of the 
general identification problem. In the present paper we shall, in the case of a 
general parametric model, derive some identifiability criteria. These criteria in- 
clude the standard rank conditions for linear models as special cases. 

Our approach is based in part on the information matrix of classical mathe- 
matical statistics. Since this matrix is a measure of the amount of information 
about the unknown parameters available in the sample, it is not surprising that it 
should be related to identification. For lack of identification is simply the lack of 
sufficient information to distinguish between alternative structures. The following 
results make this relationship more precise.2 

' This research was supported in part by a grant from the Ford Foundation administered through the 
Center for Research in Management Science, University of California, Berkeley. The research was 
completed while the author was visiting Associate Professor at the Catholic University of Louvain. 
I am grateful to Theodore Groves for many helpful discussions and to the referees for their valuable 
comments. 

2 The approach taken here is inspired by the work of Aitchison and Silvey [1, 2] on constrained 
maximum-likelihood estimation. 
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578 THOMAS J. ROTHENBERG 

2. BASIC CONCEPTS 

Let Y be a vector-valued random variable in Rn representing the outcome of 
some random experiment. The probability distribution function for Y is known to 
belong to a family YF of distribution functions on Rn. A structure S is a set of hypoth- 
eses which implies a unique distribution function F(S) e F. The set of a priori 
possible structures to be investigated is called a model and is denoted by M. By 
definition there is a unique distribution function associated with each structure in 
M. The identification problem concerns the existence of a unique inverse associa- 
tion. Following Koopmans and Reiers0l [9], we have the following definitions. 

DEFINITION 1': Two structures in Y are said to be observationally equivalent if 
they imply the same probability distribution for the observable random variable Y 

DEFINITIoN 2': A structure S in Y is said to be identifiable if there is no other 
structure in J? which is observationally equivalent. 

In order to say more about the identification problem, we must be more specific 
about the sets S" and .F. This is usually done by assuming Y is generated by a set 
of linear equations with an additive latent error term. We shall take another 
approach and merely assume that the distribution of Y has a parametric rep- 
resentation. Specifically, we assume that every structure S is described by an 
m-dimensional real vector ai and that the model is described by a set A c Rm. 
We associate with each ac in A a continuous probability density function3 f(y, ac) 
which, except for the parameter ai, is known to the statistician. Thus the problem of 
distinguishing between structures is reduced to the problem of distinguishing 
between parameter points. In this framework we have the following definitions. 

DEFINITION 1: Two parameter points (structures) a' and a2 are said to be 
observationally equivalent if f(y, ac') = f(y, oe2) for all y in R . 

DEFINITION 2: A parameter point ac' in A is said to be identifiable if there is no 
other a in A which is observationally equivalent. 

Since the set of structures is simply a subset of Rm, it is possible to speak of two 
structures being close to one another. It is natural then to consider the concept of 
local identification. This occurs when there may be a number of observationally 
equivalent structures but they are isolated from each other. We state this more 
formally in Definition 3. 

DEFINITION 3: A parameter point ac' is said to be locally identifiable if there 
exists an open neighborhood of ac' containing no other ac in A which is obser- 
vationally equivalent. 

' The continuity assumption is made solely for ease of exposition. By adding the phrase "except 
for sets of sample points having zero probability" at the appropriate places, all of our results hold for 
general probability functions. We shall use the words density function and likelihood function inter- 
changeably when referring togf 
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To emphasize the distinction between Definition 2 and Definition 3, we shall 
speak of global identification in the former case and local identification in the latter. 
Needless to say, global identification implies local identification. 

The identification problem is to find conditions on f(y, a) and A that are neces- 
sary and sufficient for the identification of the parameters in A. We shall give 
some partial answers to this problem in the so-called "regular" parametric case.4 
This case is described by the following assumptions. 

ASSUMPTION I: The structural parameter space A is an open set in Rm. 

ASSUMPTION II: The function f is a proper density function for every a in A. In 
particular, f is nonnegative and the equation f f(y, a) dy = 1 holds for all a in A. 

ASSUMPTION III: The set B of y values for which f is strictly positive is the same 
for all a in A. We shall refer to the set B as the sample space of Y 

ASSUMPTION IV: Thefunctionfis smooth in a. Specifically, we assume thatfor all a 
in a convex set containing A and for all y in the sample space B the functions f(y, a) 
and logf(y, a) are continuously differentiable with respect to oa. 

ASSUMPTION V: The elements of the information matrix 

R(a) = [rij((x)] = E L0 logf 0 logf 
- a0i Ooaj 

exist and are continuous functions of ax everywhere in A. 

We shall also need the following definition. 

DEFINITION 4: Let M(a) be a matrix whose elements are continuous functions of 
a everywhere in A. The point a' E A is said to be a regular point of the matrix if 
there exists an open neighborhood of a' in which M(a) has constant rank. 

3. CRITERIA FOR LOCAL IDENTIFICATION 

Under the above assumptions and definitions we have the following result. 

THEOREM 1: Let cx? be a regular point of the matrix R(a). Then oa? is locally 
identifiable if and only if R(cc?) is nonsingular. 

PROOF: Using the logarithmic density function g(y, a) logf(y, a) and its 
partial derivatives 

g(y, ) _= a logf (y, a) 

acci 
4 See, for example, Cramer [3, p. 479]. 



580 THOMAS J. ROTHENBERG 

we have by the mean value theorem, for all y in B and for all ox in a neighborhood 
of OC09 

m 

(3.1) g(y,cx) - g(y, x) = Z gi(y, *)(ai - alp) 
i = 1 

where a* lies between a and ox0. Suppose that oxo is not locally identifiable. Then 
there exists an infinite sequence of vectors {lc'1 2, ... ., Ak* .. .} approaching ocx such 
that g(y, ak) = g(y, a') for all y and each k. This implies, for all y, ligi(y, *)dk = 0 
where 

d& ?Ck 0-i 
I= lak OI 

The sequence {dk} is an infinite sequence on the unit sphere and therefore there 
exists a limit point d. As ak __ ao x, dk approaches d and in the limit we have 

(3.2) Egi(y,c a)di = 0 

for all y. But this implies 

(3.3) d'R(a0)d = E gi(y, ao)dil = 0 

and, hence, R(c?0) must be singular. 
To show the converse, suppose that R(a) has constant rank p < m in a neighbor- 

hood of ao. Then consider the characteristic vector c(a) associated with one of the 
zero roots of R(cx). Since 

(3.4) 0 = c'Rc = E gi(y, cx)ci(a)1 

we have, for all y in B and all cx near ocx, 

(3.5) Z gi(y, c)ci(ac) 0. 

Since R(cx) is continuous and has constant rank, the vector function c(cx) is 
continuous in a neighborhood of a'. Consider then the curve y defined by the 
function ac(t) which solves for 0 < t < t* the differential equation 

= ci(cx) ( = 1 m), 

cxi(O) = Ocix. 

The log density function is differentiable in t with 

(3.6) g[ eRt ( )] = Y gi[y, a(t)]ci[a(t)]. 

But by (3.5) this is zero for all y in B and 0 < t < t*. Thus g is constant on the 
curve y and aco is unidentifiable. This completes the proof of Theorem 1. 
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As an example of Theorem 1 consider the nonlinear regression model 

Yt - h(a, xt) + st (t = 1,.. .,n), 

where ac is an unknown m-dimensional parameter vector and h is a known function 
twice differentiable in x. The Et are independent normal random variables with zero 
mean and unit variance. The xt are nonrandom observed numbers. The logarithmic 
density function for the sample y1, ..., y,, is 

log f= 2 E [Yt -h(,xg 

and the information matrix has typical element 

rij(oc)= hi(c, xt)hj(ox, xt) 

where hi is the partial derivative of h with respect to oi. Forming the m x n matrix 
H(cx) = [hit] = [hi(a, xt)], we can write the information matrix as R(a) = HH'. 
Thus a vector ac' is locally identifiable if H(c?') has rank m. 

In many statistical problems the m-dimensional vector ac is restricted to a lower 
ordered subspace. In these cases the restricted parameter space is not an open set 
in Rm and Theorem 1 is not applicable. In order to handle this common case we 
add to Assumptions I-V the following assumption. 

ASSUMPTION VI: The vector a is known to satisfy a set of constraint equations 

(3.7) fi(0) = 0 (i=19 . . ., k), 

where each i is a known function possessing continuous partial derivatives. 

The new parameter space A' is then the intersection of the set A and the solution 
set of (3.7). We denote the Jacobian matrix for the j as 

~P(x) = =*JX) [___ 

and define the (m + k) x m partitioned matrix 

V(a)= [R(cX)] 

Under Assumptions I-VI we have the following theorem. 

THEOREM 2: Suppose ac cE A' is a regular point of both P(ac) and V(a). Then aco is 
locally identifiable if and only if V(c?0) has rank m. 

PROOF: Suppose P(ac) has rank s for all ac in a neighborhood of ac'. Then the 
constrained parameter space is, in a neighborhood of oc?, a manifold of m - s 
dimensions. Thus A' is locally homeomorphic to an open set of Rms. By examining 
the information matrix with respect to a new parameter vector which describes the 
lower order space, we can then use Theorem 1 to establish local identifiability. 
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Suppose we partition a into two components, o, having s elements and C2 

having m - s elements. By the implicit function theorem, there exists a partition 
and a differentiable mapping q such that the vector equation 

(3.8) a1 = q(x2) 

is satisfied for all solutions of (3.7) in a neighborhood of a'. Then, on the manifold, 
the likelihood function is 

f *(Y, x2) = f [y, q(a2), a2] 

and the information matrix with respect to O2 iS 

(3.9) R*(a) = [Q'I]R QI 

where R = R(a) and Q is the Jacobian matrix 

Q(x2) [aqi((2)1 

The matrix R*(a) will be singular if and only if there exists a nonzero vector z such 
that 

(3.10) R[Q z = 0. 

But from (3.7) and (3.8) one sees that a vector x has the form 

_I 

if and only if it is a solution of Tx = 0. That is, z is a solution of (3.10) if and only 
if there exists a nonzero vector x satisfying 

R 
(3.11) 1 x - Vx = 0. 

Thus the rank of R*(a) is m - s if and only if the rank of V(a) is m. By applying 
Theorem 1 we get our result. 

4. CRITERIA FOR GLOBAL IDENTIFICATION 

For most problems we are interested in global identification rather than simply 
local identification. Unfortunately it is more difficult to obtain global results. 
Of course local identification is a necessary condition for global identification. 
Therefore an examination of the information matrix would appear to be a first 
step in an actual investigation. Nevertheless, one would like to have some general 
conditions which are sufficient to guarantee global identification. In this section 
we shall present some results in this direction. For simplicity we shall drop As- 
sumption VI and return to the unconstrained parameter space A. 
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Going through the proof of Theorem 1, one is tempted to conclude that a 
sufficient condition for the global identifiability of a' is that R(a) be invertible 
for all a. Consider again equation (3.1) which expresses for arbitrary a' and a' in A 
the difference in log densities: 

g(y,cx') - g(y, c0) = gi(y, 0 - o?). 

If ao and a' were observationally equivalent this difference would be zero for all y. 
Letting di = 1- ax we would have 

(4.1) E[ gi(y, a*)di] = 0. 

If a* did not depend on y, then (4.1) would equal d'R(a*)d. Thus if R(a) were 
nonsingular everywhere, then there could exist no observationally equivalent 
points. But, of course, a* will in general depend on y and the above reasoning is 
invalid. There are, however, cases where a* is independent of y and then we can 
prove a global result. Suppose, for example, the logarithmic likelihood function 
has the form 

m 

(4.2) g(y, oa) = A(y) + B(a) + E aiDj(y) 
i = 1 

with B differentiable in a. This is a special case of the multivariate exponential 
family of densities.S It is easy to verify that the multivariate normal density with 
known covariance matrix and unknown mean vector a leads to this form. Using 
(4.2) we have 

(4.3) g(y,c ') - g(y,a?) = B(ox') - B(oe0) + Z Dj(y)(ai - a9). 

Suppose (4.3) equals zero for all y. Then we can apply the mean value theorem to 
B(a), obtaining 

0 = E [Bi(a*) + Di(y)](ac - a9) 

= Z 
gi(y, a*)di 

where Bi is the derivative of B with respect to ai and where a* is independent of y. 
Thus we have the next theorem. 

THEOREM 3: Let f (y, a) be a member of the exponential family defined by (4.2). 
If R(oa) is nonsingular in a convex set containing A, then every cx in A is globally 
identifiable. 

Outside the exponential family it does not seem possible to prove conditions 
for global identifiability using only the information matrix. Other approaches 

5 See, for example, Lehmann [11, p. 51]. 
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must be used. The following situation appears often in practice. Suppose that the 
parameters ai are in fact directly interpretable as characteristics of the density func- 
tion f(y, cx). For example the ai might be moments of the probability distribution. 
Then distinct values of cx necessarily imply distinct distributions of Y and therefore 
are identifiable. One simple result of this approach is given in the next theorem. 

THEOREM 4: Suppose there exist m known functions 0 1(Y),... ., m(Y) such that, 
for all oa in A, 

oci = E[(Y)] (i = m) 

Then every cx in A is identifiable. 

The proof is trivial. Iff(y, oc') = f(y, ox0) for all y, then for all i 

{j(y)f(y, oe') dy = {j(y)f(y o') dy 

and ac' = ca 
Theorems 3 and 4 cover only a limited number of cases. Yet they are crucial 

since they are the basis of most results in identification theory. Theorem 4, for 
example, is the starting point of Reiers0l's proof [13] that the structural errors-in- 
variables model is identifiable if the observations are not normally distributed. 
Furthermore, the traditional approach used in the econometric literature begins 
with a proof that the reduced-form parameters are identifiable because they are 
population moments. 

5. STRUCTURE AND REDUCED FORM 

In this section we shall analyze an important special case that arises in many 
actual identification problems. This occurs when there exist reduced-form param- 
eters that can be used to help establish the identification of structural param- 
eters. The standard econometric literature on identification as summarized by 
Fisher [7] deals exclusively with this case. 

Again we are concerned with the identifiability of an unknown m-dimensional 
structural parameter vector cx which lies in the open set A c R'. We do not need 
the regularity Assumptions I-V given in Section 2 but we do reintroduce As- 
sumption VI (which for convenience we rewrite). 

ASSUMPTION VI: The vector ac is known to satisfy a set of continuously differen- 
tiable constraint equations fri(cx) = 0 (i = 1, . . . , k), with Jacobian matrix IP(a). 
The constrained structural parameter space is denoted by A'. 

In addition we add two other assumptions. 

ASSUMPTION VII: The probability density for Y depends on the structural param- 
eter ac only through an r-dimensional "reduced-form" parameter 0. That is, there 
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exist r known continuously differentiable functions Oi = hi(oc) (i = 1,... , r) mapping 
A into Rr and a function f *(y, 0) such that 

f (y, ) = f *[y, h(oe)] = f*(y, 0) 

for all y in B and for all a in A. 

ASSUMPTION VIII: Let A* c Rr be the image of A' under the mapping h. Then 
every 0 in A* is assumed to be (globally) identifiable. 

Thus the parameters a constitute the basic structures of the model A'. Every 
structure, however, implies a reduced-form parameter 0 which completely charac- 
terizes the probability distribution of Y Furthermore these reduced-form param- 
eters are globally identifiable. Hence the identification of a vector a' E A' depends 
solely on the properties of the mappings h and i. If 00 is the image of a', then ac' is 
(globally) identifiable if and only if the equations 

(5.1) 0? = hi(o (i= 1,...,r), 

?-= ~j(0 l(j 1, ..., k), 

have the unique solution ac'. The identification problem then becomes simply a 
question of the uniqueness of solutions to systems of equations. Here we may use 
the classical results of analysis. Defining the Jacobian matrices 

H(a) [OhiJ P(x)= 

and the partitioned matrix of order (r + k) x m 

(5.2) W(c) H(a)] 

we have the next theorems. 

THEOREM 5: If the functions hi and i are linear, then ao is (globally) identifiable 
if and only if the (constant) matrix W has rank m. 

THEOREM 6: If ac' is a regular point of W(o), then ac' is locally identifiable if and 
only if W(c?') has rank m. 

The case of global identification when the hi and i are nonlinear is more difficult. 
All we can offer is an overly strong sufficiency condition using a result due to Gale 
and Nikaido [8].6 

THEOREM 7: If A' is a convex set, then a sufficient condition for the global identi- 
fication of ac' is that there exists an m x m submatrix W of W such that the deter- 
minant of W is positive and W + W' is positive semidefinite throughout A'. 

6 See Fisher [7, p. 159] for a similar result. 
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Finally, we may state a result due to Wald [15] concerning the local identifi- 
ability of a given element of a. Consider, say, the first element of a'. We say that 
ax is locally identifiable if there exists an open neighborhood of a' in which all 
vectors observationally equivalent to ao have the same value for a1 .' Then suppose 
we add to (5.1) the fact that al1 is known. We have 

09 = hi(a) (i= l,...,r), 

(5.3) 0 = j(a) (j-1,...,k), 

ao = a, 

which has Jacobian matrix W1(a). It is clear that W1 is simply W with an added row 
consisting of one in the first column and zeros elsewhere. If ao is identifiable then 
there is no new information in (5.3) that is not already in (5.1). Conversely, if there 
is no new information in (5.3) then xo? must be identifiable. Locally the Jacobian 
matrix summarizes the information in the equation system. This leads us to another 
theorem. 

THEOREM 8: If cx0 is a regular point of both W(c) and W1(oc), then oc? is locally 
identifiable if and only if W(o) and Wl(oc) have the same rank. 

The proof can be found in Wald [15] and Fisher [7, p. 181]. If should be noted 
that the theorem is globally valid if the hi and li are linear. 

6. THE SIMULTANEOUS EQUATIONS MODEL 

The results of the previous sections can be applied to the econometric model 
developed by Koopmans, Rubin, and Leipnik in [10]. The model contains a set of 
G linear equations 

(6.1) By, + Fx = u 

where Yt and u, are G-dimensional vectors of random variables and x, is a K- 
dimensional vector of nonrandom exogenous variables; the G x G matrix B 
and the G x K matrix F are parameters. The vector u, is assumed to be normally 
distributed with mean zero and covariance matrix Z. The parameter space A 
consists of the (2G + K)G elements of (B, F, Z) such that B and Z are nonsingular. 
In addition, however, there are the constraints 

(6.2) Vi(B, F, Z) = 0 (i1, ..., k). 

After premultiplying (6.1) by B1 we obtain 

Yt= -B'Fxt + B lut 

Hxt + Vt 

7 Note that this definition does not exclude there being two observationally equivalent points 
having the first components arbitrarily close. 
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where vt has mean vector zero and covariance matrix 

(6.3) Q2 = B-'ZB'-'. 

If a random sample of size n is taken from this process, one obtains the n x K 
matrix X of observations on xt and the n x G matrix Y of observations on Yt* 
If X has full rank K, it is easy to verify that everywhere in A 

E[(X'X)-1X'Y] = 1! 

E Y'[I - X(X'X)-1X]Y-?2. 
T- K 

Thus by Theorem 4, H and Q are identifiable. Furthermore, since ut is normally 
distributed, the density for Y depends only on H and Q. Hence Assumption VII 
is satisfied. We may thus consider (B, F, Z) to be the structural parameter a and 
(H, Q) to be the reduced form parameter 0, and then use the results of Section 5.8 

Let (BO, Fr, Z0) be some structure satisfying the constraints (6.2). Let (H0, 20) 

be the implied reduced form. Then the identifiability of the structure depends 
on the uniqueness of solutions of 9 

(6.4a) Bs0 + F = 0, 

(6.4b) BQ2?B'-Z = 0, 

(6.4c) fr(B, F, Z) 0 (i0= 1, ..., k). 

Let/ = vec B be the G2-dimensional vector formed from the elements of B taken a 
row at a time. Similarly, we define the GK-dimensional vector y = vec F and the 
G2-dimensional vector a = vec Z. Then the vector a may be written as 

[/3 ][vec B 

a = Y vec F 

L j LvecZ 
We also define the three partial derivative matrices 

Ofl y] Y ayj] Of Si 

Differentiating, we can write the Jacobian matrix for the functions in (6.4) in the 
partitioned form 

(IG 0 H0)' IGK 0 

(6.5) W Id 0 IGG 

8Altematively, if we do not assume normality but ignore all information not contained in the first 
two moments of the distribution, then again n and Q characterize the process and Section 5 is relevant. 

' Since Q0 is necessarily symmetric, equation (6.4b) imposes the same constraint on Z. Hence the 
symmetry condition on Z need not be included in (6.4c). Of course the / functions must be consistent 
with the symmetry. In the following we assume that the constraints have been written in such a way 
that /i(B, r, Z) = qi(B, F, Z') for all i; e.g., the constraint C12 = 1 would be written a12 + a21 = 2. 
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where 0 represents the Kronecker product and where A is a G2 x G2 matrix 
having the property that A = 2~P,(I 0 BOO). But, when evaluated at x0, W 
may be rewritten as 

? IGK ? (IG )B- 1)' 0 0 

(6.6) W(Ma) = r O IGG (IG ) IGK 

W* IF PCIFa ( 
L 

' G O IGG_K 

where W* is the k x G2 matrix given by10 

IG 0 B'] 

(6.7) W* = 9pf(IG (0 B') + lpy(IG (0 F') + WP(IG (0 2Z) = IG (0 F' 

pIG (0 2Zj 
The second partitioned matrix in (6.6) is nonsingular for all a in the unrestricted 
parameter space A. Hence the rank of W equals G(G + K) plus the rank of W*. 
Using Theorem 6 we have the following theorem. 

THEOREM 9: Suppose the G(2G + K)-element structural parameter cx is a regular 
point of W*. Then the parameter is locally identifiable if and only if W* has rank G2. 

This result was first found by Wegge [16] using a different method of proof. 
Some implications of Theorem 9 are developed in [14] for the special case where 
all the restrictions are of the exclusion type. The following corollaries are immedi- 
ate consequences of the arguments leading to the theorem. 

COROLLARY 1: A necessary condition for the identification of oa is that there be 
at least G2 independent restrictions ifi. 

COROLLARY 2: If each function ~/i is linear in B and F and independent of X, then 
Theorem 9 is also globally true. 

It is also possible to apply Theorem 8 to this model. Let 'i be the (k + 1) x 
(2G2 + GK) matrix obtained by appending to IF a row with one in the ith column 
and zeros elsewhere. We then define 

IG B' 

Wt = t i IG F' L 

LIG 0 2Z J 

THEOREM 10: If ao is a regular point of both W* and Wi*, its ith component is 
locally identifiable if and only if W* and Wi* have the same rank. If each function i 
is linear in B and F and independent of Z, then the result is global. 

10 All the matrices in (6.7) are evaluated at ao. 
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Using Theorem 10 we can now examine the familiar case where each constraint 
tfi is a linear function of the coefficients of the same equation. Let bp be the vector 
of coefficients in the pth structural equation. That is 6, is the pth row of D=(BF). 
Then we assume that the constraints are of the form 

(6.8) 1FP6P = cP (p = 1,, * G), 

where IPp is a kP x (G + K) matrix of constants and cp is a vector constant. There 
are then k = Ykp constraints in total. 

Substituting into (6.7) we find that W* is given by the k x G2 block-diagonal 
matrix 

W1 ~~0 

(6.9) W*= 

O ~WG 

where the pth diagonal block is given by the kP x G matrix 

(6.10) Wp = FP(BOFO)' =_ PD?'. 

To investigate the identifiability of the ith component of 6? (i.e., the pi element of 
D?), we must examine 

(6.11) Wpi = 1P(BOFO)' 

where 'Fpi is obtained by appending to 'P a row with one in the ith column and 
zeros elsewhere. Given the block diagonal form of (6.9), Theorem 10 leads us to the 
following (apparently new) result. 

COROLLARY 3: Under linear constraints on the coefficients of the same equation, 
the ith element of 6? is identifiable if and only if W* and W*. have the same rank. 

If Wp has full rank G, then adding a new row to If cannot change its rank. 
Hence every element of 6, is identifiable. Conversely, if Wp has rank less than G, 
at least one element of bp must be unidentifiable. Thus we have the classical result 
given by Koopmans and Rubin [10]. 

COROLLARY 4: Under linear constraints on the coefficients of the same equation, 
the vector of coefficients 6? is identifiable if and only if Wp has rank G." 

These last two corollaries may be illustrated by the three-equation model 

IllYl + #12Y2 + f13Y3 + YllXl + Y12X2 = U1, 

#21Y1 + #22Y2 + fl23Y3 + Y2lXl + Y22X2 = U2, 

#31Y1 + f32Y2 + #33Y3 + Y31Xl + Y32X2 = u3, 

1' We incorporate the normalization rule in (6.8). Hence our rank condition is G instead of the 
usual G - 1. 
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where the constraint functions are 

#11= ft22 = f33 = 1, 

Y21 = Y22 =Y31 = Y32 = 0, 

Yll + Y12 = 1- 

In addition to the normalization rule we know that x1 and x2 do not appear in the 
last two equations and have coefficients in the first equation summing to one. 
In the notation of equations (6.8) and (6.10) we have 

-1 0 0 0 
1= _0 0 0 1_ , 

0 1 0 0 0 10 1 0 0 

F2 L0 00 1 0, I3r0 0 01 0] 

0 0 0 0 1 O 0 001 

and 

1 321 /331 W?* [1 0 0 ] 

F12 1 /32 [13 /23 1 

W2*= y1 0 0 , W3*= Yl 0 0 

L_Y12 0 0 L Y12 0 0] 

Each of the Wprhas rank less than three and hence none of the equations is identifi- 
able. However, simple calculation yields from equation (6.1 1) 

- 1 #21 #31 l - 1 /21 /31 

WY4=L 1 0 0 

,711 ? ? ,012 0 0] 

Since W*4 and W'5 have the same rank as Wi, both y 1 and 
Y 

12 are identifiable. 
The remaining unknown parameters (/ 12, / 13, /21, /23, /3 1 /33) are not identifi- 
able. 

In closing we may note that the analysis here of the linear simultaneous equa- 
tions model does not require any use of the information matrix. This is due to the 
fact that H and Q are assumed to completely characterize the distribution of Y 
If, however, the ut were known to have some nonnormal density or if the equation 
system (6.1) were nonlinear, this would no longer be the case. Identifiability 
typically does require the investigation of the probability distribution of the 
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observations. In these cases, the information matrix is often a convenient starting 
point. 

University of California, Berkeley 

Manuscript received March, 1969; revision received November, 1969. 
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