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THOMAS J. SARGENT 

Rational Expectations and the Term 

Structure of Interest Rates 

I. INTRODUCTION* 

THIS PAPER REPORTS SOME TESTS of two important 
hypotheses about the behavior of the tenn structure of interest rates. The first 
hypothesis is the "expectations hypothesis," which states that forward rates of 
interest are forced into equality with the short rates that investors expect to pre- 
vail in subsequent periods. Ee second hypothesis is that the expectations of in- 
vestors are rational in the sense of John F. Muth [22].1 By this we mean that 
investors' expectations are equivalent with the optimal forecasts of statistical theory 
for a certain specifiled class of statistical models. A convenient way to characterize a 
market that satisfiles both of these hypotheses is as an "efficient market."2 While 
the filrst hypothesis has been purportedly subjected to a bewildering variety of 
empirical "tests," it has only rarely3 been tested within a framework that requires 
maintaining that expectations incorporate available information efficiently, the 
second hypothesis. The criterion of acceptable empirical results has generally been 
that of "plausibility," a criterion with unfortunately little discriminatory power. 

*The research underlying this paper was supported by a grant from the Social Sciences 
Research Council. Helpful comments on an earlier draft were made by E. Philip Howrey and 
Richard Roll. 

1 Actually, what we are using in this paper is a poor man's version of Muth's argument, since 
the statistical models that are assumed to govern the interest rate have no analytical economic 
content, being naive autoregressive schemes. In this we are following the path taken in most 
previous work on the term structure. However, a more complete approach would take into ac- 
count the likelihood that other variables such as the money supply, price level, and rate and 
composition of income contain information that is useful for predicting the interest rate. 

2The phrase "efficient market" is due to Roll [26] and Fama [9] . 
3The most notable exception is Roll's excellent study of the behavior of U.S. Treasury Bill 

rates. See [26]. 

THOMAS J. SARGENT is associate professor of economics at the University of Minnesota 
and is economist with the National Bureau of Economic Research. 
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The result has been the proliferation of empirical studies, with few decisive results 
having been achieved. 

The contention of this paper is that by also invoking the second hypothesis, 
namely that readily available information will not be wasted, much sharper tests of 
the expectations hypothesis are made possible. Needless to say, the requirement 
that available information be used effslciently is much weaker than the requirement 
that expectations be very accurate. It was against the imposition of that stronger 
requirement that David WIeiselman was contending when he wrote that "anticipa- 
tions may not be realized yet still determine the structure of rates in the manner 
asserted by the [expectations] theory.'4 Althou« this is correct, it nevertheless 
seems unwise to construct models that build in "irrational" expectations. 

The implication of our two hypotheses is remarkably simple: they imply that a 
certain sequence of forward interest rates follows a martingale.5 This important 
proposition, which is due to Paul Samuelson [27], and which was first implemented 
in the context of the term structure by Richard Roll [26], is discussed in Section 
II.6 There we also discuss the relationship of David Meiselman's [19] important 
work to the Samuelson model considered here. As it turns out, Meiselman's equa- 
tions are implied when things are restricted a bit more than they need to be to ob- 
tain Samuelson's martingale proposition. In Section III, we present an empirical test 
of whether Durand's basic yields satisfy the implications of our two hypotheses, 
together with some closely related tests of a certain class of "random-walk" models. 
In Section IV we return to Meiselman's model, arguing that there is an important 
(asymptotic) bias in estimates of the slopes in Meiselman's model. The presence of 
the bias helps explain some curious features of results that Meiselman and others 
have obtained. Finally, our conclusions are stated in Section V. 

This paper is most closely related to the previous work of Stanley Diller [6] and 
Richard Roll [26] . It was Diller who fslrst examined under what classes of stochas- 
tic processes governing the evolution of spot rates revision equations like Meisel- 
man's would emerge as a consequence of "optimal" forecasting. Roll was the first 
economist to implement Samuelson's martingale theorem in the context of a study 
of the term structure. His treatment of that theorem is considerably broader than 
the one included here, being based on his extensive work on capital-market equi- 
librium theory. In addition, his empirical tests, conducted on the basis of weekly 
data on U.S. Treasury bill rates, do not assume that bill rates are covariance station- 
ary. Instead, Roll argues that the evolution of bill rates is more adequately de- 
scribed by assuming that they are drawn from one of the stable distributions with 
infinite variance. While that specifilcation is certainly an interesting one, abandon- 

4Meiselman 119, p. 121. 
sA sequence {xt,xt+l ,xt+2> . . .} is said to follow a martingale if 

E(xtl |XtsXt-l ,Xt-2s . . ) = Xt, 

where E is the mathematical expectation operator. For discussions of the properties of martin- 
gales, see Doob 171 and Feller [101 

6Mandelbrot 1171 should be regarded as the codiscoverer of the martingale model, along with 
Samuelson. 
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ing the assumption of covariance stationarity has its costs. In Section II we try to 
show that if the assumption of covariance stationarity is retained, a wide variety of 
empirical work on the term structure can be interpreted as testing Samuelson's 
model. 

II. RESTRICTIONS IMPLIED BY THE TWO HYPOTHESES 

A. The Martingale Theorem 

It is necessary to assume that the spot one-period rate, Rt, can be characterized 
by the probability distribution function 

Probability [Rt+j AR lRt = rO,Rt 1 = r1, . . . ] (1) 

=P(R,rO,r1,... ;j) j= 1,2,3,.... 

The probability function is assumed to be independent of calendar time. That is all. 
The process need not be normal. It can even be stable Paretian, having inElnite 
variance) provided that its mean exists (which rules out Cauchy processes). It need 
not be linear. 

Notice that all the P(R, . . .; j)'s for j = 2, 3, . . ., oo can be calculated recursively 
from the one-span-forward probability distribution P(R, . . . ;1): 

00 

P(RXrOr1 * * * ;i) P(R,z,rO,r1, . . . ;j- 1)dP(z,rO,r1,. .; 1). (2) 
_00 

Let t+jFt be the forward interest rate on one-period loans that prevails at time t 
for loans made at time t+j. We now impose both of our hypotheses by requiring 
that 

t+jFt = E [R t+jlR t,R t 1 X ] 

00 (3) 

= S RdP(Rt, Rt_ 1 t * ;i) 
J-oo 

where E denotes mathematical expectation. Equation (3) states that the market 
equates the j-period forward rate to the expectation formed on the basis of the 
probability distribution describing the evolution of the spot rate. Not only are ex- 
pectations supposed to determine the yield curve, but they are assumed to be based 
on all the information available, namely the P's. Samuelson's theorem states that 
under the assumed conditions the following sequence follows a martingale: 

{t+jFt, t+jFt+ 1, * * , t+jFt+j- 1, R t+j} (4) 
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The martingale is deElned by the condition 

E(t+jEt+ 1 | Rt, R t- 1, . . . ) = t+jFt (S) 

for all j. That is, the expected change in the forward rate applying to loans at a 
given date in the future is zero.7 The theorem is important because it permits us to 
utilize the properties of martingale sequences8 in constructing tests of the expecta- 
tions theory of the term structure. Two of these properties are particularly useful. 
First, if the sequence (4) follows a martingale, then 

E(t+jFt - t+jFt_ 1 ) = 0 j = O, 1, 2, . . . (7) 

which, in the jargon of the term structure literature, rules out "liquidity premiums.t 
This is a well-known implication of the expectations theory that has been exploited 
often in empirical work (see Wood [35] and Kessel [15] ).9 

A second property of a martingale is that its increments are uncorrelated, though 
not necessarily statistically independent.10 That is, where cov (x,y) denotes the co- 
variance between x and y, it is a characteristic of the martingale (4) that 

7(1) COV(t+jFt- t+1Ft-1 t+jFt-l t+jFt-2)= °si= O, 1 2 - - 

More generally, the covariances of increments are zero for all lags k > 1: 

7(k) = cov(t+;Ft - t+jFt_l, t+jFt-k - t+jFt-k-l) = ° (8) 

j=0, 1,2,...; k= 1,2,3,.... 

7Here is Samuelson's proof. First, let the function f () denote the expectation t+jFt+l t 

roo 
t+jFt+1 = J_ RdP(R,Rt+l ,Rts . . .; j-1) 

(6) 
= f (R t+l sRt, * ) 

The expectation °f t+jFt+l, conditional on information available at time t, is given by 

00 

E [t+jFt+l IRteRt_l * * * 1 = JC f(ZeRteRt-l . . . )dP(z,Rt,Rt_l, . . .; 1). 

Substituting (6) into the above expression yields r [rX RdP(R,z,Rt,Rt_l,...; j-l)] 
dP(z,Rt,Rt_l, . . .; 1). Changing the order of integration gives rOO Rd [I 0sa P(R,z,Rt, . . .; 
j-l)dP(z,Rt, . . .; 1)] . But by equation (2) this equals 

r°° 
J RdP(R,Rt, - ; j)= t+jFt 

which proves the theorem. 
8 See Feller [ 101 and Doob [ 7 ] . 
9However the theoretical foundations of (7) have rarely been explicitly exposed. Again, an 

exception is Roll [261. 
l°SeeDoob [71 andSamuelson [271. 



78 : MONEY, CREDIT, AND BANKING 

The implications of equation (8) can be summarized compactly by noting that it 
implies that the spectral density of the increments of the sequence (4) is flat or 
"white." The spectral density s(w) is defined as the following weighted sum of the 

7(k)'s: 

s(w) = 2 L 7(k)e iW* = 2 (7(°) + 2 E (k) cos kw). 
k=-oo *=1 

But since (k) is zero for all k not equal to zero, 

s(w) = Te ), (g 
2Fr 

which establishes the spectral "whiteness" of increments in a martingale sequence. 
It is this restriction on the increments of the forward rate sequence (4) that we 

will exploit to perform empirical tests of our two hypotheses. We do not use or 
even require the condition (7), since it is fairly well established that (7) seems in- 
consistent with the data, due to the presence of "liquidity premiums.''ll Yet (7) 
can be violated and (8) and (9) remain valid. For example, it is sufficient that the 
liquidity premiums be on the average constant through time, which implies the 
weaker condition 

E(t+jFt | Rt-1, R t 2, * * ) = )j + t+jFt l, or E(t+jFt - t+ jFt l ) = Xj, Xj < °, 

(7') 

where the Xj's are constant through time. A sequence obeying (7') is said to be a 
"submartingale," a process that has uncorrelated increments and so obeys (8) and 

(9)- 

B. A More Restrictive Form of the Model 

It is interesting to explore the implications of further restricting the probability 
distribution of (1) in the following manner: we assume that the one-period spot 
rate Rt follows a discrete (covariance) stationary stochastic process with finite vari- 
ance. Then use of Wold's [33] famous theorem permits us to decomposeRt into 
two mutually uncorrelated processes 

Rt = tt + et 

where tt iS a deterministic component, predictable with zero mean squared error 
given an adequate number of its past values, and Et iS a one-sided moving sum of un- 

1l See Kessel [ 15 ], Wood [34 ], and Cagan [21 . 
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correlated random variables, 
00 

et = L CkUt-k 
k=O 

where E(ut) = O 

E(u2)= 2 

E(UtUt-s) = O, s + O. 

We make the natural assumption that tt iS predicted perfectly by investors, an as- 
sumption that is the only one compatible with our maintaining Muth's hypothesis 
that information is not wasted. 

Hence one-penod spot rates are governed by 

00 

Rt = St + E CkUt-k * (l0) 

k=O 

At time t, the minimum-mean-squared-error forecast of the one-period spot rate to 
prevail at time t+j, which equals E(Rt+j lRt,Rt l, . . . ) and which determines t+jFt, 
is given by 12 

l2Essentially, (11) is derived by replacing ut+j, ut+j_l, . . ., ut+l by their expected values of 
zero in the expression 

j-l oo 

Rt+j = tt+j+ E CkUt+j-k + E Ck+jUt-k - 
k=O k=O 

More formally, let the forecast be given by 
00 

t+jFt= dkut-k+tt+j. 

k=O 

The mean squared error is 

E(t+jFt-Rt+j)2 =E( dkUt_k- E ckut+j_k) 
k=O k=O 

j-l oo 

= E - ckut_k + E (dk j - Ck)at2 
k=O kj / 

j-l oo 

= (72 E Ck + aU E (dkj - Ck) 

k=O kj 

For fixed ck's the above expression is minimized by setting dk j = Ck for all k greater than or 
equal to j. The fundamental reference on the subject of forecasting processes like (10) is 
Whittle [ 3 21 
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oo 

t+jFt = tt+j + L Ck+jUt-k (11) 
k=o 

This is the particular version of (3) corresponding to the process (10). Similarly, 

00 

t+jFt-l = tt+j + E Ck+jUt-k- (12) 

k=l 

To establish the nature of the increments of the process in (4), we subtract (12) 

from (11), which yields 

t+jFt - t+ jFt-l = CjUt; j = O, 1, 2, ... . (13) 

Equation (13) obviously satisfies the martingale condition (5). It is even more re- 
strictive, however, implying that over time each increment (t+jFt- t+ jFt l) is an 
independent, identically distributed random variable with variance cj2 ou2 . This im- 
plies that the spectrum of each increment is flat, an implication that can be tested 
empirically quite easily. Equation (12) states that the j-period-forward rate on one 
period loans follows an additive "random walk.''l3 

It is the more restrictive (but still very general) version of the model that specifsles 
that the P's of (1) can be described by (10) that seems to be implicit in some of the 
best empirical work on the term structure. To take an outstanding example, sup- 
pose that, following Meiselman [19], we estimate "revision" equations of the form 

t+jFt - t+ jFt -1 = j (R t - tFt l ), i = 1, 2, . ( 14) 

Then (13) implies that the right and left hand sides of (14) are perfectly correlated. 
It is in this sense that high R2 's in estimates of Meiselman's equation can be said to 
confirm the expectations hypothesis. Moreover, note that, maintaining (13), the 
least squares estimate of {3j is 

LCjUt ' COUt 

t 

E (cOUt)2 
t 

CjCo zUt (1 s) 

p Ci 

13Cootner [41 is a useful reference on random walks applied to asset prices. 



THONIAS J. SARGENT : 81 

Thus, as Stanley Diller [6] has pointed out, if (13) is maintained the family of jB's 
supplies estimates of the Ck'S that seem to be generating the data. Whether or not 
estimating (14) is as a practical matter a reliable means of recovering the c*'s is an- 
other question, one that we return to in Section IV. 

Other empirical studies of the term structure have frequently analyzed yields to 
maturity directly, rather than forward rates (e.g. Modigliani and Sutch [21], 
Malkiel [16], Granger and Rees [13], Wood [34] ). Consequently, it is of interest 
to spell out the implications of this section's somewhat restricted form of the model 
for the behavior of yields to maturity. Yields to maturity are related to forward 
rates by the Fisher-Hicks formula, 

Rnt = n(Rlt + t+lFlt + * * * + t+n-lFlt) 

where Rnt is the yield to maturity on an n-period bond.14 Substituting (10) and 
(11) into the above formula yields 

Rnt n(tt + tt+l + * * * + tt+n-l) +-ffi (Ck + Ck+l + * * * + Ck+n-l) Ut-k 
k=o 

or (16) 
00 

Rnt ont + E dnkUt-k 

k=O 

where Ont = n(tt + Xtel + * * * + t;tn-l ) dnk = (Ck + Ckil + * * + Ck+n-l )ln 

Relation (16) states that the non-deterministic parts of the yields to maturity for all 
maturities can be expressed as one-sided moving sums of the same serially indepen- 
dent, identically distributed random variable. The particular wei«ts in the moving 
sum, of course, will in general depend on maturity. 

Suppose now that all yields are purely non-deterministic, so that Ont is zero for all 
n and t, or that the deterministic parts have been removed by a "de-trending" oper- 
ation. Then (16) implies that the coherence between yields to maturity for any 
two maturities is equal to unity over all frequency bands.ls Thus, taking Fourier 
transforms of each side of ( 16) yields 

Rn(W) = Dn(w) U(w) ( 17) 

The formula given is actually an arithmetic approximation to Hicks's formula. 
l5The coherence measures the proportion of variance in one series occurring over some fre- 

quency band that can be explained by the variation in another series over the same frequency 
band. It is analogous to the R2 statistic of correlation analysis and like the R2 5 it is bounded 
by zero and unity. 
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where Rn(w) = ERnt e iWt 

Dn(W) = Ldek e iwk 

k 

U(w)=ute 

t 

The spectral density of the yield to maturity on n-period bonds is given by 

tnn(w) = E |Rn(w) 1 2 

E|Dn(w)U(w)|2 

=tUu(w)lDn(w)l 2 

where E is the mathematical expectation operator, the vertical bars denote the am- 
plitude of the included quantity and fU"(w) is the spectral density of the distur- 
bance process, u, which is known to be "white noise," so that 

fuu(w) 2 . 

The cross spectrum between yields to maturity on ta-period and J-period bonds is 
given by 

fnj(w) E[Rn*(W)Rj(w)] 

where the asterisk denotes complex conjugation. Thus, 

fnj(w) - E(Dn* (W) U*(W) Dj(w) U(w)) 

- tuu(w) Dn* (w)Dj(w) . 

The coherence coefficient at frequency band w, coh(w), is defined as the squared 
amplitude of the cross spectrum divided by the product of the values of the spectral 
density at that frequency band: 

AUU(W)[D (W)|ZTUL{(W)IDX(W)I 2 

1 
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Thus, on our hypotheses, the coherence between (the non-deterministic parts of) 
yields to matunty for any two maturities equals unity. Several empincal studies 
have estimated cross spectra for pairs of yields to maturity of various maturities 
(e.g. Granger and Rees [13] and Sargent [28] ). The calculations above establish 
that the coherence coefElcients estimated in such studies constitute evidence capa- 
ble of disconElrming the version of the expectation hypothesis being discussed in 
this section.l6 

The foregoing implications of our hypotheses can be expressed in an equivalent 
way in terms of the distributed lag relationships that must exist between any two 
yields to maturity. In particular, (16) implies that a yield of any maturity can be 
completely explained by a distributed lag function of any other yield. Let us as- 
sume again that Ont equals zero for all n and t, or that any deterministic compo- 
nents of the series have been removed.l7 Then (17) implies that 

Rn (W) = Dn(( )) R j(w) . 

Taking the inverse Fourier transform of the above expression establishes thatl8 
00 

Rnt = H(L )Rjt = hiRjt-i ( 18) 

i=o 

l6The presence of errors of observation obviously would reduce the implied coherence below 
unity. Thus, in place of (16), suppose that R 2t is governed by 

00 

R2t= E d2*Ut-* + etX 
*=o 

where st is an error of observation assumed to be white noise uncorrelated with ut. Then the 
coherence between R 1 t and R 2 t is given by 

coh (w) = 1 - t66 ( ) 
t22 (w) 

where f,5, (w) is the spectrum of e (which equals a/2Fr where ae is the variance of e). 
Some economists have calculated the phase of the cross spectrum between yields to maturity, 

sometimes arguing that on the expectations hypothesis the longer rate ought to lead the shorter 
rate. However, unless further restrictions on the R-process are added to those that have been 
introduced in the text, it is impossible to predict the sign of the phase of the cross spectrum. 

We also assume that the roots of S*=0 dj*L* = 0 lie outside the unit circle for all j. 
Alternatively, note that assuming Ont = O, (16) becomes 

Rnt = ( dniL )ut; n = 1, 2, * . . 
i=o 

Assuming that Si_0 djiLi is invertible, ut can be written 

ut= oo Rjt, 

E djiL 

i=o 
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oo 

E dn*L 

where H(L) = *=° = ffi hiLi, 
00 

E dj*Lk 

*=o 

and where L is the lag operator defined by LnXt = xt_n: The one-sided character of 
the impulse-response function H(L) follows from the one-sided nature of the d's. 
The hypotheses set forth in this section thus imply that it is possible entirely to ex- 
plain the behavior of yields to maturity via the class of one-sided distributed lag 
functions (18). Fitting distributed lags directly to data on yields to maturity has 
been the approach followed by de Leeuw [5], Malkiel [16] and Modigliani and 
Sutch [21]. 

The one-sided character of the distributed lag functions in (18) suggests a test of 
the version of the expectations hypothesis presently under consideration, a test that 
it may sometimes be convenient to employ. That test would involve estimating the 
"two-sided" distributed lag functions 

m2 

Rnt = L hiRjt_i + wt, for n + j (19) 
i=-ml 

where ml and m2 are positive parameters and wt is a statistical residual. Significant 
estimated coefficients on future values of the right-hand variable in (19) would indi- 
cate that it is not possible adequately to represent both Rnt and Rjt as one-sided 
moving averages of the same single white noise. From a generalization of the theo- 
rem of Wold cited above, it is known that any pair of indeterministic, covariance 
stationary stochastic processes, say Rjt and Rnt, can be represented as pairs of dif- 
ferent one-sided moving sums of the same two independent white noises: 

00 00 

Rjt =E aiUt_i +E biet- 

s=o i=o 

(20) 
00 00 

Rnt = E diut-i + E fiet-i 
i=o i=o 

which implies that Rnt can be expressed as 
_ _ 

E dniLi 

i=o 
Rnt= Rit 

E djtL i 

_ i _ 
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where the a's b's, d's andf's are parameters and e and u are two mutually indepen- 
dent white noises. Sims [29] has proved a theorem that implies that the distributed 
lag (19) and the reverse distributed lag WithAnt on the right andEjt on the left will 
both be one-sided if and only if all of the b's and all of the f's, or alternatively all of 
the a's and all of the d's in (20) equal zero.l9 By Eltting such two-sided distributed 
lags it is thus possible to determine whether all yields to maturity can be expressed 
as one-sided moving sums of the same white noise, as is implied by the version of 
the expectations theory being considered here. 

In conclusion, many empirical models of the term structure can be rationalized 
within the framework presented in this section. In particular, the contributions of 
Wood [34], de Leeuw [5], Malkiel [16], Bierwag and Grove [1], and Modigliani 
and Sutch [21 ] all fall within this framework. The models of Modigliani and Sutch 
[21 ] and Bierwag and Grove [1 ] seem to be the most general, being less dependent 
on particular a priori assumptions about parameters. Yet while all of those studies 
can be rationalized in a general way by appealing to this framework, the tests that 
iey have reported make no use at all of the second of our hypotheses-that fore- 
casts incorporate information efficiently. 

It should be noted that our two hypotheses, even in the special form of this sec- 
tion, do not imply things that are commonly thought to be their implications. 
Thus, they do not imply that the spot one-period rate, Rt, follows a random walk, 
which would mean that Rt - Rt_1 is serially uncorrelated. They do not imply that 
the j-period spot rate follows a random walk for any f1nite j.20 Moreover, the "fair 
game" property built into the model clearly does not mean that spot rates cannot 
be described by a stable stochastic difference equation.2l 

III. TESTS OF SAMUELSON'S MODEL 

A. Spectral Densities of Some Forward Rate Sequences 

In this section we report tests of the expectations hypothesis by calculating the 
spectral densities of forward rate sequences that should be "white" on our main- 

l9See Sims [291. Notice that the expectations hypothesis implies that in this context equa- 
tion (10) is an adequate representation of the one-period rate. Thus, let ut be the fundamental 
white noise process in the univariate (Wold) representation of t+lFt, 

00 

t+z Ft = A (L) ut = E ajLi ut. 
j=o 

Then since t+ 1Ff iS an efficient, unbiased forecast of Rt+1, we have 

Rt+ 1 = A (L)ut + st+ 1 , 

where st+l has mean zero and is uncorrelated with aS for all s + t+1. But in general the above 
expression can be an adequate representation of Rt+l only if st+l = ut+l. Then the above ex- 
pression becomes equivalent with (10) with cO = 1 and ck = ak_ 1 for k > 1. Thus, the expecta- 
tions hypothesis implies that the forward rates t+jFt contain no information that is useful in 
predicting R 1 t over and above that contained in current and past values of R 1 t . 

20 See Granger and Rees [ 13 1 for a statement of another view. 
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tained hypotheses. The data are those studied by Meiselman, Durand's [S] annual 
series of basic corporate yields for terms to maturity of one, two, . . ., ten years. 
We begin by testing the somewhat more restrictive version of the model that as- 
sumes that spot short rates follow a stationary process with finite variance and so 
can be descnbed by equation (10). That speciflcation implies that the variates 
(t+jFt - t+iFt_l) are serially uncorrelated, and so have a flat or "white" spectrum. 
For the period 1901-1954, we have estimated the spectral densities of these vanates 
for j- 1, . . ., 9. The estimates were derived using eight lagged covariances and the 
standard covariance-cosine transformations in conjunction with a Parzen window. 
The results are recorded in Table 1. The F-statistic pertinent for testing against the 
null hypothesis of spectral whiteness is also given for each spectrum.22 High values 
of F lead to rejection of the null hypothesis. At the 1 percent level of signifilcance, 
serial independence must be rejected for all j's less than or equal to five, while at the 
S percent level of significance all but the spectra for j's of eight and nine are incon- 
sistent with serial independence. Generally, serial dependence is seen to diminish as 

TABLE 1 

Spectra of Increments in Forward Rates, 1901-1954 (t+jFt- t+jFt_l)* 

Period 
j+ 1 1 2 3 4 5 6 7 8 9 

in Years 

oo .209 . 1 23 .080 .05 1 .045 .026 .0 1 7 .0 1 7 .0 1 9 
16. .170 .097 .063 .042 .035 .021 .014 .014 .010 

8. .103 .055 .036 .026 .020 .014 .009 .010 .008 
5.33 .064 .034 .024 .020 .012 012 .008 .0 10 .009 
4.00 .05 3 .029 .022 .0 1 8 .013 .014 .0 1 1 .0 1 3 .0 1 1 
3.20 .061 .031 .023 .019 .017 .017 .015 .015 .013 
2.67 .067 .033 .022 .018 .018 .017 .015 .014 .013 
2.29 .055 .029 .019 .016 .015 .014 .012 .0 1 1 .0 1 2 
2.00 .045 .025 .017 .015 .014 .014 .011 .009 .011 

F-ratio:t 4.65 4.93 4.63 3.33 3.65 2.25 2.09 1.84 1.57 

F24,24(.05) = 1-98, F24,24(.01) = 2.66 

*t+OFt-Rt 
tF-ratio equals highest value of spectrum of j divided by lowest value. Thevalues recorded 

here are based on values of the spectrum calculated to more places than reported in the body 
of the table. 

21 See Gordon and Hynes [ 12 l for a seemingly contrary view about the behavior of commod- 
ity prices. 

22Where s(w) is an estimate of s(w), n s(w)/s(w) is approximately x2 with n degrees of free- 
dom. The number n is given by 3.7 times the number of data points divided by the number of 
lagged covariance terms used in calculating the spectrum. On the assumption that ^s(wl ) and 
s^(w2 ) are independent, the null hypothesis that s (w, ) = s (w2 ) can be tested by using the statis- 
tic 

F = s (w, ) 
s (W2 ) 

which, being the ratio of two independent x2 distributions with n degrees of freedom, is distrib- 
uted according to the F distribution with n, n degrees of freedom. 
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TABLE 2 

Spectrum of Increments* of (tFt-g, tFt-sX * * * X tFt-l X Rt) 

Period in Years Spectral Density 

.249 
16. .237 
8. .218 
5.33 .196 
4.00 .159 
3.20 .123 
2.67 .101 
2.29 .080 
2.00 .070 

F-ratiot = 3 - 5 7, F20 20 (.05) 2 - 12 X F20, 20(-° 1 ) 2 - 

tF-ratio equals highest value of spectrum divided by low- 
est value. Because the spectrum was calculated on the ba- 
sis of 4 5 separate observations on the entire sequence 
{tFt_g . . Rt}, the degrees of freedom are probably 
greater than twenty, which is approximately 3.7 times 45 
divided by the number of lags, eight. The spectrum above 
is obviously based on much more data than indicated by 
this calculation. 

*Spectral density was calculated by using a Parzen win- 
dow to smooth the Fourier transform of the correlogram 
of the increments of the sequence {tFt-9, tFt-8 * * *, Rt}- 

j increases, as the F-statistics show concisely. Yet the random-walk model must 
certainly be rejected for forward rates drawn from the short end of the yield curve. 
This is disconcerting, since it is for yields to maturity of less than five years matur- 
ity that most of the interesting variation of the yield curve occurs. In addition, as 
described by the standard term-structure formulas, these short-term forward rates 
are components of the longer-term yields to maturity, and thus the entire yield 
curve is affected by their misbehavior. 

The general version of the model can be tested by estimating the spectrum of in- 
crements in the forward-rate sequence (4). That spectrum, which we have estimated 
by using Parzen window to smooth the Fourier transform of the correlogram, is re- 
ported in Table 2. As the F-statistic reveals, serial independence of the increments 
of the forward rate sequence can be accepted only at a very low significance level, 
i.e., low probability of type- 1 error. Thus, the data tend to disconfirm the implica- 
tions of even the broader version of the model. 

B. Some Estimates of Two-Sided Distributed Lags 

Here we report a test of the more restrictive version of Samuelson's model that we 
described in section IIb. While the test is less powerful than the ones described 
above, it is more convenient to apply given the nature of the data we are about to 
examine. The data are monthly observations on yields to maturity of three-month 
Treasury bills and one-year, two-year, three-year, four-year, and five-year U.S. 
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government bonds for the period January, 1950 to December 1966.23 These data 
obviously do not permit the computation of monthly yields for forward one-month 
loans, which would be required to apply the techniques of section IIIa directly to 
the monthly data. However, we can estimate the two-sided distributed lags dis- 
cussed in section IIb, which constitute the basis for a less powerful test of the ex- 
pectations hypothesis. The test is less powerful for the reason that, while evidence 
of two-sided distributed lags permits us to reject the hypothesis, failure to E1nd such 
evidence does not provide much reason for confsldence in the hypothesis. That is 
because the expectations hypothesis implies not only that those distributed lags will 

TABLE 3 
Xt = 3-Month Bill Rate, Rlt = One-Year Bond Rate (Jan., 1950-Dec., 1966) 

10 

Rlt= E hixt-i+ wt 

i=-10 

Coefficients on 
Future Values of x 

Coefficients on Lagged 
Values of x 

.8490 

.0437 
-.0236 

.0264 

.0404 

.0223 

.0146 

.02 12 

.0016 

.0124 
-.0098 

Coefficients on Lagged 
Yalues of Rlt 

.9319 

.0785 

.0532 

.0612 
-.0346 

.0159 
-.0194 

.0435 

.0002 

.0583 
-.0022 

lil 

o - 
1 .0862 
2 .0343 
3 .0747 
4 -.0624 
5 .0728 
6 -.0444 
7 .0472 
8 -.0106 
9 .0129 

10 -.0040 

(Estimated standard error of coefficients = .0301.) 
10 

Xt= E kiRlt-i+Wt 

i=-10 

Coefficients on Future 
lil Values of R1t 

O _ 
1 .03 19 
2 -.0072 
3 .0004 
4 .0818 
5 -.0492 
6 .0553 
7 .0099 
8 .0286 
9 .0378 

10 .0102 

(Estimated standard error of coefficients = .0336.) 

23The data are from the Salomon Brothers and Hutzlerpamphlet AnAnalytical Record of 
Yields and Yield Spreads. 
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be one-sided, but also that they will assume the particular configurations given in 
(18). 

Tables 3, 4, and 5 report estimates of pairs of distributed lags between the three 
month bill rate, which we denote by x, and yields to maturity Rjt on j-year bonds 
for j equals 1, 3, and 5. For each j the pair of estimated distributed lag functions is 

10 

Rjr = E hixt-i + Wt 
i=-10 

10 

xkiRjt-E+Wt, 

i=-10 

Xt = 3-Month Bill Rate, R3t= 3-Year Bond Rate (Jan., l950-Dec., 1966) 

10 

R3t = E hixt-i + Wt 

i=-10 

Coefficients on 
Future Values of x 

Coefficients of Lagged 
Values of x 

.6948 

.0270 

.0084 
-.0197 

.0523 

.0423 

.0283 

.0112 

.0113 

.0004 

-.0026 

lil 

o - 
1 .0850 
2 .0444 
3 .1255 
4 -.0747 
5 .0670 
6 -.0421 
7 .0550 
8 -.0140 
9 .006 1 

10 .0170 

(Estimated standard error of coefficients = .0384.) 

10 

xt= E *iR3t-i+ Wt 

i= -10 

Coefficients on Future 
Values of R 3 

Coefficients on Lagged 
Values of R 3 

.863 1 

.1240 

.0718 

.1357 

078 1 
0092 
0369 

.0489 
0254 
.0515 
0008 

lil 

o 

1 .0484 
2 .0102 
3 -.0475 
4 .0703 
5 -.0430 
6 .0693 
7 -.01 30 
8 .0318 
9 .0184 

10 .0038 

(Estimated standard error of coefficients = .0483.) 
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value of x. In each regression two or more coefElcients on future x's are more than 
twice their estimated standard error. On the other hand, the regressions with Rjt 
on the right side appear more one-sided. In these regressions, the larger coefficients 
tend to fall on lagged values of Rjt (the j = 1 regression is the exception), and some 
of the coefficients on lagged values of Rjt are sizable relative to their estimated 
asymptotic standard errors. 

Since the expectations hypothesis implies that both of these distributed lag func- 
tions will be one-sided, these results tend to disconf1rm that hypothesis. It does not 
appear possible adequately to represent all yields to maturity by a set of one-sided 
moving sums of the same white noise.25 

IV. COMPARISON WITH MEISELMAN'S MODEL 

The negative results of the last section should be compared with those of David 
Meiselman who took his estimates of the set of revision equations (14) to be consis- 
tent with the expectations hypothesis. Meiselman's estimates are reproduced in 
Table 6. We have already shown that the version of our model presented in Section 
IIb is compatible with those revision equations, and that it implies that the correla- 
tions will be "high," strictly speaking, equal to unity. Thus, in our framework, the 

TABLE 6 
Meiselman's Regressions (1901-1954) 

t+jFt - t+jFt-l = °j + Aj(Rt - tFt-l ) + 

RA 2 t 

.905 1 

DW 

1.6687 

A 

i tj X ,i 

.0004 .7030 
(.0236) (.03 12) 
-.0024 .5256 
(.0316) (.0419) 
-.0069 .4035 
(.0352) (.0466) 
-.0304 .3263 
(.0367) (.0486) 
-.0146 .2768 
(.0346) (.0459) 
-.0074 .2338 
(.0307) (.0406) 
-.0132 .2387 
(.0306) (.0405) 

.0075 .2080 
(.0298) (.0395) 

*Estimated standard errors are in parentheses. 
tR: denotes R2 adjusted for loss of degrees of freedom. 
:¢DW denotes Durbin and Watson's statistic 

1 

2 

3 

4 

5 

6 

8 

.7472 1.7271 

.5825 1.8183 

.4544 1.8120 

.4005 2.1907 

.3771 2.3005 

.3885 2.1715 

.3356 2.4292 

2s For what it is worth, we note that the results imply that in using the one-sided distributed 
lag model of deLeeuw [5 ], Malkiel ll6l, and Modigliani and Sutch [21 l, it is more appropriate 
to put the long rate on the right side, as De Leeuw and Malkiel do. Modigliani and Sutch em- 
ploy the short rate as the regressor. 
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fact that Meiselman's R2 's are not close to one is to be interpreted as another aspect 
of the pessimistic evidence presented above. The fact that Meiselman found a 
"plausible" pattern of revision coeff1cients is in no way inconsistent with the find- 
ings of this study. 

Our findings do imply that there are important non-forecasting determinants of 
the yield curve, and that this should be taken into account in estimating equations 
like Meiselman's. Thus, to account for the low R2's in Meiselman's equations, let us 
replace (13) with 

t+jFt - t+iFt-l =cjut + vjtX j= 0, 1, 2, . . . (21) 

where vjt is a random term with the properties 

E(vjt)=0 j=0,1,2,... 

E(vjtut)=O j=0, 1,2, ..................... (22) 

E(vjt v*t) = O for all j + k. 

The random variable vjt represents stochastic non-forecasting determinants of the 
increment in the forward rate maturing at t + j, and is assumed to be uncorrelated 
across maturities, the simplest assumption that can be used to illustrate the point 
under discussion. It is necessary to introduce the VjtS in (21) if we want to account 
for the low R2's in Meiselman's equations and also maintain the optimal forecasting 
hypothesis that we have used throughout this paper. Thus positing (21) amounts 
to retaining the assumption of rational forecasting but permitting stochastic factors 
other than expectations to play a role in determining the yield curve. 

In (15) we established that ,Bj could be used, if (13) were maintained, to obtain an 
estimate of the c*'s of (10). What happens if (13) is replaced by (21)? Then the 
least squares estimate ,Bj in the revision equation is given by 

1 
r(CjUt + Vjt) (CoUt + Vot) 

t 

T E (CoNt + Vot)2 

Performing the indicated multiplication and taking probability limits yields 

cjeo plim T l Lu2t 

plim pi = c2 plim T-l E u2t + plim T l E Vot 

t t 

Cj (23) 

_ cO <_ 

1 + var (v)O cO 

cO var (u) 
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Thus, under (21) and (22), least squares estimates of pj provide estimates of Cj/Co 

that are asymptotically biased downward. 
This finding provides an explanation for a somewhat curious feature of Meisel- 

man's empirical results. Various writers (e.g., Pye [24], Diller [6], Mincer [20] ) 
have noted that if (10) can be well approximated by a Elrst-order Markov process, 
Meiselman's revision coefficients ought to decline geometrically as j increases, pro- 
vided expectations are minimum-mean-squared-error forecasts. For suppose 

Rt = CYRt-l + Ut, Ct < 1 

or 

00 

Rt = L a* Ut-* 

k=o 

Then according to (15), E(:j) = ti. 
It has also been noted that Durand's one-year spot rates seem to be adequately 

approximated by a first-order autoregressive process. Thus, for the period 1905- 
1954,26 the following regression was obtained by the method of least squares: 

R t = *2073 + *9278 R t-l, RA = .85 54 
(.1995) (.0544) 

Including additional lagged R'S resulted in a drop in the adjusted R2 . According to 
(15), if the above equation is accepted as an adequate description of spot rates, then 
under the hypothesis of rational expectations pl ought to have an expected value of 
about .93. Meiselman's estimate is only .703. There is thus a very sizable differ- 
ence between these estimates that is consistent in sign with the prediction of equa- 
tion (23).27 Since the estimated standard errors of both of those estimates are 
small compared with the difference between the estimates, the indication is that the 
difference between them should be taken seriously.28 

26Higher order autoregressions were also calculated with the result that they explained no 
more of the adjusted variance of Rt than did the first-order regression reported. Our holding 
back the few observations necessary to calculate the higher order autoregressions explains why 
the period over which the first-order regression was run, 1905-1954, excludes the first few ob- 
servations included in Meiselman's regressions. 

27Estimating a first-order autoregression by least-squares results in the famous "Hurwicz 
bias." For a positive autoregression parameter, least squares underestimates the parameter on 
the average. (See Marriott and Po,pe [181 and Kendall [141.) The bias is approximately 
E(ot) - ot - - (1 + 30t)/N where oe and oe are the autoregression parameters and its least-squares es- 
timate and N is the sample size. Thus, accounting for that bias would only strengthen the argu- 
ment in the text. 

28An alternative reconciliation between these two estimates might be offered by appealing to 
the errors of measurement which most likely infest Durand's data. However, the assumptions 
of the classical errors-in-variable model, which might be invoked to explain a downward bias in 
Meiselman's estimate of ,B,, are surely inappropriate here. Durand's smoothing procedures guar- 
antee that measurement errors will be highly correlated along the yield curve. In the presence 
of measurement errors with such properties, the least-squares estimate of S, need not be biased 
downward and may even be biased upward if the measurement errors are sufficiently highly cor- 
related along the yield curve. 
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V. CONCLUSIONS 

The evidence summarized above implies that it is difficult to maintain both that 
only expectations determine the yield curve29 and that expectations are rational in 
the sense of efficiently incorporating available information. The predictions of the 
random walk version of the model are fairly decisively rejected by the data, particu- 
larly for forward rates with less than five years term to maturity. This is important 
because that is the form of the model that provides a rationale for many formula- 
tions utilized in empirical work. 

It is clear that our conclusions apply with equal force to the diluted form of the 
expectations hypothesis that allows forward rates to be determined by expectations 
plus time-invariant liquidity premiums. Incorporating such liquidity premiums 
would in no way change the covariances and the spectral densities on which our 
tests were based. On the other hand, it would clearly be possible to determine a set 
of time-dependent "liquidity premiums" that could be used to adjust the forward 
rates so that the required sequences would display "white" spectral densities.30 
Most of the literature on "liquidity premiums" can be interpreted as an attempt to 
"prewhiten" the data so that just this is accomplished. While this procedure has its 
merits in certain instances, it is essentially arbitrary, there being no adequate way to 
relate the "liquidity premiums" so derived to objective characteristics of markets, 
suchas transactions costs. Their arbitrary nature probably explains the considerable 
disarray in which the literature on the subject stands.3 1 

An alternative way to "save" the doctrine that expectations alone determine the 
yield curve in the face of empirical evidence like that presented above is to abandon 
the hypothesis that expectations are rational. Once that is done, the model be- 
comes much freer, being capable of accommodating all sorts of ad hoc, plausible 
hypotheses about the formation of expectations. Yet salvaging the expectations 
theory in that way involves building a model of the term structure that, while re- 
quiring there be no room for profitable arbitrage on the basis of current expecta- 
tions of the future, also permits expectations to be formed via a process that could 
utilize available information more efElciently and so enhance proElts. That seems to 
be an extremely odd procedure. 
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APPENDIX ON KESSEL'S METHOD OF 
ESTIMATING LIQUIDITY PREMIUMS 

In the light of the approach taken in this paper, Kessel's [15] method of esti- 
mating liquidity premiums deserves a few comments. Kessel posited that forward 
rates are the sum of the appropriate expected rate and a liquidity premium. In 
particular, 

t+ 1 Ft = t+ 1 Et + t+ 1 Lt 

where t+1Et is the market's expectation at time t of the one-period rate to prevail 
at time t + 1, and t+1Lt is the one-period forward liquidity premium. Following 
Kessel, we posit that the systematic part of the liquidity premium is linearly related 
to the one-period spot rate 

t+1Lt = ko + k1 Rt + wt (a) 

where ko and k1 are parameters and the wt's are independent, identically distrib- 
uted random variables with mean zero and which are distributed independently of 
Rt. Further, we posit that the one-period spot rate is governed by a first-order 
autoregressive process 

Rt+1 =ho +h1 Rt+ut+1, lh1 1<1 (b) 

where u is a "white-noise" process that is independent of the w process and of Rt. 
Durand's data appear to be well described by such a process. Now Kessel's ap- 
proach to estimating the dependency of the liquidity premium on the spot rate was 
to regress (t+ lFt - Rt+ 1 ) against Rt; the coefficient on Rt was then interpreted as 
an estimate of k1 in (a). On the assumption that (b) describes the R process, and 
on the assumption that expectations are rational so that t+ lEt = ho + h 1Rt, Kessel's 
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method provides a sensible means of estimating (a). For on these assumptions 
t+lFtisgivenby 

t+lFt=(hO +ko)+(hl +kl)Rt+Wt 

and Kessel's dependent variable, t+ 1 Ft - R t+ 1, iS given by 

t+ lFt - Rt+ 1 = ko + klRt + Wt - Ut+ 1 * (C) 

Since wt and ut+l are statistically independent of Rt, estimating (c) provides a 
means of recovering the parameters of the liquidity-premium function (a). Thus, on 
the assumptions listed above, Kessel's method seems sensible and immune to the 
kind of criticism made of it by Conard [3], who claimed that the method was defi- 
cient because it failed to control adequately for "inertia" in the formation of expec- 
tations. On the other hand, the method's validity is predicated on the R-process be- 
ing first-order autoregressive. Conard's criticism might be rationalized as reflecting 
his belief that for the data Kessel studied, a higher order autoregressive process 
would be required to describe the evolution of the spot rate adequately. 

Notice that, assuming (a) and (b), the variable Rt+ 1 - t+ lFt, which occupied an 
important role in our tests, will in general be serially correlated. For by (c), 
Rt+ 1 - t+ lFt Wfl1 be serially correlated as long as k1 does not equal zero and Rt is 
serially correlated. It is obvious that Rt+ 1 - t+ lFt can be "pre-whitened" by add- 
ing to it the systematic part of the liquidity premium, in an attempt better to ap- 
proximate R t+ 1 - t+ lEt. For we know that, 

which by hypothesis is serially uncorrelated. 
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