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Most induction algorithms for building predictive models take as input training data in the form of feature vectors. Acquir-
ing the values of features may be costly, and simply acquiring all values may be wasteful, or prohibitively expensive.
Active feature-value acquisition (AFA) selects features incrementally in an attempt to improve the predictive model most
cost-effectively. This paper presents a framework for AFA based on estimating information value. While straightforward
in principle, estimations and approximations must be made to apply the framework in practice. We present an acquisi-
tion policy, Sampled Expected Utility (SEU), that employs particular estimations to enable effective ranking of potential
acquisitions in settings where relatively little information is available about the underlying domain. We then present
experimental results showing that, as compared to the policy of using representative sampling for feature acquisition, SEU
reduces the cost of producing a model of a desired accuracy and exhibits consistent performance across domains. We also
extend the framework to a more general modeling setting in which feature values as well as class labels are missing and

are costly to acquire.
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1. Introduction

"...the shift from relying on existing information collected for other purposes to using information collected
specifically for research purposes is analogous to primitive man’s shifting from food collecting to agricul-
ture..." (Siegel and Fouraker 1960)

Predictive models play a key role in numerous business intelligence tasks. Models are induced from
historical data to predict customer behavior or to detect adversarial acts such as fraud. A critical factor
affecting the knowledge captured by such a model is the guality of the information from which the model
is induced—the “training data.” In the context of predictive modeling, the quality of information pertains to
the training sample’s composition, the accuracy of the values, and the number of unknown values.

For many predictive modeling tasks, potentially pertinent information is not immediately available, but
can be acquired at a cost. Traditionally, information acquisition and inductive modeling are addressed inde-

pendently; data are collected irrespective of the modeling objectives. However, information acquisition and
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predictive modeling in fact are mutually dependent: newly acquired information affects the model induced
from the data, and the knowledge captured by the model can help determine what new information would
be most useful to acquire (Simon and Lea 1974). We would like to take advantage of this relationship, and
develop feature-value acquisition policies for predictive model induction—procedures for evaluating and
selecting feature-value acquisitions which will be used for model induction. Mookerjee and Mannino (1997)
address a similar problem where costly feature-values of a test instance for which inference is requested are
unknown and are acquired sequentially given an existing knowledge base. Here we study a complementary
problem in which values must be acquired for induction.

The availability of generic, effective and computationally feasible information-acquisition policies for
model induction can affect business practices by transforming existing information-acquisition practices
and by changing the manner by which firms interact with consumers. As an example, consider the genera-
tion of personalized recommendations to customers. Often, a recommender system’s underlying predictive
model employs customers’ ratings of prior purchases as predictors of a customer’s preference for a product
she has not yet purchased. The availability of many ratings from a large number of customers is critical
for successful induction of an accurate model of consumer preferences. However, without costly incentives,
most consumers rarely provide this valuable feedback. To improve the model’s predictive accuracy, it is
infeasible to acquire feedback from all consumers about all products, even those they have already pur-
chased. A better acquisition policy would determine which ratings from which customers would be most
cost-effective to acquire via costly incentives, in order to obtain the desired modeling objective for the
least cost (Huang 2007). Similar scenarios emerge in other modeling tasks where missing feature-values
can be acquired at a cost. These include modeling of medical treatment effectiveness and diagnostics from
medical databases, where patients’ information, such as details on prior hospitalizations and prior medical
tests, are notoriously incomplete. Intelligent information-acquisition policies can also dramatically change
already established information-acquisition models: presently, firms acquire bundles of psychographic, con-
sumption, and lifestyle data periodically from third-party suppliers, such as Axiom, to support business
intelligence modeling for tasks such as risk scoring, customer retention, and personalized marketing. As
with other information goods, a firm should consider how to bundle and price information on consumers.
Effective acquisition policies will enable firms to identify and to acquire different types of information for
different consumers at potentially different prices, to enhance modeling cost-effectively. These capabilities
may also enable small firms to reap the benefits from business intelligence modeling, allowing them to
enrich their potentially limited data by selectively acquiring useful information.

Given training data with missing feature-values, an arbitrary classification-model induction algorithm, a

set of prospective feature-value acquisitions, and the cost of acquiring each specific feature-value (the cost
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of features may vary feature-to-feature and instance-to-instance), the general AFA problem is to acquire
feature-values so as to obtain a desired performance level for minimum cost. In this paper we consider
performance to be some function of the model’s generalization accuracy.! However, because we do not
know a priori the population under consideration, the generalization performance cannot be known exactly,
and we must estimate it from a sample. Thus, AFA policies cannot be provably optimal, and so we employ
a heuristic measure of the performance from feature-value acquisition.

Even given a heuristic measure of performance, in principle, identifying the feature-value set that yields
the desired performance objective at a minimum cost requires considering all possible sets of prospective
acquisitions. Unfortunately, this is not feasible to compute for most interesting problems. Moreover, given
a finite sample, both statistical learning theory and practical experience tell us that more search through
possible models often leads to worse performance, due to problems of multiple comparisons (Vapnik 1998,
Jensen and Cohen 2000). We will revisit this issue in Section 5. We therefore revise the objective of AFA
for this paper as follows. Given a performance measure, we aim to identify the individual feature-value to
acquire next, in order to achieve the greatest improvement in the performance measure per unit cost, which
implies a greedy, myopic acquisition policy.

The primary contributions of this paper are a general framework for addressing AFA and a specific
method for solving AFA problems based on appropriate heuristics. To our knowledge, no prior work?
addresses general AFA. We propose an acquisition policy that produces acquisition schedules iteratively
based on estimates of the expected utility from different potential acquisitions. In principle this is straight-
forward, but the AFA setting renders utility estimation particularly challenging: estimations often must be
made based on little available information, and ought to be sensitive so as to capture the benefit to induction
of individual feature-values. Further, because the space of possible acquisitions can be immense, estimating
the value of each potential acquisition may be computationally infeasible. We develop and study empiri-
cally the impact of measures for capturing the value to induction of single feature-values in the presence of
scarce data, and propose different mechanisms to reduce the complexity of the estimation.

This expected-utility approach has several important advantages. The framework is general and can be
applied to derive an acquisition schedule for any induction technique. This is important because due to the
inherent bias of different modeling techniques and professional regulations in some industries, no single
technique is applied across all problems. Another important advantage of the expected-utility approach is
that it can be applied to improve any utility function derived from the model’s predictive performance, such
as estimated generalization accuracy, expected profit in a particular setting, or the expected cost of model

! The model’s expected accuracy over the population under consideration.

2 With the exception of a short paper on our preliminary studies (Melville et al. 2005).
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error. Finally, the approach can utilize information about the varying cost of information to derive an acqui-
sition schedule, not assuming that the cost of acquiring an unknown value is fixed for all features and/or for
all instances. Experimental results demonstrate that the resulting method provides significantly better mod-
els for a given cost than those obtained with other acquisition policies. Since the method utilizes acquisition
cost information, it is particularly advantageous in challenging tasks for which there is significant variance
across potential acquisitions with respect to their informativeness and their cost.

Finally, another contribution of this paper is an extension of the policy to a more general acquisition
problem. For some modeling tasks class labels (i.e., dependent variables’ values) are missing as well as
feature values, and either or both may be acquired at cost. We show that because our framework estimates
the value to induction of different acquisitions it allows the dependent variable to be treated as yet another
feature, and thus the AFA framework and method can be extended directly to address this new problem.
In practice, the method interleaves the acquisition of class labels and feature values, based on the marginal
expected value from each acquisition; we show it to be superior both to uniform acquisitions and to policies

that consider the acquisition only of feature-values or only of class labels.

2. Active Feature-value Acquisition

Assume a classifier induction problem where each instance is represented with n independent variables
plus a discrete, dependent “class variable.” The available data set of m instances can be represented by the
“incomplete” matrix I, where F; ; corresponds to the value of the j-th feature of the i-th instance, which
may be missing. Missing elements in the matrix F' represent missing feature-values that can be acquired at
a cost. In general, the cost of different feature-values may vary, depending on the nature of the particular

feature or of the instance for which the information is missing.

Algorithm 1 General Active Feature-value Acquisition Framework

Given: F": initial (incomplete) instance-feature matrix; Y = {y;,7 = 1, ...,m}: class labels for all instances; T": training

set= < F,Y >; L: classifier induction algorithm; 3: size of query batch; C": cost matrix for all instance-feature pairs;
1. Initialize set of possible queries @ to {¢; ;: i =1,...,m;j =1, ...,n; such that F; ; is missing}
2. Repeat until stopping criterion is met

Induce a classifier, M = L(T)

Vg, ; € Q compute score(q; ;,¢ 4, L, T)

Select the subset, S, of 3 feature value with the highest scores

Vg, , €8

Acquire values for F; ;

Remove S from Q

9. End Repeat

10. Return M = L(T)

PRNAIN AW

We present an iterative, sequential acquisition framework, where at each acquisition phase, alternative

acquisitions are evaluated in order to acquire the value of F; ; at the cost C; ; that provides the largest
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improvement per unit cost in the performance objective. The iterative framework for AFA is presented in
Algorithm 1. The framework is independent of the classification modeling technique; it is given a learner,
L, which includes a model induction algorithm and a missing value treatment to allow for induction from
the incomplete matrix F'.> At each phase a "score" is estimated and assigned to each potential acquisition,
reflecting the estimated added value per unit cost of the acquisition. The acquisition with the highest score
is selected and the corresponding feature-value is acquired; a particular approach for assigning scores to
potential acquisitions will be described in detail in Section 2. Once a value is acquired, the training data and
the information acquisition cost are appropriately updated and this process is repeated until some stopping
criterion is met, e.g. a desirable model accuracy has been obtained. Often, many values must be acquired in
order to obtain a desired performance level. In order to reduce the computational burden or based on domain
constraints, at each iteration an AFA policy may acquire a “batch” of 5 > 1 values. As before, computing
the set that will result in the greatest improvement in the heuristic measure is computationally complex. In
this paper, we select the values with the highest individual scores; the sensitivity to this choice is examined
in Section 3.3.

We now present a method for Active Feature-value Acquisition based on computing the value of the
information that may be acquired. The central component of the computation also presents the main dif-
ficulties with its implementation: the computation of the value of information prior to acquisition, when
only partial knowledge about the acquired information is available. We discuss three difficulties with the
computation, and present approximation techniques to address these difficulties. Together they comprise the
proposed AFA method: Sampled Expected Utility (SEU).

We estimate the value of a potential acquisition by its expected marginal contribution to predictive per-
formance. Because the true value of the missing feature is unknown prior to its acquisition, it is necessary to
estimate the potential impact of an acquisition for different possible acquisition outcomes. The acquisition
with the highest information value will be the one that results in the maximum utility in expectation, given
a model, a model induction algorithm, and a particular utility function. For the latter, the objective may
be to maximize the model’s generalization accuracy, or to maximize future profit, or to minimize the costs
incurred due to incorrect predictions, etc. A utility score captures the expected improvement from each
potential acquisition. Assuming feature j has K distinct possible values vy, ..., vk, the expected utility of

the acquisition g, ;, or "query" for short, is given by:
K
E(gij) =Y U(F,; =vp)P(F;; = vy) (1
k=1

3 Induction algorithms either include an internal mechanism for incorporating instances with missing feature-values (Quinlan 1993)
or require that missing values be imputed first. Henceforth, we assume that the induction algorithm includes or is coupled with
some treatment for instances with missing values.
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where P(F; ; = vy,) is the probability that F; ; has the value vy, and U(F; ; = vy ) is the utility of knowing
(via acquisition) that the feature-value F; ; is v,,. The utility Z/(-) is the marginal improvement in perfor-
mance per unit of acquisition cost:

A(F, Fi,j = ’Uk)

UE ;=) = o
z)j

2)

where A(F, F; ; = vy) is the change in value to induction from augmenting F' with F; ; = v,; and C; ; is
the cost of acquiring F; ;. This Expected Utility policy therefore corresponds to selecting the query that will
result in the estimated largest increase in performance per unit cost in expectation. If all feature costs are
equal, this corresponds to selecting the query that would result in the classifier with the highest expected
performance. Otherwise, Expected Utility allows several low-yield, high-margin acquisitions to be selected
instead of one higher-yield acquisition with less expected improvement per unit cost.

In principle this approach would allow the estimation of the value of each possible acquisition, and
then the selection of acquisitions by ranking them by their information-value estimates. However, there are
significant hurdles to its practical implementation. We introduce the challenges next, and then address each
in turn in the following three subsections.

Challenge 1. Estimating contribution to induction. As outlined in Eq. 2, for each query
(Vgi; € Q) computing expected utility requires the estimation of the value, A(-), to induction from
the acquisition. Here we assume classification accuracy to be the performance metric of inter-
est; as discussed, the framework applies to other goals such as minimizing misclassification cost
or maximizing profit. As we will see, in order to estimate the expected improvement in classifi-
cation performance, it is necessary to detect expected changes in the modeling technique’s aver-
age class probability estimation that are conducive to improved classification accuracy. It turns out
that the obvious measure, classification accuracy itself, is not sensitive enough to such changes.
Challenge 2. Estimating value distributions. For estimating the expected contribution of different acqui-
sitions, a prerequisite is to estimate the conditional distribution P(F;; = v,) for each missing value of
F; ;, as needed in Eq. 1. We must identify an estimation mechanism appropriate for the AFA setting: many
feature-values may be missing thereby rendering some modeling mechanisms more effective than others.
For example, some mechanisms require that missing predictors or their distributions be estimated to pro-
duce a prediction. This adds yet another layer of estimation which may undermine the model’s prediction,
sometimes significantly (Saar-Tsechansky and Provost 2007).

Challenge 3. Reducing the consideration set. Even if all unknown values were estimated accurately,
selecting the best from all potential acquisitions would require estimating the utility of, in the worst case,

mn queries. This would be very expensive computationally and is infeasible for most interesting problems.
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2.1. Estimating an acquisition’s contribution to performance

Let us consider the measure to be used for estimating the value to induction from an acquisition, A(F, F; ; =
v ). Let us assume for this discussion that acquiring new information aims to improve the model’s classifi-
cation accuracy, for a binary classification problem (thus, the decision threshold for maximum a posteriori
classification is 0.5). Assuming that estimations will be computed by averaging over a set of hold-out exam-
ples, this suggests a simple criterion for identifying an effective utility measure A—prefer acquisitions that
improve estimated accuracy:

Criterion 1: For a given hold-out instance, A(f,) = A(f2) if f1 > 6 and fo <0, where f; refers to the
model’s estimated probability that the given instance belongs to the true class, 0 is the decision boundary,
and a > b denotes that a is better than b.

An obvious measure for this contribution is the model’s classification accuracy itself (i.e., the estimated
generalization accuracy) over the augmented sample F'. However, as we show below, classification accuracy
does not capture fine-grained changes in the models and therefore we would like a more sensitive measure
for evaluating the benefits from prospective acquisitions.

To understand why, it is necessary to examine the dynamics of the modeling setting. Specifically, the
training data—and therefore the models induced—continuously change as new information is acquired.
Rather than examine the classification performance of a particular model induced from one version of
the data, it is useful to examine how new acquisitions affect the distribution of estimations induced from
different likely variations of the training data. Friedman’s analysis of the relationship between training
data and classification error (Friedman 1997) examines how changes in an induction technique’s average
estimation of the probability of the true class affect the likelihood of classification error. For the sake of
discussion, assume binary classification and let f(y|z) and f(y|x) denote the actual probability and the
model’s estimated probability that an instance belongs to class y, respectively, where x is the input vector of
observable attributes. Following Friedman’s analysis, the probability that the predicted class g is estimated

(erroneously) not to be the most likely class y can be approximated with a standard normal distribution by:

P(g#y)=® |sign(f—1/2)

Ef—l/A2 &)

where ® is the upper tail area of the standard normal distribution, var f denotes the estimation variance
resulting from variations in the training sample and where £ f denotes the mean of the probability esti-
mation f (y|z) generated by models induced from different variations of the training sample. Henceforth
we refer to &/ f and to var f as the average probability estimation and estimation variance, respectively.

When the average probability estimation leads to incorrect class prediction and given a certain estimation



Saar-Tsechansky, Melville, and Provost: Active Feature-Value Acquisition
8 Article submitted to Management Science; manuscript no. MS-00665-2006

variance, the likelihood of incorrect classification decreases as the average probability estimation of the true
class increases. Equation 3 also reveals that the likelihood of correct classification can improve when the
average probability estimation already leads to a correct prediction. As shown in Equation 3, given a certain
estimation variance, var f , if the true class probability f and the average probability estimation £ f lead to
the same (correct) classification, then further from the decision boundary the average probability estimation
Ef is, the higher is the likelihood of a reduction in classification error. This is because it is less probable
for the estimation variance to cause an erroneous classification. This analysis suggests two criteria for an
effective measure A of the utility from an acquisition. First, a more general criterion than criterion 1: A
should favor more extreme (correct) estimates of class membership probability.

Criterion 1°: For a given hold-out instance, A(f1) = A(f2) iff f1 > fa, where f; refers to the model’s
estimated probability that the given instance belongs to the true class. This is a specialization of criterion
1; criterion 1 always will hold if criterion 1” does (but not vice versa).

Second, for a correctly classified example, for a fixed-size change in the estimate of class membership
probability, A should favor changes to estimates nearer to the decision boundary 6 (in the analysis above
this boundary is assumed to be 0.5):

Criterion 2: For a given hold-out instance, A(f1) — A(fi + A) = A(f2) — A(fa+A), VA:0< A<
min(1— f1,1— f2),and 0 < f; < fo.

Based on these two criteria, we can assess the adequacy of different possibilities for the utility measure A,
including intuitive alternatives such as estimated accuracy (error rate), or the estimate f of the probability of
class membership itself. Specifically, classification accuracy is not an adequate AFA utility measure because
it does not satisfy either criterion (1°) or (2) completely. This is illustrated for binary classification by the
dotted line in Figure 1, which shows classification error (1-accuracy) as a function of the model's estimated
probability of the t7ue class, assuming maximum a posteriori classification.

Let us consider an alternative AFA utility measure, Log Gain (LG) (also known as cross-entropy). For a
model induced from a training set F', let f 1 (y|z) be the probability estimated by the model that instance
x belongs to class y, and 0(A) is an indicator function such that 6 = 1 if A is the correct class and § =0
otherwise. Let LG(z) = > —d(y) log, fF (y|z); Log Gain is "better" as its value decreases. Consider an
evaluation data set of ¢ ingtances; let the value to induction from an acquisition resulting in a training set
F be given by the sum of Log Gains over these ¢ instances: A(F') = i LG(x.). Hence for each value V,
that feature F; ; can take we would induce a model from the augmenigci data set and compute this sum of
Log Gains. As illustrated in Figure 1 Log Gain satisfies both criteria. It captures important changes in the
model’s estimation following an acquisition, which will allow the AFA policy to focus on acquisitions that

decrease the likelihood of classification error: using Log Gain will result in higher scores for acquisitions
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+ 1-Accuracy (Classification error)
Log Gain

0 0.2 0.4 0.6 0.8 1
Estimated probability of thetrue class

Figure 1 Log Gain and classification error vs. the probability of the true class

that increase the average probability estimation of the true class when, on average, the model s class predic-
tion is incorrect. It will also promote acquisitions that lead to more extreme probability estimations when
the model’s class prediction is accurate—reducing the risk of erroneous classification as new information is
added to the training sample. In principle, other measures that promote these two objectives should benefit

the AFA policy as well.

2.2. Estimating feature-value distribution
Let us now address the second term in equation 1. We need to estimate the conditional probability distribu-
tion of a missing feature value given the known values. For each feature j, the probability P(F; ; = v) in
Eq. 1 will be inferred from a model M, ;, based on the other information available about instance z (what is
known about the other features and the class).

Unfortunately, because of the AFA setting, the instances to which the feature-distribution-estimation
model M, ; would be applied may have many missing values. Considering an arbitrary predictive model,
predictors whose values are required for inference (rather than for induction) may not be available. The loss
in predictive accuracy stemming from the need to estimate missing predictors’ values or their distributions
can be avoided if the model incorporates only predictors whose values are known for this instance (Saar-
Tsechansky and Provost 2007). However, for AFA this would entail considering a tremendous number of
combinations, as at any point in an acquisition schedule different instances may include widely different
sets of known feature-values.

For the main results of this paper, in order to estimate the feature-value distribution model M; ; we employ
only one predictor: the class variable. This is because for our setting, the class is guaranteed to be known at
inference time. In principle, one can employ any set of known predictors to estimate a missing feature-value
distribution. In Section 3 we validate empirically the benefits of relying on known predictors exclusively.

Conditioning on the class variable outperforms a simpler model that does not condition the missing feature
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distribution at all, because the latter does not take into account any instance-specific information in the
estimation. A straightforward application of more complex modeling that captures the interactions among
predictors, but that requires the estimation of unknown predictors for inference, does not improve AFA

performance.

2.3. Reducing the consideration set

Estimating the expectation E() for each query, g, ;, requires training one classifier for each possible value
of F; ;. Therefore, exhaustively evaluating all possible queries is infeasible for most interesting problems.
One way to make this exploration tractable is by applying a computationally fast approach to identify a
subset of all the possible queries which will subsequently be considered for acquisition. In particular, let
the exploration parameter o (1 < o < = control the size of the sample to be considered for acquisition.
(Recall that 3 is the batch size, m the number of examples, and n the number of features.) To acquire a batch
of 3 queries, first a sub-sample of o queries is selected from the available pool of prospective acquisitions;
then the expected utility of each query in this sub-sample is evaluated using equation 1. The value of « can
be set depending on the amount of time the user is willing to spend on this process and the effectiveness of
the selection scheme. We consider two computationally fast approaches to identify a subset of queries.

The first approach, Uniform Sampling (US), identifies a representative subset of missing feature-values
via a uniform random sample of queries. However, when the consideration set is drawn uniformly at ran-
dom, particularly informative acquisitions may be left out of the consideration set. An alternative approach
is to limit the consideration set to a subset of queries that are more likely to be informative for model
induction than a query drawn at random. In particular, we propose selecting the consideration set of queries
from particularly informative instances. This invokes the subproblem: what then constitutes an informative
instance for model induction? We conjecture that acquired feature-values are more likely to have an impact
on classification accuracy when the acquired values belong to a misclassified example and, as such, embed
predictive patterns that are not consistent with the current model. Next, correctly classified instances are
more informative if their class prediction is uncertain. The use of uncertainty for active data acquisition
originated in work on optimum experimental design (Federov 1972) and has been extensively applied in
the active learning literature (Cohn et al. 1994, Saar-Tsechansky and Provost 2004). For a probabilistic
model, a lack of discriminative patterns results in uncertain predictions where the model assigns similar
likelihoods for class membership of different classes. Formally, for an instance z, let P, (z) be the estimated
probability that x belongs to class y as predicted by the model. Then the uncertainty score is given by
P, (x) — P,,(x), where P,, (x) and P,,(x) are the first-highest and second-highest predicted class proba-

bility estimates respectively. Motivated by this reasoning, Error Sampling (ES) ranks informative instances
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higher if they are misclassified by the current model. Next Error Sampling ranks instances in increasing
order of the uncertainty score.

We call the approaches in which Uniform Sampling and Error Sampling are used to reduce the set of
missing values considered for acquisition, Sampled Expected Utility-ES (SEU-ES) and Sampled Expected
Utility-US (SEU-US), respectively.

3. Experimental Evaluation
We now present a comprehensive set of experiments which demonstrate the efficacy of AFA and the benefits

of the measures we described in Section 2.

3.1. Objectives and Methodology

We begin with the key empirical question of whether feature-values can be acquired cost-effectively with
AFA as compared to a default policy in which a representative set of feature-value acquisitions are drawn
uniformly at random. Next, we present extensive empirical results which carefully examine the benefits of
the measures we propose for AFA as compared to alternatives. These evaluations provide empirical support
to the arguments we present in Section 2 regarding measures that are likely to be particularly effective for
AFA. We then examine the upper-bound performance that could be obtained with an omniscient “oracle”
and how close SEU is to this performance. In addition, we examine which of the two measures that SEU
employs is closest to an omniscient measure for the corresponding quantity—these results suggest how
improvements in each of SEU’s estimations can contribute to SEU’s overall performance so as to approach
the performance of the oracle. Finally, we perform sensitivity analyses exploring how different settings
affect SEU’s performance. These include SEU performance with different feature-value cost structures
and parameters that determine the size of the initial sample provided to SEU, the number of examples it
considers for acquisition, and the number of examples acquired in each acquisition phase.

The Primary Results. To address the first question we compare, as a function of acquisition cost, the
classification performance obtained by the policies SEU-ES, SEU-US, and a policy (Uniform) that selects
acquisitions uniformly at random. This study also aims to examine the merits of the two approaches, uniform
sampling (US) and error sampling (ES), which we propose for reducing the set of prospective acquisitions
considered by SEU.

We then demonstrate empirically the properties of the utility measure we propose for AFA in Section 2.
The ability of Sampled Expected Utility to rank potential acquisitions accurately will be affected by the
accuracy of its estimates of the quantities in Eq. 1, viz., the value to induction from a prospective acqui-

sition of a value F; ; = vy, (A(F, F;; = vy,)), and the estimated distribution of values for each unknown
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feature (P(F; ; = vi)). Specifically, in Section 2.1 we showed analytically that Log Gain effectively cap-
tures important changes in the estimated class probabilities following an acquisition, which affect the like-
lihood of erroneous classification. As such, Log Gain improves SEU’s ability to identify acquisitions that
are particularly likely to reduce classification error. By contrast, using classification accuracy as the utility
measure does not capture changes in probability estimation, except when the estimated class membership
also changes. To demonstrate this effect on SEU performance we compare SEU with a modified policy
that employs classification accuracy on the training set to estimate the value of prospective acquisitions.
We refer to this policy as SEU-Accuracy. We also examine our choice for estimating the probability dis-
tribution over the values that a prospective acquisition may produce. As we discuss in Section 2.2, prior
research has concluded that employing only predictors whose values are known during inference improves
prediction significantly. Based on these findings in this study we conditioned the estimation on the (known)
class label. To validate the merits of this approach we compare it to two alternative methods that reflect two
extremes with respect to reliance on predictors and their availability at inference time. The first is a simple
approach which computes the unconditional frequency of feature-values, based simply on their frequency
in the training data. We refer to this approach as SEU-Frequency. In the second approach, we use tree induc-
tion, employing all other features and the class label as predictors to estimate the probability distribution
of a prospective acquisition. This approach, SEU-DT aims to capitalize on the interactions between pre-
dictors for inference. However, as discussed in Section 2.2, inference is likely to suffer if predictors whose
values are unknown must be estimated at inference time. The conditional distribution approach we employ
in SEU lies between these two extremes—rather than relying on unknown values or estimating a simple
unconditional distribution, SEU conditions the estimation on the known label.

The Oracle Policies. To derive an upper bound for SEU’s performance, we employ an omniscient policy
(the Oracle) that knows the true values of missing features to determine the feature-value acquisition that
will lead to the greatest improvement in generalization performance. In addition, we assume the Oracle has
access to the held-out test data so as to compute the actual improvement in Log Gain following an acquisi-
tion. As with SEU, to render the evaluation feasible, rather than evaluate all possible acquisitions the Oracle
selects the best acquisition among a sample of a3 prospective acquisitions. Both policies select prospective
acquisitions from the same set of prospective acquisitions. We also present experiments which decompose
the advantages conferred by the Oracle over the imperfect estimations performed by SEU. Specifically, we
decompose the relative advantages into the Oracle’s knowledge of the true model’s performance measured
over the held-out test data as compared to SEU’s estimation over the training set, and the Oracle’s knowl-
edge of the true values of prospective acquisitions as compared to SEU’s estimation of the expected benefits

from prospective acquisitions over all possible values that a missing feature may have. Recall that in SEU



Saar-Tsechansky, Melville, and Provost: Active Feature-Value Acquisition
Management Science 00(0), pp. 000-000, (© 0000 INFORMS 13

we estimate the distribution of a missing value to compute the benefits from its acquisition in expectation. If
the actual values of prospective acquisitions were known one could compute the benefit to model induction
from acquiring the corresponding value directly rather than estimate these benefits in expectation. To evalu-
ate the upper-bound performance that can be obtained by SEU if the actual values of missing features were
known, we constructed a new policy, the Feature Oracle, that has access to the true values of prospective
acquisitions for the purpose of evaluating acquisitions. Both SEU and the Feature Oracle estimate the bene-
fit to induction over the training set and evaluate the same set of prospective acquisitions in each acquisition
phase. To evaluate the benefits from assessing the model’s accuracy directly over the test data we compare
SEU’s performance to that of the Performance Oracle—a policy in which the improvement in Log Gain is
computed on the test data. We fix all other components of the polices so that the Performance Oracle and
SEU employ the same measure to estimate feature-value distributions and evaluate the same consideration
set of prospective acquisitions at each acquisition phase. We compare SEU to the Performance Oracle and
Feature Oracle to estimate how improvements in each of SEU’s estimations can contribute to SEU’s overall
performance so as to approximate the upper-bound performance.

Sensitivity Analyses. Finally, we explore the performance of SEU under different settings. The first of
these evaluations considers the robustness of SEU’s performance under different feature-value acquisition
costs. SEU also incorporates several parameters such as the size of the sample of feature-values whose
contributions to learning are evaluated by SEU, the number of feature-values acquired in each acquisition
phase, and the size of the initial sample provided to SEU for evaluating the contributions of prospective
acquisitions. We explore in turn how each of these design parameters affects SEU’s performance (Langley
2000, Hevner et al. 2004).

Experimental Setup. The empirical evaluations are performed over a set of data sets from a variety of
domains. Four data sets,* expedia, etoys, priceline, and gvc contain information about web users and their
visits to large retail web sites. The target (dependent) variable indicates whether a user made a purchase
during a visit. The predictors describe customers’ surfing behaviors at the site as well as at other sites over
time. We induce models to estimate whether a purchase will occur during a given session and employ the
acquisition policies to estimate which unknown feature-values are most cost-effective to acquire. These
data sets contain both continuous and categorical features; therefore for simplicity when estimating value
distributions we converted all the continuous features to categorical features using the discretization method
of Fayyad and Irani (1993). The remaining data sets are available from the UC Irvine repository (Blake and

Merz 1998) and pertain to a variety of domains.

4 From the related study by Zheng and Padmanabhan (2006).



Saar-Tsechansky, Melville, and Provost: Active Feature-Value Acquisition
14 Article submitted to Management Science; manuscript no. MS-00665-2006

The performance of each acquisition policy is evaluated over 10 independent runs of 10-fold cross-
validation as follows. For each cross-validation run, the 10-fold partition was selected at random. In each
fold of the cross-validation, all policies were provided with the same subset of initial feature-values, drawn
uniformly at random from the training portion. All the remaining feature-values in the training data consti-
tute the initial pool of potential acquisitions. At each acquisition phase, each policy acquires the values of a
set of queries from the pool of prospective acquisitions; then, a new model is induced and its classification
accuracy is measured on the test data. This process is repeated until a desired number of feature-values has
been acquired. To reduce computation costs in the experiments, we acquire queries in fixed-size batches
at each iteration. For problems where learning requires more training information, we acquired a larger
number of feature-values at each phase. For each data set, we selected the initial random sample size to be
such that the induced model performed at least better than assigning all instances to the majority class. We
later explore the policy’s performance for smaller numbers of initial feature-values and for different batch
sizes. The test data set contains complete instances to allow us to estimate the true generalization accu-
racy of the constructed model. We set the exploration parameter « to 10. For model induction we used J48
classification-tree induction, which is the Weka (Witten and Frank 1999) implementation of C4.5 (Quinlan
1993). Integral to this induction algorithm is a missing value treatment, enabling induction from the incom-
plete data set. In addition, Laplace smoothing was used with J48 to improve class probability estimates.

We compare the performance of any two policies, A and B, by computing the percentage reduction in
classification error rate obtained by A over B at each acquisition phase and report the average reduction over
all acquisition phases. We refer to this average as the average percentage error reduction (Saar-Tsechansky
and Provost 2004). The reduction in error obtained with policy A over the error of policy B is considered to
be significant if the errors produced by policy A are lower than the corresponding errors (i.e., at the same
acquisition phase) produced by policy B, according to a paired t-test (p<<0.05) across all the acquisition
phases. The learning curves that we present below and the average percentage error reduction we report

reflect average performance of each policy over the 10 runs of 10-fold cross-validation.

3.2. Results
The Primary Results. Table 1 presents the average error reductions obtained by different SEU policies
with respect to the uniform sampling policy, which acquires a representative set of feature-values drawn
uniformly at random. The number of acquisitions, (3, acquired at each acquisition phase and the size of the
initial sample are also presented in Table 1. In this and subsequent tables each significant value (p<0.05) is
marked with an asterisk (*).

Let us first examine whether SEU effectively decreases classification error as compared to a uniform

sampling policy. In Table 1, the fourth and fifth columns present the average error reductions obtained
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Consideration Alternative for  Alternatives for
set alternatives A(FF, ;=v,) P(F, ,=vg)
Data Set I} Initial Sample SEU-US SEU-ES SEU-Accuracy SEU-Frequency SEU-DT

(batch size) (no. of instances)

audiology 100 147 14.61* 19.72* 7.81% 8.38* 11.31%
car 50 1033 10.93* 11.11* 4.25% 8.14*% 9.42*
eToys 100 125 19.11* 49.18* 10.17* 17.99* 16.14*
expedia 100 350 10.04* 16.61* 6.38* 5.92% 11.03*
lymph 20 38 7.20* 3.05* 5.56* 6.30* 6.70*
priceline 100 75 10.69* 1.241 4.46* 9.82* 9.17*%
qve 100 225 3.76* 14.82* -0.20* 2.83* 1.30*
vote 10 59 18.30* 8.33* 6.23* 12.83* 15.32*
Average 11.83 15.50 5.58 9.02 10.04
*Policy is better than uniform, p<0.05 (Tp<0.06) *SEU-US is better than the alternative policy, p<0.05

Table 1 Error reductions of SEU variants as compared to a uniform random acquisition policy.

by SEU-US and SEU-ES with respect to uniform query sampling. Figure 2 presents the performance of
the three policies on four data sets that exhibit the different patterns of performance we observe. For all
data sets Sampled Expected Utility builds more accurate models than uniform query sampling. The differ-
ences in performance on all data sets, except for SEU-ES on priceline, are statistically significant.’ These
results demonstrate that the expected utility framework and the specific methods we employ to estimate
the expected improvement in performance are indeed effective for AFA: Sampled Expected Utility selects
queries that on average are more informative for induction than queries selected uniformly at random.

To underscore the advantage of using SEU, one can observe the cost benefit of using SEU to build a model
exhibiting a desired performance level as compared to using a uniform acquisition policy. For example,
on the efoys data set, uniform query sampling had to acquire approximately 1800 feature-values in order
to obtain an accuracy of 94%. SEU-ES had to acquire fewer than 400 feature-values to achieve the same
accuracy. When data-acquisition costs are considerable, this could translate to substantial savings in the cost

of building accurate models.

The results also indicate that the method employed to select the queries to be considered for acquisition
can have a significant impact on the outcome. Both SEU-US and SEU-ES acquire useful feature-values that
significantly improve the model’s performance. For some data sets, such as etoys and audiology, SEU-ES
selects significantly more informative acquisitions than SEU-US, suggesting that Error Sampling identifies
a superior subset of acquisitions to be considered for acquisition than those drawn on average via uniform

query sampling. In other data sets, e.g. priceline, SEU-US is preferable. Recall that Error Sampling selects

5 Note that for SEU-ES on priceline, the improvement at least is significant at the 0.06 level.
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Figure 2  Four characteristic patterns of the improvement of classification accuracy as a function of the

number of feature-values acquired, assuming uniform feature costs.

entire instances, and thus all the missing feature values for these instances simultaneously become candi-
dates for acquisition. Fleshing out a smaller set of examples may be more or less preferable in different
domains. Also, if examples are incorrectly classified simply because they are outliers, Error Sampling will
stumble because it will prefer all the unknown features for these examples. Moreover, if only a few features
are relevant, selecting all the features will only dilute the candidate set.

The average error reduction obtained with SEU-US over all acquisition phases ranges between 3.76%
and 19.11%. SEU-ES often results in even more substantial savings, but its performance is more varied
than that of SEU-US. The average error reduction obtained by SEU-ES ranges between 1.24% and 49.18%.
Because it forms the consideration set based on the entire instance, Error-Sampling may sometimes fail
to select instances with a highly informative feature-value if the entire instance seems less informative as
compared to another instance.

In sum, both SEU policies provide considerable advantage over uniform query sampling. SEU-ES usually
is the better of the two, and sometimes can provide very substantial savings. SEU-US is more consistent
and thus would be a more conservative choice. In the next section we expand on these results, focusing on
the more conservative SEU-US policy. For the remainder of this paper, unless specified otherwise, SEU will

refer to SEU-US.
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Figure 3  Classification accuracy vs. Log Gain for estimating the value of an acquisition. The three compar-
isons are described in the text.

We now compare SEU’s performance to its performance using alternative utility measures, providing
empirical support for the desired properties outlined in Section 2. First we examine empirically whether
Log Gain is a better measure of prospective utility than is classification accuracy. The sixth column of
Table 1 shows the average error reduction obtained by SEU-Accuracy over uniform sampling. We mark
with an asterix (*) the data sets where SEU-Accuracy is significantly better than uniform acquisition, and
with a double-dagger (1) the data sets for which SEU is significantly better than SEU-Accuracy (all of
them). Figure 3(a) shows the performance of each policy as well as of uniform sampling for the car data
set. The improvements obtained by SEU (with Log Gain) can be substantially higher than those obtained by
SEU-Accuracy, up to more than 12% average error reduction. These results demonstrate that by capturing
changes in the probability estimation, Log Gain indeed is able to select significantly more informative
feature-values to acquire, leading to better models on average.

A possible reason for the inferior performance obtained by SEU-Accuracy may be the difficulty of pre-
cisely estimating classification accuracy using only the training data. While in practice only the training
data are available to the SEU policy, it is useful to establish whether Log Gain is more informative even
when an oracle computes the value of prospective acquisitions directly on the test data, or whether classi-
fication accuracy is preferable when it is estimated with sufficient precision, in spite of its step-like form.
To address this question, we compared SEU’s performance to versions of the policy where Log Gain and
classification accuracy are measured on the held-out test data, rather than on the training data. We refer
to these policies as Performance Oracle-LogGain and Performance Oracle-Accuracy, respectively. Figure
3(b) presents the error reduction obtained with Performance Oracle-LogGain as compared to Performance
Oracle-Accuracy. For the Car data set, Figure 3(c) presents the performance obtained by the oracles, SEU,

and the uniform acquisition policy. The results confirm the advantage from detecting changes in the model’s
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probability estimation via Log Gain over classification accuracy—Log Gain is able to identify more infor-
mative acquisitions even when the impact of an acquisition is evaluated with absolute precision over the test
data.

Now, let us turn to the value distribution estimation employed by SEU. Table 1 presents average reduc-
tions in error when using conditional distributions (SEU, fourth column) as compared to using unconditional
frequency estimation (SEU-Frequency, seventh column) and tree induction (SEU-DT, eighth column). For
the audio data set, Figure 4 shows the performance of SEU with each estimation approach. These results
suggest that unconditional distributions provide poorer estimates of the feature-value distribution as com-
pared to the conditional distributions; the average improvement over the uniform policy over all data sets
is 9.02% as compared to 11.83% obtained by SEU. For individual data sets SEU’s relative advantage with
respect to SEU-Frequency reached up to 6.23%. We also find that SEU is often better or comparable to SEU-
DT which can capture more complex patterns, but relies on predictors that may be unknown at inference
time. Errors in estimating missing predictors or their distributions contribute to prediction error cumula-
tively, and furthermore, because the induction technique implicitly assumes all predictors will be available
during inference, it is less likely to capture alternative predictive patterns involving feature-values that will
be available during inference than when it relies exclusively on known predictors (Saar-Tsechansky and
Provost 2007).

The Oracle Policies. Let us now examine the upper-bound performance that can be obtained with SEU.
Figure 5(a) shows the average error reduction obtained by the Oracle as compared to SEU. Figure 5(b)
shows the performance obtained by the Oracle, SEU, and the uniform policies for the car data set. The
Oracle obtains between 0.63% and 14.9% average error reduction and its benefit is statistically significant
in most cases. We also measured the error reduction obtained by each, the Oracle and SEU, as compared

to uniform sampling in order to discover what proportion of the improvement obtained by the Oracle is



Saar-Tsechansky, Melville, and Provost: Active Feature-Value Acquisition
Management Science 00(0), pp. 000-000, (© 0000 INFORMS 19

Data Set Oracle vs. SEU SEU Error Reduction %0

as % of Oracle’s 88 I
audiology 9.47* 4921 o |
car 13.11* 53.17 8 |
c¢Toys 311" 40.51 fe|
expedia 4.09* 42.89 §a |
lymph 14.90* 36.38 . e
priceline 0.63 56.54 % | A ’ o —— |
qve 2.42% 4731 a ‘ ‘ Uniform._
vote 046 6243 R R
*p<0.05 (a) (b) car

Figure 5  Error reduction of the omniscient Oracle as compared to SEU. SEU achieves about half the total
error reduction over uniform acquisition.

obtained by SEU. In Figure 5(a) we denote this measure as “SEU Error Reduction as % of Oracle’s.” SEU
consistently achieves about half the “optimal” error reduction.

We can decompose the advantages conferred by each of the Oracle’s perfect measures of the quanti-
ties in equation 1 over the corresponding imperfect estimations performed by SEU. Figure 6(a) presents
the average error reduction obtained with the Feature Oracle as compared to the SEU policy. For the car
data set Figure 6(b) shows the performance of the Feature Oracle, SEU and uniform sampling. As shown,
acquisitions made by the SEU policy often result in models that perform comparably to those induced with
acquisitions made by the Feature Oracle. The Feature Oracle performs statistically significantly better in
only three data sets; in these cases the Feature Oracle’s acquisitions lead to models that are between 2.19%
and 4% more accurate than those produced by SEU, on average. Thus, for the purpose of choosing acqui-
sitions based on computed expected utility, SEU estimates the distribution of missing values fairly well;
however, in principle, there is some room for improvements so as to reach the Feature Oracle’s performance.
As we show in Section 3, models that are expected to perform well in this setting are those that can produce
an estimation of the distribution without the need to impute or estimate the distribution missing predictors.
Approaches that are more computationally intensive (and generally more accurate) than the one we employ
may improve the performance further (Saar-Tsechansky and Provost 2007).

To evaluate the benefits from assessing the model’s accuracy directly over the test data we compare SEU’s
performance to that of the Performance Oracle. Figure 7(a) presents the average percent error reduction
obtained with the Performance Oracle as compared to SEU. With the exception of a single data set, the
Performance Oracle’s ability to rank potential acquisitions by their impact on the test data results in models
that are statistically significantly more accurate than those induced with SEU. The Performance Oracle
produced models that are 2.17% to 6.29% more accurate than those obtained with SEU.

Our decomposition of the Oracle’s performance suggests that its access to the held-out test data confers
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Figure 7  Oracle with complete knowledge of test-set performance (only) as compared to SEU.

the most significant advantage to its performance over SEU. Unfortunately, in practice, this information
cannot be available to an acquisition policy. SEU’s estimation of the feature-value distribution already
results in a comparable performance to that of the Feature Oracle for most data sets. However, comparing
the decomposed results to the results of the (complete) Oracle, we see that there seems to be an interaction

that leads to the overall error reduction being larger than the sum of the individual reductions.

3.3. Sensitivity Analyses

We now explore SEU’s performance under different experimental settings. In the first set of experiments
we evaluate SEU’s performance when attributes vary largely both in the information they provide about
the class and in their costs. To make the problem setting challenging, we constructed synthetic data in the
following way. For the lymph data set, which has 18 features, we added an equal number of binary features
with randomly selected values so as to provide no information on the class. In addition, for each feature we

associate a cost drawn uniformly at random from 1 to 100. We evaluated the policies’ performances for 5
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Figure 8 Comparing acquisition policies under different acquisition-cost structures.

different assignments of feature costs.

Since uniform sampling does not take feature costs into account, we also compare SEU with a baseline
strategy that does. This approach, Cheapest-first, selects feature-values for acquisition in order of increasing
cost. The results for all randomly assigned cost structures show that for the same cost, SEU consistently
builds more accurate models than the uniform policy. Figure 8 presents results for two representative cost
structures. SEU’s superiority is more substantial than that observed with uniform costs for the original data
sets. This is because SEU’s ability to capture the value of acquisitions per unit cost is more critical when
there are features of varying information value and cost. In contrast, the performance for Cheapest-first is
quite varied for different cost assignments. When there are highly informative features that are inexpensive,
Cheapest-first of course performs quite well (e.g., Figure 8(a)), since its underlying assumption holds. In
such cases, SEU would not perform as well because it imperfectly estimates the expected improvement from
each acquisition. On the other hand, when many inexpensive features are also uninformative (probably a
more realistic scenario), Cheapest-first performs worse than the uniform policy (Figure 8b). SEU, however,
estimates the trade-off between cost and expected improvement in performance, and although the estimation
clearly is imperfect, it consistently selects better queries than random acquisitions for all cost structures.

We now examine in turn how each of SEU’s parameters affects its performance. SEU requires some train-
ing data to estimate the expected contribution to induction of prospective acquisitions. In the experiments
so far, we evaluated the performance of SEU once the model induced from the initial sample performs
comparably to a majority classifier. Here, we also explore how SEU performs when it is provided with a
smaller initial sample up until it exhausts the pool of potential acquisitions. As before, we initialized the
training set to a random set of feature-values, and the number of values is equal to 10 times the number
of features for the corresponding data set. A representative pattern that we observed is presented in Figure
9(a) for the eToys data set. As shown, because of the small amount of training data both policies require

additional data to produce predictive patterns and improve performance. However, the acquisitions made
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Figure 9  Changes to SEU’s parameters have the expected effects on performance.

by SEU are substantially more informative and thus SEU acquires fewer features to achieve a given level of
performance. Thus, even when only a very small number of values are available initially, it is preferable to
employ SEU. In addition, as is typical with information-acquisition policies, once both policies exhaust the
pool of acquisitions the performances of the models they produce converge.

To alleviate computational costs, SEU evaluates only a subset of prospective acquisitions at each acqui-
sition phase. The size of this consideration set, as determined by the parameter «, is likely to affect SEU’s
performance. For the eToys data set, Figure 9(b) presents SEU performance for different consideration-set
sizes. The results are quite intuitive—the larger the consideration set size, the more likely it is that more
informative feature values are identified and acquired, improving the model’s performance. As shown, even
for a small « value of 10, SEU acquires more informative acquisitions on average than those selected by
uniform sampling. If there are no computational constraints, however, a larger consideration set clearly is
preferable.

The SEU policy evaluates the expected contribution of each individual feature-value acquisition. How-
ever, in practice and in the experiments conducted in this study, more than a single feature-value may be
acquired simultaneously in each acquisition phase. While we find that SEU is effective in this setting,
it is important to explore how SEU with batch acquisitions performs compared to when a single value is
acquired at each phase. For the Lymph data set Figure 9(c) shows SEU performance when a single value
is acquired at each phase, as compared to when multiple feature-values are acquired simultaneously. Here
as well the results are quite intuitive. Because SEU estimates the contribution of single values, it performs
best when it acquires one value at a time; similarly, when batch acquisitions are performed, SEU performs
better the smaller the batch size is. When there are no significant computational constraints, the acquisition

of an individual value at each iteration is preferable.

4. Active Information Acquisition

Now we demonstrate further the value of the expected utility framework by exploring its extension to a more

general task. In principle, other sorts of information besides feature-values also may be acquired, at a cost,
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to benefit induction. We refer to the task of simultaneously evaluating the acquisition of any information
pertinent to induction as Active Information Acquisition (AIA). We consider the case of AIA for which
both unknown feature-values and class labels can be acquired. The motivation for this problem combines
the motivations for traditional active learning (Cohn et al. 1994) and for active feature-value acquisition.
Consider, for example, data used to model customers’ responses to an offer. Different feature-values may
be missing for different customers, and the responses to offers for particular customers can be acquired
at a cost. The latter costs may stem from contacting a customer or from the opportunity cost arising from
offering a sub-optimal offer to a potential buyer. Given these acquisition costs it would be beneficial for an
AIA policy to suggest what would be the most effective acquisitions.

The expected utility framework extends directly to handle this problem. The advantage of our approach
is that it evaluates all acquisition types by the same measure—i.e., the marginal expected contribution to the
predictive performance per unit cost. In Algorithm 1, missing classes can be included as potential queries
in step 2. As a technical point, in this setting we cannot use class-conditional distributions to estimate
the feature-value distributions of missing features (or classes), since we do not have class labels for all
instances. Instead, we will use an instance of the base learner (tree induction in this case) to estimate the
value distribution of the feature under consideration, as done in SEU-DT in Section 3. We refer to this

policy as Sampled Expected Utility-AIA (SEU-AIA).

4.1. Determining the Consideration Set for AIA

To make the expected utility approach tractable, here too we reduce the set of candidate queries. However,
in the AIA setting, drawing the consideration set uniformly at random would be biased against missing class
labels—there typically are fewer class labels than feature-values and a uniform sample would tend to reflect
this. Such a bias could be detrimental to induction because a class label tends to be much more informative
than a single feature value. To reduce the set of queries evaluated by AIA, we employ a computationally
inexpensive heuristic which aims to capture the relative information value of a prospective acquisition per
unit cost, before it is explicitly computed by AIA. Specifically, we compute a weight for each prospec-
tive acquisition that is proportional to an estimation of the information conveyed by this value for model
induction (described next), normalized by the value’s cost.

More specifically, for candidate-set reduction, we evaluate the contribution to induction of all feature-
values of a given a feature F; by a cost-normalized variant of the information gain /G (F}, L)(Quinlan 1993)
of the feature F; for class variable L. The information gain is given by IG(F;,L) = H(L) — H(L|F;) =
H(L) =%, p(F; =v;)H(L|F; =v;), where H(Z) denotes Shannon’s information entropy of variable Z,
and feature F; can have one of j values vy, ...v;. The information gain captures the reduction in the entropy

of the class variable once the value of feature F; is known. Thus features that carry more information for
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determining the class will have higher information gain and also are more valuable to induction. The score
assigned to a feature-value is the corresponding feature’s information gain normalized by the feature-value’s
cost. Thus feature-values with high information gain and lower costs will be assigned higher weights. These
weights then guide the sampling of the consideration set.

In supervised learning, instances whose class labels are missing are not used for induction, thus when
labels are acquired the values of the known feature values of the respective instance also become available
for induction. To capture the value to induction when a class label is acquired, we compute the sum of
information gains for all the known features of the respective instance. Formally, let M}, denote the set of
all known feature-values for instance k, then the weight assigned to the value from acquiring the label of
instance k is give by > . ., IG(F}, L).

The consideration set is composed of the prospective acquisitions with the highest weights. This selection
scheme is tractable because it does not require intensive computations for each missing value, and estimates
the same information gain for all queries of a given feature. Once the consideration set is determined, SEU

is applied to estimate the expected value of each individual query in the set.

4.2. SEU-AIA Performance

To assess the performance of SEU-AIA for this general information acquisition task, we remove class labels
and feature-values from the training data uniformly at random. We compare the performance of SEU-AIA
to acquiring missing values uniformly at random. For this set of experiments we assume that all features and
class labels have the same cost; next, we will present experiments with non-uniform costs. The purpose of
this comparison is to verify that SEU-AIA effectively estimates the expected contribution of missing values
of both types, so as to rank them accurately, and to produce better predictive models for a given cost.

Table 10(a) presents a summary of results comparing SEU-AIA with uniform sampling. On all data sets,
acquiring information using SEU-AIA results in significantly better models than using uniform acquisition.
Figure 10(b) shows the results for audiology and expedia, demonstrating the substantial impact. SEU-AIA
consistently acquires informative values for modeling, which result in models superior to those obtained by
uniform acquisition. SEU-AIA evaluates and compares the different types of information effectively and
provides a significant lift in predictive performance. To our knowledge, this is the first demonstration of an
effective policy for this general information acquisition problem.

To gain further insight into SEU-AIA’s choice of acquisitions we compare experimentally the perfor-
mance of SEU-AIA with that of an active learning (AL) policy, which employs SEU-AIA, but only consid-
ers class labels for acquisitions, and to SEU which only evaluates feature acquisitions. We perform these

evaluations under different cost structures in which either class labels or feature-values are significantly
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Figure 11 Different costs structures favor different basic acquisition strategies. SEU-AIA shows robust per-

11300

formance, adjusting acquisitions based on costs.

more expensive to acquire. These comparisons allow us to assess whether SEU effectively manages acqui-
sitions of class labels and of feature-values so as to produce models that are comparable or superior to those
produced with either active learning or AFA alone.

Figure 11 shows classification accuracy as a function of acquisition cost for SEU-AIA, Active Learn-
ing (AL), SEU, and uniform acquisition for three different cost structures. Figure 11(a) shows results for
a cost structure in which class labels and feature values are equally expensive, whereas Figures 11(b) and
(c) present results for cost structures in which feature-values or class labels are significantly more expen-
sive, respectively. Note that as there are fewer class labels than feature-values, the curves describing AL
performance may appear truncated, particularly if label costs are significantly lower than feature costs or
vice versa.

Our results suggest that while policies that consider the acquisition of only one type of information can
perform well for cost structures in which the values they acquire are informative and inexpensive, their
performance is inconsistent and they perform poorly with other cost structures. By contrast, SEU-AIA

effectively handles the trade-off between the informativeness of different types of values and the cost of
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acquiring them, providing consistent, good performance across all cost structures. For example, for the
cost structure shown in Figure 11(a), no one type of information is consistently more cost-effective than the
other and it therefore is beneficial to alternate between acquisitions of class labels and of feature-values.
As shown in Figure 11(a), SEU-AIA performs better than each of the other policies, which consider only
the acquisition of class labels or of feature-values. This confirms that acquisitions of both feature-values
and class labels is more cost-effective. For the cost structures in which feature-values are significantly more
expensive than class labels or vise versa, either AL or SEU, respectively, perform best. This is because
the extreme cost structure leads to one type of acquisitions being consistently more cost-effective than the
other. While SEU-AIA’s estimation of the value of prospective acquisitions is imperfect, its performance
in these settings approximates that of the better of AL or SEU, demonstrating that SEU-AIA accurately
estimates the usefulness of acquisitions that are more cost-effective, regardless of their types. By contrast,
the policies which consider the acquisition of only one type of information, namely AL and SEU, perform
poorly in one of the settings. For example, in the cost settings shown in Figure 11(c) AL performs very
well. However, AL performs poorly for the cost structure in Figure 11(b) because it does not consider the
highly cost-effective feature-values that can be acquired. Because it is not known a priori how policies that
acquire only feature-values or only class labels will perform under different cost structures and given the
varied performance of these policies, SEU-AIA is attractive, allowing one consistently to identify different

types of cost-effective acquisitions.

5. Limitations and Future Work
Despite the effectiveness of the expected utility framework and the SEU policy, there are limitations that
provide avenues for future work.

e We discussed in Section 1 why any policy for AFA must be heuristic, as generalization accuracy
itself cannot be computed exactly. However, even for a heuristic measure of performance, the question
of whether more complex optimization over all possible set acquisitions will improve AFA remains an
open and interesting question. We note that an optimization procedure to identify the best of all possible
acquisition sets can be thought of as a multiple comparisons procedure (Jensen and Cohen 2000), using a
finite set of training data to estimate generalization performance of alternative models. Such settings may
lead to pathologies such as overfitting and oversearch—indeed, there has been growing evidence that search
for optimal "combinations" of factors for predictive modeling often is inferior to greedy search.

e [n some settings it may be possible to acquire different sets of feature values for a single price. For
example, access to different information sources, such as archived patient records of different care providers,

may each be costly, but once a record is accessed a set of values can be acquired for a single price. Thus
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the problem becomes: which set of values would be most cost-effective to acquire next? In principle, our
framework can be applied directly. However, estimating the value distribution of all possible assignments for
a given set and computing the value to induction from each assignment would be very inefficient in practice.
One possibility is to assume statistical independence of values in a given set, alleviating the joint value-
distribution estimation. Subsequently, one may employ Monte Carlo estimation to draw value assignments
for each prospective set to approximate the expected contribution to model induction.

e For estimating the value distribution of a prospective acquisition it is recommended to use only feature-
values that will be known at inference time (Saar-Tsechansky and Provost 2007). In principle, one can model
this distribution using any set of known predictors. As we note earlier, this approach can be inefficient with
most modeling techniques, because it may require inducing a different model to capture the interactions
among each unique set of known predictors. One alternative is to employ the naive Bayes assumption of
conditional independence, which allows inference without the need to estimate the values or the distribu-
tions of missing predictors. In addition, it is trivial to marginalize any missing variables by not including
them during inference.

The models induced may be improved by using a missing value treatment that takes into consideration
the potential bias in the missingness pattern created by a selective (non-uniform) acquisition policy. In the
empirical evaluations in this paper we employ the treatment integral to C4.5. It would be informative for
future work to explore the performance with other missing value treatments and modeling techniques.

e The Expected Utility framework allows one to incorporate performance objectives other than accuracy,
such as the (economic) benefit from model use.

e [f/once enough values are available, feature selection may be applied to complement AFA. Prospective
value acquisitions pertaining to features which are excluded by feature selection may not be considered for

acquisition. Otherwise, AFA itself would have to learn that these values provide no utility.

6. Related Work
The problem of sequential information acquisition has been addressed in a variety of settings, with various
types of information being acquired to satisfy a variety of objectives. To the best of our knowledge, the
policies we present are the first approaches designed for the problem of incrementally acquiring feature-
values for inducing a general classifier when costs are specified for individual entries of F'.

An early and highly influential stream of research pertains to the classic multi-armed bandit problem
introduced by Robbins (1952). McCardle (1985) applies similar reasoning. The objective in the multi-armed

bandit problem and the technology adoption decision problem is the estimation of single parameter or a
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set of independent parameters, e.g., the probability of success. Other researchers also have addressed infor-
mation acquisition for decision making. Moore and Whinston (1986, 1987) develop a theoretical decision-
making model for a decision-maker who can acquire information at a cost in order to reduce the uncertainty
associated with a given decision. Feature-value acquisition for case-retrieval and inference algorithms was
treated by Mookerjee and Mannino (1997) and Mannino and Mookerjee (1999), who study sequential
feature-value acquisition for test instances. They address a setting where all feature-values of a test instance
are missing but can be acquired sequentially during inference to minimize the overall acquisition costs.
Mookerjee and Mannino also demonstrate that joining concept formation and retrieval strategy results in
significantly lower acquisition cost during inference as compared to when the two phases are addressed
independently. Differently from this prior work, we develop policies for acquiring information to improve
predictive model induction.

The notion of information acquisition designed for predictive model induction has been addressed by
several prior lines of work. Three decades ago, authors identified the significance of the interdependence
between induction as a search in the space of all possible concepts/models and the selection of training data
used to direct the search. Simon and Lea (1974) describe conceptually how induction involves simultane-
ous search of two spaces—the results of searching the model space can affect how training data will be
sampled. Techniques from Optimal Experimental Design (Federov 1972) and from Active Learning (Cohn
et al. 1994, Freund et al. 1997) assume class labels are unknown. Thus in active learning complete instances
are acquired to enhance learning. A related problem to active learning was addressed by Zheng and Pad-
manabhan (2002, 2006), where instances with incomplete feature-values are not used for induction, and
similar to active learning, a policy is proposed to identify useful instances for which to acquire complete
information. Melville et al. (2004) address the same problem, but assume that incomplete instances can be
used for induction, using some missing-value treatment. The approach we develop here for feature-value
acquisition is inspired by the method proposed by Roy and McCallum (2001) for active learning. Roy and
McCallum examine the expected improvement from acquiring class labels for naive Bayes classifier induc-
tion. Our approach for active information acquisition presented in section 4, we generalize the AFA problem
to include the class variable as another feature to acquire, thus subsuming both AFA and traditional active
learning.

Also closely related, Lizotte et al. (2003) study budgeted learning where an amount to be spent towards
feature-value acquisition is specified a priori. There are two main differences between AFA and the bud-
geted learning problem and policies proposed by Lizotte et al. First, the fundamental goals are different.
AFA seeks acquisitions that will give the best model for any intermediate investment in information acqui-

sition; thus, the order of acquisitions is critical. Budgeted learning, on the other hand, seeks the best model
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under the assumption that the entire budget will be spent on acquisitions; thus, the order of acquisitions is
largely unimportant (beyond the critical question of acquire or not). The AFA setting is appealing because
it allows reaching a performance goal on a fraction of the budget. The policies of Lizotte et al. (2003) also
assume the induction of a naive Bayes classifier with its conditional independence assumption, and equal
costs for acquiring the values of a feature regardless of the instance. These assumptions combine to enable
queries of the form, “Acquire the value of feature j for any instance in class £.” In the AFA setting, the
applicability to a general classifier (not just naive Bayes) as well as the potentially variable cost for entries
in the matrix F' requires the ability to assign different values to the acquisition of a given feature for differ-
ent instances. We experiment with and discuss the implications of different cost structures in Section 3.3.
The main implication of the conditional independence assumption employed in Lizotte et al. (2003) is that
it substantially limits the number of queries to be considered by the policy. In principle, the formulation
of the policies proposed in Lizotte et al. (2003) can be extended to consider unique benefits from each
feature-value acquisition (as in (Veeramachaneni et al. 2006)); however the computational complexity of
their implementation may be prohibitive, particularly that of Single Feature Lookahead with a large looka-
head. In Sections 2.3 and 4 we address means to reduce the consideration set of queries for the policies we
propose. Williams et al. (2005) also address a similar problem; however differently from the work above
they construct an acquisition policy designed specifically for a logistic regression model, assume that the
modeling performance and acquisition costs must be given by the same units, and assume that the training
data also define the complete set of instances for which prediction will be required.

Some work on cost-sensitive learning (Turney 2000), such as CS-ID3 (Tan and Schlimmer 1990), also
attempts to minimize the cost of acquiring features during training; however, it only considers acquiring
information for the current training instance. The LAC* algorithm (Greiner et al. 2002) acquires a random
sample of complete instances in repeated exploration phases that are intermixed with exploitation phases,
using the current classifier to classify instances economically.

Work on feature (variable/model) selection (John et al. 1994) assumes known feature-values and selects
a subset of features to use for model induction. During feature selection the known feature-values are used
to estimate the relative contribution from including a// the values for a given feature. In principle, feature

selection procedures could be complementary to an AFA policy, as discussed in Section 5.

7. Conclusions

We presented a general approach to active feature-value acquisition that acquires feature-values based on the
estimated expected improvement in model performance per unit cost. We also proposed a specific measure

for the utility of a prospective acquisition that captures the benefit from the acquisition given the dynamics



Saar-Tsechansky, Melville, and Provost: Active Feature-Value Acquisition
30 Article submitted to Management Science; manuscript no. MS-00665-2006

of modeling with incrementally changing training data, and a method for estimating the distributions of
possible query results in the presence of missing values. We showed how this computationally intensive
policy can be made faster and remain effective by constraining the search to a sample of potential feature-
value acquisitions. The resulting technique, Sampled Expected Utility, consistently yields better models per
unit acquisition cost, when compared to uniform query sampling. The technique’s advantage is particularly
apparent when feature-values have varying information values and incur different costs.

We also studied SEU’s component measures as compared to alternatives and to omniscient oracles, which
know exactly the quantities being estimated. These studies reveal that SEU’s measure of prospective feature-
value distributions is largely effective, and that the greatest improvement in performance by the oracles is
obtained when they know the exact impact of different values that may be acquired. A sensitivity analysis
of the method’s parameters produced intuitive results—SEU performs better when the consideration set of
prospective acquisitions is larger and when the number of values acquired at each phase is smaller.

Finally, we showed how the SEU framework for feature-value acquisition can be effectively applied
to address the more general information-acquisition problem in which missing (training) class labels and
feature-values both may be acquired at a cost. SEU is able to alternate between acquisitions of class labels
and of feature-values based on their relative contributions to learning per unit cost. In this general setting
SEU produces better models for a given cost as compared to a uniform policy as well as compared to
policies that acquire only feature-values or only class labels.

As we discussed in the introduction, the availability of a generic, effective, and computationally effi-
cient policy for information acquisition offers opportunities to change the manner by which firms, which
rely on consumer feedback to generate valuable business intelligence, interact with consumers to enhance
data-driven intelligence cost-effectively. It also presents opportunities to transform business practices where
information is acquired regularly in bundles: intelligent acquisition policies will allow firms to selectively
identify only the most cost-effective values to acquire from potentially different sources to improve induc-
tion. Furthermore, such policies are likely to render information acquisition from third-party providers
feasible for small businesses with potentially limited budgets.

The 1960 Siegel and Fournaker quote with which we started the paper is as relevant as ever. The meaning
of “research purposes” has changed dramatically in half a century, especially with the million-fold improve-
ment in computing power per unit cost. In this paper we have shown new ways to bring this tremendous

computing power to bear to evaluate the value of information to improve decision making.
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