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ABSTRACT 
This paper addresses the classification of linked 
entities.  We introduce a relational vector-space (VS) 
model (in analogy to the VS model used in information 
retrieval) that abstracts the linked structure, 
representing entities by vectors of weights.  Given 
labeled data as background knowledge/training data, 
classification procedures can be defined for this model, 
including a straightforward, “direct” model using 
weighted adjacency vectors. Using a large set of tasks 
from the domain of company affiliation identification, 
we demonstrate that such classification procedures can 
be effective.  We then examine the method in more 
detail, showing that as expected the classification 
performance correlates with the relational 
autocorrelation of the data set.  We then turn the tables 
and use the relational VS scores as a way to 
analyze/visualize the relational autocorrelation present 
in a complex linked structure.  The main contribution of 
the paper is to introduce the relational VS model as a 
potentially useful addition to the toolkit for relational 
data mining.  It could provide useful constructed 
features for domains with low to moderate relational 
autocorrelation; it may be effective by itself for 
domains with high levels of relational autocorrelation, 
and it provides a useful abstraction for analyzing the 
properties of linked data. 

Keywords 
relational data mining, vector-space models, industry 
classification, homophily, relational autocorrelation, 
relational-neighbor classifier  

1. INTRODUCTION 
The analysis of linked data differs from the traditional 
data-mining scenario: the data items, instead of being 
statistically independent, have relationships to each other.  
Linked data are ubiquitous, and relational data mining is 
receiving increasing attention with the explicit linking of 
web sites, and with the need to analyze social networks for 
applications such as counterterrorism [1, 2, 3].  We 
address a particular relational data mining application: 
identifying the group membership of linked entities.  We 

address company-industry affiliation, but the framework 
and methods we describe are intended to be general.  

Figure 1 shows a link diagram of companies and their 
relationships, as extracted from the business news.  Colors 
indicate industry-sector affiliation.  The diagram suggests 
that relationships may play a useful role in identifying the 
(unknown) affiliation of a company, because linked 
companies often have the same affiliation.  

 
Figure 1. Link diagram of firms.  Only links with strength > 4 
are shown (but proximity also indicates relatedness).  Colors 
indicate industry-sector membership. 

The key contribution of this paper is the presentation and 
demonstration of a simple, but useful, method for 
producing classification models from linked data.  In 
analogy to information retrieval [4], we represent entities 
using a vector-space model.  The relational vector-space 
(RVS) model abstracts away much of the graph structure, 
representing entities by adjacency vectors.  Various 
classification procedures can be defined on the RVS 
model. 

The main attraction of the RVS model is its simplicity.  
We argue that RVS class-membership scores could be 
useful constructed features for more complex (relational) 
data-mining approaches, such as ILP [5] that do not 
naturally summarize the class membership of local 
neighborhoods.  We also believe that for certain tasks, the 
RVS model may be appropriate by itself. 



    
  

The rest of the paper is organized as follows.  We 
present the RVS model formally, and use it to define 
several classification scoring functions.  Next we 
introduce the domain of company affiliation identification, 
from which we will take a set of classification tasks.  Then 
we present the results of an experimental case study, 
examining the effectiveness of the RVS model for 
classification in this domain.  Finally, we show how the 
model’s scores can be used to analyze and visualize certain 
class-related information about the original, complex 
graph. 

2. THE RVS MODEL 
We make a direct analogy to the “vector-space model” 
used for information retrieval, in which all textual and 
linguistic structure is ignored and documents are 
represented by vectors of weights on words. The relational 
vector-space model is a similarly limited abstraction of 
the graph structure, into a representation on which 
straightforward classification techniques can be built.  
Specifically, each dimension in the vector space 
corresponds to another entity; each entity is represented 
by a (weighted) adjacency vector (i.e., the magnitude along 
each dimension is some measure of the strength of the 
relationship). 

2.1 General Model 
Formally, we consider a set of entities E and a set B⊆ E 
of “background knowledge” entities.  Later in our company 
affiliation domain, the entities will be companies and the 
background knowledge will be companies for which the 
classification is known.  We place an (arbitrary) ordering 
on B, resulting in bi, i = 1, .. |B|.  These define the 
dimensions of the vector space, and thereby the 
dimensions along which any entity can be described.   
Definition: An entity e is described by an entity vector w 
= (w1, w2, ..,), where wi is the strength of the relationship 
between entity e and background entity bi.  Ignoring 
strengths gives a simple entity vector, w, where the wi are 
binary (presence/absence of a link).   

This relational vector-space representation can be used 
for classification and clustering of entities, and other tasks 
that rely on entity similarity.  In this paper, we will 
consider entity classification.  In particular, consider a 
discrete, finite set of classes C, such that for each Ci∈C, 
Ci ⊆ E.  If e∈Ci, e is considered to be a member of class i.  
In principle, the classes need not be mutually exclusive, 
but we will consider them to be for this paper, so the class 
can be considered to be a single-valued attribute of an 
entity and (later) we can adapt previous notions of 
relational autocorrelation directly.  By definition, for 
e∈B, class membership is known.  We would like to 
determine (estimate) class membership for at least one 
entity e∉B. 

Definition: Each class Ci∈C is described by a class 
vector ci = (ci,1, ci,2, ..,), where ci,j is the strength of the 
relationship between class Ci and background entity bi. 

In order to classify an entity, we will consider how 
similar the entity vector is to each class vector, using a 
similarity-based scoring function.  First, let us define a 
generalized scoring function. 
Definition: The generalized RVS score of entity e for 
class i is the normalized inner product of w and ci (the 
normalizing function ),( icwγ is discussed below):  
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RVS scores may be used for classification and other class-
based scoring (e.g., for ranking) directly. They also could 
provide generally useful constructed features to be used by 
other methods (for example, more complex relational data 
mining methods [1,2,3]).  

2.2 Instantiating the RVS Model 
To define specific RVS scores we must answer three 
questions, which we now will address in turn.   

1. How exactly are the entity vectors, w, defined? 
2. How exactly are the class vectors, ci, defined? 
3. What normalizing function, ),( icwγ is used? 

Entity vectors.  Recall that an entity vector is composed 
of the strengths of the relationships between the entity e 
and the background entities bi.  Of course, the definition of 
strength is domain dependent, but there are some general 
issues worth highlighting.   In all cases, we will consider wi 
= 0 to indicate the lack of a relationship between e and bi.  
A simple way of defining entity vectors is to ignore 
strengths, creating a vector of binary indicators.  If there is 
a natural notion of strength, such as the number of links 
between entities, this gives an obvious way of defining the 
wi.  However, in analogy to how the vector-space model is 
used in text classification, a TFIDF-like weighting scheme 
[4] may be provide added discrimination power. 
Class vectors.  Defining class vectors is somewhat more 
involved.  One general direct method is to give non-zero 
weights to the background entities that are members of the 
class.  The distribution of weights places an a priori 
directionality on the class vector, which ideally maximizes 
discriminability.  Using uniform weights defines a set of 
simple, “canonical” vectors for each class. 
Definition: The canonical class vector, ci, for class i has 
non-zero components: 

ci,j = 1 ⇔  bj∈Ci 
Other distributions of direct weights may be natural for a 
particular domain, based on background knowledge or 
statistics summarized from the corpus of background 
entities.   For company affiliation classification, 
companies in an industry (class) may be weighted by 



    
  

market capitalization or by a measure of marginal 
probability of linkage to same-class companies. 

These direct methods assume that linkage to members 
of the same class is sufficient for discrimination.  It may 
be that members of the same class are not linked to each 
other, but are linked to the same other entities (or other 
classes).  Short of abandoning the RVS approach for a 
more complex graph-based approach, an indirect method 
for defining class vectors may be beneficial.   
Definition: The simple indirect class vector, sici, for 
class i is the vector sum of the entity vectors for the 
background entities belonging to the class: 

sici =  ∑
∩∈ BiC  e

w  

One can define more complicated indirect class vectors.  
For example, a class centroid would be slightly more 
complicated.  An even more complicated indirect method 
would be to redefine the bi, one per class, as “super-
entities.”  Then an indirect method could compare an 
entity’s distribution of links to the various super-entities 
to the average distributions for those classes.  For this 
paper, we do not consider complicated variations further. 
Normalization functions.  Generally, ),( icwγ defines 

the semantics of the similarity represented by the score.  
For example, the familiar “cosine similarity” between the 
entity vector and the class vector is d(e,i) with the 
following normalization function: 

ii c wcw =),(γ , 

where  is the Euclidean (L2) norm.  Whether the exact 

cosine distance, or some other normalization, is 
appropriate is domain dependent, but also depends on the 
definitions of w and ci.  For the experiments below, we 
will look at several scoring functions representing 
different similarities.  These scoring functions are defined 
by different instantiations of w, c i, and ),( icwγ .  

2.3 Five RVS scoring functions 
The RVS model gives a convenient design space of 
classification scoring functions.  We concentrate on the 
canonical class vector, because it is easy to define, and 
creates intuitively attractive scores (that perform well in 
our domain).   
Definition: The class-normalized direct RVS score of 
entity e for class i is the inner product of ŵ and the 
canonical class vector ci, normalized by the L1 norm of c. 
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The class-normalized direct RVS score counts up the 
connected entities belonging to the class, and then 

normalizes by the size of the class,1 so that certain classes 
do not get higher scores simply because they are larger.  
Definition: The entity-normalized direct RVS score of 
entity e for class i is the inner product of ŵ and the 
canonical class vector ci, normalized by the L1 norm of 
ŵ . 
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The entity-normalized direct RVS score is attractive 
intuitively: it represents the proportion of connected 
entities that are members of Ci.  This normalizes so that 
certain entities do not get higher scores simply by being 
more highly connected. 
Definition: The weighted, entity-normalized direct 
(wend) RVS score of entity e for class i is the inner 
product of w and the canonical class vector ci, normalized 
by the L1 norm of w. 
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Using a weighted entity vector inherently deals with noise 
(spurious, low-weight links) in the data.  Using the L1 
norm of the weight vector gives the intuitively appealing 
weighted proportion of links that are to members of the 
class of interest. 

All three of these methods directly relate the entity 
vectors w with the respective canonical class vectors ci. A 
second group of scoring functions relates the entity vector 
w with the simple indirect class vector sici of a class. 
Definition: The (simple) indirect RVS score of entity e 
for class i is the cosine similarity between w and sici, 

d e i i

i
( , ) =

⋅w sic

w sic
 

We define efigf weights (entity frequency inverse graph 
frequency) analogously to the TFIDF (text frequency 
inverse document frequency) weights used in Information 
Retrieval [4]. 
Definition: The efigf-based indirect RVS score of entity 
e for class i is the cosine between the efigf-normalized 
vector w' and the analogously normalized vector sici’, 
where 

ef =w 
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w' = ef ? igf  (sici’ analogously) 
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1 For the canonical class vector, the semantics of the cosine of the 

angle between it and a weighted entity vector is dubious.   



    
  

3. DOMAIN & TASKS  
To demonstrate the RVS model, we report a case study 
involving several classification tasks from the domain of 
company affiliation identification.  Identifying the group 
membership of companies is a prerequisite for solving 
various problems.  Consider industry membership.  
Determining which companies belong to a particular 
industry is essential for intellectual property (e.g., patent) 
litigation, financial analysis (e.g., balancing a portfolio, 
constructing sector funds), making/improving government 
economic projections, and so on.  

Traditionally, industry membership has been determined 
by a manual process, and there are various existing 
classifications. For example, the US Government’s Office 
of Management and Budget has developed a framework for 
how to assign SIC codes (“Standard Industry 
Classification” codes–hierarchical, four digit codes used 
as industry identifiers for firms).  Business information 
companies, such as Hoover’s and Yahoo, have different 
industry classifications (which often do not have a high 
degree of correspondence with the assigned SIC codes).  
There are known problems with industry classifications.  
For example, one study showed that two common SIC-
code sources for the same companies disagreed on more 
than 36% of the codes at the 2-digit code level, and on 
more then 80% at the 4-digit level [6].  

The RVS model can take as background knowledge any 
industry classification, and (attempt to) classify 
companies based on it.  This gives the additional flexibility 
to adjust the classification of some background 
companies, and have the model adjust the rest accordingly, 
or start from scratch with a new scheme.   

The quality of the generalization performance is an 
empirical question, which we address next for Yahoo’s 
classification.  Thus, for the RVS model, E is the set of 
companies, C comprises the Yahoo classifications 
(industry sector, unless otherwise noted), and B contains 
the companies for which the Yahoo classification is 
(deemed to be) known.  We chose Yahoo because the 
granularity of the classifications (12 sectors) was 
attractive for a conference-paper study and because of 
ease of access to the data.   

For the RVS model we also need a source for links 
between companies.  For this study we chose a generic, but 
easily accessible link: two companies are linked if they 
cooccur in a business news story, with the strength of the 
relationship being the number of such links.  Note that 
cooccurrence lumps together a wide variety of 
relationships, including joint ventures, 
mergers/acquisitions, product-related, market related, and 
so on.  Some have nothing to do with industry membership 
(e.g., two companies happen to announce earnings on the 
same day).  We based the cooccurrences on a collection 
of news stories from the period December 1999 to 

September 2002, for which the news provider had assigned 
at least two ticker symbols and for which the symbols 
appeared in the Yahoo classification. 

4. RESULTS 
To compare the various RVS scoring methods, we take 
each affiliation (the 12 Yahoo sectors) and ask how well 
the companies can be separated into those belonging to the 
affiliation and those not.  We examine the five scoring 
functions listed in Section 2.2. and two extensions 
(described later). We also examined the methods using as 
the affiliations 97 Yahoo industries, with similar results 
(which we also use for illustration). 

4.1 ROC Analysis for Sectors 

 
Figure 2: ROC curve for weighted, entity-normalized method 

(averaged over 10 runs) 

We use ROC analysis [7, 8] to assess the model’s ability 
to separate class members from non-members.  For a 
given scoring of companies, ROC curves plot all the 
possible tradeoffs between correctly classifying the 
members of the class (the true positive rate, on the y-axis) 
and incorrectly identifying non-members of the class 
(false-positive rate, on the x-axis).  The area under the 
ROC curve (AUC), equivalent to the Wilcoxon-Mann-
Whitney statistic, is the probability that a member of the 
class will be scored higher than a non-member [9].  Error 
is calculated as 1 – AUC, and since the AUCs often are 
close to 1, relative error reduction2 is reported for 
comparisons.  

Figure 2 shows the ROC curves for the best method, the 
weighted, entity-normalized direct score (swend).  
Generalization performance ranges from moderate class 
separability (AUC=0.68 for Capital Goods) to excellent 
class separability (0.93 for Transportation).  Referring 
back to Figure 1, Transportation is green, and we can see 

                                                             
2 Relative error reduction of method2 over method1 = (AUC2 – 

AUC1)/(1-AUC1). 



    
  

that green nodes are very well interlinked.  (Capital Goods, 
cyan, are interlinked not nearly as well.) 

Table 1 reports the AUCs of all 5 scoring functions for 
the 12 classification tasks.  In most cases all the scoring 
methods classify considerably better than random 
(represented by the diagonal in ROC space).  swend 
consistently performs better than the other scores (with 
only a few exceptions)..  Table 2 shows the relative error 
reduction of swend over the other methods.  swend has lower 
error than its closest competitor, the simple send, on 10 of 
12 classification tasks, but achieves only a 2.3% error 
reduction on average. 

Sector s end s cnd s wend d si d efigf

BasicMaterials 0.7318 0.6644 0.7339 0.6218 0.6494
CapitalGoods 0.6781 0.6635 0.6810 0.5274 0.5476
Conglomerates 0.7563 0.5318 0.7697 0.6236 0.6281
ConsumerCyclical 0.7379 0.6087 0.7463 0.5845 0.6073
ConsumerNonCyclical 0.8704 0.6530 0.8753 0.7227 0.7285
Energy 0.8685 0.7701 0.8682 0.8083 0.8520
Financial 0.8002 0.6619 0.8067 0.5566 0.6238
Healthcare 0.8890 0.6918 0.8898 0.7652 0.8142
Services 0.7966 0.6035 0.8124 0.5823 0.6031
Technology 0.8378 0.6785 0.8427 0.7146 0.7294
Transportation 0.9306 0.7325 0.9307 0.8406 0.8825
Utilities 0.9103 0.7982 0.9096 0.8841 0.8924
Average 0.8173 0.6715 0.8222 0.6860 0.7132

area under curve

 
Table 1: Area under curve (AUC) for all scoring methods  

Sector s end s cnd d si d efigf

BasicMaterials 0.0080 0.2072 0.2966 0.2411
CapitalGoods 0.0090 0.0520 0.3250 0.2948
Conglomerates 0.0550 0.5081 0.3881 0.3807
ConsumerCyclical 0.0322 0.3517 0.3895 0.3540
ConsumerNonCyclical 0.0382 0.6407 0.5503 0.5408
Energy -0.0028 0.4267 0.3122 0.1092
Financial 0.0327 0.4283 0.5642 0.4863
Healthcare 0.0068 0.6423 0.5305 0.4066
Services 0.0778 0.5268 0.5508 0.5274
Technology 0.0303 0.5106 0.4489 0.4186
Transportation 0.0007 0.7409 0.5653 0.4101
Utilities -0.0073 0.5520 0.2201 0.1600
Average 0.0234 0.4656 0.4285 0.3608

error reduction

 
Table 2: Relative error reductions for swend over other 

methods  

Notice the curious shape of the ROC curves in Figure 2: 
rather than having smoothly decreasing slopes (for ROC 
curves the slope corresponds to the class-membership 
likelihood ratio), after a certain point the slope is constant 
(to (1,1)).  This is an indication that swend is giving equal 
(low) scores to a large number of entities.  Examining the 

scores we see that, indeed, the direct method is giving 
scores of zero to many entities.3   

swend=0 means that the entity is not linked to any 
(background) members of the class.  This may largely be 
due to our limited data sample.  A larger sample would 
contain (i) many more links and perhaps (ii) many more 
labeled background companies.  Moreover, comparing 
different direct scores on these data obscures their 
differences, because (as is evident in Figure 2) due to the 
large number of zeros, for a given industry the AUCs 
cannot be very different for different direct scorings 
(which would correspond only to different slopes of the 
already-very-steep initial rise). By definition, on the cases 
with no links to background class members, all of the 
direct methods give zero scores.   

Therefore, to assess the potential of the scores with 
more data, and to compare different direct scores on those 
cases where they can differ, we magnify the far-left part of 
the curves by looking only at those cases with at least one 
link to a background member of the class (i.e., ignoring the 
zero scores).  The resultant ROC curves for swend are 
shown in Figure 3. 

 

 
Figure 3: ROC curve for weighted, entity-normalized 

method, ignoring non-linked entities (averaged over 10 runs) 

In Figure 3, most of the AUCs are 0.9 or better, and only 
one (Conglomerates, AUC=0.67) is less than 0.8.  This 
demonstrates that swend can separate the entities by class 
remarkably well, in cases where it has a chance—i.e., 

                                                             
3 Giving scores of zero to entities not in the class is of course 

desirable.  The problem here is that members of the class are 
receiving scores of zero.  The percentage varies from sector to 
sector, and can be estimated by (one minus) the TP rate at the 
beginning of the final linear segment of the ROC curve.  E.g., for 
Transportation approximately 10% of the members of the class 
receive zeros.  For Capital Goods, approximately 50% receive 
zeros. 



    
  

where there is at least one link to a known member of the 
class. 

Sector s end s wend d si d efigf

BasicMaterials 0.9106 0.9286 0.6442 0.6685
CapitalGoods 0.8321 0.8574 0.5299 0.5676
Conglomerates 0.5755 0.6668 0.7079 0.7169
ConsumerCyclical 0.8205 0.8602 0.5853 0.6107
ConsumerNonCyclical 0.9079 0.9317 0.7482 0.7578
Energy 0.9291 0.9281 0.8283 0.8522
Financial 0.8892 0.9107 0.6243 0.6646
Healthcare 0.9397 0.9405 0.7599 0.8078
Services 0.8143 0.8462 0.5712 0.5970
Technology 0.8373 0.8446 0.7051 0.7195
Transportation 0.9567 0.9624 0.8551 0.9124
Utilities 0.9397 0.9518 0.9076 0.9225
Average 0.8627 0.8857 0.7056 0.7331

area under curve (no zeros)

 
Table 3: Area under curve (AUC) for all scoring methods 

ignoring non-linked entities 

Table 3 reports the AUCs of all 5 scoring functions for the 
12 classification tasks for this task.  In most cases all the 
scoring methods classify considerably better than random 
(represented by the diagonal in ROC space), but again send 
and swend perform the best.  The wend score consistently 
performs better than the other scores (with only a few 
exceptions).  Table 4 shows the relative error reduction of 
the swend over the other methods.  Even over send, it 
achieves a 15% error reduction on average. 

Sector s end d si defigf

BasicMaterials 0.2019 0.7994 0.7846
CapitalGoods 0.1506 0.6966 0.6701
Conglomerates 0.2152 -0.1406 -0.1768
ConsumerCyclical 0.2209 0.6628 0.6408
ConsumerNonCyclical 0.2586 0.7290 0.7182
Energy -0.0152 0.5810 0.5132
Financial 0.1945 0.7624 0.7339
Healthcare 0.0133 0.7521 0.6904
Services 0.1716 0.6413 0.6183
Technology 0.0444 0.4729 0.4458
Transportation 0.1298 0.7402 0.5702
Utilities 0.1994 0.4779 0.3777
Average 0.1487 0.5979 0.5489

error reduction (no zeros)

 
Table 4: Relative error reductions for swend over other 

methods ignoring non-linked entities  

It is important to emphasize that we are not claiming that 
these results show that swend is generally preferable.  This 
will be domain and task dependent.  For this particular 
domain, swend seems to be the better score.  This general 
result is reinforced by examining the results on the finer-
grained industry (rather than sector) affiliations.  For 34 of 
the 97 industries the two methods produce identical 

generalization performance.4  For the remaining 63 
industries, send is superior for 11 and swend for 52.  Figure 4 
plots the AUCs of swend (vertical axis) and send (horizontal 
axis).  Points above the diagonal indicate that swend has a 
higher AUC than send.  Clearly, swend is the better performer 
on these finer-grained classification tasks, sometimes by a 
large margin. 

Returning to the zero scores, the direct RVS method 
does not stand a chance when there are no links to a known 
member of the class.  The indirect method is not so 
limited—the only time it will give a non-zero score for a 
class is if the entity in question is not linked to anything 
that a known member is linked to.  Scoring all the 
companies with the indirect method indeed produces few 
zeros.  Unfortunately (as shown in Table 1), the 
classification performance is not nearly as strong with the 
indirect methods.  The indirect methods show a much 
wider range of performance, from Utilities (almost as 
good as with the direct score) down to Capital Goods 
(apparently random). 

 
Figure 4. AUC of swend vs. AUC of send on the 97 industries 

4.2 Hybrid methods 
In order to improve the direct methods’ performance on 
entities with no direct links to the class, it is possible to 
combine the direct and indirect methods, using the latter 
only when the former returns a zero.  
Definition: The weighted, efigf combined score of an 
entity is: 
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Thus, we use the weighted, entity normalized direct score 
swend, unless swend is zero, in which case we scale the efigf-
score by the minimal, greater-than-zero swend to fit the 
defigf’s below the true weighted, entity normalized scores. 

                                                             
4 For sparser data the two methods’ scorings will become more 

similar—and exactly identical scorings are not necessary to 
produce identical ROC curves. 



    
  

Using this approach, we see a modest improvement. On 
average we see 4% additional error reduction over swend 
(see Table 5). However, there are certain cases where 
additional error reduction is very large (Transportation, 
Energy error reduction >20%), and three cases where it 
increases error (on average 9% relative increase). This 
illustrates the need for a flexible framework within which 
a variety of RVS methods can be defined and tested.  

Another approach to address the scoring of entities with 
no links to a known member of the class in question is to 
investigate degree-2 links (links to entities “two hops” 
away). Redefining the links in the direct RVS model 
results in a score, which is analogous to send, the simple 
entity-normalized direct RVS score, but follows links of 
degree two.  Consider w? to be the analogue to w, except 
with two-hop links.  
Definition: An entity ej can be described by an simple 
second-degree entity vector w?j = (w?j,1, w?j,2, …), 
where: 

w?j,k = 1 if wj,i * wi,k = 1 for any e i, ek in E 
Definition: The second-degree class-normalized direct 
RVS score of entity e for class i is the inner product of 
w ′′ˆ and the canonical class vector ci, normalized by the L1 
norm of c. 
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Again we can define a combined score: 
Definition: The weighted, second degree class-
normalized combined score  of an entity is: 
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Sector s wend cs cs'' cs cs''

BasicMaterials 0.7339 0.7313 0.7677 -0.0098 0.1270
CapitalGoods 0.6810 0.6525 0.7187 -0.0891 0.1183
Conglomerates 0.7697 0.7702 0.7232 0.0024 -0.2019
ConsumerCyclical 0.7463 0.7178 0.7682 -0.1126 0.0862
ConsumerNonCyclical 0.8753 0.8859 0.8726 0.0850 -0.0215
Energy 0.8682 0.8981 0.9078 0.2267 0.3003
Financial 0.8067 0.7938 0.8129 -0.0671 0.0319
Healthcare 0.8898 0.8945 0.9136 0.0425 0.2163
Services 0.8124 0.8150 0.8234 0.0137 0.0586
Technology 0.8427 0.8458 0.8496 0.0200 0.0437
Transportation 0.9307 0.9470 0.9458 0.2347 0.2177
Utilities 0.9096 0.9185 0.9187 0.0979 0.1011
Average 0.8222 0.8225 0.8352 0.0370 0.0898

area under curve rel. error red.

 
Table 5: AUC and relative error reduction with combined 

methods  

As Table 5 shows this method improves further over swend. 
On average we get 9% relative error reduction wi th some 
reductions going up to 30% (for energy) and two 
additional being higher than 20% (Healthcare and 
Technology). Like with the weighted, efigf combined 
score cs, however, some sectors have an error increase, 

the largest being Conglomerates with 20%. (NB: by its 
nature, Conglomerates is the one sector for which we 
would not expect members to be linked to each other.)  
This illustrates that even in a domain where simple scores 
perform very well, more-complex scores can add value. 

4.3 Comparing scores across sectors 
The ROC analysis above evaluates the problem: given a 
sector, how well can companies be separated into those in 
the sector and those not.  More specifically, it evaluates 
the scoring function’s ability to rank the companies by 
probability of class membership.   The dual question is: 
given a company, how accurately can it be placed into the 
“correct” sector?   

The base rate for this classification problem will be the 
marginal probability of the most common class: in our 
data, 0.29 (Technology).  The accuracy of swend for 
classifying companies into the correct sector was 0.68.  
Table 6 shows the accuracy for the companies in each 
sector. For only one sector (Conglomerates) was the 
classification accuracy worse than the base rate (0.15) and 
this sector also had the smallest number of members 
(recall that swend does not normalize for the size of the 
class).  Classification is one (important) case where 
comparing scores across sectors is necessary.  We will 
return to this in the follow-up analysis below.  

 

Sector Correct Total Accuracy 
Technology  392 505 0.78
Energy 54 71 0.76
Transportation 28 38 0.74
Healthcare  131 180 0.73
Utilities  21 30 0.70
Financial  111 170 0.65
Services  286 444 0.64
ConsumerNonCyclical  38 60 0.63
BasicMaterials  47 104 0.45
ConsumerCyclical  36 99 0.36
CapitalGoods  17 73 0.23
Conglomerates  3 14 0.21
Overall 1164 1788 0.65
base rate (Technology) 0.28

Table 6: Accuracy for classifying companies in each sector 

4.4 Other methods 
How good are these results, with respect to other methods 
of company-affiliation classification?  Our goal in this 
paper was to demonstrate the RVS model, and not to 
assess what is the best method for company affiliation 
identification.  Nevertheless, for completeness we address 
this question briefly.  
Running the relational learning program FOIL [10] on 
these data failed completely, returning a single clause for 
each company.  We modified FOIL to search for more 
general theories, and it still performed far worse than the 
RVS methods.  In retrospect, this is not surprising because 
FOIL (and many other ILP [5] algorithms) do not perform 



    
  

numeric aggregations without having them be defined 
explicitly.  The RVS scores may provide useful 
constructed features for ILP programs. 

We created an ensemble, multi-document, full-text 
classification method, using the stories from which the 
links were extracted.  This method performed similarly to 
swend but was two orders of magnitude slower.  
Interestingly, when the sector-specific word models were 
examined, the names of major companies in the sector 
were given high scores.  So the text-based method chose 
to use these “links” in its own vector-space model.  

In the financial literature and industry, companies are 
clustered into industry groupings based on correlations in 
their financial time series (and singular-value 
decompositions) [11].  Our experiments so far with these 
methods have not yielded remarkable performance on our 
classification tasks. 

Probabilistic and statistically oriented relational 
learning methods, such as PRMs [12], and relational 
versions of naïve Bayes [13], decision trees [14], etc., hold 
the most promise for competing with the RVS model.  
These methods do perform aggregations over the values of 
the attributes at linked nodes.  In particular, properly 
utilized (weighted) COUNT or MODE operations would 
incorporate the fundamentals of the basic, direct RVS 
scores.  However, even if they performed competitively, 
they far more complex learning procedures than the RVS 
scoring functions. 

5. Discussion and Followup 
So, what does our case study illustrate about the relational 
vector-space model?  First, it shows that there are domains 
where the interlinkage between class members is strong 
enough for simple scoring methods based only on linkage 
to capture much of the “signal” needed for good 
classification.  And for some tasks the scoring can lead to 
remarkable classification accuracy.  For example, even 
though Transportation companies represent only 2% of the 
companies, the excellent Transportation scores 
(AUC>0.9) lead to a classification accuracy of 74%, when 
classifying by choosing the highest sector-score (of the 
12). 

Intuitively, we expect the direct RVS methods to excel 
when (as in Figure 1) entities are more likely to be linked 
to other entities with the same class membership.  This 
intuitive notion is captured more formally by relational 
autocorrelation [15]: the correlation between values of 
the same attribute on linked entities “represents an 
extremely important type of knowledge about relational 
data, one that is just beginning to be explored and 
exploited for learning statistical models from relational 
data” (ibid).  We can use this notion to understand the RVS 
model in more detail. 

Adapting Jensen & Neville’s [15] definition to our 
context, consider a set of entities E, an attribute f, and a set 
of paths P that connect objects in E. 
Definition: Relational autocorrelation C’ is the 
correlation between all pairs (f(x1),f(x2)) where 

2121 ,, xxExx ≠∈ and such that .)2,1( Pxxp ∈∃  

Let us define degree-k relational autocorrelation as 
further restricting the length of )2,1( xxp to be k.  

Intuitively, the direct RVS method should be appropriate 
when the degree-1 relational autocorrelation in the 
entities’ class values is high (“homophily”).  We can use an 
existing measure of relational autocorrelation to verify 
this.  Following Jensen & Neville we use Pearson’s 
corrected contingency coefficient to measure class-value 
autocorrelation.  

For our sector-classification problem, the degree-1 
relational autocorrelation considering all classes is 0.84, 
reflecting our intuition from inspecting Figure 1.  Figure 5 
shows for each class the classification performance 
(accuracy) plotted against the class vs. not-class degree-1 
autocorrelations.  The rankings of performance and 
autocorrelation are very similar (Pearson’s correlation 
coefficient is 0.76).  This high value is due to a large part 
to Conglomerates, which has the lowest autocorrelation 
and the lowest accuracy.  Nonetheless it suggests that the 
performance of the direct RVS method indeed is related to 
the degree-1 relational autocorrelation in the class values.   

 
Figure 5: Accuracy versus degree-1 autocorrelation 

More specifically, the direct RVS score itself is a measure 
of degree-2 relational autocorrelation where the path 
p(x1,x2) passes through the entity to be classified.  If the 
degree-1 relational autocorrelation is high, one would 
expect entities connected by paths of length 2 through an 
entity of class C, also to have class C (this is the condition 
for the direct RVS score to be effective for 
classification).   



    
  

 
Figure 6: Fraction of correct and incorrect Sector 
Classifications (black are correct classifications, gray are 
incorrect classifications) 

This suggests that the RVS scores can be used for 
assessments of the nature of the relational autocorrelation 
in a graph, that are finer-grained than given by the 
contingency coefficient.  For example, for our sector-
classification problem, Figure 6 is a histogram, plotting 
the distribution of companies over the maximum of swend 
for any of the 12 classes.  The black (gray) shading shows 
the percentage of companies with the same (different) 
class as the class with the maximum score. Interestingly, 
the distribution shows that for this domain, most (>75%) 
of the entities have a (weighted) majority of the links to 
entities of a single class.  More often than not, this class is 
correct. 

 
Figure 7: Sector specific swend scores for Transportation  
(gray is All but Transportation, black is Transportation) 

Let us use swend to view two of the particular sector 
classification tasks, Transportation (high AUC & 
accuracy) and Capital Goods5 (low AUC & accuracy).  
Figure 7 and Figure 8 show histograms of the sector-
specific swend scores for the members of the class (black) 
and the non-members (gray).  We can see clearly that 
Transportation companies are primarily linked to other 

                                                             
5 Conglomerates is similar, but has only 13 member companies (as 

compared to 61 for Capital Goods). 

Transportation companies, and other companies are not.  
Capital Goods companies, on the other hand, show very 
different connectivity—they are not primarily linked to 
other Capital Goods companies.  In fact, their linkage to 
other Capital Goods companies is remarkably similar to 
that of the rest of the companies. 

 
Figure 8: Sector specific swend scores for Captial Goods  
(gray is All but CapitalGoods, black is CapitalGoods) 

Finally, consider the comprehensive view of class-
interlinkage given in Figure 9 (on the last page), which 
shows the class interlinkage for all class pairs.  Each 
individual graph shows the averages across the members of 
the class of the swend scores for each of the 12 classes.  
This figure gives a condensed visualization of the class-
specific interlinkage in the graph.   

We argue that this visualization could lead to insights 
about the classes.  Pretend for the moment that we did not 
already have a basic understanding of the sectors.  We see 
that Capital Goods has high linkage to most of the other 
classes.  Transportation, on the other hand is linked 
primarily with itself.6 And Services are linked almost 
uniformly to the rest of the sectors. Utilities are linked to 
Energy and Transportation (and in contrast to the rest of 
the sectors, not to Technology much at all).  Each of these 
properties makes good sense for the corresponding class. 

6. LIMITATIONS AND FUTURE WORK 
For this study we limited ourselves to relatively simple 
RVS scoring functions.  This was partially due to our 
desire to flesh out the basics of the model first before 
getting fancy, but more due to the remarkable performance 
of the basic methods in our case-study domain.   

The RVS scoring functions are “learning” procedures 
only in the sense that nearest-neighbor classifiers are: they 
simply apply a scoring function to a database of instances-
-- no feature selection or parameter estimation takes 

                                                             
6 We have not normalized here by the size of the class here, in 

keeping with the rest of the paper (so Technology is weighted 
heavily across most of the classes).  Doing so gives a different, 
and equally intriguing visualization. 



    
  

place.  Indeed, swend could be considered a “Relational 
Neighbor” classifier [16], that takes advantage of class 
homophily.  Provost et al. argue that such a simple model 
should generally be used as a baseline for more 
complicated approaches, because it seems to perform 
remarkably well in many domains [16].  Jensen & Neville 
found high relational autocorrelation for almost all 
attributes they examined in linked movie data [15].  
Furthermore, homophily has been observed in human 
groups with respect to a wide variety of descriptive 
variables, and is one of the basic premises of theories of 
social structure [17].  Chakrabarti et al. take advantage of 
autocorrelation in class values to classify hypertext 
documents [18].  Their procedure learns a probabilistic 
model based on the classes of related entities, and 
therefore can capture more complex relationships than 
simply homophily.   

There are several ways in which the current model is 
limited.  We only consider a single link type.  This does 
not restrict the model’s applicability, because (as we did in 
our case study) the type of links can simply be ignored.  
However, it may obscure information that is important for 
classification.  The model as presented could be extended 
to handle multiple link types simply by creating multiple 
vectors (one per link type) and concatenating them.  
Alternatively, different models could be produced for 
different link types, and selected among or applied as an 
ensemble.  Whether or not these would be effective 
techniques is a subject for future study.   

We also only consider a single entity type.  This is a 
more fundamental limitation of the model, and we have not 
considered carefully how to extend it.  One obvious way to 
apply the model to data with multiple types of entities is to 
focus on one entity type, and consider paths between these 
entities (perhaps going through other entities) to be the 
links. 

The direct RVS scores (as presented) abstract away 
most of the graph structure, only considering adjacency.  
This is the source of the model’s elegant simplicity, but it 
also limits the types of problems on which it will be 
effective.  It could be extended by defining links in the 
model to be paths of length greater than one.  These could 
be treated similarly to multiple link types, as discussed 
above.  

We have assumed that more data will (partially) resolve 
the issue with many zero scores (described in Section 
4.1).  We have little support for this assumption, but it 
seems reasonable.  We have procured another data set to 
test with; however, we have not yet completed the data 
preprocessing necessary to make the two data sets 
comparable.  

Finally, we have looked at different sector and industry 
classifications (SIC codes and Hoover’s classification) 
with qualitatively similar results, but have not studied them 

comprehensively.  We would like to show that the RVS 
model with newswire-extracted links can model various, 
different classifications that have little similarity to each 
other (the aforementioned surprisingly do not) but are 
nevertheless meaningful. 

7. CONCLUSIONS 
The relational vector-space model is a useful abstract 
representation for studying relational classification.   With 
simple choices for its components (entity vector, class 
vector, normalization function) it represents intuitive 
notions of classification by relational autocorrelation.   
With more complicated choices, it can represent more 
complex classification models on linked data (still 
abstracting away much of the graph structure). 

In our case study of company affiliation classification, 
relatively simple scoring functions performed remarkably 
well, illustrating the potential utility of the RVS model.  
However, the RVS scores may be most useful as feature 
constructors in other, more complicated systems.  
Relational learners can include these scores as (additional) 
aggregation functions.  Standard feature-vector learners 
can use the RVS scores to take into account an important 
part of relational structure. 

The case study also illustrated the advantage of the 
structure that the RVS model places on the space of 
scoring functions, allowing them to be explored 
systematically.  Although the improvement for this domain 
was not dramatic, the results of combining the different 
scores do suggest that combined RVS scoring models may 
be advantageous in certain domains. 
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Figure 9.  Average class-specific swend scores by class, as visualization of class interlinkage in graph 


