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ABSTRACT
We present a generalized framework for active inference, the
selective acquisition of labels for cases at prediction time
in lieu of using the estimated labels of a predictive model.
We develop techniques within this framework for classify-
ing in an online setting, for example, for classifying the
stream of web pages where online advertisements are be-
ing served. Stream applications present novel complications
because (i) at the time of label acquisition, we don’t know
the set of instances that we will eventually see, (ii) instances
repeat based on some unknown (and possibly skewed) dis-
tribution. We combine ideas from decision theory, cost-
sensitive learning, and online density estimation. We also
introduce a method for on-line estimation of the utility dis-
tribution, which allows us to manage the budget over the
stream. The resulting model tells which instances to label
so that by the end of each budget period, the budget is best
spent (in expectation). The main results show that: (1)
our proposed approach to active inference on streams can
indeed reduce error costs substantially over alternative ap-
proaches, (2) more sophisticated online estimations achieve
larger reductions in error. We next discuss simultaneously
conducting active inference and active learning. We show
that our expected-utility active inference strategy also se-
lects good examples for learning. We close by pointing out
that our utility-distribution estimation strategy can also be
applied to convert pool-based active learning techniques into
budget-sensitive online active learning techniques.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—data mining; I.2.6
[Artificial Intelligence]: Learning—induction; I.5.1 [Pat-
tern Recognition]: Models—statistics

General Terms: Algorithms, Design, Human Factors

Keywords: active inference, machine learning, active learn-
ing, on-line advertising, micro-outsourcing
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1. INTRODUCTION
When making decisions under uncertainty with data-driven

models, we often have the option of directing (costly) human
resources to help improve the process, for example by hand-
labeling carefully selected data instances. Active learning
methods try to select the instances to label that will best
improve the modeling for a given cost. In this paper we
study a complementary problem. Active inference involves
carefully selecting instances to label at the time of use of a
predictive model (“prediction time” or “inference time”).

In many applications it is desirable to incur some cost
to improve decision making by bypassing the model’s deci-
sions in favor of a human’s. This choice may be a result
of the model’s uncertainty about a particular case, or al-
ternatively, because assigning a label to a certain case will
impart some improvement on other decisions. As a first con-
tribution of this paper, we present a general framework for
such active inference. This framework has prior approaches
for inference-time label acquisition as special cases. The
main generalizations of prior settings are threefold: (i) in-
stances can be drawn with replacement from some distribu-
tion;1 (ii) there may be a limited budget for labeling,2 and
(iii) the set of instances that will eventually be seen may
not be known when a particular labeling decision needs to
be made.

As our main application we will consider learning and in-
ference on data streams, a problem setting which can exhibit
all three of these characteristics. As a motivating example
consider the problem of building classifiers for “safe” online
advertising: helping advertisers to control the content ad-
jacent to their advertisements. Certain categories of objec-
tionable content such as hate speech and pornography are at
odds with the carefully crafted images associated with most
brands. Given a stream of impression opportunities, a safe
advertising system is tasked with classifying each page as
acceptable or objectionable, with the goal of preventing ads
from occurring on objectionable pages. Figure 1 presents a
typical distribution over web page occurrences in a produc-
tion safe advertising system. In such a highly skewed setting,
a few pages appear extremely frequently in the impression
stream. However, most pages occur very infrequently. Given
the extreme sensitivity to objectionable content, as well as to
large numbers of falsely blocked good web pages, it is clear
that not all pages should warrant equal effort—some pages
may be sufficiently sensitive or frequent to have their own

1In practice, this distribution may be far from uniform.
2The budget constrains the number of examples that may
be labeled.



hard-set ground-truth labels (within some labeling budget).
However, at any point in time the set of pages to-be-seen
is unknown, a scenario that is especially likely upon the in-
troduction of a new impression stream to the advertising
system. Note that these properties are not exclusive to the
safe advertising problem: similar difficulties may be faced by
classification problems in web search, spam detection, online
ad targeting, error detection in complex systems, and oth-
ers, where instances for prediction appear in streams with
repetition.

Figure 1: A histogram of impression frequencies of
web pages sampled from a single day’s ad traffic.
Such skewed distributions on page views are typical
in online advertising.

Ideally, one would like to apply the limited labeling budget
to the most “useful” examples appearing in a stream. How-
ever, this task is complicated by the necessity of performing
various estimates, and combining these into a higher-level es-
timation. The estimates include the expected per-example
benefit from acquiring a ground truth label and using this
label as a substitute for the model’s predictions, and the
expected number of times the example will appear in the
future. More subtly, on top of this we also have to estimate
the distribution of utilities that we will see, so we can plan
how to spend the budget. The resulting model tells which
instances to label so that by the end of the budget period,
the budget has been best spend (in expectation).

We present a solution to this active inference problem
using a framework for online utility-distribution estimation
(“UDE”) and test this method on eight different classifica-
tion problems from a real streaming classification applica-
tion. The main results show that: (1) active inference on
streams can indeed reduce error cost substantially over not
doing the online estimation, and (2) more sophisticated on-
line estimation provides more reduction in error.

To close the paper we discuss relationships with active
learning: What if you need to learn the model at the same
time you are doing the active inference? In our original
workshop position paper on active inference [1], we conjec-
tured that a technique like the one we present and analyze
below (which we had not yet designed completely or im-
plemented) not only would be an effective active inference
strategy, but also would be a potentially effective online ac-
tive learning strategy for the online setting, and therefore
that it should provide a strong baseline against which more
sophisticated AI+AL strategies can be compared. We now
provide initial supporting evidence.

As a final, suggestive, contribution we also discuss how
the overall online utility estimation framework provides a
new way to look at online active learning: it can be used

to take any active learner that selects examples based on
scoring each example in a pool (as most active learners do),
and convert it to an online or stream-based active learner.

2. ACTIVE INFERENCE
Similar to work on active learning, this paper assumes that

at a cost we can acquire accurate label information on se-
lected cases. The difference is that here we acquire labels at
prediction time, enabling the acquisition of “ground truth”
labels as a supplement or substitute to the predictions of
error-prone statistical models. The objective of this “active
inference” is to reduce the total cost incurred by the pre-
dictive system. This section provides a framework for active
inference for classification tasks. This framework generalizes
prior work on prediction time label acquisition, including ac-
tive inference for collective classification and techniques for
classification with a reject option. Later, we develop tech-
niques within this framework for performing online active
inference (from streams) as another special case with its own
unique characteristics and complications.

At first it might seem that prediction-time acquisition of
training labels would not make sense: if labels are avail-
able for the instances being processed, then why perform po-
tentially error-prone statistical inference in the first place?
While “ground truth” labels are likely to be preferable to
statistical prediction, we cannot ignore the cost/benefit con-
text. Acquisition of ground truth labels may be more costly
than simply making a model-based prediction, and there
may be a limited budget for labeling.

The classification task can be formalized as: given a set
of n discrete classes, cj ∈ C, j = 1 . . . n, instances, xi, are
drawn from some distribution, each with an associated class
label yi = c ∈ C, drawn according to some p(y = c|x).
A classifier estimates this hidden class value, yi, ideally in
a way that minimizes some cost function, cost(ck|cj)—the
penalty for predicting yi = ck when in fact the true label is
cj [14]. Consider a model capable of predicting the poste-
rior probability distribution over C conditioned on a given
xi, p̂(yi = c|xi) = f(xi).

3 Based on this estimated poste-
rior distribution, one can choose a particular classification
ŷi which will minimize an expected misclassification cost (or
loss):

L(xi, ŷi) =
X
c′∈C

p̂(yi = c′|xi)cost(ŷi|c′)

More generally, an instance xi may be presented repeat-
edly. Let φ(xi) denote the number of times a given example
xi appears during a particular period of prediction time,
the embodiment a sequence of draws with replacement from
some distribution p(xi).

4 For a set of instances T that would
be encountered by a classifier during this time period, the

3For instance in the case of our motivating example, given
a web page, estimate the probability that page is objection-
able.
4For this paper we will simplify and consider xi to be a
unique case that repeats verbatim in the stream, such as a
particular web page, a particular query string in web search
classification, a particular spam email, etc. This is differ-
ent, for example, from two distinct web pages i and j that
have the same feature representation. On one hand, this
unique-case condition can be enforced trivially whenever an
identifier or key exists (or can be generated) for the instance,
such as the web page’s URL or the hash value of the text
of an email, which can be included in xi. On the other



expected misclassification cost is:

LT =
X
xi∈T

φ(xi) min
c

X
j

p̂(cj |xi)cost(c|cj) (1)

Note that for the pool-based setting typical in the literature
(e.g., in most cross-validation experiments) φ(xi) = 1 for all
xi and can thus be ignored.5

Given a budget B for acquiring instance labels during a
given time period, a predefined cost function, cost(ck|cj)
and a given cost structure, q(x), revealing the expense of
acquiring the label for each instance at prediction time, the
objective of a general active inference strategy is to select a
set of examples for which to acquire labels, A, such that the
expected total classification cost is minimized, adhering to
the budget constraints:

A = arg min
A′⊂T

LT�A′ +
X
xi∈A′

q(xi) (2)

s.t. B ≥
X
xi∈A′

q(xi)

The idea that we may defer the prediction task for certain
cases to a human expert has been studied extensively as
“classification with a reject option.” This setting tends to
focus on the balance between the expected misclassification
cost, L(xi, ŷi), and the cost associated with “rejecting” the
inferred classification, q(xi).

In the simplest case, imagine an unlimited budget for label
acquisition, where no repetition occurs, and the labels of
all examples are independent. Further assume symmetric
error costs; w.l.o.g., cost(ck|cj) = 1 when ck 6= cj , with
a cost of 0 otherwise. In this case, it is straightforward
to show [10, 9] that the optimal “reject” policy, the set A
offering a minimum reject rate for a given expected error
probability (or, equivalently, minimizing the expected error
probability for a given reject rate), is given by:

A =
n
xi‖min

c
p̂(yi = c|xi) > q(xi)

o
(3)

As would be expected, very large query costs tend to ob-
viate the usefulness of the reject option; indeed the reject
option would never be exercised when q(xi) > 1

2
. (It it

optimal to always query the oracle when q(xi) = 0.) Of
course the uniform misclassification costs assumed above
are seldom realistic. Extending the reject rule of Chow to
the case of asymmetric misclassification costs, Herbei and
Wegkamp [20] show that the optimal A is given by:

A =


xi‖min

ŷ
L(xi, ŷi) > q(xi)

ff
(4)

To our knowledge, classification with a reject option has
not been extended to the stream setting. Observing exam-
ples sequentially presents several challenges to an active in-
ference strategy. Instances may repeat, thereby multiplying

hand, this simplification presents limitations. For example,
we may want to consider a webpage to be the same webpage
even if there are minor modifications to the text that cause
the feature vector to change slightly. Similarly, in other ap-
plications, there may be an entity that repeats, but with
different feature vectors (e.g., different transactions from an
entity that is either fraudulent or not), and we want to make
decisions at the entity level, not the transaction level [15].
We leave the generalization of the setting to future work.
5Or, given the unusual case of a multiset, a pool of examples
that exhibits repetition, φ(x) can be computed exactly by
simply counting occurrences in the data.

otherwise small individual expected losses into significant
cumulative penalties. Perhaps more difficult, the set of pos-
sible examples is unknown, and the distribution from which
instances are drawn must also be estimated. Furthermore,
a finite budget must be managed over time; it is suboptimal
simply to use the thresholds described above, because the
budget may be exhausted early, on low-margin cases. The
development we present below might be seen as an on-line,
stream-based, budget-sensitive version of the reject option.
However, the repeating of examples might stretch the “re-
ject” idea: rather than rejecting cases that (we believe) will
show up in the future, we invest in them.

The active inference framework presented in Equation 2
also is a generalization of a framework presented previously [6]
in the context of collective active inference [22, 6, 7, 8].
When examples are interrelated (e.g., in a network), collec-
tive inference may take advantage of relational autocorrela-
tion in the labels to improve predictive performance beyond
that achieved by treating the instances as i.i.d.6 Since with
collective inference, inferred labels affect each other, errors
in inference can propagate. Thus, if one has a budget for
human labeling at inference time, it may be spent on care-
fully selecting the examples to label such that the collective
generalization performance is maximally improved [22].

In the active inference model we have presented so far
(more will come), the generalization over the model of [6]
is the addition of φ(x). In many applications we repeat-
edly make decisions about some instances; whether or not
we take φ(x) into account can substantially change the cases
we would want to label, when the distribution is not uniform.
We are not extending the prior active inference methods in
this paper; the on-line, stream setting that we introduce next
requires a different set of techniques from the collective, net-
work setting. A very interesting line of future work would be
to find solutions for the combined setting. For example, the
web pages that arrive in a stream are indeed interlinked in a
network that exhibits relational autocorrelation in the class
variable (objectionable pages are more likely to be linked to
other objectionable pages, cf., [12]).

3. ACTIVE INFERENCE ON DATA STREAMS
A main contribution of this paper is the extension of ac-

tive inference to the data stream setting. Here, active in-
ference has a unique set of challenges that are beyond the
capabilities of current methods. The primary differentiating
factor of online active inference is that examples are typi-
cally drawn with replacement from some (unknown) process,
p(x).

In practical applications like web classification, p(x) often
exhibits a highly skewed, power-law-like distribution (cf.,
Figure 1). Due to this instance repetition, misclassification
costs multiply; particular examples with a small individual
expected loss may becoming quite costly over time. In the
pool-based setting typically discussed in the machine learn-
ing literature, φ(x) would be known and fixed. In such cases,
the strategy presented in Equation 2 may be applied directly.

However, the primary use case we are concerned with in
this paper is when p(x) is unknown—such as in the con-
text of classifying a stream—requiring estimating it from

6This networked inference setting is related to work on
selecting a subset of sensors to activate in a sensor net-
work [17].



the data and continually updating it during the inference
process to ensure/maintain accuracy. We describe how we
will do this in Section 3.2, leaving a thorough evaluation of
online density estimation and its interplay with active infer-
ence for future work.

It is important to note that the notion of “density” pre-
sented by having to estimate p(x) is different from the no-
tion of “density” employed in “density-senstive” active learn-
ing (e.g., [26, 21]). In the former case (this paper), p(xi)
represents the probability of “drawing” xi from the data-
generating process (d.g.p.). In the active learning work, the
“density” corresponds to the likelihood of drawing from the
d.g.p. other examples similar to xi, so that choosing xi for
learning will be worthwhile. We are not aware of active
learning work that explicitly considers p(x). In turn, in this
paper we do not consider how the more general geometry
of the problem space might be taken into account for active
inference. It is an open question as to what problem char-
acteristics would induce the rate of incidence of examples
(e.g., in a stream), p(x), to be correlated to the similarity
between the examples themselves.

A second complication of the stream setting is that the
(reduction in) cost associated with a particular xi must be
extrapolated into the future, and appropriately discounted.
A third, related complication is that we will need a frame-
work relating the budget to the stream (and to the discount-
ing). Do we have a fixed budget for the future (foreseeable
or not)? Do we have a budget-per-unit time? This of course
will be application dependent. For the development of the
rest of the paper, we deal with these two related complica-
tions by assuming that we are given a budget for a given time
period (or a budget-per-unit-time), and that we can ignore
discounting: either because we really are most concerned
with this immediate time period (a “square-wave” discount
function), or because the discounting affects p(x) uniformly,
so weighting by p(x) implicitly deals with the discounting.
In our experience, having a budget for a particular time pe-
riod is a typical application setting. For example, a business
may budget so many dollars per month for human labeling
of web pages. Next month there will be a new (possibly
different) budget. We assume for the rest of this develop-
ment that we know enough about the rate of seeing examples
over the budget period that we can directly translate p̂(xi)

to φ̂(xi), the estimated frequency of seeing example xi over
the budget period.

A fourth and more insidious complication is that in the
stream setting we do not actually know T, the set of xi’s that
we will see over a particular time period, nor even the total
set of (realisable) xi’s that we might actually see. If xi is
a web page described by a bag-of-terms representation (for
example), we certainly don’t expect to see every possible xi.
Thus it is awkward, and may be ineffective, to treatA simply
as a set of examples (as we could in the pool setting discussed
briefly above). We would like to take the more general notion

ofA being a decision strategy that will incorporate φ̂(xi) and
p̂(yi = c|xi) to produce a decision whenever an xi presents
itself: should we spend some of our budget to acquire its
label? We now discuss this in greater depth.

3.1 Utility Distribution Estimation
Given the cost structure presented above, the estimated

expected benefit of acquiring yi for instance xi is

Û(xi) = φ̂(xi)L(xi, ŷi)− q(xi) (5)

As with online estimation of p̂(x), we can add another layer

of estimation, and treat Û(xi) as a random variable upon

which we can induce a density estimate. Let ψ̂(Û) be our
estimated probability (density) function over the different
possible expected utilities for the various xi drawn in accor-
dance with p(x).

Now we can formulate a proposed general active inference
acquisition strategy: label all xi for which Û(xi) ≥ τ , that is,
label all instances with a sufficiently high estimated utility.
This threshold should be set in such a way as to exhaust the
budget per epoch, in expectation:

τ = arg max
τ ′

Z ∞
τ ′

ψ̂(Û)dÛ (6)

constrained such that
R
x
p1(x)Iτ ′(x)q(x) ≤ B. Here p1(x)

is the probability of seeing the argument at least once. If
we expect N observations during the the budget period,
we could estimate p1(x) = 1 − (1 − p(x))N , making the
simplifying assumption that each subsequent draw is condi-
tionally independent from other observations in the stream,
given p(x). Here Iτ ′(x) is 1 whenever Û ≥ τ ′, and 0 other-
wise. Although Equation 6 could be simplified to choos-
ing the minimum τ after each observation, leaving the rest
implicit, the presented form illustrates the notion of a dis-
tribution of utilities of observed examples, from which we
would like to choose the upper tail. We call such a utility-
thresholding strategy online utility-distribution estimation.
We will call this active inference strategy based upon online
utility-distribution estimation Active Inference with Utility
Distribution Estimation, or simply AI-UDE.

3.2 Online Density Estimation
Returning briefly to the problem of estimating p̂(x) on

the fly, let us note that while appropriately choosing an es-
timatation model for p̂(x) is certainly critical to the perfor-
mance of an active inference strategy, in this paper we leave
a thorough evaluation of online density estimators and their
associated influence on active inference for future work. In-
stead, we present two techniques as a baseline. Hopefully it
will be clear that improved density estimation will only make
the active inference techniques better. The two techniques
considered in this paper are:

Dirichlet Multinomial (DMN) The simplest density
estimation technique for this problem is a maximum like-
lihood estimation for the multinomial distribution over the
instances. As this will over-estimate the probability on those
cases that we observed more frequently just by chance, we
instead use the posterior of a Dirichlet-multinomial distri-
bution with a uniform prior. Specifically, we use the typical

“add-α” smoothing: pα(xi) =
fxi

+αP
j fxj

+Nα
, where N is the

number of examples seen. For all experiments in this paper,
we set α = 1.

Good-Turing (SGT) The main drawback of methods
like DMN is that they assume to know T at any point in time.
As described above, we don’t know what instances we will
see, nor the total space of realisable instances. Especially
with long-tail distributions, these instances could make up
a substantial portion of the probability mass. Multinomial
methods will thus overestimate the actual p(xi) and φ(xi)
for the already seen xi’s.

Good-Turing methods [18] explicitly account for the un-
observed probability mass when estimating the probabil-



ity/frequency for each example observed at least once. Specif-

ically, φ̂(xi) = (fxi + 1)
E(nfxi

+1)

E(nfxi
)

, where nfx represents the

number of examples observed fx times; the height of the cor-
responding bin in a histogram. Good-Turing techniques are
a family of smoothing estimators for computing estimating
the quantity E(nC(·)).

Here we follow the Simple Good Turing (SGT) method [11]
where to estimate E(nC(·)) an interpolation is performed on
the empirical histogram, fitting a least-squares regression on
the log-log scale. For a complete explanation, see [16].

4. EXPERIMENTAL SETUP
To demonstrate the effectiveness of active inference we

compared methods on real-world stream data from the do-
main of safe online advertising. These data sets consist of
placement opportunities (web pages) for ads observed in a
stream. For experimentation, the pages were labeled along
four distinct “safety” categories: adult content, hate speech,
inappropriate alcohol content, and content related to illegal
drugs. Each category poses a distinct learning and inference
challenge, all with differing levels of skew with base rates
ranging from 10, 000 : 1 to 1, 000, 000 : 1 in the data stream.

Taking the cross product of four classification tasks with
two data streams, we consider eight distinct brand safety
sub-problems. The use case considered thus far involves the
application of an existing (pre-trained) predictive model to
the problem of example selection for inference. To facili-
tate this in an experimental setting, each category utilized
a model trained using a separate, held-out, labeled data set,
ensuring consistency across all active inference methods con-
sidered. In each case, all methods are given a burn-in period
of 200, 000 unlabeled observations, allowing the density es-
timators to get some rough idea of the nature of the distri-
bution under consideration.7 After this burn-in, the density
estimators continue to “learn,” incorporating each new ob-
servation into a refined estimator for φ̂(x).8 Note that the
burn-in period of 200, 000 is somewhat arbitrary: a larger
or smaller burn-in does not alter the qualitative conclusions
presented herein. However, the rates of divergence for the
techniques compared varies. A cost ratio of 10, 000 : 1 is
used, capturing the very severe consequences of having ad-
vertisements appear adjacent to inappropriate content. The
data were drawn from two distinct time periods:

September 2010. A stream of 77, 932, 679 ad impres-
sions were taken from ad traffic on a single day in September,
2010, out of which 448, 282 distinct web pages were sampled
(uniformly at random). All impressions from this sample set
of web pages are considered.

January 2011. A stream of 189, 096, 009 ad impressions
were taken from a single day in January 2011. From this
stream, 466, 858 unique web pages were sampled and the
occurrences of these pages in the impression stream were
recorded.

Budget-sensitive stream-based experiments require a set-
ting more complex than traditional cross-validation experi-

7In this case, a long tailed distribution such as the one pre-
sented in Figure 1.
8Rather than storing the examples themselves, unique iden-
tifiers (in the case of the ad safety problem, a URL) are used
to maintain frequency information. The same identifiers are
used to look up stored labels from the active inference pro-
cess, giving the proposed process a small memory footprint.

ments. Preliminary experiments suggest that the qualitative
results are not sensitive to the particular choices made, but
we have not yet conducted a large-scale sensitivity analysis.
The budget is allocated in epochs of 25, 000 observations;
each active inference technique is given a budget for select-
ing twenty-five examples for labeling per epoch. We assume
the query cost q(xi) to be constant and small enough that
the budget can be exhausted for all techniques (to avoid
that additional complexity). For each technique, if an in-
stance is encountered subsequently in the stream, it is clas-
sified directly using the already-purchased ground-truth la-
bel.9 For examples without ground-truth labels, the model’s
predicted class distribution is used via the cost-sensitive cal-
culation described in Section 2. In all strategies, if for any
reason (e.g., poor utility-distribution estimation) the bud-
get is not expended during a particular epoch, it is added to
the budget of the next epoch. This is done to eliminate any
disadvantage a particular strategy may have due to unused
budget, isolating the quality of the selections themselves in
the evaluation. However, all optimizations are performed on
a per-epoch basis—effectively ignoring the impact of such
remainders when performing selections.

Class probability estimation is performed with logistic re-
gression trained using stochastic gradient descent and fea-
ture hashing [28]. These choices were based on efficiency
during training and induction, critical given the massive
numbers of experimental runs performed in this work, and
the ability to naturally learn sequentially, a property which
we will leverage in Section 6. Smaller-scale experiments in-
dicate that the main findings are independent of the type of
model induction technique used (indeed the chosen learning
technique is quite competitive). Note, given appropriately
selected training data, predictive models seem to perform
well on this paper’s classification tasks; e.g., for adult con-
tent AUC is around 0.97 (and it can be much higher with
significantly larger training sets). The devil’s detail is that
the tremendous class skew still can leave precision wanting.

We compare the following active inference strategies.
Random. Randomly select k examples for labeling

during each epoch. If the number of observations to be seen
in each budget epoch can be approximated in advance, this
strategy simply selects k instances uniformly.

First. Select the first not-yet-labeled examples encoun-
tered during each epoch until the budget is depleted. Under
certain distributions, First may be a very strong competi-
tor: it maximizes the opportunity for each acquired label to
be utilized for direct inference. In addition, the examples
appearing first may be those examples with the greatest fre-
quency (or not, depending on the skew of the distribution
p(x)).

Active Inference with Utility Distribution Estima-
tion (AI-UDE). Here we use the full expected utility-
distribution estimation based on our proposed framework:
U(xi) = φ(xi)L(xi, ŷi) − q(xi), including cost-sensitive ex-
pected utility, online density estimation, and the online utility-
distribution estimation proposed in Equations 2 and 6. Un-
less noted otherwise, for all AI techniques density estimation
is performed using DMN with α = 1; we return to SGT later.

AI-Frequency (AI-Freq). Here we turn off the loss por-

9Additionally, these labels could optionally be used to sup-
plement the training data available to the model, potentially
reducing the future error rate. We explore this scenario in
Section 6.



(a) 9-2010 Adult (b) 9-2010 Hate

(c) 1-2011 Adult (d) 9-2010 Alcohol

Figure 2: Active inference comparison on four datasets, representing the qualitative behavior on all the
stream datasets.

tion of the UDE calculation, setting U(xi) = φ(xi). While
labeling the most frequent examples is simple in a pool-
based multiset, such selection is non-trivial in the stream
setting. For example, even if I get enough data to estimate
φ(xi) well for a particular xi, how do I know whether this
is going to be one of the most frequent x’s? Fortunately,
our online utility-distribution estimation framework given
by Equation 6 solves this problem as well.

AI-Loss Only (AI-Loss). Here the frequency φ(x) is
ignored for the purpose of utility-distribution estimation,
using only U(xi) = L(xi, ŷi) − q(xi). This represents the
extension of prior strategies that do not use frequency esti-
mation, one of the main novel contributions of the AI-UDE
approach. This can be considered an application of cost-
sensitive classification with a reject option to the setting
where the example space is only partially observed, utilizing
the online UDE framework of Equation 6.

5. RESULTS
Figure 2 presents experimental results on four domains;

these represent the qualitative behavior over all eight. With
few exceptions (e.g., Figure 2(c)), the active inference strate-
gies utilizing online utility-distribution estimation outper-
form those that do not. This suggests that there is benefit
to estimating the distribution on the utility space for bud-
getary planning.

The full-blown utility-distribution estimation strategy (AI-
UDE) dominates in all eight cases, offering the most promis-
ing results among all the strategies. In some cases AI-UDE
yields a reduction in misclassification cost of 20% to 30% in
comparison to the next-best strategy. Thus even the subop-
timal (and likely inaccurate) online density estimators are
sufficient to provide useful selections for these problems.

Considering only φ(x) in utility estimates (AI-Freq) still
provides very promising loss results. Even without the rest
of the expected utility calculation, being able to estimate
φ(x) online—and importantly reason about its overall dis-

tribution online (Equation 6)—can provide for a competitive
active inference strategy. This seems to be due to the long-
tailed distributions, where some instances are much more
frequent than others, and on these even very small errors
multiply quickly. However, AI-Freq is not as consistent as
AI-UDE; sometimes selection based solely on the frequency
and frequency-distribution estimations is less effective than
competing strategies. This may be due to high skew ob-
served in the conditional distribution p(y|x) in addition to
that observed in p(x). Such a skew may result in AI-Freq
selecting only negative examples (c = 0), the likely “default”
classification, which would therefore result in labeling many
examples the model would already classify correctly.

We left the results from AI-Loss out of the figures. This
strategy, meant to represent an online extension of prior
methods for prediction-time label acquisition, was not com-
petitive with the other selection heuristics considered and
severely reduced the interpretability of the graphs. The
poor performance seems to be due to the strictly loss-based
approach having a tendency to choose outliers, singletons
in terms of φ(x). (These often seem to be the cases for
which the model is most uncertain, and therefore for which
the frequency-ignorant expected utility of labeling them is
highest.) In the stream, labeling singleton instances offers
minimal reduction in misclassification cost. This suggests
caution should be taken in direct applications of reject in-
ference to data streams with repeated instances.

To provide some sensitivity analysis, we varied the bud-
get and misclassification cost in a narrower experimental
setting. Specifically, we selected a subset of 35, 000 pages
extracted from the real stream, with an 80 to 1 class skew
for adult content. Over ten folds of cross-validation, a power
law distribution (α = 2) was induced on the testing portion
of each fold in order to simulate the actual skewed p(x).
Then for the experiments that follow we assume that φ(x)
is estimated perfectly. Thus we can focus on how much value
the frequency and the loss components add, without being



(a) 10 to 1 (b) 100 to 1 (c) 1, 000 to 1
Figure 3: Total incurred costs for different instance selection strategies for different given budgets, B

confounded by errors in the online density estimation (more
on that later).10 Here we assume that the per-query labeling
cost q(xi) = 1 for all xi.

Figure 3 compares the total loss of Random, AI-Freq,
and AI-UDE while varying the total available budget (along
the horizontal axes) and varying the false-positive error cost
(across the three panes) from 10 to 100 to 1, 000 times the
false-negative error cost.

From these experiments we see two things. First, no mat-
ter what the budget, active inference provides a substantial
reduction in total loss. Second, given this power-law distri-
bution, it is only for the larger cost ratios that the utility
component adds value; for the 10 : 1 cost ratio AI-Freq
and AI-UDE are essentially equivalent. It should be clear
that this is just a demonstration: for a uniform distribu-
tion, the utility component obviously would dominate for
any non-trivial cost ratio (assuming the probability estima-
tion is good enough). On the power-law distribution, when
the costs are high enough, both components make substan-
tial contributions, and the full-blown AI-UDE gives a much
larger loss reduction than AI-Freq.

6. ACTIVE INFERENCE AND LEARNING
What we have presented so far is only half the story. While

many stream-based active inference settings may begin with
a satisfactory model in order to perform statistical predic-
tions,11 in other applications we need to learn the model si-
multaneously with making predictions. In addition, as long
as we are acquiring labels, we may want to improve the
model. Countless prior papers on active learning (AL) have
demonstrated the benefit of carefully choosing instances to
label for training. In some applications there may be sepa-
rate budgets for active inference and for labeling for train-
ing. However, even then the active inference selections will
produce more potential training data. Therefore, we should
consider how to allocate a single budget so as to get the best
overall performance, taking into account both (active) infer-
ence and (active) learning. A full development being well
beyond the scope of this paper, we present some interest-
ing insights into the interplay of these two label demands,
and demonstrate the striking generality of the online utility-
distribution estimation strategy presented in Equation 6.

Similar to our setting, online active learning is concerned
with selecting instances for labeling from a stream, where the

10Note that by assuming we know φ(x) we’ve factored out
the key components of the stream; this now is pool-based
active inference where there may be replication in the pool.

11For instance, in safe advertising an objectionability model
may already exist when encountering new advertising part-
ner, with a very different impression stream.

current model is applied to the subsequent stream. Helm-
bold and Panizza [19] first looked at the tradeoffs between
the cost of errors and the costs of labels in online active
learning. Subsequently there have been several proposed
techniques for“label efficient”techniques including b-sampling [5],
and a logistic confidence model [24]. Online active learning
research does not address the use of labels for direct infer-
ence, nor is repetition in the instance stream accounted for
explicitly.12 There also has been much work in “pool-based”
active learning [25]. Many (not all) AL techniques formulate
a usefulness score for instances, and then select or sample in-
stances based on this score. The most commonly used family
of AL techniques measures usefulness in terms of model un-
certainty, with the score ranging from the similarity of the
estimated probabilities of the two most likely classes, to the
entropy or variance of an ensemble of constituent models,
to the distance from a separating hyperplane. Roughly: get
more labels on instances near the decision boundary. (Note
the similarity to reject inference described above.)

Initially it appears that for our setting only online active
learning approaches are appropriate, because the pool-based
approaches presume that you score all the examples in the
pool first in order to select among them. However, the util-
ity term, U(x) from Equation 6 could instead denote any
AL usefulness score! Then the online utility-distribution
estimation procedure we introduced and applied for active
inference above will instead estimate the distribution of ac-
tive learning usefulness scores across the stream. Thus, it
can be used to apply arbitrary score-based active learning
techniques to the online/stream setting.

In fact, consider AI-UDE presented above. The full-blown
AI-UDE can be thought of as generalized uncertainty sam-
pling (cf. [23]) for streams with different error costs, repeti-
tion, unknown p(x), and the need for budget management.

Proposition: The active inference strategy of selecting
the instance xi with largest ψ̂(xi) selects the same instance
as uncertainty sampling under conditions of uniform (esti-
mated) instance frequency, uniform query cost, and uniform
error cost.
Proof: The proof proceeds simply by unwinding the deriva-
tion above in Section 2 (See [1] for details). �

The generalization to different error costs generalizes un-
certainty sampling in the same way reject inference was gen-
eralized (see Section 2). The other generalizations make
intuitive sense in our setting as well: prefer to spend the
labeling budget on instances, ceteris paribus, if they would
be more costly to get wrong, if labeling them is particularly

12This only scratches the surface of online active learning.
For example, recently, Beygelzimer et al. [4] made a sig-
nificant theoretical and empirical advance in importance-
weighted active learning.



cheap, and/or if they are particularly likely to “reappear.”
To our knowledge no prior work has weighted uncertainty
sampling by p(x) or, equivalently, φ(x) (cf., the discussion
above on density-sensitive AL).

(a) AUC of Training Only

(b) Loss Experienced by Learning and Induction

Figure 4: A comparison of active learning strategies
with our proposed active inference strategies

Figure 4(a) compares the ROC area (AUC) of learning
with the online AI strategy AI-UDE and the online AL
strategies b-sampling and logistic sampling (discussed above).
This experiment is performed on the Sept. 2010 adult clas-
sification data set. As before using 200, 000 unlabeled ex-
amples to burn-in a DMN density estimator, a completely
untrained model is deployed and trained only on those in-
stances selected via each acquisition strategy.13 In line with
our conjecture, the AI-UDE strategy indeed chooses exam-
ples that accelerate learning over random selection, as one
would expect with an effective active learning technique.
Surprisingly, the dedicated online active learning techniques
provide only marginal additional improvement (at best).
This provides suggestive evidence in support of our conjec-
ture that AI-UDE is a solid candidate for active learning in
stream settings.

Finally, let’s put everything together. If AI-UDE did so
well for active learning, perhaps the online AL strategies
will do very well for active inference. Figure 4(b) presents
the same label acquisition strategies applied to the same
problem—starting as in the AUC results with the untrained

13The overall performance figures are fairly low for this
application—the best methods achieving an AUC of approx-
imately 0.8 after an accumulation of 14, 000 labeled exam-
ples from over 14 million observations. This domain, with
such extreme class skew, needs much larger training sets
or special example selection regimes to get the best possi-
ble accuracies; typical active learning strategies have trouble
finding positive examples [3, 2].

model. However, now we see the effect on total misclassifi-
cation loss if each strategy is used for AI and AL (otherwise,
the same setup as the main results presented earlier). Un-
like with the AUC results, here the AI and AL strategies
do not perform comparably. For simultaneous AI+AL, AI-
UDE dominates. This is clearly due to the focus on active
inference, since we saw that the underlying models are com-
parable (at least in terms of AUC). These results are sugges-
tive that active inference techniques like AI-UDE should be
considered more broadly for reducing overall loss in stream
applications needing online active learning.

7. CONCLUSIONS & LIMITATIONS
This paper addresses the problem of prediction-time label

acquisition, presenting a framework that generalizes both
classification with a reject option and existing work in ac-
tive inference. Within this framework, we presented the
problem of online active inference, a real problem faced in
applications such as our running example of web-page classi-
fication for safe advertising. The results on stream data from
several safe-advertising problems demonstrates that online
active inference has the potential to reduce the cost of in-
ference substantially under skewed error costs and example
frequency distributions. A key to success is the online es-
timation of two different quantities: (i) the frequency dis-
tribution and (ii) the distribution of utilities that will be
encountered.

The expected-loss-minimizing active inference strategy we
introduced turns out to be a generalization of traditional un-
certainty sampling, as discussed in Section 6, and is quite
effective when one also must (actively) learn the predictive
model simultaneously with using it for inference. Further-
more, our framework for online estimation of the utility dis-
tribution provides the tooling to extend many batch-mode
active learning strategies into the online setting.

While this work presents several advances in the develop-
ment of prediction-time label acquisition techniques, there
are a number of limitations that provide a fallow field for fu-
ture research. Based on what we have seen so far, the largest
potential for improvement in the active inference results may
be from improved online density estimation. We used DMN
extensively in the experimental portion of this work due to
its speed of estimation for the very large-scale runs con-
ducted for the main results. However, smaller-scale experi-
ments show SGT yielding superior density estimation at the
cost of speed. We see this in Figure 5, which shows Random,
AI-UDE with DMN, AI-UDE with SGT, and AI-UDE with
perfect (“oracle”) estimation of φ(x). The current density es-
timation seems to get about half the total possible improve-
ment in performance, and we see that SGT improves over
DMN, but not substantially. Further improvements may
be realized via techniques more sophisticated than SGT, or
possibly by conditional density estimation (i.e., taking x into
account). Note that the oracle estimation case probably is
an unachievable “floor” on performance, since we have to
observe the stream of data to do the online estimation.

Relatedly, there is an exploration/exploitation tradeoff in
utility-distribution estimation. Because we are estimating
p(xi) on the fly, it may be the case that for a particular xi
we first use the model to classify it for a while, and then
eventually acquire its label. When are we certain enough
to label, rather than wait “one more” time? The current
models make this decision implicitly as they learn p(x), but



Figure 5: Comparing the AI-UDE strategy with dif-
ferent density estimation techniques, including per-
fect estimation

perhaps the decision could be improved with a confidence-
interval strategy like that of [13]. More generally, the budget
needs to be managed over the stream, trading off several
competing desires. Labeling pages early both maximizes
the value of those particular labels and maximizes the value
to model induction. Labeling later allows better estimation
of p(x), and therefore may increase the value of the active
inference.

Relatedly, this work assumes labels are made available
instantly upon request. Incorporating a delay between re-
quests and data acquisition is an important direction for
future work, and a matter of practical importance. For ex-
ample, it may be that waiting t time units only ends up
shifting the curve up, because t is short enough that the
expected additional loss will essentially be constant. Fur-
thermore, this is just one possible budget framework.

We assume that p(x) is static. Many realistic settings
have a dynamic p(x): new instances appear not only because
they simply are rare, but because they actually are new. The
dynamics of this change can be abrupt, with instances rising
rapidly in popularity: e.g., new popular web pages or new
popular search terms (e.g., “Egypt riots”).

We have made the usual assumption that labeling is error-
free. However, in reality for the applications we are con-
sidering the labeling will be done by error-prone humans,
for example via a micro-outsourcing system, and the active
inference procedure should take that into account. For ex-
ample repeated labeling [27] becomes a strategy that must
be considered. This adds wonderful complexity to active in-
ference. There no longer is a clear switch from model-based
inference to human-based inference. Now we need to con-
sider the fusion of different evidence, acquired at different
costs, at different times. The model’s estimation could be
seen as just another labeling source; for certain examples it
may even be more accurate than an average human labeler.

Despite these limitations, we hope that the techniques
and results presented in this paper have made significant
progress toward the development of systems that manage
labeling budgets as well as possible in real-world, stream-
based, online prediction systems.
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