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ABSTRACT

Despite the tremendous level of adoption of machine learn-
ing techniques in real-world settings, and the large volume of
research on active learning, active learning techniques have
been slow to gain substantial traction in practical applica-
tions. This reluctance of adoption is contrary to active learn-
ing’s promise of reduced model-development costs and in-
creased performance on a model-development budget. This
essay presents several important and under-discussed chal-
lenges to using active learning well in practice. We hope this
paper can serve as a call to arms for researchers in active
learning—an encouragement to focus even more attention
on how practitioners might actually use active learning.

1. INTRODUCTION

The rich history of predictive modeling has culminated in
a diverse set of techniques capable of making accurate pre-
dictions on many real-world problems. Many of these tech-
niques demand training, whereby a set of instances with
ground-truth labels (values of a dependent variable) are ob-
served by a model-building process that attempts to cap-
ture, at least in part, the relationship between the features
of the instances and their labels. The resultant model can
be applied to instances for which the label is not known, es-
timating or predicting the labels. These predictions depend
not only on the functional structure of the model itself, but
on the particular data with which the model was trained.
In many applications, acquiring a label for a particular in-
stance comes at some cost. For example, one may employ
human labor to “manually” examine the instance and record
its label. In other applications, costly incentives, interven-
tions or experiments may reveal labels. In such cases, simply
labeling all available instances may not be practicable, due
to budgetary constraints or simply a strong desire to be cost
efficient. The dependence of a model’s predictive perfor-
mance on the selection of data suggests that care should be
taken. The importance of selective acquisition is evidenced
by the vast number of research papers on active learning—
using the models learned “so far” in the selection of subse-
quent data for labeling.

However, while active learning is theoretically appealing, it
seems that the techniques have had difficulty gaining trac-
tion with practitioners. For example, few papers in the lit-
erature report on the use of active learning for “real” appli-
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cations.’

This essay discusses how the settings typically used in ac-
tive learning research papers don’t necessarily represent the
settings faced by real-world applications. This can result in
the literature not providing sufficient guidance for the prac-
titioner actually to apply active learning techniques. The
purpose of these observations is to serve as a call to arms to
active learning research—a motivation to focus on develop-
ing active learning techniques that can be applied effectively.

2. WHAT ACTIVE LEARNING TECHNIQUE

SHOULD I USE?

Consider a typical use case for which active learning may
seem appealing: given a particular classification problem
with some reasonable loss structure (e.g. is a document
relevant to a topic or not?), a pool of unlabeled instances,
a labeling workforce or procedure that incurs some cost,
and a budget that restricts the number of instances to be
labeled to a (small) subset of the available pool, construct
a predictive model with the best possible performance for
the budget—or at least one that is accurate enough to be
useful for the practical problem. While this situation may
seem extremely simple and an obvious application for active
learning, there are several complexities that may stymie the
practitioner’s application of active learning.

The first and most obvious difficulty is the selection of the
active learning technique itself. This is a non-trivial task:
there are hundreds of published papers espousing different
techniques for active learning, with neither a clear “winner”
among them, nor an agreed-upon set of rules of thumb for
when to use which technique. The quality of the resultant
model can rest on the choice: poor selection may yield a
model that performs far worse than would be achieved if
one were to select instances for labeling at random. We can
see examples of this in Figure 1 (discussed below) and in [9;
26]. The typical post-hoc analysis seen in the active learning
research literature, comparing learning curves generated by
different techniques on a given problem, simply does not
apply in this situation. The practitioner does not have the
data required.

1The notion of “real” applications of machine learning and
data mining technology can be a touchy subject with re-
searchers. Here we simply mean applications with true com-
mercial or scientific import, where the labeling actually is
done via active learning. This is in contrast to studies with
“real” data, where researchers apply and compare different
active learning strategies.
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Similar choices faced in machine learning are solved by per-
forming cross-validation. For instance, one may use cross-
validation to decide the optimal value of a hyper-parameter,
or to choose the best performing model class for a given data
set. This is typically done by building and evaluating can-
didate systems on a data set and picking the setting offer-
ing the best performance. However, cross-validation is not
applicable to selecting an active learning technique. Before
choosing how to sample the data to label, there is no labeled
data to perform cross-validation.

One possible solution is to use some “generally safe” active
learning strategy initially, then using the acquired data for
performing a subsequent cross-validation experiment com-
paring the induced learning curves to determine the best
strategy to use from then on. Such an experimental setup
is inadequate. The data sample is biased by the prefer-
ences of the initial active learner, and results would be un-
reliable. For example, derived estimates of generalization
performance could be arbitrarily inaccurate. Furthermore,
it is unclear how much of the budget would need to be
expended in order to choose the active learning technique
(the very purpose of which is to optimize budget alloca-
tion). While some hybrid active learning heuristics have
been proposed, potentially combining the benefits of their
constituent sub-methods [11; 5; 17], these techniques suf-
fer from the same failings as their component methods: if
the component methods do not work well, or violate the as-
sumptions of the hybrid technique on a particular problem,
then the greater techniques will fail to perform as promised.
Furthermore, these techniques rely on performance estima-
tions, which if based on the sample drawn for training via
the active learner itself, evoke the same problems discussed
above.

Alternately, one may simply perform random sampling to
gather an initial, experimental data set free from the biases
of a particular active acquisition strategy. While this would
help achieve more reliable learning curves, such a strategy
would defeat the intent of performing active learning in the
first place by wasting valuable budget on this random ac-
quisition. The selected instances are likely to differ substan-
tially from those that would be selected by a more intelli-
gent selection process, particularly in a large pool. Further-
more, again it’s unclear how many sample instances would
be necessary to produce reliable comparable active learning
curves, and even reliable initial learning curves may not be
an indicator of the eventual performance of the strategies
considered. Some strategies have been observed to gather
a degree of knowledge quickly in certain settings, only to
taper off without offering exceptional performance for many
subsequent selections, other techniques have been seen to
excel at refining already “smart” classifiers, therefore being
preferable in the latter stages of active learning [11].

While recent work has examined data acquisition strate-
gies purely for the assessment of model performance [25],
it remains unclear how to distribute a limited budget be-
tween a system intended for self-evaluation, and a system
intended for model induction; improved data gathering for
model evaluation would only serve to reduce the expenses in-
curred by using random sampling for evaluation as described
above. Additionally, techniques have been proposed for per-
forming unsupervised assessment [24; 17]. While these sur-
rogate metrics are convenient and may be useful in certain
contexts, the reliance on approximations derived from the

currently model may be unreliable. Subsequent decisions
based on, for instance, minimizing the pool entropy, may
simply strengthen the biases already held by the trained
model [2]. Furthermore, these metrics may differ substan-
tially from the actual loss describing the problem.

To our knowledge, the only safe way for a practitioner to
proceed is to use the literature to select an active learning
strategy that is reasonably stable—i.e., one that performs
reasonably well on a wide variety of tasks. For example,
uncertainty sampling (selecting for labeling those instances
from the available pool with the least certain predictions
[15]) is by far the most widely studied active learning tech-
nique. Uncertainty sampling is the typical baseline for stud-
ies of more elaborate active learning strategies, and with
good implementations is equivalent to selecting the instances
closest to the separating hyperplane of a linear classifier like
a support-vector machine [31] and to practical implemen-
tations of query-by-committee [28]. However, using uncer-
tainty sampling leaves the practitioner feeling inadequate;
as with other techniques used widely as baselines for re-
search papers, uncertainty sampling also is the technique
most widely shown to be worse than other strategies!?

3. WHAT BASE LEARNER SHOULD I USE?

A second obvious question also has a subtle dimension. For
most not-yet well-understood predictive modeling problems,
practitioners face the question of what base learner should
be used. Similarly to the case for selecting an active learning
strategy (just discussed), we do not have a set of training
data on which to inform the choice of a base learner (e.g.,
via cross-validation). Settles [27] suggests that in settings
where the ideal base learner is unknown, a practitioner may
be advised to play it safe and prefer random sampling to an
active learning strategy that may result in a poor model:

This ... brings up a very important issue for ac-
tive learning in practice. If the best model class
and feature set happen to be known in advance—
or if these are not likely to change much in the
future—then active learning can probably be safely
used. Otherwise, random sampling (at least for
pilot studies, until the task can be better under-
stood) may be more advisable than taking ones
chances on active learning with an inappropriate
learning model. [27]

However, when considering active learning in practice, un-
der what conditions would one know the best model class
and feature set in advance? For most practical applications,
that would assume that you already have a large, represen-
tative set of labeled training data! Expending some of the
budget to randomly (or actively) sample a small data set to
choose the base learner is not a satisfactory answer. Perlich
et al. [22] show quite clearly that given two popular classi-
fier inducers, choosing the learner that performs well for a
small data subset often will lead to the wrong choice for a
large data set: learning curves often cross. However, to our
knowledge there is no good guidance besides experimenta-
tion with labeled data to know what exactly “large” means
in this context for a particular application. There exists
a body of work exploring halting heuristics for the active

2Sometimes including random sampling.
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Figure 1: Comparison of random sampling and uncertainty sampling on the same data set with induced skews ranging from

1:1 to 10,000 : 1.

learning process, for instance when further data acquisition
is no longer beneficial [38; 32; 14; 12; 37; 6; 17]. However,
this work all assumes that one decides on a particular model
(functional) form and learning algorithm prior to perform-
ing active learning. Convergence of this particular technique
may have resulted from a poor initial choice and may not
approach what a better model choice could achieve.

The lack of data for deciding on a base model seems to have
particular import for model-specific active learning tech-
niques, for example those designed specifically for support-
vector machines [31; 35; 12]. Since any given modeling pro-
cedure is better on some domains and worse on others,® un-
der what conditions would one of these model-specific active
learning techniques be justified?

Moreover, model-specific techniques aside, there is the issue
of the interaction between the choice of active learning strat-
egy and the base learner used. If the data to label have been
chosen based on one active learning strategy using one base
learner, are those good data for use with a different base
learner (and possibly a different active learning strategy)?
Given that some learners are indeed much better for small
amounts of data, and others for larger amounts of data,
should active learning strategies be designed appropriately?
The literature here has expressed mixed results, with sev-
eral papers expressing positive results in this “reuse” setting:
transferring a dataset selected my one class of base learn-
ers towards the induction of another model class [16; 30].
Other work has observed difficulties transferring actively se-
lected data sets amongst heterogeneous base learners [18; 4;
20]. One proposed solution is to perform active learning us-
ing ensembles consisting of diverse classes of base learners,
potentially alleviating the bias towards a particular type of
model [18; 4].

Returning to model-specific strategies, it may be the case
that the best choice for active learning is a base learner that
would be suboptimal if one were to have all the data, possi-
bly because the combination of this learner and its model-
specific active learning technique are better than a generic
active learning strategy combined with a would-be better
base learner.

Thus, Settles’ advice amounts to: don’t use active learn-
ing on real problems where you do not already have a large

3For example, in one well-cited comprehensive experimental
comparison [8], support-vector machines were not the best
model to choose for any data set.

amount of labeled training data! Exceptions may include
fine-tuning a model that’s already known to perform well
(possibly due to some previous learning or knowledge en-
gineering), and systems where the model form is fixed for
other, domain-specific reasons (e.g., a credit-scoring appli-
cation may demand a logistic regression model).

The practice of active learning could benefit from a different
sort of research than “my active learning algorithm is better
than yours, assuming that I'm using learner L.” Instead (or
in addition), it is important to study robust active learning
techniques: techniques that (i) have good worst-case perfor-
mance across learners and domains—as compared to using
random sampling with a good learner for that domain—
and (ii) that also often perform significantly better than
random sampling. An alternative (and possibly more am-
bitious) goal would be (partially) unsupervised methods for
estimating the learning technique and active learning tech-
nique that in concert would perform well on a given domain,
for instance, using a grand expected-utility formulation over
the space of learner/active-learner combinations.

4. WHAT SHOULD I DO WHEN MY DATA
DISTRIBUTION IS “SKEWED”?

Practical applications rarely provide us with data that have
equal numbers of training instances of all the classes. In
many applications, the imbalance in the distribution of nat-
urally occurring instances is extreme. For example, when
labeling web pages to identify specific content of interest,
uninteresting pages may outnumber interesting ones by a
million to one or worse (consider identifying web pages con-
taining hate speech, in order to keep advertisers off them,
cf. [3]).

Unfortunately, when the data distribution is skewed, active
learning strategies can fail completely—and the failure is
not simply due to the challenges of learning models with
skewed class distributions, which has received a good bit of
study [33]. The lack of labeled data compounds the prob-
lem, because techniques cannot concentrate on the minority
instances, as the techniques are unaware which instances to
focus on.

Figure 1 compares the area under the ROC curve (AUC)
of logistic regression text classifiers induced by labeled in-
stances selected with uncertainty sampling and with random
sampling. The learning task is to differentiate sports web
pages from non-sports pages. Depending on the source of
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the data (e.g., different impression streams from different
on-line advertisers), one could see very different degrees of
class skew in the population of relevant web pages. The
panels in Figure 1, left-to-right, depict increasing amounts
of induced class skew. On the far left, we see that for a bal-
anced class distribution, uncertainty sampling is indeed bet-
ter than random sampling. For a 10:1 distribution, uncer-
tainty sampling has some problems very early on, but soon
does better than random sampling—even more so than in
the balanced case. However, as the skew begins to get large,
not only does random sampling start to fail (it finds fewer
and fewer minority instances, and its learning suffers), un-
certainty sampling does substantially worse than random for
a considerable amount labeling expenditure. In the most ex-
treme case shown,* both random sampling and uncertainty
sampling simply fail completely. Random sampling effec-
tively does not select any positive examples, and neither
does uncertainty sampling.®

A practitioner well-versed in the active learning literature
may decide she should use a method other than uncertainty
sampling in such a highly skewed domain. A variety of
techniques have been proposed for performing active learn-
ing specifically under class imbalance [29; 7; 36; 12; 13],
as well as for performing density-sensitive active learning,
where the geometry of the problem space is specifically in-
cluded when making selections [38; 10; 21; 35; 19]. While
initially appealing, these techniques may not provide results
better than more traditional active learning techniques—
indeed class skews may be sufficiently high as to thwart these
techniques completely [3].

Attenberg and Provost [3] proposed an alternative way of us-
ing human resources to produce labeled training set, specifi-
cally tasking people with finding class-specific instances ( “guided
learning”) as opposed to labeling specific instances. In some
domains, finding such instances may even be cheaper than
labeling (per instance). Guided learning can be much more
effective per instance acquired; in one of Attenberg and
Provost’s experiments it outperformed active learning as
long as searching for class-specific instances was less than
eight times more expensive (per instance) than labeling se-
lected instances. The generalization performance of guided
learning is shown in Figure 3, discussed below, for the same
setting as Figure 1.

S. DEALING WITHDISJUNCTIVE CLASSES

Even more subtly still, certain problem spaces may not have
such an extreme class skew, but may still be particularly dif-
ficult because they possess important but very small disjunc-
tive sub-concepts, rather than simple continuously dense re-
gions of minority and majority instances. Prior research
has shown that such “small disjuncts” can comprise a large
portion of a target class in some domains [34]. For active
learning, these small subconcepts act like rare classes: if a
learner has seen no instances of the subconcept, how can
it “know” which instances to label? Note that this is not
simply a problem of using the wrong loss function: in an

410,000:1 — still orders of magnitude less skewed than some
categories

5The curious behavior of AUC< 0.5 here is due to overfit-
ting. Regularizing the logistic regression “fixes” the prob-
lem, and the curve hovers about 0.5. See another ar-
ticle in this issue for more insight on models exhibiting
AUC< 0.5 [23].

active learning setting, the learner does not even know that
the instances of the subconcept are misclassified if no in-
stances of a subconcept have yet been labeled. Nonetheless,
in a research setting (where we know all the labels) using
an undiscriminative loss function, such as classification ac-
curacy or even the area under the ROC curve (AUC), may
result in the researcher not even realizing that an important
subconcept has been missed.

To demonstrate how small disjuncts influence (active) model
learning, consider the following text classification problem:
separating the science articles from the non-science articles
within a subset of the 20 Newsgroups benchmark set (with
an induced class skew of 80 to 1). Figure 2 examines graphi-
cally the relative positions of the minority instances through
the active learning. The black curve shows the AUC (right
vertical axis) of the models learned by a logistic regression
classifier using uncertainty sampling, rescaled as follows. At
each epoch we sort all instances by their predicted proba-
bility of membership in the majority class, P(y = 0|z). The
blue dots in Figure 2 represent the minority class instances,
with the value on the left vertical axis showing their rela-
tive position in this sorted list. The x-axis shows the active
learning epoch (here each epoch requests 30 new instances
from the pool). The blue trajectories mostly show instances’
relative positions changing. Minority instances drop down
to the very bottom (certain minority) either because they
get chosen for labeling, or because labeling some other in-
stance caused the model to “realize” that they are minority
instances.
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Figure 2: A comparison of the learned model’s ordering

of the instance pool, along with the quality of the cross-

validated AUC.

We see that, early on, the minority instances are mixed all
throughout the range of estimated probabilities, even as the
generalization accuracy increases. Then the model becomes
good enough that, abruptly, few minority class instances are
misclassified (above P = 0.5). This is the point where the
learning curve levels off for the first time. However, notice
that there still are some residual misclassified minority in-
stances, and in particular that there is a cluster of them
for which the model is relatively certain they are majority
instances. It takes many epochs for the active learning to
select one of these, at which point the generalization per-
formance increases markedly—apparently, this was a sub-
concept that was strongly misclassified by the model, and
so it was not a high priority for exploration by the active
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learning.

On the 20 Newsgroups data set we can examine the minor-
ity instances for which P decreases the most in that late
rise in the AUC curve (roughly, they switch from being mis-
classified on the lower plateau to being correctly classified
afterward). Recall that the minority (positive) class here is
“Science” newsgroups. It turns out that these late-switching
instances are members of the cryptography (sci.crpyt) sub-
category. These pages were classified as non-Science pre-
sumably because before having seen any positive instances
of the subcategory, they looked much more like the many
computer-oriented subcategories in the (much more preva-
lent) non-Science category. As soon as a few were labeled
as Science, the model generalized its notion of Science to
include this subcategory (apparently pretty well).
Density-sensitive active learning techniques did not improve
upon uncertainty sampling for this particular domain. This
was surprising, given the support we have just provided for
our intuition that the concepts are disjunctive. One would
expect a density-oriented technique to be appropriate for
this domain. Unfortunately in this domain—and we conjec-
ture that this is typical of many domains with extreme class
imbalance—the majority class is even more disjunctive than
the minority class. For example, in 20 Newsgroups, Science
indeed has four very different subclasses. However, non-
Science has 16 (with much more variety). Techniques that
(for example) try to find as-of-yet unexplored clusters in the
instance space are likely to select from the vast and var-
ied majority class. We need more research on dealing with
highly disjunctive classes, especially when the less interest-
ing® class is more varied than the main class of interest.

6. STARTING COLD

The cold start problem has long been known to be a key diffi-
culty in building effective classifiers quickly and cheaply via
active learning [38; 11]. Since the quality of data selection
directly depends on the understanding of the space provided
by the “current” model, early stages of acquisitions can re-
sult in a vicious cycle of uninformative selections, leading to
poor quality models and therefore additional poor selections.
The difficulties posed by the cold start problem can be par-
ticularly acute in highly skewed or disjunctive problem spaces;
informative instances may be difficult for active learning to
find due to their variety or rarity, potentially leading to
substantial waste in data selection. Difficulties early in the
active learning process can, at least in part, be attributed
to the base classifier’'s poor understanding of the problem
space. This cold start problem is particularly acute in oth-
erwise difficult domains. Since the value of subsequent label
selections depends on base learner’s understanding of the
problem space, poor selections in the early phases of active
learning propagate their harm across the learning curve.

In many research papers active learning experiments are
“primed” with a preselected, often class-balanced training
set. As pointed out by [3] if the possibility and procedure
exists to procure a class-balanced training set to start the
process, maybe the most cost-effective model-development
alternative is not to do active learning at all, but to just
continue using this procedure. This is exemplified in Fig-
ure 3 [3], where the red lines show the effect of investing

SHow interesting a class is could be measured by its relative
misclassification cost, for example.
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resources to continue to procure a class-balanced, but oth-
erwise random, training set (as compared with the active
acquisition shown in Figure 1).

7. CONCLUSIONS

Active learning as a field has shown tremendous theoretical
potential to help us to build predictive models quickly and
cheaply. However, slow adoption in practice suggests that
practitioners face difficulties realizing this potential. This
paper illustrates a surprising array of practical difficulties,
including:

1. how to choose (cost-effectively) the active learning tech-
nique when one starts without the labeled data needed
for methods like cross-validation;

2. how to choose (cost-effectively) the base learning tech-
nique when one starts without the labeled data needed
for methods like cross-validation, given that we know
that learning curves cross, and given possible inter-
actions between active learning technique and base
learner;

3. how to deal with highly skewed class distributions,
where active learning strategies find few (or no) in-
stances of rare classes;

4. how to deal with concepts including very small sub-
concepts (“disjuncts” )—which are hard enough to find
with random sampling (because of their rarity), but ac-
tive learning strategies can actually avoid finding them
if they are misclassified strongly to begin with;

5. how best to address the cold-start problem, and espe-
cially

6. whether and what alternatives exist for using human
resources to improve learning, that may be more cost
efficient than using humans simply for labeling selected
cases, such as guided learning [3], active dual supervi-
sion [2], guided feature labeling [1], etc.

We do not intend this essay to be an indictment of active
learning research, a field responsible for substantial strides
in understanding the problem of cost-effectively acquiring
labeled training data. Rather, we hope that it can serve as
a call to arms to the research community. We cannot take
the current volume of published papers on active learning
as a sign that the problem is “solved.” As practitioners, we
need more research focused on these fundamental questions.
It would benefit both the research and practitioner commu-
nities if active learning researchers were to view the practi-
cal application of active learning techniques as a motivating
framework within which to select the important research
questions on which to work.
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