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ABSTRACT
This paper describes and evaluates privacy-friendly methods
for extracting quasi-social networks from browser behavior
on user-generated content sites, for the purpose of finding
good audiences for brand advertising (as opposed to click
maximizing, for example). Targeting social-network neigh-
bors resonates well with advertisers, and on-line browsing
behavior data counterintuitively can allow the identification
of good audiences anonymously. Besides being one of the
first papers to our knowledge on data mining for on-line
brand advertising, this paper makes several important con-
tributions. We introduce a framework for evaluating brand
audiences, in analogy to predictive-modeling holdout evalu-
ation. We introduce methods for extracting quasi-social net-
works from data on visitations to social networking pages,
without collecting any information on the identities of the
browsers or the content of the social-network pages. We in-
troduce measures of brand proximity in the network, and
show that audiences with high brand proximity indeed show
substantially higher brand affinity. Finally, we provide ev-
idence that the quasi-social network embeds a true social
network, which along with results from social theory offers
one explanation for the increases in audience brand affinity.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications—data mining; I.2.6
[Artificial Intelligence]: Learning—induction; I.5.1 [Pat-
tern Recognition]: Models—statistics; J.4 [Computer
Applications]: Social and Behavioral Sciences

General Terms: Algorithms, Design, Experimentation

Keywords: on-line advertising, predictive modeling, social
networks, user-generated content, privacy
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1. INTRODUCTION
This paper introduces a privacy-friendly method for tak-

ing advantage of user-generated content on social network-
ing sites (and beyond) to improve audience identification for
on-line brand advertising. Unlike direct-marketing-style on-
line advertising, the goal of on-line brand advertising is not
only to generate clicks or near-term on-line purchases. On-
line brand advertising focuses on getting a brand-oriented
message to an audience of interest. This introduces oppor-
tunities as well as challenges for developing a data mining
solution. For example, one challenge is that there are no
true “negative examples” with which to train classifiers. An
opportunity is that advertisers tend to believe that brand
affinity is likely to cluster in social networks [21], similar to
product affinity [16]. Therefore, the social-network neigh-
bors of those already exhibiting brand affinity are an at-
tractive brand audience. The techniques we describe and
evaluate attempt to take advantage of this clustering, in a
privacy-friendly fashion.1

On-line brand advertising has a huge opportunity for growth.
Even though the majority of on-line ads are display ads,
sponsored search advertising is responsible for the majority
of advertising revenue and profit [8]. Well-designed brand
advertising may be more appropriate for much display ad-
vertising, since unlike for sponsored search the user has not
come for the express purpose of clicking on a returned link.2

ComScore [7] recently reported a clear correlation between
seeing on-line brand advertising and increasing both on-line
and off-line purchases, well into the future (beyond the reach
of current view-through conversion measurement3 technol-
ogy), which echoed prior industry results (e.g., [1]). Further-
more, due in large part to the stabilization of the ad technol-
ogy business landscape, with a few large ad exchanges auc-
tioning massive numbers of non-premium display slots, in-
dustry analysts forecast that the growth of the non-premium
display market will significantly outpace the overall online
ad market [8].

1The techniques we introduce may be beneficial for traditional
on-line advertising as well, but that is not the focus of this paper.
2Improving on-line brand advertising may also have a substantial
impact on social welfare: the access to a large amount of free
content on-line is due largely to (the hope for) sponsorship by
display advertising.
3Large ad exchanges collaborate with advertisers to try to deter-
mine whether a browser undertook a conversion action within a
prespecified time period of viewing an ad, even without having
clicked on the ad.



One contribution of this paper is to address the key ques-
tion: How can on-line brand audiences be assessed? We
present a framework for assessing on-line brand advertis-
ing audiences. It is meant to complement rather than sup-
plant traditional brand-advertising evaluations, and to offer
an on-line alternative to click-maximizing. The key is that
certain brand actions become visible and measurable on-line,
which helps to circumvent the traditional difficulty of eval-
uating brand advertising. In short, we adapt a predictive-
modeling-style hold-out evaluation based on a selected au-
dience’s density of brand actors—those browsers who take
certain observable actions indicative of brand affinity, e.g.,
visiting a brand loyalty club page or a purchase thank-you
page. More specifically, to evaluate whether a technique
identifies a “better” audience for a brand, we compare the
density of brand actors in the identified (holdout) audience
to the baseline density of brand actors in the population as
a whole. The evaluation is based on an inference that res-
onates well with advertisers and marketers: if the audience
has a higher density of brand actors, then the non-actors in
the audience (the vast majority) will be better candidates
for brand advertising.

The second contribution of this work is the introduction
of a method for identifying good brand audiences. We ex-
tract a (quasi-)social network from browsing data, select the
social-network neighbors of previous brand actors, and then
calculate a measure of “brand proximity” to rank the social-
network neighbors. A brand audience of a desired size can
be chosen by selecting the top of the resultant ranking.

Existing on-line brand advertising usually follows an on-
line adaptation of off-line brand advertising (the vertical
television/magazine model): associate brand advertisements
with top-notch, brand-relevant content. Unfortunately, con-
sumers spend most of their time on-line away from such“pre-
mium slots.” Our technique is complementary: we identify
an audience of browsers of interest and target them any-
where on the web, e.g., through ad networks or via ad ex-
change auctions of non-premium display slots.

For this study we use data on visits to social networking
sites, which allows us to reach (potentially) up to 75% of
Internet users [20], and also allows us to infer the structure
of social networks among Internet users. One of the most
influential results of social theory is the notion of homophily
[21]: that social relationships tend to be made between peo-
ple with similar characteristics. This has been shown to be
directly useful for targeted direct marketing: Hill et al. [16]
show that social-network neighbors of existing customers are
substantially more likely to respond to an offer for a telecom-
munications product than consumers who do not have an
existing customer as a social-network neighbor. We evalu-
ate this technique on brand-affinity data for more than a
dozen well-known national and international brands, show-
ing that the identified audiences indeed exhibit markedly
higher brand affinity. We also show evidence that a robust
measure of brand affinity can be learned.

The third main contribution of this paper is to provide
suggestive evidence that the extracted quasi-social network
actually embeds a true social network. Thus, more gener-
ally, this paper offers an approximate method of identifying
“friends” anonymously. An ad network implementing such
a technique can engage in social-network targeting without
collecting or saving any data on browsers’ identities or the
content of the social-network pages they visit.

2. NETWORK NEIGHBORS IN MICRO-
CONTENT AFFINITY NETWORKS

The method we introduce for creating brand audiences is
based on two assumptions. First, micro-content affinity—
co-visitation of the same user-generated micro-content—leads
to brand affinity. By user-generated micro-content (UGC),
we mean pages created by individuals outside the scope of
a professional engagement, such as pages on social network-
ing sites (the focus of this paper), photograph sites, non-
professional blogs, etc. For social networking sites, this as-
sumption is supported by the results presented below.

The second assumption is that micro-content affinity acts
in important ways like true interpersonal relationships, and
in fact may indicate actual interpersonal relationships de-
pending on the UGC. For example, people who visit the
same social-network pages may well be true friends or rela-
tives. If so, such affinity networks embed actual social net-
works. Network neighbors being true friends is not critical
for the techniques to work, but provides an important mo-
tivation for brand advertising, due to the wealth of results
showing that people with social relationships are more likely
to be similar along many different dimensions [21], including
likelihood of purchasing a particular product [16].

2.1 Brand audiences via network neighbors
To select the audience for a brand we first use visits to

UGC to define an anonymous, quasi-social network among
web browsers. A browser is an anonymous visitor to one or
more web pages. Advertising networks serve massive num-
bers of ads to massive numbers of browsers, and via cookies
keep track of which browsers visit what content. Each time
two browsers are observed to visit the same UGC page, an
affinity-network link is placed between the browsers. Tech-
nically, this network is induced from the bipartite affinity
graph between users and UGC. Frequencies of visitation can
become strengths for the individual links. This method for
audience selection has the advantage that it can operate on
doubly de-identified data: browsers are represented by ran-
dom numbers, and content pages are represented by ran-
dom numbers. Targeting the audience can be done through
normal ad network procedures, which require only that the
ad network tell the ad exchange to target the browsers in
a given set based on their cookies—the ad network need
transfer no data about the browser besides the (otherwise
random) cookie id.

For brevity, clarity and emphasis, since there are two dif-
ferent affinity graphs, we will refer to the network induced
among browsers as the “quasi-social” network. We add the
prefix “quasi-” here because technically at this point we do
not know who are true friends and who just share a strong
content affinity but don’t actually know each other. We re-
turn to this in section 4.5. Keeping this in mind, we will
drop the “quasi” except where necessary to distinguish from
a real social network.

In order to assemble proposed high-quality brand audi-
ences, we select the subset of the social network neighbors
closest to a set of seed nodes. The seed nodes are browsers
in the network identified (ex ante) or estimated to exhibit
brand affinity. To instantiate the method, we must define
(i) a precise sort of seed node to use, and (ii) what it means
to be close to the set of seed nodes.



2.2 Defining seed nodes
How to define seed nodes depends on the information

available to the advertiser and to the ad network implement-
ing the method. For example, seed nodes could represent ex-
isting customers, or consumers who have exhibited interest
in the company’s product, or consumers estimated to be-
long to a desired demographic or psychographic group.4 For
this paper we will consider observable brand-associated ac-
tions of interest. More specifically, define brand actors to be
those browsers observed to have visited a particular brand-
oriented page selected by the advertiser, e.g., a brand loyalty
page, a customer login landing page, a purchase thank-you
page, or simply the company’s home page. The seed nodes

are browsers known at the time of audience selection to be
brand actors (future brand actors will be used for evalua-
tion). Specifically, let B be a set of M web browsers under
consideration. We will consider the brand audience for each
brand separately. Let the seed nodes compose a subset of
the browser set B+ ⊆ B. Let all the other non-seed-node
browsers (candidate nodes) belong to the set B0 = B − B+.

2.3 Brand proximity
Our goal is to compose a brand audience of interest A ⊆

B0 based on browsers’ proximity to B+, such that a larger-
than-baseline proportion of the browsers in A are likely to be
as-of-yet unobserved brand actors. Brand proximity is a dis-
tance/similarity measure between candidate nodes and the
set of seed nodes. Brand proximity can be calculated as an
aggregation over proximity measures for individual nodes,
or based on the set as a whole; we experiment with both
below. There are countless ways to define similarity or dis-
tance between individual nodes in a network [19]; here we
use straightforward measures for simplicity and efficiency.
If more sophisticated techniques [14, 18, 19, 25, 26] can
scale, they may provide the basis for improving the results
we present below.

Assume that there are N user-generated micro-content
pages in total that the browsers have visited. Browsers and
content form a bipartite graph which can be represented by
a M × N browser-content matrix as:

Γ =

2

6

4

γ11 . . . γ1N

...
. . .

...
γM1 . . . γMN

3

7

5

,

where each browser bi ∈ B is represented by a row in Γ—a
content vector −→γi = [γi1, γi1, · · · , γiN ]. In this generalized
representation, each γij represents the weights of the links in
the bipartite graph. In the simplest case, γij is simply one
or zero, a binary value indicating whether browser bi has
visited content piece cj and Γ is the biadjacency matrix for
the bipartite graph. Non-binary weights can be computed
in various ways, e.g., as the frequency with which browser
bi has visited content piece cj (what we do for this paper),
penalizing for popularity such as with tfidf, and/or damping
older counts [9].

The network neighbor audience for a brand is N = {bi :
−→γi ·

−→γk
′ 6= 0 for some bk ∈ B+}. For this paper, the largest

high-quality audience we will select is N , and every audi-
ence we choose will be a subset of N (these will be the only

4See for example http://www.mindset-media.com/.

browsers with non-zero brand proximity). This will allow ef-
ficient computation of A over massive social networks, since
the identification of N can be done very efficiently. Our
conjecture is that immediate network neighbors give sub-
stantially more lift than neighbors further in the network,
as with prior work on network-based marketing [16, 17]. Fur-
thermore, for brand proximity measures that aggregate over
individual node proximities, we will be most interested in
the proximity of a browser to those in the set B+, rather
than arbitrary inter-browser proximities (although it may
be useful to create a baseline for comparison).

Since we do not have a theoretically optimal brand prox-
imity measure, we can represent brand proximity for bi by

a vector
−→
φbi

= [φ1
bi

, φ2
bi

, · · · , φP
bi

], where each φ
p

bi
is one of P

different proximity measures. We use
−→
φbi

as the basis for se-
lecting A. For our main results, we rank the candidate nodes
bi ∈ B0 based on some monotonic function of the projection

of
−→
φbi

onto one of the proximity dimensions:

score(bi) = fi(
−→
φbi

·
−→
Iq ), (1)

where
−→
Iq = [0, · · · , 1, · · · , 0]′ is a selection vector with 1

on its qth row, and fi is a monotonic function to map the

single proximity measure selected by
−→
Iq to a ranking score

for bi. Alternatively, if desired, we can treat
−→
φbi

as a feature
vector to learn a brand-specific proximity measure to rank
the candidates. In either case, the brand audience would
comprise the top-ranked browsers in B0.

2.4 Some brand proximity measures
For the results presented below, we use five brand proxim-

ity measures. For clarity, we will use b0
i to denote a candidate

node bi ∈ B0 and b+

k to denote a seed node bk ∈ B+. For a
browser bi (either a seed node or a candidate node), let Cbi

be the set of content pieces to which the browser is linked
in the bipartite graph; i.e., Cbi

corresponds to all nonzero
entries in bi’s content vector −→γi .

1. POSCNT: the number of unique content pieces through
which paths in the bipartite graph connect b0

i and any
b+

k ∈ B+:

POSCNT(b0
i ) = |Cb0

i

∩ (
[

b
+

k
∈B+

C
b
+

k

)|. (2)

2. MATL: the maximum number of unique content pieces
through which paths connect a candidate browser to
any single seed node (“maximum action taker link-
age”):

MATL(b0
i ) = max

b
+

k
∈B+

(|Cb0
i

∩ C
b
+

k

|). (3)

3. maxCos: the maximum cosine similarity of the can-
didate node’s content vector to that of any seed node.
The cosine similarity between a candidate node b0

i and
a seed node b+

k is:

COS(b0
i , b

+

k ) =
−→γi ·

−→γk
′

‖−→γi‖‖
−→γk‖

, (4)

and thus the maxCos for a candidate node b0
i is:

maxCos(b0
i ) = max

b
+

k
∈B+

(COS(b0
i , b

+

k )). (5)



4. minEUD: the minimum Euclidean distance between
the normalized content vector of a candidate node and
that of any seed node. Specifically, for browser bi,
let γtot =

PN

j=1
γij be the sum of weights across all

content pieces that bi is linked to. We normalize bi’s
content vector as:

−→γi
n =

1

γtot

[γi1, γi1, · · · , γiN ]. (6)

The minumum Euclidean distance is calculated in the
obvious manner.

5. ATODD: the ratio of the number of a browser’s neigh-
bors that are seed nodes to the number of its neighbors
that are not seed nodes (“action taker odds”). Specifi-
cally, let deg+(bi) and deg0(bi) be the number of links
incident to bi from seed nodes and candidate nodes,
respectively.

ATODD(b0
i ) =

deg+(b0
i )

deg0(b0
i )

. (7)

3. EVALUATION FRAMEWORK
One contribution of this paper is a framework for evalu-

ating on-line brand audiences. It is an adaptation of predic-
tive modeling holdout testing, but to our knowledge there
has been no prior application to on-line brand advertising:
Choose two non-overlapping, ordered time periods, t1 and
t2. Consider a set of browsers B known in time t1. The
seed nodes B+ are those elements of B for which a brand
action is observed in t1. Let us call the seed node set B+

1 to
clarify that the seed nodes are the brand actors in time t1.
For evaluation, the candidate nodes B0 are those elements
of B that are observed in time t2. The future brand actors,
B+

2 , are those elements of B0 who are observed to take a
brand action in t2. As with a predictive modeling holdout
evaluation, information about action taking of the holdout
set is not used in selecting the audience.

To evaluate any audience A, we can compute the future
density of brand actors as:

|A ∩ B+

2 |

|A|
. (8)

Audiences can be compared based on their future brand
actor densities. The important twist from standard response
modeling is that this can be done either with or without ad-
vertising. To advertisers, a larger proportion of an audience
showing brand affinity “organically” (i.e., without advertis-
ing) is highly indicative that the audience is a good audience
for brand advertising. Furthermore, unlike click-based eval-
uations, it can be used to judge brand affinity separately
from someone just being a “clicker” [6].

Evaluation and comparison can be done based on any
measure of density of a binary attribute over a set of data.
We are interested in how well the different proximity mea-
sures rank the candidates, and we presume that a particular
campaign will target some upper portion of the ranking de-
pending on the advertising budget and other considerations.
Thus, we report the area under the ROC curve (AUC, equiv-
alent to the Mann-Whitney-Wilcoxon statistic), which mea-
sures how well a scoring system can rank members of one
class above the other [13]. In this application, a higher AUC

means that an audience selected from the top of the ranking
will have a higher density of brand actors. Human brand
actions are fundamentally difficult to predict, and as with
targeted marketing reponse modeling we would expect low
but hopefully better than random AUCs.5 To illustrate the
relative increase in brand-actor density over a baseline au-
dience (“lift” in brand-actor density) we also report results
for the top-10% of N for each ranking, which is reasonable
for the application.

4. RESULTS
We now present results assessing the effectiveness of tar-

geting close social network neighbors for identifying brand
audiences on-line.

4.1 Data
The results are based on anonymized browsing and action-

taking data from a working ad network. Specifically, Γ is
built from a sample of page visits to several of the largest so-
cial networking sites over a 90-day period. The sampling be-
gins with a quasi-random (convenience) sample of browsers
from every server log file every 10 minutes across the server
farm, resulting in about 10 million unique browsers who have
visited social network (SN) content over a 90-day period.
As far as the ad network experts can tell, there is no sys-
tematic bias to this sampling. For each of these browsers
we query for all the observed page visits over SN content
over the time period. On average, a browser has about 25
visits recorded to unique SN pages. The resulting Γ has ap-
proximate dimensionality 107 × 108, with about 250 million
non-zero entries.

A set of major brands is divided into two groups: (1) four
brands for which in the experimental period no advertising
was done by the ad network (Hotel A, Modeling Agency,
Credit Report, Auto Insurance), plus a fifth “brand” that
consists of a demographic group of intense interest to cer-
tain large-scale adverisers, for which no amount of advertis-
ing will change one’s membership status in the short term
(Parenting); (2) ten brands for which some advertising was
done (Apparel Hiphop, Apparel Athletic, Apparel Women’s,
Voip A, Voip B, Airline, Hotel B, Electronics A, Electronics
B, Cell Phone). In group 2, advertising was done more or less
uniformly across N , so being able to rank within N would be
indicative of some combination of brand affinity and differ-
ences in “response” to the advertisements. The latter plays
more or less of a role for different brand actions. In no case
does clicking on the ad lead directly to an observed brand
action. However, browsing the site or purchasing may. For
example, for Hotel B, the action is reserving a room. It may
be that a browser is indeed influenced by the advertising
to reserve a room in this particular hotel chain during the
testing period, in which case brand affinity is exhibited, but
it would not be purely organic.

In these data we have on average about 100,000 “seed”
action takers per brand, with the actual number varying be-
tween 5000 and 1 million. In the experimental data, each
seed action taker has on average 20-40 social-network neigh-
bors, with the resultant network-neighbor audiences being
up to 20-40 times the number of seeds. Choosing the “clos-
est” in brand proximity involves sub-selecting from these.

5For example, good models for the KDDCUP 1998 targeted
marketing data yield AUCs of around 0.6.



Table 1: Areas under ROC curves (AUCs) for different brand proximity measures and brands. Block to left of double line is
over all candidate browsers; right block is only on N . Details are in the text. Bold is max for each brand in each row and
block. A * indicates a value is statistically significantly better than the next best in the left block. maxUNI shows the AUC
for the best univariate measure.

Brand MATL maxCos POSCNT minEUD ATODD maxCos(N ) maxUNI(N )

Hotel A 0.617 0.617 0.628* 0.612 0.604 0.4994 0.5561
Modeling Agency 0.629 0.636 0.630 0.618 0.634 0.5746 0.6347
Credit Report 0.631 0.656* 0.630 0.643 0.597 0.5633 0.5633
Auto Insurance 0.604 0.584 0.603 0.593 0.600 0.4622 0.5726
Parenting 0.679 0.692* 0.678 0.633 0.623 0.5863 0.5863

Apparel: Hiphop 0.662 0.659 0.658 0.640 0.629 0.607 0.7343
Voip A 0.627 0.668* 0.617 0.636 0.567 0.6514 0.6514
Voip B 0.605 0.610 0.596 0.609 0.590 0.7086 0.7122
Airline 0.611 0.615 0.611 0.598 0.592 0.6287 0.6287
Hotel B 0.596 0.611 0.598 0.606 0.583 0.6619 0.6619
Electronics A 0.682 0.677 0.687* 0.638 0.639 0.5543 0.5762
Electronics B 0.604 0.610 0.607 0.609 0.608 0.5343 0.6141
Apparel: Athletic 0.599 0.599 0.607* 0.568 0.596 0.5535 0.5571
Cell Phone 0.777 0.790* 0.778 0.743 0.699 0.6601 0.6601
Apparel: Women’s 0.607 0.618 0.607 0.616 0.578 0.6208 0.6208

For example, in some experiments below we choose the top-
10% of N . Technically, we would expect to see different
future brand actor densities even for the same brand for dif-
ferent brand actions; here for simplicity we just refer to each
as “the brand”. In one case (Voip A & B), the two “brands”
are two different actions for the same brand.

4.2 Results: Univariate brand proximity
The left side of Table 1 shows AUC results for the various

techniques over the entire candidate set (B0). The upper-
most five rows correspond to brand group 1, and the bottom
ten rows to brand group 2. Consider brand group 1. For all
five brands, all five brand proximity measures give AUCs
which show statistically significantly6 better-than-random
separation of future brand actors, indicating that the prox-
imity measures indeed do rank audiences with respect to
their brand affinity. Absolute AUC values are difficult to
assess out of context, and as far as we know, this is the
first attempt to evaluate brand audiences in this way. They
compare favorably to the AUC values one typically gets for
targeted marketing, even though here the audiences have not
been advertised to. The results are even stronger for group
2; all are statistically significantly better than random, and
one (Cell Phone) is remarkable (AUC=0.79).

As noted previously, ranking results for some group 2
brands may be affected by advertising. Column“maxCos(N )”
provides an evaluation using maxCos on only N , a set that
received uniform advertising during the experimental pe-
riod. Note that this already is a set that we believe to
have excellent brand affinity. Column “maxUNI(N )” shows
the AUC for the best univariate measure on N . Note that
when maxCos is statistically significantly better than the
others on B0, it’s also the best on N . These results show

6All statistical significance results for AUCs are computed
using the procedure described by [10], which is the proce-
dure implemented by the commercial statistical packages
SAS and Stata. Qualitatively similar results were obtained
via t-tests over mean AUCs from randomly resampled test
sets.

one view of whether ranking among the network neighbors
themselves provides additional gain over just identifying N
and advertising to it indiscriminately. Recall that for those
brands where response might result in an observed brand
action, this gain is a combination of pure brand affinity and
response likelihood. The results here are solidly positive
as well. The restriction of the data results in many fewer
positive testing examples, and increases the variance in the
AUCs substantially, so detecting statistical significance be-
comes more difficult (and the seeming increases in AUC over
the former setting may be illusory). Nonetheless, for group
2 for maxCos, 8 out of the 10 individual AUCs are statisti-
cally significantly better than random (not Apparel Hiphop
or Electronics B); 10 out of 10 are greater than 0.5 (strongly
significant by a sign test), and the overall average AUC is
0.61, which is quite respectable, especially when considering
that the baseline here (N ) already is expected to be a high-
performing group. The even stronger results for maxUNI
suggest trying to select or combine measures.

An alternative evaluation is to assess the increase in brand
actor density (hereafter, density) directly on a selection of
browsers from the top of the ranking. The results are qual-
itatively similar to those presented in the next section (when
comparing the univariate measures to the multivariate model),
which are plotted there. We selected audiences comprising
the most highly ranked 10% of N for each brand and prox-
imity measure. Overall, the results echo the AUC results
with the exception that ATODD is the dominant technique.
For group 1 we see increases in density ranging from an 80%
increase to a 500% increase (“lifts” of 1.8 to 6.0). In group
2 we see even larger increases. As with the AUC results, we
also generally see lifts in density as compared to the den-
sity of brand actors in N . The top-10% network neighbors
clearly show an increase in density over N (increases in 13
of 15 cases when ranked by ATODD; highly statistically sig-
nificant by a sign test); the average increase in density over
the network neighbors is 100% (a lift of 2.0).
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Figure 1: Brand actor densities for the top-10% of N se-
lected by the best and worst univariate proximity measure
and the trained multivariate measure, compared to the den-
sity over the entire candidate set B0 (“Baseline”; normalized
to one).

4.3 Results: Multivariate brand proximity
No univariate measure is consistently the best, and in fact

for each method that is statistically significantly best for
some brand, there is another brand for which it is statisti-
cally significantly beaten by another measure. As introduced
briefly above, since we represent each candidate browser by

a vector
−→
φbi

of proximity measures, we can directly combine
them into a multivariate measure designed specifically to
identify high-brand-affinity browsers. Ideally, such a mea-
sure would be more robust across brands.

For this paper, the rank of a candidate browser bi ∈ B0 is
calculated by a multivariate logistic function of the elements

of
−→
φbi

:

rank(bi) =
exp(

PP

p=1
wpφ

p

bi
)

1 + exp(
PP

p=1
wpφ

p

bi
)
. (9)

where wp are brand-specific weights. The weights are com-
puted with standard MLE logistic regression, using an ex-
tension of the holdout framework presented in section 3.
Specifically, we extract from the set of candidate nodes an
additional training set, comprising brand-actors and non-
brand-actors in t2. Any evaluation, of course, will be con-
ducted on a disjoint (hold-out) data set from t2.

7 In order
for the comparison to be as fair as possible, for this compari-
son we also added these training brand-actors to the seed set
for the univariate measures. The technique that we report
as MV chooses the best of the univariate and multivariate
models, based on estimated AUC using cross-validation on
the training set.

The results (not depicted) show that in terms of AUC, MV
is always at least as good as the best UNI. For ranking all of
B0 MV posts a win-tie-loss record of 14–1–0, and for ranking
N , a win-tie-loss record of 9–6–0; both are significant by a
sign test and in both cases there are 5 individually significant
wins. Thus, with training we can learn to do at least as well
as the best univariate brand proximity measure, and often
better.

7Although we did not do so for this study, to match the use
scenario most closely we would like to segment the evalua-
tion data into three time periods.
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Figure 2: Brand actor densities as in Figure 1, except with
the normalization baseline being the brand density of the
network neighbor set (N ), showing the additional lift (if
any) over targeting all N .

Figures 1 and 2 show the brand actor densities of MV
and the univariate measures with the best and worst per-
formance for each brand, normalized so that each figure’s
baseline (B0 and N , respectively) is one for each brand.
For the top of the rankings, MV adds consistency but on
average does not improve the top-of-the-list densities sig-
nificantly over the best univariate measure. This may be
showing that MV’s advantage is in rescoring the browsers
below the top-10%; however, the logistic regression training
does not specifically focus on the top of the ranking, so the
comparison may not demonstrate the full power of MV. To-
gether, the MV results provide strong evidence that better
or more robust models can be learned.8

4.4 PSA Tests
It would have been nice to have shown lifts in purely or-

ganic brand affinity for all brands. Of course, getting a
working ad network to stop advertising to its largest cus-
tomers is infeasible. As an alternative, we conducted an “in
vivo” evaluation, by designing and running experiments in
production. Specifically, for three selected group-2 brands,
we identified a small audience of close network neighbors. To
assess organic brand affinity, we targeted them only with a
public service announcement (PSA) across the web, by bid-
ding for them on a major ad exchange. These browsers do
not get any brand advertising from the ad network. Simul-
taneously, we issue a quasi-randomly targeted (RON9) cam-
paign with the same PSA and campaign parameters. Since
we’ve targeted these browsers with “ads” (albeit PSAs), we
now can obtain from the ad exchange statistics on “view
through conversions”, specifically, the number of targeted
browsers in each campaign who subsequently (e.g., within
7 days) take a predefined brand action (as described previ-
ously). Of course the PSA ad should have no effect on a
browser’s propensity to take the action.

Table 2 shows the number of PSAs shown to top-ranked
neighbors and the number shown to RONs, and the “or-

8We have found that other learning-based methods can im-
prove significantly both the rankings overall and the top-of-
the-ranking performance.
9The ad exchanges allow one to bid on every display slot,
called “run of network.”



Table 2: Organic action lifts for three group-2 brands.

Brand Impressions Impressions Organic
of PSAs to of PSAs conversion
top ranked to RON lift

Electronics A 67 53,347 5.89
Apparel:

26,161 266,661 6.06
Athletic
Apparel:

5,757 223,509 64.65
Hiphop

ganic conversion” lift: the ratio of the percentage of the
PSA-targeted neighbors who took the action to the percent-
age of the PSA-targeted baseline who took the action. The
results demonstrate remarkable organic lifts in brand ac-
tor density for the audiences of close network neighbors for
these three group-2 brands. Apparel: Hiphop is an inter-
esting case. The brand previously had done the majority
of its advertising through word of mouth, and here we in-
deed see a tremendous lift in brand action density (65 times)
for the close neighbors. This provides some initial evidence
that the close quasi-social network neighbors are actual so-
cial network neighbors. One caveat is that here we need to
believe the statistics reported by the ad exchange, and to
our knowledge there is no way to verify them directly.

4.5 Social vs. Quasi-social
The notion of targeting social network neighbors resonates

with brand advertisers because they believe that the per-
sonal networks of those already exhibiting brand affinity
should be good targets for brand advertising. A long line of
research in sociology supports this, as described by McPher-
son et al. [21]. In particular, they note “People’s personal
networks are homogeneous with regard to many sociodemo-
graphic, behavioral, and intrapersonal characteristics.”

Our quasi-social network being “only” a content-affinity
network may not matter to bottom-line-oriented advertis-
ers, if indeed the networks are identifying audiences with
high brand affinity. Nonetheless, if the quasi-social network
is defined across visits to pages on social networking sites, it
seems that it ought to embed a true social network. Users of
social networking sites generally visit their own home pages
and their friends’ pages (among others), and thus friends
should be connected in our quasi-social network. Of course
non-friends also will be connected, so one interesting ques-
tion is whether strong brand proximity selects audiences
comprising the actual friends of the brand actors.

One possibility is to map the explicit “friends” network
from a social networking site to our network, and examine
the overlap. However, this would require that we acquire
personally identifying information, which we would prefer
not to do. More importantly for drawing conclusions, the
veracity of friend links is highly dubious [5].

Instead, based on the content visitation data, we estimate
which piece of UGC is most likely to be authored by each
browser, following ideas for identifying authors in citation
networks [15]. Specifically, we estimate that the content
piece a browser visits most, normalized by the overall popu-
larity of the content, is owned by the browser (e.g., is her own
social network page); let’s call this the browser’s home page.

10This is the average across all 15 brands.

Table 3: F-AUCs showing that friends are very likely to
be ranked (by maxCos) higher than those not known to be
friends.

Brand F-AUC F-AUC
on all B0 on N only

Hotel A 0.96 0.79
Modeling Agency 0.98 0.84

Credit Report 0.93 0.79
Parenting 0.94 0.80

Auto Insurance 0.97 0.81

15 Brand Average10 0.96 0.81
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Figure 3: Friends ROC curve for Airline, showing that
friends are very likely to be ranked higher than those-not-
known-to-be-friends. The top of the ranking is very dense
with friends (steep initial rise) and the bottom of the ranking
is almost devoid of friends (flat finish).

We evaluated home-page identification accuracy on a sepa-
rate data set of social-network browsing data which, while
still completely anonymous as to user and content, indicated
which page belonged to whom. The results showed high ac-
curacy generally (65% correct at choosing a browser’s page)
and very high (80% correct) for browsers where the method
is confident in its prediction (about 60% of the browsers).
Then we estimate that two browsers are “friends” only if one
visits the other’s home page—rather than just having visited
similar content.

Now, with this approximate notion of“friends”we can ask:
does the audience comprising close neighbors of the seed
brand actors in the quasi-social network (as measured by
brand proximity) actually seem to include the friends of the
brand actors? Of course, even if our estimation is accurate,
the selection of friends that we observe in a data sample is
only a small subset of all the friends. Therefore, we would
like to measure whether brand proximity on average tends
to rank brand actors’ friends higher than those-we-don’t-
know-are-friends. This is measured by the Mann-Whitney-
Wilcoxon test statistic, which is equivalent to the area under
the ROC curve when the class is taken to be known-friend

or not. Let’s call that F-AUC.
The results are striking. Table 3 shows the F-AUCs for

each brand for maxCos, both over all candidate browsers
(B0) and just over N . The B0 results are striking but ulti-
mately less interesting: In every case they are greater than
0.9, with a mean of 0.96. However, we know that with no



connection to seed nodes, a browser will be ranked low. The
N results are quite interesting and encouraging: even among
the network neighbors, there is an 80% chance that a friend
will be ranked higher than a browser who we don’t know is a
friend. Figure 3 shows the ROC curve (over N ) for Airline:
the top of the ranking is very dense with friends and the
bottom almost devoid of friends.

5. DISCUSSION AND LIMITATIONS
In summary, our main results show unambiguously that

we can build high brand-affinity audiences by selecting the
social-network neighbors of existing brand actors identified
via co-visitation of social-networking pages, without saving
any information about the identities of the browsers or con-
tent of the pages. These network neighbors tend to take
brand actions at a higher rate organically, as well as after
being targeted with ads. We also show that it is possible to
learn better models, by using the individual univariate prox-
imity measures as features in a higher-level model. And we
provide evidence that the quasi-social network likely embeds
a true social network (which makes sense if the visitations
are over social networking pages).

Table 4: Demographic profiles for CellPhone seeds and their
social-network neighbors.

Demographic Seeds Neighbors

Gender Female Female
Ethnicity Hispanic Hispanic
Age Young Young
Income Low Low
Education No college No college

Among other things, brand advertisers would like their
audiences to be similar along important dimensions of in-
terest, which is why targeting social-network neighbors res-
onates well [21]. As a final demonstration, for one brand
(Cell Phone) we submitted a set of seed nodes and a set of
close network neighbors to the internet analytics firm Quant-
cast (http://www.quantcast.com), which gives statistically es-
timated demographic profiles for sets of browsers. For the
particular brand action selected by the advertiser, the seed
nodes and the network neighbors returned with exactly the
same profile along all dimensions (see Table 4).

We call this method “privacy friendly” because here we
offer no formal proof of the power of the anonymization
scheme, but nonetheless assert that it has several attrac-
tive properties from a privacy standpoint. First, it can be
implemented without ever collecting direct PII (personally
identifying information); thus it addresses a primary pri-
vacy concern for firms dealing with personal information,
i.e., that someone internally can directly look up informa-
tion about particular individuals. Second, in contrast to
other attempts at social-network-based on-line advertising,
this method does not use user-posted personal (profile) infor-
mation. This is important not only from a base-level privacy
standpoint, but also as a deterrent to reidentification [27].

A secondary constellation of privacy issues revolves around
vulnerability to data breaches and anonymization attacks.
We believe that this anonymization is relatively robust to
both active and passive attacks (see e.g., [27, 22]), especially
as compared to existing practice which normally ignores the
danger of reidentification. (1) The data contain no public

information at all. (2) The data are sampled via a pro-
cess opaque to the browser, and thus lack many true social
network connections. (3) They contain a high degree of ad-
ditional “noise” links with respect to the true social network,
since they are based on content visitations. (4) It is difficult
to envision how an attacker would “seed” a passive attack on
the anonymized quasi-social network with knowledge of cer-
tain members of the network (but see below), and (5) There
is little information to “reveal” that would not be more eas-
ily found elsewhere. One exception would be the data on
brand activity of browsers, which also could be anonymized
for storage (to minimize the risk of a data breach), but is
necessary for targeting and is also a possible entry point for
reidentification. If the advertising firm’s data security was
breached, and a reidentification attack was successful, and

the content and/or brand-action anonymization scheme were
broken (which could begin with the homepage identification
discussed above), it may be possible to discern who visited
which social-network or brand pages. This is not trivial,
but it is information that is collected routinely and widely
now without any anonymization, by advertising networks,
ad exchanges, search engines, and so on. In addition, the
potential harm is arguably mild with respect to that associ-
ated with much personal information that is used routinely
(unanonymized) for data mining, personalization, and tar-
geting. Thus our claim that this method is privacy friendly.
Nonetheless, a privacy-sensitive firm using these techniques
may want to consider not even saving anonymized data on
certain content, engage only well-respected brands, and be-
ware of saving potentially sensitive details of brand activity.

The greater question of privacy and on-line advertising
involves where we as citizens and consumers, collectively,
would want on-line businesses to operate on the spectrum
between two unacceptable extremes: (a) doing absolutely
anything with consumer data regardless of any ethical ques-
tions, and (z) being unable to increase business and con-
sumer welfare via data modeling. The answer obviously is
beyond the scope of a paper like this. We hope we have
illustrated that there are interesting and viable points be-
tween the extremes (cf., [11]), that promise increased privacy
as well as increased business and consumer welfare (here,
better-targeted advertisements). It would be valuable to
develop privacy-preserving techniques to augment this pri-
vacy friendliness without reducing effectiveness too much,
for example by introducing additional randomness into the
content visitation network.

We are not aware of prior research on data mining for on-
line brand advertising. Prior work tends to focus on spon-
sored search advertising [4], contextual advertising [3], and
display advertising optimized for some action in response
to the ad—usually clicks and sometimes more sophisticated
conversions. Provost et al. [24] describe in detail a broad
set of different sorts of data that can be useful for on-line
ad targeting. Unlike this prior work and most actual on-line
advertising [4, 3] (especially when measured by current ad-
vertising spending), the focus of our research is on finding
and evaluating audiences for brand advertising. It makes
sense that better brand audiences also will be more likely
to click or convert, which would be a natural and attractive
by-product (but we have not shown this).

Our problem has some similarity to collaborative filtering
(CF), but differs in important ways. The scale of the data is
different, which has implications for scalability. Just in our



research data set, we have 100 million “items”, as compared
to at least an order of magnitude fewer even for very large
CF systems. More importantly, rather than recommending
from among the item set itself (“matrix completion”), our
task more closely resembles traditional predictive modeling
of a specific target variable, but with a massive number of
variables, and technically only positive and unlabeled exam-
ples [12]. Nonetheless, it may be that CF-style dimension-
ality reduction [2] can further improve audience selection.

Although we have tried to design the experiments care-
fully, there may be some residual bias in data collection.
We have investigated this both by using regression analy-
sis including variables that may indicate bias, as well as by
trying to seemingly improve the audiences by using bias-
related variables, but have not found anything to lead us to
question the results. For example, including the number of
pages a browser has visited does not reduce the significance
of the proximity variables in a regression on brand affinity,
and does not systematically increase accuracy.

Any technique operating in the framework we provide will
be limited by browser cookie deletion. This is a well-known
problem for brand advertisers, who often “retarget” ads to
known brand actors (since they’ve already displayed brand
affinity). Over time, deletion of cookies will cause some of
the chosen audience members never to present themselves
(again) for advertising. Our methods are less sensitive to
cookie deletion because in effect our techniques will natu-
rally retarget lost brand actors, as long as they visit the
same social networking pages. Moreover, our techniques will
naturally, anonymously target brand actors on other com-
puters, if they “act like their own best friends,” which may
account for some of the effect shown above.

The use of “friends” links from SN sites for direct mar-
keting has received much criticism from the popular press
due to privacy concerns [23], and from the academy [5]. In
particular, Clemons et al. [5] provide a well-worth-reading
argument that advertising on a SN site to SN neighbors
is unlikely to be successful. However, they do not discuss
brand advertising—which may be successful on SN sites, as
brand advertising is different from click-inducing advertis-
ing. Nor do they consider that the value of SN sites for
delivering ads and their value as a vehicle for collecting data
are independent. This paper shows the substantial value of
social networking sites as a mine for data on brand affinity
(the advertising may take place elsewhere on the web).
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