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ON THE MAXIMIZATION OF THE GEOMETRIC MEAN WITH
LOGNORMAL RETURN DISTRIBUTION{

EDWIN J. ELTON ano MARTIN J. GRUBERS
Neaw York University

In this paper we discuss the relevancy of the geometrie mean as a portfolio selection
criteria. A procedure for finding that portfolio with the highest geometrie mean
when returns on portfolios are lognormally distributed is presented. The develap-
ment of this algorithm involves a proof that the portfolio with maximum geometric
mean lies on the efficient, frontier in arithmetic mean variance space. This finding has
major implications for the relevancy of much of portfolio and general equilibrium
theory. These implications are explored.

One eriterion for portfolio selection which has received a great deal of attention in
the economic literature is the maximization of the geometric mean return {see Samuel-
son [22], Hakansson [11], Latane [15], and Latane and Tuttla [14]).! While this criterion
has been advocated by a number of researchers, these same researchers have pointed
out that no procedure currently exists for finding that portfolic which maximizes
the geometric mean.?

The purpose of this paper is to prove the optimality of a procedure which can be
used to construet that portfolio of assets which has the highest possible geometrie
mean return when the returns on portfolios of securities are lognormally distributed.?
This case is of special interest because of the large body of theoretical and empirical
literature which suggests that rates of return are in fact lognormally distributed.4

* All notes are refereed.

t Pracessed by Professor H. Martin Weingartner, former Departmental Editor for Finance
and by Professor Edwin H. Neave, current Departmental Editor for Finance; received August 17,
1972, revised May 1973 and September 1973. This paper was with the authors 10 months for re-
visions.

§ Both authors are Senior Research Fellows at the IIM, (Berlin, Germany) as well as Professars
of Finance at New York University. The authors would like to thank the referees for helpful sug-
gestions.

! Throughout, this paper returns are used to refer to investment relatives (one plus the return).
The geometric mean has been advocated by (2], [11], [15], and [18].

! Far example see (11].

I Empirieal evidence that the investment relatives are lognormally diatributed for portfolios
is provided by Hodges (13]. Kendall [14], Moore [19] and Osborne [21] provide further evidence by
their examination of the distribution of price changes of indices. These latter authors have also
provided evidence that investment relatives for securities are lognormally distributed. One set
of theoretieal conditions under which lognormally distributed portfolio returns are consjistent
with lognormally distributed security returns have been set forth by Merton [18].

1 A disagreement exists today about whether returns are in faet lognormally distributed [14],
(19], 121] or follow a stable Paretain distribution [10], [17]. While the resolution of this debate is
beyond the scope of this paper, there is sufficient evidence to suggest that deviations from the
lognarmal distribution are nonexistent or of such a amall order of magnitude to make the log-
normal case worth further study.
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In the first. section of this paper, we will disecuss circumstances under which the
geometric mean is the appropriate decision eriterion. In the second section of this
paper, we shall show that if returns are lognormally distributed, the portfolio with
the highest geametric mean must lie on the efficient frontier in (arithmetic) mean
variance space. This not only is important for computational considerations, it also
has implications for economic theory.® For example, it means that Markowitz-Taobin
mean variance analysis is relevant for an investor maximizing the geometric mean, and
much of the efficient market literature which depends on investors being on the effi-
cient frontier is relevant. Finally, in the third section, we will show that the partfolio
on the efficient frontier which has the highest geometric mean return can be readily
defined in terms of the slope of the efficient frontier.

1. Conditions for the Optimality of the Geometric Mean

The maximizaton of geometric mean return has been justified as a criteria for port-
folio selection in two ways. First because it can lead to the selection of portfolios with
the highest expected utility of terminal wealth, if utility functions are of the log form
and second hecause it leads to the selection of portfolios with intuitively appesaling
characteristics. We shall examine each of these justifications in turn.

In order to examine the relationship between the geometric mean and the expected
utility of terminal wealth we must define some terms,

Let

1. W'r = the invester’s wealth as of a horizon year T, a stochastic variable,
2, W, = the investor's initial wealth,

3. B;; = a random variable equal to one plus return, {¢ is a period index and ¢
denotes a particular return),
4. Py = the probability of R;, oceurring.

Investor’s terminal, wealth is equal to Wy = WR; Ry - Rig— . If the in-
vestor’s utility funetion is of the log form then the utility of terminal wealth is given by

InWe=InW.+InR:+InRitn + -« 4+ In Riry
and the expected utility of terminal wealth is given by
ElnWel=InW,+ Elln By + E[ln Biea] + < -+ + Elln Bir]
or
(1) ElaWs) =ln W, + 2. nRIF* + 2 InRIHS + -+ + 2o In RUI

Since utility functions are unique up to a linear transform we can subtract In. W,

¢ It is poasible that this problem could be solved more efficiently as a nonlinear programming
problem. This could only be determined by direct tests. Two cautions are in order. First, promising
techniques such as the gradient method do not reach an optimum in a finjte number of steps where
our procedure guarantees an optimum in & finite number of iterations. Second, our experience
with problems of 50 constraints is that we eould produee the full efficient frontier in 2 minutes on a
360~50. If we modify the program for just this problem, time could he somewhat reduced. While no
direct comparison is possible, results for nonlinear techniques as reported by Colville [3] would
not suggest a computational saving. Actually a combination of an initial solution produced by
gradient technigues as a starting solution to & quadratic programming algorithm might be most
efficient.
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{a constant) from both sides of the equation and state that the portfalio which maxi-
mizes

Elln Wr/W)) = il RIS 4+ D I REH + --+ + i In BRI

maximizes the expected utility of terminal wealth.

The formula for the single period geometric mean is [ [; Bf%. The single period
geometric mean criteria calls for us to select a portfolio in each period (§) 30 as to maxi-
mize this expression. But from expression (1) the expected utility of investor wealth
is maximized if
(2) = > InREY

is maximized. If new portfolios can be selected each period, this is equivalent to maxi-
mizing » . In R5 for all § between ¢ and 7.

We can take the antilog of this expression without affecting the maximum, since
the antilog is a monotaonic transform. Thus, an equivalent criteria is Maximize [ [ RE
or simply maximize the geometric mean return in every period.s

The use of the geametric mean as a decision criteria has also been defended because
it produeces a series of decisions with intuitively appealing characteristics. To see this
let X’ = the growth rate (assuming continuous compounding} in capital over the
investor’s horizon. Then by definition

(6) W'r = W, exp (X')
(7y or X' = In (Wfw.).

We saw earlier that the one period geometric mean maximizes the expected value
of (7). Thus for a multi-period horizon selecting that portfolio with maximum geo-
metric mean each period, produces the maximum expected growth rate in wealth.
Furthermore, as the number of periods over which this decision rule is applied be-
comes very large, the probability approaches ane that the growth rate in wealth pro-
duced by the geometric mean decision rule will be higher than the growth rate pro-
duced by any other strategy. Several authors have asserted that since maximizing
the long term growth rate in wealth should be almost a universal goal, the geometric
mean is often (if not always) a proper decision rule for selecting portfolios.?

2. Maximizing the Geometric Mean and Mean-Variance Efficiency

As discussed earlier, there is substantial empirieal evidence supporting an assump-
tion that one plus the return is log normally distributed. Let B, be one plus return,
a variable which is log normally distributed and let:

1. u be the mean of R;,

2. # be the standard deviation of B.,

3. m be the mean of log k.,

4. & be the standard deviation of log B, .

¢ An alternative of the geometric mean criterion is to select that portfolio which has the high-
est, expected geometric mean over the multiperiod time horizon under consideration. The condi-
tions under which this leads to the same selection criterion as maximizing a log utility function.
are derived in Elton and Gruber [4].

? This line of reasoning has heen followed by Latane and Tuttle [15], Latane [16], and Hakansson
[11]. The reader should be careful to note that counterarguments have been offered by some
althars, e.g., Samuelson [21].
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It is well known that there exists a one-to-one mapping between a m, & pair and the
earresponding moments of E,

® b= exp (m + 37)
@ o = exp (m + h{(exp &) — 1]
Utilizing equations (8) and (9} to solve for m in terms of ¢ and g yields:
(10) m =Inp— }In((e®/u) + 1]

Maximizing m, the mean log return is equivalent to maximizing the geometric
mean return since, as shown in §1:

{a) when the geometric mean is the appropriate decision eriterion, it is sufficient to
find that portfolic which maximizes the geometrie mean of one period returns even
in the eontext of a multi-period portfolio problem;

(b) the geometric mean is defined as [[; R.°

{(c) taking the log of the geometric mean does not affect the ranking of portiolios
since the log function is 4 monatonic transformamon,

{d) the log of the geometric mean is 2. P; In R, which is the mean log return.

To show that the portfolio that maximizes m is mean-variance efficient, we must
show that {for a constant gx), m is increased as ¢ is decreased and (for a constant. o),
m is increased as u is increased or:

am am
F > 0, o < 0.
Utilizing equation (10) we have:
o _ W kL m_ —o = _
dp pla®+ ) + dr o+ +

where u ia the mean of R, a lognormally distributed variable. 8Since i is the price
relative or one plus the rate of return from holding a portfolio, and since the return
from a portfolio can never be less than minus one hundred per cent, x cannot be nega-
tive. The variance and standard deviation are of course also positive and thus the
derivations have the appropriate signs. In short, if returns are lognormally distributed,
the portfolio that maximizes the geometric mean lies on the efficient frontier in
{arithmetic) mean return standard deviation space.?

3. The Portfolio that Maximizes the Geometrie Mean

Having proved that the portfolio with the highest geometric mean is on the éfficient,
frontier, we shall now identify that point on the frontier which provides the highest
geometric mean. Letting « = f(u) and taking the derivative of equation (10) with
respect to u to obtain the condition for a maximum yields:

' 2f (u) #
(11) f(.f-t) = T +f(}-£)

8 In standard portfolio analysis, ¢ and o2 refer to the mean and variance of returns. Here of
course they refer to the mean and variance of 1 plus the returns. See (1] for a derivation of {1} and
(2).

* Hakansson {11] haa proved that, in general the portfolio which has the largest geometric mean
is not necessarily mean variance efficient. While this is true in general as just demonatrated in the
text, it is not true when returns are lognormally distributed.
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Substituting ¢ for f(u), de/au for f'{u) and rearranging vields

(12) du — TH

dg  2or+ 42
as a condition for an optimum.

The efficient frontier is coneave from below.’® Therefore, the left hand side of (12)
du/da is monotonieally decreasing. The right hand side of (12) eu/{26* + u2) first
Increases and then decreases.* This implies that (12) can hold for up to two portfolios.
If both portfolios exist, then a comparison between them in terms of the original
equation (10) is necessary. If (12} never holds, then one of the end points (minimum
variance or maximum return) is optimum.?

4, Conclusion

In this paper we have presented a method for determining that portfolio which has
the largest geometric mean return when price relatives are lognormally distributed.
The determination of this portfolio has major implications for economic theory,
Hakansson [11], has shown that in general, maximizing the geometric mean will lead
to the selection of portfolios which are not on the efficient frontier in (arithmetic)
mean variance space. This implies that Markowitz-Tobin type analysis is not only
irrelevant, but misleading for an investor who either (1) has a logarithmic utility
funetion and is facing a single or multi-period portfolio selection problem, or (2} wants
to maximize the expected long run growth rate of wealth. Since most tests of efficient
markets, evaluation of mutual funds, and descriptive models of investor behavior
depend on mean variance efficiency, this is disturbing.

We have shown that when price relatives are log normally distributed, the portfolio
which maximizes the geometric mean lies on the efficient frontier in {arithmetic)
mean variance space. Thus single period Markowitz-Tobin analysis is consistent
with certain types of multi-period problems and with problems involving the maxi-
mization of long run growth.
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