
Advance Demand Information and Safety Capacity as a Hedge

Against Demand and Capacity Uncertainty

Xinxin Hu Izak Duenyas Roman Kapuscinski

University of Michigan Business School

May 8, 2004

Abstract

To control a production-inventory system, a manager has to consider the variability
in demand as well as variability in her production process. Both types of variability
corrupt system performance and by alleviating either of them, the manager can improve
the performance of the system. There has been a recent trend towards investing in better
information systems to provide better advance demand information. Also, many firms
have focused on having safety capacity (e.g., outsourcing or overtime) that they can
rely on as needed to protect themselves against uncertainty in demand and production.

In this paper, we first address the tactical decision of how a firm decides on production-
inventory-safety capacity levels when faced with production and demand uncertainty.
We use a multi-period production-inventory model with backordering to fully character-
ize the structure of optimal policies. We explore the sensitivity of optimal policies and
costs to parameters such as demand and production variability, service level, and utiliza-
tion. We also analytically show that uncertainty in capacity may result in nonintuitive
behavior, such as more variable capacity resulting in less inventory.

Using derived policy structure, through a computational study, we address the
strategic decision of investing in better information or creating sources of safety ca-
pacity. Our study shows that reductions in costs are significant, with averages up to
30% for advance demand information, and up to 85% for outsourcing. Furthermore,
conditions that make demand information more valuable tend to make safety capacity
less valuable and vice versa and we identify when either will be more valuable. We also
show that the benefits from both can exceed the sum of the benefits from either safety
capacity or better information.



1 Introduction and Overview

1.1 Introduction

When manufacturers make production decisions, they need to consider the uncertainty in
both demand and production capacity. Usually, safety inventory is used to protect firms
against both sources of uncertainty. However, using inventory alone as a hedge against
demand and capacity uncertainty can be expensive, especially when holding costs are high.

With the development of better information technology, manufacturers can collect and
transmit more precise advance information on future demand. Electronic data interchange
and Internet-based software effectively link customers’ and manufacturers’ computers di-
rectly and offer a medium to convey orders instantaneously, providing manufacturers with
advance demand signals. Collaborative planning, forecasting and replenishment (CPFR),
is becoming more common, especially in retailing and it enables supply chain partners
throughout the whole chain to receive better information on demand. Retailers and manu-
facturers can also use price incentives to induce customers to place orders for future delivery,
thus obtaining the advance demand information.

Information systems that enable manufacturers to obtain better advance demand in-
formation can require significant investment, yet only address one source of uncertainty.
Manufacturers not only face demand uncertainty but also capacity uncertainty. This is
because, in any plant, machines can go down; raw material deliveries may not be on time,
or quality problems can reduce the effective capacity (for a general discussion of effective
capacity and how it is influenced by variability in manufacturing systems, see Chapters 8-10
of Hopp and Spearman [21]). Thus, even if a manufacturer had perfect demand information,
she still has to deal with uncertainties in production.

Manufacturers can deal with uncertainties in production by once again relying on inven-
tory as a protection or by having extra sources of more expensive capacity (e.g., overtime,
or a more reliable supplier from which some demand can be outsourced). Having such a
source of safety capacity can also benefit manufacturers as it can protect against a demand
surge or a line that is down causing a lot of backlogged orders. In fact, any variability in a
production system is always buffered either with excess capacity or safety inventory or by
making customers wait if neither of the first two buffering mechanisms are feasible (see p.
295 of Hopp and Spearman [21])).

In this paper, we focus on the safety capacity that is more expensive than regular
capacity, which is often relied on by the manufacturers. As an example, we recently worked
with a manufacturer of diesel engines, a supplier to Chrysler and many other commercial
truck manufacturers. We found that the weekly production capacity of this firm’s castings
plant was highly random, due to downtime and low, variable quality. One of the options
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the company was considering was using a castings supplier as an emergency source. Since
the engine plant uses a fairly standard number of castings; the contract with the emergency
supplier would require delivery within a very short time. The emergency supplier was much
more expensive, but in return could provide short deliveries and 6-sigma levels of quality.
Thus, the firm was creating a form of more expensive “safety” (or “reactive”) capacity.

A manufacturer that has decided to have a form of safety capacity still has the following
problem to address: Given some level of advance demand information, how much should
I produce this period in my regular plant and how much of the more expensive safety
capacity will I need? In this context, a manufacturer also needs to decide how valuable
advance demand information is, how much she should invest in trying to obtain it, and
how valuable a source of safety capacity (such as outsourcing) is. We aim to answer these
questions and also to understand how firms should prioritize whether it is more important to
invest in advance demand information (e.g., work on implementing an information system
whereby customers can provide demand forecasts) or work on creating more safety capacity
for the firm (e.g., sign a contract with a local expensive subcontractor who, at a higher
price, can deliver desired quantities on a short notice).

In this paper, we first analyze the structure of optimal production and safety capacity
usage decisions made by a manufacturer facing uncertain demand and capacity who has
some advance demand information. We show that the optimal decision can be characterized
by a double-threshold policy. Having addressed the tactical decision of how to operate
given the firm has advance demand information and the option to use safety capacity
enables us to address the more strategic question of the conditions that make either of
these more beneficial for a firm. That is; should a manager spend a lot of effort building
better information systems or should she partner with some other contract manufacturers
who can serve as a source of safety capacity? We show that the utilization of the regular
capacity of the firm, the level of capacity and demand variability, and the service level that
the firms provide all influence the value of safety capacity versus better information. Two
of our findings are that 1) in general, conditions that make better demand information
more valuable make the option to outsource less valuable (and vice versa) and we identify
these conditions, 2) the combined effect of both options can be greater than the sum of the
individual effects. We are thus able to provide managers with some guidance on how to
think about their need for more safety capacity or better information (or both) as a hedge
against uncertainty.

In the rest of this section, we review literature relevant to our problem. In Section 2,
we develop a model that allows us to find the optimal policies in systems with outsourcing
(in the remainder of the paper, we use “outsourcing” as an example of any safety capacity
that is more expensive than regular capacity) and demand information for any fixed length
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of forecasting horizon. We show that the optimal policy is a double-threshold policy, where
the manufacturer first outsources up to a certain level and then produces up to a higher
level. We extend our discussion in Section 3 to explore how the optimal policy is affected
by capacity variability. We show that although decreasing capacity variability always leads
to lower costs, it can lead the outsourcing and production thresholds (inventory levels) to
rise. In Section 4, using a comprehensive empirical study, we explore the effects of the
system parameters (service level, demand and capacity variability, utilization, etc.) on the
individual and joint benefits of information and outsourcing. The paper concludes in Section
5.

1.2 Literature Review

There is a tremendous literature on inventory and production management under demand
uncertainty (see Chen [8], Porteus [31], and Zipkin [40] for comprehensive references). Al-
though most of the literature assumes a general stochastic demand distribution, it does not
assume variability in capacity or advance demand knowledge. We first review the work on
capacity uncertainty which has received limited attention and then review the literature on
advance demand information.

Production uncertainty has been modeled in two different ways. One approach has
been heavily influenced by yield issues in electronics manufacturing and uses the concept
of stochastically proportional yield or random yield, as defined in Henig and Gerchak [20].
The other approach regards the capacity in a given time interval as a random variable.

Random-yield models assume that a random fraction of a quantity ordered (or attempted
to produce) is actually good (Henig and Gerchak). This is an appropriate model when the
uncertainty is due to uncertain quality of individual items produced in a batch. Lee and
Yano [26] consider a multi-echelon system with yield losses. Lee [25] and Gerchak, Wang,
and Yano [15] consider the case when components are assembled and the suppliers have
uncertain yields. Yano [38] allows for random lead times. Grosfeld-Nir, Gerchak, and He
[16] take inspection of the possibly defective units into account. None of these papers has
any advance demand information nor considers safety capacity. Yano and Lee [39] is an
excellent review of random yield literature in the context of lot sizing.

Ciarallo et al [5] and Duenyas et al [10] follow the second approach (random capacity
model) which is to assume that the number that can be produced in any given time interval
is uncertain (but with known distribution). This is appropriate when modeling the effects
of variability in processing times, machine downtime, etc. Ciarallo at al considers a simple
stylized model and shows that the production policy is base-stock level. Duenyas et al
consider a similar model, but allow for adding an alternative source of capacity but do not
fully characterize the optimal policy. Also, in both of these papers, the firm does not have
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any advance demand information, and in Ciarallo, a form of safety capacity does not exist
as well.

There have been some papers that explicitly model advance demand information. In
most of these papers, advance demand information is usually modeled as a form of forecast
updates, shared by parties in the supply chain. Hariharan and Zipkin [18] analyze a multi-
echelon model with demand lead time and supply lead time. Their demand lead time
essentially corresponds to advance demand information. They refine basic inventory models,
propose several control policies, and show that these policies are slight variants of the policies
for conventional systems. In the case of constant lead times, they show that a base-stock
policy is optimal in many systems. The base-stock policies continue to be optimal in more
general situations when the supply lead time is sequential stochastic and the demand lead
time remains constant. However, the authors do not consider variability in production
capacity, and they do not allow for errors in demand information (i.e., they assume perfect
information).

Schwarz, Petruzzi, and Wee [33] consider one-stage system where customers place orders
in advance (similar to Harriharan and Zipkin [18]), but customers may cancel some of them.
Marklund [28] describes a different generalization of Hariharan and Zipkin [18] to the case of
a distribution network and derives the total cost function for some special cases. Cachon and
Fisher [4] model one supplier providing goods to multiple retailers. In their case advance
demand information allows them to allocate orders better and through simulation they
estimate the corresponding benefits. Chen [6] considers a serial multi-echelon system for
one producer. He explores the value of POS (Point of Sale) data in the context of centralized
and decentralized control. The information is limited to knowing about the orders in the
lower stages of the supply chain. Both [6] and [4] find limited benefits from knowing POS
data in their setting. (Note that our setting is different because we are considering a
single echelon but with more extensive advance demand information as well as capacity
uncertainty). Gallego and Özer [12] consider a periodic-review multi-stage system with one
product and many classes of customers, each class providing a different level of advance
demand information, and show optimality of a base-stock-like policy. In somewhat different
settings, one stage and fixed ordering cost, Gallego and Özer [13] show optimality of (s, S)
policies.

Gavirneni, Kapuscinski, and Tayur [14] consider a model where a manufacturer has
limited but certain capacity and uses POS data for production decisions. The retailer
places an order based on her (s, S) policy, which translates into uncertainty about timing of
the orders and the quantity. The authors compare the benefits of sharing some information
and all information (in every period) and show that in both cases the benefits of information
decrease as capacity becomes tighter. Lee et al [24] consider very similar settings, except
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they assume no capacity constraint and allow for correlated demand across periods. They
argue that the benefits of information increase when demand is positively correlated across
time. Huang and Iravani [22] consider a capacitated supplier delivering goods to two retailers
and examine under what conditions the benefits of POS data from one of two retailers are
largest. Simchi-Levi and Zhao [35] analyze a setting similar to [14], but the retailer is
constrained to ordering at fixed intervals of time and the authors divide this interval into
shorter information sharing subintervals. Özer and Wei [29] study a similar model to [13],
except they include the effect of limited capacity. Through a numerical study they evaluate
the benefits of advance demand information as a function of capacity and other parameters.
In all of these papers capacity is certain, and except for Gavirneni et al., the papers do not
allow for a source of safety capacity. Consequently, none of these papers address the question
when safety capacity versus advance demand information is more likely to be beneficial, the
main focus of this paper.

Some of the literature is indirectly related to our questions. Even though some form
of advance information is considered, it does not play a central role. Aviv and Feder-
gruen [3] concentrate on a distribution network, where forecast is updated periodically
using a Bayesian approach and allocation decisions are based on it. Chen [7] assumes
multi-echelon setting, and models advance order information using an approach similar to
that of Gallego and Özer [13]. However, the focus is on pricing – customers have different
costs of waiting and prices are used to reveal their sensitivities to delay. He shows that
production policy remains base stock.

In our paper, we use the Martingale Model of Forecast Evolution (MMFE) to study the
value of advance demand information as compared to outsourcing. MMFE was originally
developed by Heath and Jackson [19]. They assume additive forecast updates, which follow
a iid Normal distribution, independent of the past information. We consider a slight gen-
eralization of their model. We do not assume Normal distributions and allow the forecast
update to be any function of the last forecast. Gullu [17] considers a special case of Heath
and Jackson [19]: for a single product with at most two forecast updates. Similarly, the
forecasting model of Sethi et al [34] is also for single product and allows two updates. Their
model allows, however, the demand to be a joint function of both updates. Toktay and Wein
[37] propose an approximation of a production/inventory model that allows for advance de-
mand information, and they apply Heath and Jackson’s model [19] for a single product with
iid (Normal) updates. The updating framework of Aviv [1] is described in terms of Kalman
filter. The underlying assumptions are similar to those of Heath and Jackson for a single
product and Normal distributions. Aviv allows the demand to depend in a linear fashion
on all previous forecasts. Allowing dependence on previous forecasts is more general than
our model, but linear dependence is more restrictive than our model. Once again, our use
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of MMFE is similar to most of these papers but our focus on the value of safety capacity
versus advance demand information is unique, since except for Toktay and Wein, none of
the above papers consider capacity uncertainty.

Toktay and Wein [37] is the only paper we are aware of that has elements of advance
demand information and capacity uncertainty. In order to determine the optimal policy,
capacity is assumed to be Normal and the model is approximated through rescaling the
difference between demand and capacity (without changing values of demand and capacity)
and translating it into a Brownian motion. The authors address the tactical problem of
deciding how much to make using only one source of capacity, e.g., regular capacity, and
develop an approximation for the optimal policy. Instead of using an approximation, we
are able to characterize the structure of the optimal production policy for a system that
has regular and safety capacity, (a feature Toktay and Wein do not consider) and use this
optimal policy to provide managerial insights for when more safety capacity versus more
advance demand information will be useful, a question they do not address. Furthermore,
our focus on the sensitivity of optimal policies to changes in demand and production variance
is also unique in the literature.

2 Model and Main Results

We consider a manufacturer satisfying stochastic customer demand and facing an uncertain
capacity in multi-period settings. Any unsatisfied demand is backlogged. The manufacturer
may receive advance demand information before making any decision, and she is allowed to
use outsourcing. Later, in the computational part, we also consider cases when outsourcing
is not available or prohibitively expensive.

We start by explaining how we model the advance demand information, the unreliable
capacity, and outsourcing option. After introducing the time sequence and the notation,
we present the formulation of the model with H-period advance demand information and
outsourcing option.

In our model, a firm has initial knowledge of the general distribution of demand in
every period, and may receive advance information for the demand within a certain forecast
horizon. Suppose the forecast horizon covers H periods, then in any period s, the firm has
demand forecasts for all the periods from s to s + H. The demand forecast evolution is
modeled by MMFE, and we now describe how the advance demand information is updated.

We use the following notation for the demand information that the firm has in an
arbitrary period s:

Ds,t = advance information (forecast) for demand in period t, s ≤ t ≤ s + H;

εs,t = Ds,t − Ds−1,t = forecast update received for the demand in period t;
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εs = (εs,s, εs,s+1, · · · , εs,s+H) = the information update vector collected for all
the periods within forecast horizon;

Ds+H,s+H = εs,s+H + εs+1,s+H + · · · + εs+H,s+H = the actual demand in period s + H;

Ds = (Ds−1,s, Ds−1,s+1, · · · , Ds−1,s+H−1) = advance information relevant for de-
cision making in period s.

In period s, the firm receives its first forecast on demand in period s + H; which is a
realization Ds,s+H generated from distribution Zs+H with pdf. qs+H and cdf. Qs+H . Thus,
until the actual forecast is generated, the firm has knowledge only of the distribution Zs+H

for that period. In every period after s, e.g., s + k, the firm receives forecast updates. We
assume that any forecast update εs+k,s+H (update received in period s+k for period s+H

demand forecast) is a function of Ds+k−1,s+H , the previous forecast for period s + H. We
thus have εs+k,s+H = Es+k,s+H(Ds+k−1,s+H), and Pr{εs+k,s+H < −Ds+k−1,s+H} = 0.

Because of variability in the manufacturing facility, the capacity is assumed to be ran-
dom. Note that in reality all plants have random capacities due to such factors as unexpected
outages, quality and yield problems etc., although the extent of randomness varies widely
across industries and companies. We denote the capacity in period s by Ys with cdf Fs and
pdf fs. Therefore, in period s, if the manufacturer aims to produce us units, the actual
realization of the production quantity is minimum of us and Ys, which we denote us ∧ Ys.

Since the manufacturer has unreliable capacity, outsourcing provides her with a reliable
source of additional capacity, although at a premium price. (We use the term outsourcing
to refer in general to any form of acquiring extra safety capacity such as obtaining extra
materials from other reliable sources, expediting, transporting from other locations, buying
at a spot market, running overtime to meet desired production levels etc.) As our focus is on
understanding when outsourcing and information are valuable as a function of the produc-
tion and demand uncertainty that the manufacturer faces, we do not model an unreliable
channel for outsourced goods. Clearly, if the manufacturer can only outsource production
to a very unreliable supplier, this would not make outsourcing a very valuable option. Note
that we assume that these outsourcing activities are more expensive than producing during
regular time. (If outsourcing is cheaper than regular time production e.g., a supplier has
economies of scale that the firm does not have, the firm may outsource all its production.
This is not the case we consider here and in fact recent work by Parmigani [30] shows that
even in those cases, firms may use a make and buy policy for strategic reasons.) Therefore,
whenever the firm is making production decisions in each period, it simultaneously has to
make a decision on how much to outsource that period.

We consider an N -period problem and the firm has H periods advance demand infor-
mation. In any period s, the sequence of events is as follows:
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1. At the beginning of period s, the manufacturer observes the starting in-
ventory position xs and advance demand information

Ds = (Ds−1,s, Ds−1,s+1, · · · , Ds−1,s+H−1),

which was updated in period s − 1.

2. The decisions on outsourcing quantity vs and production quantity us are
jointly (and simultaneously) made.

3. At the end of the period s, the actual production quantity us∧Ys is realized
and the outsourced units vs are received.

4. εs is realized, i.e., the actual demand is realized and the advance demand
information is updated to Ds+1.

Our aim is to set the optimal outsourcing quantity vs and target production quantity
us simultaneously. Instead of dealing with us and vs directly, we use xs = xs + vs and
x̄s = xs + vs + us as decision variables. Notice that x̄s is the targeted inventory position
after desired production quantity and outsourcing.

Denote the starting state of period s as Is = (xs,Ds). Then the state evolves according
to Is+1 = (xs+1,Ds+1):

xs+1 = xs + (x̄s − xs) ∧ Ys − [Ds−1,s + Es,s(Ds−1,s)],

Ds,t = Ds−1,t + Es,t(Ds−1,t), t = s, · · · , s + H − 1,

Ds,s+H = Zs+H .

i.e., besides the evolution of advance demand information, note that the inventory in the
next period is the sum of current period inventory plus the outsourced quantity (xs) plus
the amount of units actually produced (x̄s − xs)∧ Yk, during regular production minus the
realization of demand, Ds−1,s + Es,s(Ds−1,s).

We assume that the firm incurs holding and penalty costs. The holding and penalty cost
function is assumed to be a general non-negative convex function bs(·), with lim|·|→∞ bs(·) =
∞, charged according to the inventory position at the end of the period s. (E.g., bs(x) =
h ∗ x+ + p ∗ x−, would represent the typical linear holding and penalty costs.)

Our objective is to minimize the total production, outsourcing, holding, and penalty
costs. We assume that the firm incurs linear production and outsourcing costs. Due to
backlogging, without loss of generality, we can rescale production costs so that in-house
production has 0 cost, while outsourced production costs cs > 0 per unit in period s. For
instance, for s < N , if before rescaling, the production cost is cu

s , the outsourcing cost is
cv
s(= cu

s +cs), and the general non-negative convex function for the ending inventory position
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xs+1 is b̃s(xs+1), then after rescaling, we have the production cost as 0, the outsourcing cost
is cs, and bs(xs+1) = b̃s(xs+1) + (cu

s − αsc
u
s+1)xs+1 + cu

s [Ds−1,s + EEs,s(Ds−1,s)], where αs

is a (positive) discount rate for period s. If s = N , then the rescaled convex function is
bN (xN+1) = b̃N (xN+1) + cu

NxN+1 + cu
N [DN−1,N + EEN,N (DN−1,N )].

The expected one-period cost function can be expressed as Gs(Is, xs, x̄s):

Gs(Is, xs, x̄s) = −csxs + E[csxs + bs(xs+1)].

Vs(Is, xs, x̄s) is the expected discounted total cost for periods s through N , if the optimal
policy is used starting with period s + 1, and quantities xs and x̄s are chosen in period s.
(Recall that Is = (xs,Ds).) Thus, we have the (MDPH) problem as follows:

Js(Is) = min
x̄s≥xs≥xs

Vs(Is, xs, x̄s) (MDPH)

= min
x̄s≥xs≥xs

Gs(Is, xs, x̄s) + αsEJs+1(Is+1),

and JN+1 ≡ 0.
We base our analysis on the first-order optimality conditions (KKT conditions). We can

express the KKT conditions for Vs(Is, xs, x̄s) as follows:

λH
s (xs, x̄s) :=

∂

∂x̄s
Vs(Is, xs, x̄s)=

(
1−Fs(̄xs−xs)

)
ζH
s (x̄s) ≥ 0 (1)

µH
s (xs, x̄s) :=

∂

∂xs

Vs(Is, xs, x̄s)=cs+λH
s (xs, x̄s)+

∫ x̄s−xs

0
ζH
s (xs + y)fs(y)dy≥0 (2)

x̄s ≥ xs, (x̄s − xs) × λH
s (xs, x̄s) = 0 (3)

xs ≥ xs, (xs − xs) × µH
s (xs, x̄s) = 0, (4)

with

ζH
s (x̄s):=E[b′s(x̄s−Ds−1,s−Es,s(Ds−1,s))+αs(Js+1)′1(x̄s−Ds−1,s−Es,s(Ds−1,s),Ds+1)], (5)

and we suppress the dependence of λH
s and µH

s on Is. The direction of inequalities (1) and
(2) follows from constraints on x̄s and xs. Note that Vs(xs, xs, x̄s) is not jointly convex in
(xs, x̄s), implying that KKT conditions are necessary but not sufficient. We show that the
optimal cost-to-go function Js(Is) is, nevertheless, convex in xs.

We next characterize the policy that is shown later to be optimal for a firm which has
access to safety capacity (outsourcing option) and advance demand information:

Definition 1 We define a double-threshold policy with outsourcing threshold of X 0 and
production threshold of X 1, as follows:

• Produce nothing and outsource nothing, if x ≥ X 1;
• Produce X 1 − x and outsource nothing, if X 1 > x ≥ X 0;
• Produce X 1 −X 0 and outsource X 0 − x, if X 0 > x.
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Note that production and outsourcing decisions are actually made simultaneously in the
beginning of the period.

In our current setting, given Ds, we use (5) to define X 0
s (Ds) and X 1

s (Ds) as follows:1

X 1
s (Ds) :=

sup{x̄s| ζH
s (x̄s) < 0} + inf{x̄s| ζH

s (x̄s) > 0}
2

, (6)

X 0
s (Ds) :=

sup{xs| ηH
s (xs) ≤ −cs} + inf{xs| ηH

s (xs) ≥ −cs}
2

, (7)

where ηH
s (xs) :=

∫ X 1
s (Ds)−xs

0
ζH
s (xs + y)fs(y)dy. Intuitively, X 1

s (Ds) is the point at which ζs(x̄s)

crosses 0. If ζs(x̄s) is non-continuous when it crosses 0 (corresponding to the case when
Vs has multiple subgradients), we are free to choose either one of them and, therefore,
we assume ζs(X 1

s (Ds)) = 0. Similar logic also applies to X 0
s (Ds) and ηs(xs) such that

ηs(X 0
s (Ds)) = −cs. In the following Theorem refthm:twoinfor, we express the optimal

policy in terms of X 0
s (Ds) and X 1

s (Ds).

Theorem 1 The optimal value function for problem (MDPH), Js(xs,Ds), is non-negative
convex in xs, and the optimal policy is a state-dependent double-threshold policy, with out-
sourcing and production thresholds X 0

s (Ds) and X 1
s (Ds).

Proof: We prove the theorem by induction, i.e., for each period s, we show the following
two facts:

1. The optimal structure: (a) X 0
s (Ds) ≤ X 1

s (Ds), and (b) the optimal decision variables
are x∗

s = X 0
s (Ds) ∨ xs and x̄∗

s = X 1
s (Ds) ∨ xs.

2. The inductional hypotheses for period s:

As. Js(Is) is non-negative convex in xs.

Clearly, JN+1 ≡ 0 satisfies AN+1. Suppose for period s + 1, As+1 holds. We show below
that both points 1 and 2 hold for period s. We write X 0

k and X 1
k for X 0

k (Ds) and X 1
k (Ds).

1. The optimal structure

First note that, based on (6) and (7), X 0
s and X 1

s are well defined.

(a) X 0
s ≤ X 1

s .

X 1
s is defined in (6) by function ζs(x̄s), which has the following properties:

• ζs(x̄s) is non-decreasing in x̄s(from convexity of bs and As+1);

• lim
x̄s→−∞ ζs(x̄s) < 0 and lim

x̄s→∞ ζs(x̄s) > 0 (from lim|x|→∞ bs(x) = ∞ and As+1).

1Assume inf R = −∞, sup R = ∞, inf ∅ = ∞, and sup ∅ = −∞.
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The above, combined with the definition of X 1
s , (6), give us:

• −∞ < X 1
s < ∞ and ζs(X 1

s ) = 0. (8)

On the other hand, X 0
s is defined in (7) by the function ηs(xs) =

∫ X 1
s −xs

0
ζs(xs + y)fs(y)dy.

Clearly, ηs(X 1
s ) = 0, and due to monotonicity of ζs and (8), ηs(xs) is non-decreasing in xs.

Combined with the definition of X 0
s , (7), we know that if limxs→−∞ ηs(xs) ≥ −cs, X 0

s = −∞.
If X 0

s = −∞, then clearly X 0
s < X 1

s ; otherwise, from the definitions of X 0
s and X 1

s , since
ηs(X 0

s ) = −cs, ηs(X 1
s ) = 0, and ηs is non-decreasing (but not necessarily continuous), we

have X 0
s ≤ X 1

s .

(b) x∗
s = X 0

s ∨ xs and x̄∗
s = X 1

s ∨ xs.

It is easy to verify that (x∗
s, x̄

∗
s) defined above satisfy KKT conditions (1-4). It suffices,

therefore, to prove that for any other (x′
s, x̄

′
s) �= (x∗

s, x̄
∗
s), also satisfying (1-4), we have

Vs(Is, x
′
s, x̄

′
s) ≥ Vs(Is, x

∗
s, x̄

∗
s).

First, consider the difference only in x̄′
s. We show that Vs(Is, x

′
s, x̄

′
s) ≥ Vs(Is, x

′
s, x̄

∗
s).

• If x̄′
s > x̄∗

s(≥ X 1
s ). From the monotonicity of ζs(x̄s) and (8), we know that, for all

x̄s > x̄∗
s ≥ X 1

s , the first derivative of Vs with respect to x̄s,
(
1−Fs(̄xs − x′

s)
)
ζs(x̄s) ≥ 0,

which implies Vs(Is, x
′
s, x̄

′
s) ≥ Vs(Is, x

′
s, x̄

∗
s).

• If x̄′
s < x̄∗

s, then, from definition of x̄∗
s, xs ≤ x̄′

s < X 1
s , which, combined with (8) and

monotonicity of ζs(x̄s), implies ζs(x̄′
s) ≤ ζs(X 1

s ) = 0. If ζs(x̄′
s) = 0, then 0 ≤ ζs(x̄s) ≤

ζs(X 1
s ) ≤ 0 for all x̄s ∈ [x̄′

s,X 1
s ). If, on the other hand, ζs(x̄′

s) < 0, the fact that
(x′

s, x̄
′
s) satisfies (1), implies 1 = Fs(x̄′

s − x′
s) ≤ Fs(x̄s − x′

s) ≤ 1. Therefore, for both
cases,

(
1−Fs(̄xs − x′

s)
)
ζs(x̄s) = 0 for all x̄s ∈ [x̄′

s,X 1
s ), i.e., Vs(Is, x

′
s, x̄

′
s) = Vs(Is, x

′
s, x̄

∗
s).

Second, consider the difference in xs. We show that Vs(Is, x
′
s, x̄

∗
s) ≥ Vs(Is, x

∗
s, x̄

∗
s).

• From (2) and the monotonicity of ηs, µs(xs, x̄s) is non-decreasing in xs. which implies
that Vs(Is, xs, x̄

∗
s) is convex in xs for given x̄∗

s. Hence, Vs(Is, xs, x̄
∗
s) is minimized at

x∗
s, since (2) and (4) are satisfied.

This completes the proof of 1.

2. The inductional hypothesis

We prove the results by considering the following three cases for xs: xs ≤ X 0
s , X 0

s < xs ≤ X 1
s ,

and X 1
s < xs. Here, we only present the detailed proof for X 0

s < xs ≤ X 1
s (since the other

cases use exactly the same logic).
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If X 0
s < xs ≤ X 1

s , then x∗
s = xs and x̄∗

s = X 1
s , so

Js(xs,Ds) = E
[
bs(xs + (X 1

s − xs) ∧ Ys − Ds−1,s − Es,s(Ds−1,s))

+αsJs+1(xs + (X 1
s − xs) ∧ Ys − Ds−1,s − Es,s(Ds−1,s),Ds+1)

]
.

Denote y as a realization of Ys, then (Js)′1(xs,Ds) =
∫ X 1

s−xs

0
ζs(xs + y)fs(y)dy. Using definition

of ζs and (8), (Js)
′′
11(xs,Ds) =

∫ X 1
s−xs

0
ζ ′s(xs + y)fs(y)dy ≥ 0, where inequality follows from

monotonicity of ζs. This proves As.

For the other two cases, notice that if xs ≤ X 0
s , then x∗

s = X 0
s and x̄∗

s = X 1
s ; if X 1

s < xs,
then x∗

s = x̄∗
s = xs.

The double-threshold structure of the optimal policy is intuitively driven by the existence of
outsourcing option, which serves as a protection for the manufacturer against her capacity
unreliability.

Theorem 1 is a generalization of results of Ciarallo et al [5] by including the interde-
pendence among outsourcing, advance demand information, and capacity uncertainty (as
compared to only capacity uncertainty in [5]). The underlying problem identified by [5],
non-convexity of cost functions, obviously continues to exist in our setting. We model a
larger scope of decisions here (production and outsourcing) in the existence of advance
demand information (not modeled in [5]) and we do not impose any assumptions on the
continuity of demand or capacity distributions or linearity of cost function (all of them
implicitly or explicitly assumed in [5]).

We also note that our result differs from that of Gallego and Özer [13], where, with zero
set-up costs, they write that “information beyond the protection period does not affect the
order-up-to level when we assume stationary costs and demand distribution.” In [13], with
instantaneous replenishment, a decision-maker could ignore all advance demand information
except for the current period. In our model, even in stationary setting, we still need to take
all known information about demand into account and set production policy accordingly,
since we cannot produce the desired quantity we would like with certainty.

Thus, our analysis indicates how production variability makes it more difficult to plan
production levels and in turn causes a requirement of better information about future de-
mand. Hence, better demand information is not only needed when demand variability is a
problem but also when production variability is an issue.

2.1 Extension to Markov-Modulated Demand

We can extend our model and include dependencies between periods using a Markov-
modulated demand process. This captures situations where next periods’ demand dis-
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tributions are related to the current period’s demand if not to past periods’ demands.
Markov-modulated processes have been used in a number of papers (see, e.g., Song and
Zipkin [36] and an excellent list of references therein) and in multiple book chapters (see,
e.g., Kapuscinski and Tayur [23], p. 16).

We assume that the manufacturer has H-period advance demand information and can
divide the states of the world and the corresponding demand into classes such as, e.g., low,
medium, or high, with the associated demand distributions. Assume that the set of demand
classes, S, is finite, and pij , for i, j ∈ S, is the transition probability from i to j (given that
demand in the current period is in class i, the probability that in the following period, it
will be in class j). Consider a finite N -period problem. At the beginning of period s, the
manufacturer receives (i) the accurate indicators of the demand type is for period s and
js+1 for period s + 1, and (ii) not-necessarily-accurate information of the possible demand
realization Ds−1,s for period s, which has a random update, E is

s,s(Ds−1,s), with mean of 0,
as well as the information Ds−1,s+k for period s + k, k = 1, , H − 1, which is subject to a
random revision Ejs+1

s,s+k(Ds−1,s+k).
All the other assumptions about capacity, demand information, and cost coefficients

remain unchanged. We have the following:

Theorem 2 Consider a multi-period problem with H-period advance-demand information
and a pair of demand class and demand realization with Markov transitions between pairs of
states. The optimal policy is a state-dependent double-threshold policy, X 0

s (is, js+1,Ds) ≤
X 1

s (is, js+1,Ds). Furthermore, if the update for the demand in period s depends only on the
demand type is (but is independent of Ds−1,s), then both X 0

s − Ds−1,s and X 1
s − Ds−1,s are

independent of Ds−1,s.

Proof: We omit the proof due to space considerations.

2.2 The Properties of Double-Threshold Policy

We now concentrate on the properties and sensitivity to problem parameters of the double-
threshold policy, and optimal costs. Specifically, we describe: (1) the “consistency” of the
current-period production threshold, (2) the monotonicity of the thresholds with respect
to advance demand information, and (3) the effects of the outsourcing capacity on the
thresholds.

Our first result states that although the current-period production threshold depends
on future periods’ capacity distributions, it is independent of the current-period capacity
distribution. This result may appear to be surprising at first sight but to see why it is
correct, recall that the production threshold is where the firm would like its inventory level
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to be before facing demand, and therefore the target level remains the same regardless
of what the firm may or may not be able to achieve this period. Increased variability in
capacity for future periods, however, may require the firm to build more inventory now to
protect itself and therefore the current-period threshold will be affected by future periods’
capacity distributions.

Proposition 1 The optimal production threshold, X 1
s (Ds), is independent of the capacity

distribution and the availability (or unavailability) of outsourcing option in the current
period s. (Future-periods’ capacity distributions and the availability of outsourcing option
obviously influence the threshold.)

The following results establish the monotonicity of the double-thresholds with respect
to advance demand information. The MMFE model allows the manufacturer’s information
not to be completely accurate. Here, we also assume that a higher demand level, predicted
in advance, results in a stochastically higher demand in realization. We refer to advance
demand information that has this property as proper.

Definition 2 Advance demand information D is proper, if the coordinate of the induced
random variable D + ED is stochastically increasing in the corresponding coordinate of
D, where ED is D’s associated random error or revision. I.e., Ds−1,t + Es,t(Ds−1,t) is
stochastically increasing in Ds−1,t.

Based on the requirement that the advance demand information is proper (which we believe
is a very realistic and mild requirement), we show the following two properties of the optimal
double-threshold policy:

Proposition 2 If, for all periods s, the H-period advance demand information Ds is
proper, and Es are independent, then both X 0

s (Ds) and X 1
s (Ds) are non-decreasing func-

tions of Ds−1,t, t = s, s + 1, · · · , s + H − 1.

Proof: See Appendix A.

Basically, Proposition 2 establishes a sufficient condition for thresholds to increase when
forecasts indicate higher demand. Without the “properness” defined in Definition 2, such
monotonicity cannot be guaranteed.

As already mentioned, outsourcing gives the manufacturer a protection against unreli-
able production capacity. It is obvious that the availability (or unavailability) of outsourcing
should not change the structure of the optimal production policy. Below we show formally
that a bound on outsourcing does not change the structure of the policy, but affects both
the production and outsourcing thresholds in a monotonic way.
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Proposition 3 Assume that in any given period s, outsourcing is limited to at most v̄ units.
The optimal policy is a capacity-constrained double-threshold policy, where the outsourcing

quantity is limited by V, i.e., in any period s, v∗s = v̄ ∧
(
X 0

s (v̄) − xs

)+
, and the production

threshold is X 1
s (v̄). Furthermore, X 0

s (v̄) and X 1
s (v̄) are non-increasing in v̄.

Proof: The proof is based on ordering of derivatives and is omitted due to space consider-
ations.

Proposition 3 shows how outsourcing capacity can affect the production quantities. Clearly,
the production capacity and its uncertainty can also significantly affect the thresholds and
we explore that relationship in Section 3.

3 Sensitivity of Policy to Capacity Parameters

In Section 2, we characterized the optimal policy structure, which is a double-threshold
policy. Here we examine how outsourcing and production thresholds change when capacity is
changed. We note that previous literature has not addressed the issue of capacity limitation
and its variability. Therefore, it is silent on whether higher or less variable capacity results
in less inventory. Simple intuition would predict that, as capacity variability decreases, the
firm needs to hold less inventory for future periods and, therefore, both the outsourcing and
production thresholds go down. As we analytically show below, this is not always the case.

To describe the changes in randomness of capacity, we compare two facilities, A and B,
that differ in mean or variability of capacity, one at a time, by using stochastically larger
and stochastically more variable capacity.

3.1 Stochastically Larger Capacity

Capacity of production facility A is stochastically larger than of facility B, if the cor-
responding capacity random variables Y A ≥st Y B, i.e., for any increasing function Ḡ,
E[Ḡ(Y A)] ≥ E[Ḡ(Y B)]. Notice that, if the manufacturer’s desired production quan-
tity is u units, then he is more likely to fulfill his production plan in facility A, i.e.,
1 − FA(u) ≥ 1 − FB(u). Notice also that, stochastically larger capacity often leads to
a lower utilization under the same demand. Therefore, it is intuitive that facility A, com-
pared with facility B, has lower costs and lower inventory levels.

Consider an N -period problem. In any period s, with starting state Is = (xs,Ds), the
optimal cost for system i (i =A, B) is denoted by J i

s(Is), and the corresponding outsourcing
and production thresholds are X 0i

s (Ds) and X 1i
s (Ds), respectively. We have the following

proposition:
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Proposition 4 If facility A has stochastically larger capacity than facility B, then

JA
s (Is) ≤ JB

s (Is), X 0A
s (Ds) ≤ X 0B

s (Ds), and X 1A
s (Ds) ≤ X 1B

s (Ds).

Proof: See Appendix B.

Proposition 4 verifies our intuition that stochastically larger capacity results in lower
costs and lower thresholds (and the associated lower inventory levels). However, as the
next subsection demonstrates, the same intuition does not automatically carry over to
stochastically less variable capacity.

3.2 Stochastically More Variable Capacity

A production facility A is stochastically more variable than facility B, if the correspond-
ing capacity random variables Y A ≥v Y B, i.e., for any convex function Ḡ, E[Ḡ(Y A)] ≥
E[Ḡ(Y B)]. When, compared with facility B, facility A has more variable capacity, we
conjecture that the manufacturer gains from upgrading facility A to B.

We first show that higher variability in capacity always results in higher expected costs.
However, there is no immediate ordering of the thresholds; this requires additional condi-
tions, as we show in Propositions 6 and 7.

Proposition 5 If facility A is stochastically more variable than facility B, then JA
s (Is) ≥

JB
s (Is).

Proof: See Appendix C.

Consider now the ordering of thresholds. We show that the interactions between capacity
variability, the thresholds, and other parameters are somewhat more complex and depend
on the distribution of demand. Since we are showing that these thresholds depend on how
demand is distributed, here we focus on the case with no advance demand information
(otherwise, the results would also depend on the distribution of forecast updates).

We first define three types of demand distribution: decreasing demand, increasing de-
mand, and short-tailed concave demand.

Definition 3 We call a demand Zs, with pdf qs and cdf Qs

(a) decreasing demand if qs(z) is decreasing in z,
(b) increasing demand if qs(z) is increasing in z,
(c) short-tailed unimodal demand if qs(z) is unimodal in z, and Qs(arg max qs(z))> 1

2 .

For instance, geometrically distributed demand is a decreasing demand. All unimodal
distributions (e.g., gamma, normal, or log-normal) truncated below their maximum will
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result in increasing demand distributions. The most straightforward short-tailed unimodal
demand distributions are triangle distributions with “steeper” right-hand-side slope. The
following propositions show the dependence of thresholds on type of the distribution:

Proposition 6 Consider a manufacturer who incurs linear holding cost h and penalty cost
p, and faces a decreasing demand. With stochastically more variable capacity, the thresholds
are increased.

Proof: See Appendix D.

In the case when the manufacturer faces either an increasing or a short-tailed concave
demand, there are no definite trends in the thresholds. The following single-period scenario
is a case where the ordering of outsourcing thresholds depends on manufacturer’s cost
structure.

Definition 4 Let F i, for i = A,B, be the cdf of the corresponding underlying random
variable Y i. If

• ∀ y ≥ a, 1 − FA(y) = 1 − FB(y),

• ∀ 0 ≤ y < a,
∫ ∞

y
(1 − FA(x))dx ≥

∫ ∞

y
(1 − FB(x))dx.

then we define Facility A to be lower more variable than facility B.

Proposition 7 Consider a one-period problem, where the manufacturer faces an increas-
ing demand or a short-tailed unimodal demand. Let the holding cost be h, the penalty cost for

each backordered unit be p, and the service level p/(p+h) satisfy
1
2

<
p

p + h
<Q(arg max q(z)).

Consider two facilities A and B, which have the same mean capacity, with facility A lower
more variable than facility B. Then there exists c0 > 0, such that for outsourcing costs,
c ≥ c0, the outsourcing thresholds are ordered according to X 0A ≤ X 0B, while the produc-
tion thresholds equal X 1A = X 1B = Q−1(p/p + h).

Proof: See Appendix E.

Proposition 7 demonstrates, how a reduction in inventory thresholds can occur with
more variable capacity. It implies that a more variable capacity does not necessarily result
in a higher outsourcing quantity. The equality of the two production thresholds is due to
the fact that we are only considering a one-period problem. In a two-period problem, we can
show that the production threshold in the first period is not necessarily higher for facility
A than for facility B. Therefore, we conclude that firms should expect cost reductions from
their variability reduction efforts, but although overall costs may decrease, inventory levels
and the associated inventory costs may in some cases increase.
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4 Computational Results

In the previous sections, we characterized both the structure and the properties of optimal
production and outsourcing policies in the presence of advance demand information. Firms
use advance demand information and the outsourcing option as mechanisms for reducing
uncertainty. This, therefore, raises the question of under what conditions either approach is
effective. In this section, through a computational study, we focus on how the environment
in which the firm operates influences the benefits gained by using either approach. Specifi-
cally, we look at capacity variability, demand variability, utilization, and service level. In all
cases we follow exactly the same sequence of events, i.e., demand is realized after production
and outsourcing decisions are made and after capacity realization. Our benchmark is a case
where neither advance demand information nor outsourcing option is available.

For the purpose of the study, advance demand information consists of one-period accu-
rate advance demand information, i.e., the advance information has no error. (In the study
we use the fact that the no-error case may be interpreted as knowing demand before the
production and outsourcing decisions are taken.) After calculating the costs for our bench-
mark case, we estimate the value of the accurate advance demand information in absence
of the outsourcing option and compare it to the benchmark. Then, we estimate the value
of outsourcing by considering a symmetric situation: the outsourcing option is allowed but
there is no advance demand information available. Finally, we estimate the value of the
joint use of the accurate current-period demand information and the outsourcing option.

We solve the dynamic programming formulation (MDP) with backward induction using
value iteration to obtain the results. In each example, we solve a 20-period horizon problem
with initial inventory of 0 (we verified that extending the time horizon does not change any
of the conclusions). The benefits are measured as a relative value

cost(Benchmark) − cost(Considered Approach)
cost(Benchmark)

.

To cover a broad range of each of the parameters, we consider five values for each of
them, ranging from very small through intermediate to very large. Both the capacity and
the demand are assumed to be integer random variables starting from 0, with non-negative
mass for each value in the range of the random variable. The shape is assumed to be
triangular (we use inversed triangle to achieve hige standard deviations). We keep the
mean demand fixed at 18, while the considered standard deviations are 1.8, 5.4, 10.8, 16.2,
or 21.6, resulting in the coefficients of variability of capacity equal to 0.1, 0.3, 0.6, 0.9,
and 1.2. (To generate the triangular distribution that has the desired mean and desired
coefficient of variability, in each case, we assign appropriate probability mass to each of the
values between 0 and 68). For each of the demand distributions, we adjust the capacity
distribution to achieve the desired target system utilizations and capacity variabilities. The
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target utilization ranges from 0.6, 0.8, 0.9, 1.0 to 1.2, while the capacity variability is
characterized by the same set of coefficients of variability as for the demand distribution.
(The capacity distribution is also triangular taking values between 0 and 114. The mean
is determined by the utilization and the mass values are determined to achieve the desired
mean and coefficient of variability). Service level is defined as penalty cost/(penalty cost +
holding cost). The values we use for service level are: 0.5, 0.8, 0.9, 0.95, and 0.99. We fix
the holding cost at 0.2 and change the penalty cost to achieve a specific service level. The
outsourcing cost is set at 0.2, 0.5, and 0.8 times the penalty cost.

For every combination of the considered parameters (i.e, capacity variability, demand
variability, utilization, and service level), and for each of the considered scenarios, we com-
pute the optimal costs, which results in a total of 7500 experiments in this computational
study. All the results below present averages across all of those parameters.

4.1 Benefits of Advance Demand Information

As one might expect, advance demand information always benefits the manufacturer. In
our setting, where service levels are 50% or higher, it manifests itself through decreased
order-up-to levels, or equivalently smaller safety stocks.

Increased capacity variability, utilization, and a higher service level all have similar
effects on the value of advance demand information – the value of information is decreasing
in any of them. Therefore, we consider them together. The effect of the demand variability,
however, is more complicated and, thus, is described separately. The benefits obviously
vary across ranges of parameters studied. We typically see the averages of benefits in the
range between 0% and 35%.

1. Effects of capacity variability, utilization, and service level.

Figure 1 illustrates the effects of capacity variability and of the service level. Each line
represents the average value of the information across the different demand variabilities
and utilizations. As capacity variability increases, the value of information decreases; as
the service level is increased, the value of information is also reduced. For lower service
levels, e.g., around 50%, the benefits span the range of 0-35%. However, as the service
level increases, the range of benefits shrinks. The two behavioral patterns for capacity
variability and service level can actually be explained using similar logic. Advance demand
information allows the firm to lower the (average) order-up-to levels, which results in cost
reductions. One-period demand information cannot, however, help with the increasing
pressure the manufacturer faces when any of the above two parameters, capacity variability
or service level, increases. (That is, even if the firm knows the demand for this period, it
will still keep a large safety stock as it is uncertain about the demands for future periods
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Figure 1: Effects of capacity variability and service level on the value of information.

or its ability to keep up with demand in the future given its capacity uncertainty and high
utilizations). Consequently, the order-up-to levels are driven up by either higher capacity
variability or service levels. At the same time, however, the absolute difference between
the threshold up-to levels for the cases with and without demand information is typically
bounded by mean demand for one period. Thus, as variability in capacity increases, order-
up-to levels increase both with and without advance demand information but the differences
of the order-up-to levels remain fairly constant, resulting in decreasing percentage benefits
from information. For instance, for the highest line in Figure 1, with a service level of
0.5, when both demand variability and utilization are set to 0.6, the differences in up-
to quantities remain between 18 or 25. When the service level is 0.9, as shown by the
third line, for the same demand variability and utilization as above, the difference between
the thresholds decreases from 30 down to 19 as capacity variability increases. The same
behavior can be observed for the service level – the differences in up-to levels (between the
no-information and information cases) are bounded and the information benefits become
smaller as service levels increase. Note that even though we compare the benefits of 1-
period demand information to no information (comparisons with the case with more periods’
information becomes time consuming), the same logic applies to any constant number of
periods worth of demand information.

Figure 2 illustrates the effect of utilization on the average value of information. Each
point in Figure 2 shows the value of information for the given level of demand variability
and utilization level (averaged over all 25 cases for capacity variability and service level).
As expected, lower utilization translates into higher relative information benefits. For low
utilizations, e.g., 60%, the relative costs reductions reach 30%, while for high utilizations
there are noticeably smaller (e.g., for 90% they go only up to 6.6%). The drivers of this
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behavior are exactly the same as for increasing capacity variability and service level above.
(Note our emphasis on “relative” benefits as in lower utilizations, costs are lower and there-
fore a high percentage savings of a low base cost can also be low in absolute terms). Note
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Figure 2: Effects of utilization and demand variability on the value of information.

that these results are similar in their spirit to the computational results in [14] and [37],
who also notice decreasing effect of information (although defined differently than here) as
a function of capacity.

2. Effects of demand variability.

Figure 2 also presents the effect of demand variability on value of information. The value of
information is increasing first and decreasing later, with the highest value achieved at some
intermediate value of demand variability. Its pseudo-concave shape, as shown in Figure 2
is maintained across all levels of capacity variability, service level, and utilization, with the
maximum obviously dependent on the combination of these three factors.

When the demand variability is low, such as 0.1, the system acts almost like a de-
terministic one and the information is marginally beneficial. On the other hand, when
the demand is highly uncertain, current-period demand information is valuable in absolute
terms. However, since demand information only reveals the demand for one period, as
demand uncertainty increases, the firm is once again forced to keep larger safety stocks.
Furthermore, the differences in the threshold levels between the case with and without in-
formation remain fairly constant. Thus, when demand variability is really high, the value
of demand information also decreases in “relative” terms. We note that our conclusions
would remain the same even if the firm obtained advance demand information for more
than one period as long as the demand information is for a limited number of periods (i.e.,
clearly, demand information would be very valuable in relative and absolute terms if it was
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available for all periods thus making demand deterministic).

4.2 Benefits of Outsourcing

Similar to the case where advance demand information is available, having an option to
outsource part of the demand can reduce the manufacturer’s costs by allowing for lower
inventory levels and, thus, decreased holding costs. In the study we observe a wide range of
benefits – relative cost reductions are usually between 20% and 85%. What is really inter-
esting is that, in general, the effects of the system parameters on the value of outsourcing
option have the opposite trends to that for the value of demand information. That is, the
conditions that tend to make outsourcing more valuable tend to make demand information
less valuable and vice versa. For instance, the higher the capacity variability, the utilization,
or the service level, the larger the relative gains from outsourcing but lower benefits from
advance demand information.
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Figure 3: Effects of capacity variability and service level on the value of outsourcing.

1. The effects of the capacity variability, the service level, and the utilization

In Figure 3, we present average percentage cost reduction as a function of service level and
capacity variability. (Each point in the graph represents an average percentage reduction
over all 75 cases of demand variability, utilization, and outsourcing cost). The figure clearly
shows that the benefits from outsourcing increase as the capacity becomes more variable –
a behavior one might expect. At the same time, the higher the service level the firm aims to
achieve, the higher the value of outsourcing. For high service level (99%) we see reductions
of 60% to 85%, while for lower service levels (50%) the reductions typically do not exceed
65%. The higher service levels do require dramatically increased safety stocks when no
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outsourcing is available, but in the presence of outsourcing (especially when outsourcing
costs are relatively small), this increase in the safety stocks is mild. Thus, the option that
the firm has to outsource when needed is becoming more valuable as the firm aims at
providing its customers a higher service level.

Figure 4 shows that the effects of utilization are similar – outsourcing is more beneficial
for higher utilizations. Intuitively, capacity variability, service level, and utilization, all
have similar effects on the value of outsourcing. Increasing any of them translates into a
higher pressure on capacity. The outsourcing option, however, can directly and significantly
decrease this pressure and therefore becomes valuable.
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Figure 4: Effects of utilization and demand variability on the value of outsourcing

2. The effects of the demand variability.

The effects of demand variability on the value of outsourcing are more complicated. For
high values of utilization, e.g., 1.2 and 1, the value of outsourcing tends to be decreasing
and for smaller values, e.g., 0.6, 0.8, and even 0.9, it tends to be increasing in demand
variability – see Figure 4. The initial part of the curve at a utilization level of 0.6 is,
however, decreasing. Also, it is possible to find some individual cases (as opposed to the
average behavior presented here), where some minor non-monotonicity takes place.

This phenomenum can be explained as follows: When the utilization level is very high,
it is very difficult to meet the demand, thus necessitating the system to carry a lot of in-
ventory (threshold levels are very high). Although outsourcing helps, as demand variability
increases, safety stocks increase even further and the relative decrease in cost due to out-
sourcing becomes smaller. That is, at high levels of utilization, the cost increases due to
increases in safety stocks is much more significant than any decrease that one could obtain
from outsourcing. On the other hand, in a low or moderate utilization environment where
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demand variability is low (as seen when utilization is 0.6), outsourcing does not have much
value. When demand variability becomes higher, more safety stocks will be carried again,
but also the outsourcing threshold increases. Therefore, as demand variability increases,
outsourcing becomes a more useful (and cost saving) option.

4.3 Joint Benefits of Information and Outsourcing

So far, we have only considered the benefits of value of information or outsourcing indi-
vidually. However, if the manufacturer has access to better demand information as well
outsourcing, the benefits from the combined use of better information and this source of
safety capacity can sometimes result in much larger savings than the sum of the savings
from using either resource. Also, whether outsourcing or better information will be most
useful individually depends on the particular environment that the firm operates in.

capacity variability=0.6,service level=0.8,utilization=0.6
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Figure 5: Joint value of information and outsourcing (By demand variability)

In Figure 5, we demonstrate the cost savings obtained by using outsourcing or demand
information individually and jointly. In this example, the rather interesting fact is that as
demand variability increases, the reduction of costs obtained by using both approaches at
the same time far exceeds the sum of the savings from using either approach. This has
a fairly simple explanation. In this environment, the system is pressured to keep higher
inventory levels with increased demand uncertainty. The advance demand information helps
in the current period (or in general, for a fixed number of periods), but does not change
the uncertainty in future periods. To protect against future stockouts, the manufacturer,
therefore, still needs to build a fairly high level of safety stock. With additional outsourcing
option (as long as outsourcing costs are fairly reasonable), however, the manufacturer can
cut down the safety stock significantly as it now has very good information on the current
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period, and therefore does not need to carry large inventories to meet current demand, and
because outsourcing is available, she does not need to carry large inventories for spikes in
the future either.

capacity variability=0.3,service level=0.8,demand variability=0.6
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Figure 6: Joint value of information and outsourcing (By utilization)

Figure 6 provides another example of how the combined benefits from both approaches
can exceed the sum of the benefits form each. The example illustrates the benefits obtained
from either (or both) approaches as a function of system utilization. The system under
consideration in Figure 6 has low capacity variability and moderate demand variability.
The main pressure it faces when the utilization is high is clearly due to the lack of capacity.
Therefore, in high utilization states, outsourcing has a very large benefit. When utilization is
low, capacity availability is no longer a challenge but decreasing the safety stock by reducing
demand uncertainty can make a significant difference and, therefore, demand information
has more value than outsourcing. The interesting case is under medium utilization, where
once again the combined benefits of both information and outsourcing far exceed the sum
of the benefits from each approach.

We have, therefore, shown that whether firms should give serious consideration to en-
suring outsourcing is an option or investing in better information systems and working with
customers to get better demand information depends on the environment that they operate
in now. Demand and production variability, utilization, and costs of outsourcing as well
as the desired service level have a key influence on which factor will have more impact on
costs. Furthermore, the benefits of using both approaches simultaneously can exceed the
sum of the benefits from each approach.
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5 Conclusions and Further Research

We have developed a general multi-period production-inventory model with demand and
capacity uncertainty to consider the conditions under which it is best for a firm to invest in
better demand information versus in sources of extra capacity. We were able to characterize
the structure of optimal production and inventory policies under these two types of uncer-
tainty. We were also able to show that in many situations, one or the other of these two
mechanisms to protect against uncertainty have larger impact on reducing a firm’s costs,
although in some situations, investing in both can lead to large cost savings.

Our model has addressed these issues only in the context of a single manufacturer serving
a stochastic demand. Recent research has focused on the impact of better information
sharing in multi-echelon supply chains. Further research should extend our analysis to
multi-echelon supply chains and characterize the benefits of safety capacity or advance
demand information at different echelons.

A Proof of Proposition 2

Proof: It suffices to prove that ζH
s (x̄s) and ηH

s (xs) are non-increasing in Ds−1,s−1+k,
k = 1, · · · ,H. Denote Ês,s−1+k(Ds−1,s−1+k) = Ds−1,s−1+k +Es,s−1+k(Ds−1,s−1+k). Since Ds

is proper for all periods s, it follows that Ês,s−1+k(Ds−1,s−1+k) is stochastically increasing
in Ds−1,s−1+k for all s’s.

Denote (Js)′′1,k+1(xs,Ds) =
∂

∂Ds−1,s−1+k

[ ∂

∂xs
Js(xs,Ds)

]
, then the proof of the propo-

sition is based on the inductional hypothesis for period s + 1: (Js+1)′′1,k+1(xs+1,Ds+1) ≤ 0,
k = 1, · · · , H, which obviously holds for ending period (s+1 =)N +1. We can consequently

prove the following two facts (a) and (b), and finally prove the inductional hypothesis for
period s in (c):

(a) ζH
s (x̄s) and ηH

s (xs) are non-increasing in Ds−1,s.

Note that Ds−1,s is a parameter influencing ζH
s and X 1

s (Ds) in definition of ηH
s . Since

Ês,s(Ds−1,s) is stochastically increasing in Ds−1,s, from definition of ζH
s , convexity of bs,

and Theorem 1, we have:

• E[b′s(x̄s−Ds−1,s−Es,s(Ds−1,s))] is non-increasing in Ds−1,s;

• g̃(ε) := E(Js+1)′1(x̄s − ε,Ds+1) is non-increasing in ε, and

E[g̃(Ês,s(Ds−1,s))] = Eg̃(Ds−1,s + Es,s(Ds−1,s))

= E(Js+1)′1(x̄s − Ds−1,s − Es,s(Ds−1,s),Ds+1);
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• for any D′
s−1,s ≥ Ds−1,s, since Ês,s(D′

s−1,s) ≥st Ês,s(Ds−1,s), therefore
E[g̃(Ês,s(D′

s−1,s))] ≤ E[g̃(Ês,s(Ds−1,s))].

Hence, ζH
s (x̄s) is non-increasing in Ds−1,s and X 1

s (Ds) is non-decreasing in Ds−1,s. Due
to the opposite monotonicities of ζH

s (x̄s) and X 1
s (Ds), from definition of ηH

s , as well as
ζH
s (X 0

s (Ds)) = 0, we conclude that ηH
s (xs) is also non-increasing in Ds−1,s, therefore,

X 0
s (Ds) is non-decreasing in Ds−1,s.

(b) ζH
s (x̄s) and ηH

s (xs) are non-increasing in Ds−1,s−1+k, k = 2, · · · ,H.

Note that Ês,s−1+k(Ds−1,s−1+k) is stochastically increasing in Ds−1,s−1+k for all s’s. From
definition of ζH

s and (Js+1)′′1k(xs+1,Ds+1) ≤ 0, it follows that:

• ḡk−1(ε) := E(Js+1)′1(x̄s −Ds−1,s −Es,s(Ds−1,s),D
−(k−1)
s+1 , ε,D+(k−1)

s+1 ) is non-increasing
in ε, where D−(k−1)

s+1 = (Ds,s+1, · · · , Ds,s+k−2), D+(k−1)
s+1 = (Ds,s+k, · · · , Ds,s+H), and

E[ḡk−1(Ês,s−1+k(Ds−1,s−1+k))] = Eḡk−1(Ds−1,s−1+k + Es,s+k(Ds−1,s−1+k))

= E(Js+1)′1(x̄s − Ds−1,s − Es,s(Ds−1,s),Ds+1);

• for any D′
s−1,s−1+k ≥ Ds−1,s−1+k, since Ês,s−1+k(D′

s−1,s−1+k) ≥st Ês,s−1+k(Ds−1,s−1+k),
therefore E[ḡk−1(Ês,s−1+k(D′

s−1,s−1+k))] ≤ E[ḡk−1(Ês,s−1+k(Ds−1,s−1+k))].

Also, E[b′s(x̄s−Ds−1,s−Es,s(Ds−1,s))] is obviously independent of Ds−1,s−1+k. Hence, ζH
s (x̄s)

is non-increasing in Ds−1,s−1+k, and X 1
s (Ds) is non-decreasing in Ds−1,s−1+k. Using the

same logic as in the proof of part (a), we also conclude that ηH
s (xs) is non-increasing in

Ds−1,s−1+k. Therefore, X 0
s (Ds) is non-decreasing in Ds−1,s−1+k.

(c) Now we prove the inductional hypothesis for period s, i.e., (Js)′′1,k+1(xs,Ds) ≤ 0, for
k = 1, · · · ,H.
This can be proved by considering three cases for xs: xs ≤ X 0

s (Ds), X 0
s (Ds) < xs ≤ X 1

s (Ds),
and X 1

s (Ds) < xs, to derive the formulation of (Js)′1(xs,Ds). But here we only provide the
detailed proof for X 0

s (Ds) < xs ≤ X 1
s (Ds), where x∗

s = xs and x̄∗
s = X 1

s (Ds). Then,

(Js)′1(xs,Ds) =
∫ X 1

s (Ds)−xs

0
ζH
s (xs + y)fs(y)dy.

For k = 1: Since Ês,s(Ds−1,s) is stochastically increasing in Ds−1,s, by the convexity of bs,
and Theorem 1, the following hold:

• E[b′s(xs + y−Ds−1,s−Es,s(Ds−1,s))] is non-increasing in Ds−1,s (as proof in part (a));

• ĝ(ε) := E(Js+1)′1(xs + y − ε,Ds+1) is non-increasing in ε, and

E[ĝ(Ês,s(Ds−1,s))] = Eĝ(Ds−1,s + Es,s(Ds−1,s))

= E(Js+1)′1(xs+1,Ds+1);
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• for any D′
s−1,s ≥ Ds−1,s, since since Ês,s(D′

s−1,s) ≥st Ês,s(Ds−1,s), we have
E[ĝ(Ês,s(Ds−1,s))] ≤ E[ĝ(Ês,s(Ds−1,s))].

Combined with ζH
s (X 0

s (Ds)) = 0, the above three facts imply that (Js)′1(xs,Ds) is non-
increasing in Ds−1,s.
For k = 2, · · · ,H: Since bs is independent of Ds−1,s−1+k, by the similar logic in (b), we can
immediately get the conclusion from (Js+1)′′1k(xs+1,Ds+1) ≤ 0.

B Proof of Proposition 4

Proof: Let

(ζH
s )i(x̄s) = E[b′s(x̄s − Ds−1,s − Es,s(Ds−1,s))

+αs(J i
s+1)

′
1(x̄s − Ds−1,s − Es,s(Ds−1,s),Ds+1)]

(ηH
s )ij(xs) =

∫ X 1j
s (Ds)−xs

0
(ζH

s )j(xs + y)f i
s(y)dy, and i, j = A,B,

with (ηH
s )ij corresponding to an intermediate construct, where instead of using parameters

of system j throughout, the distribution of capacity in the current period alone is replaced
by that of i.

We prove, by induction in s, the following four points:

âs. X 1A
s ≤ X 1B

s ;

b̂s. X 0A
s ≤ X 0B

s ;

ĉs. (JA
s )′1(Is) ≥ (JB

s )′1(Is), which implies, (ζH
s−1)

A(x̄s−1) ≥ (ζH
s−1)

B(x̄s−1);

d̂s. JA
s (Is) ≤ JB

s (Is).

It is trivial to show that these conditions hold for s = N + 1.

Notice that âs follows immediately from ĉs+1. Also, d̂s follows directly from d̂s+1. To prove
b̂s, we need to define the following function of y:

θi
s(x)(y) =

{
(ζH

s )i(x + y) if y < X 1i
s − x

0 if y ≥ X 1i
s − x

It is easy to verify that θi
s(x)(y) = min((ζH

s )i(x + y), 0) (implying θi
s(x)(y) ≤ 0) and that

θi
s(x)(y) is increasing in y. From ĉs+1, θA

s (x)(y) ≥ θB
s (x)(y). Definition of (ηH

s )ii(xs) implies
that (ηH

s )ii(xs) = E[θi
s(xs)(Y i)]. Due to monotonicity of θi

s(xs)(y) in y and Y A ≥st Y B, we
have

(ηH
s )AA(xs)=E[θA

s (xs)(Y
A)]≥E[θA

s (xs)(Y
B)]≥E[θB

s (xs)(Y
B)]=(ηH

s )BB(xs).
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From definition of X 0i
s , (ηH

s )ii(X 0i
s ) = −cs. Thus, we have X 0A

s ≤X 0B
s .

To prove ĉs, note that J i
s(xs,Ds) is convex in xs, and reaches its minimum at X 1i

s .
Based on âs and b̂s, we consider the following cases (some of the intervals may be empty)
and show that inequality holds for each of them:

• xs ≤ X 0B
s : (JA

k )′1(xs,Ds)≥−cs =(JB
s )′1(xs,Ds);

• X 0B
s < xs ≤ X 1A

s : Since (J i
k)

′
1(xs,Ds)=

∫ X 1i
s −xs

0
(ζH

s )i(xs + y)f i
s(y)dy =EY i

s
[θi

s(xs)(Y i
s )],

(JA
s )′1(xs,Ds)=E[θA

s (xs)(Y A
s )]≥E[θA

s (xs)(Y B
s )]≥E[θB

s (xs)(Y B
s )]=(HB

s )′1(xs,Ds);

• X 1A
s < xs ≤ X 1B

s : (JA
s )′1(xs,Ds)≥0≥(JB

s )′1(xs,Ds);

• X 1B
s < xs: (J i

s)
′
1(xs,Ds)= E[b′s(xs − Ds−1,s − Es,s(Ds−1,s))+αs(J i

s+1)
′
1(xs+1,Ds+1)],

using ĉs+1, we get (JA
s )′1(xs,Ds) ≥ (JB

s )′1(xs,Ds).

C Proof of Proposition 5

Proof: We prove by induction that JA
s (xs,Ds) ≥ JB

s (xs,Ds). The statement holds trivially
for the final period N + 1. Suppose it holds for period s + 1. For i, j = A,B, let us define

hhi
s(Is, xs, x̄s) = E[bs(x̄s − Ds−1,s − Es,s(Ds−1,s))

+αs(Js+1)1(x̄s − Ds−1,s − Es,s(Ds−1,s),Ds+1)]

V̄ ij
s (Is, xs, x̄s) = EY i

s
[hhj

s(Is, xs, (xs+(̄xs−xs)∧Y i
s ))]

V ij
s (Is, xs, x̄s) = cs(xs − xs) + V̄ ij

s (Is, xs, x̄s)

V̄ ij
s (Is, xs, x̄s) and V ij

s (Is, xs, x̄s) represent the scenario where the distribution of capacity in
the current period, s, is i, while in periods s+1 through N +1 is j, and, for V̄ ij

s (Is, xs, x̄s),
outsourcing is not allowed in the current period s. Then,

J̄ i
s(Is, xs) := min

x̄s≥xs

V̄ ii
s (Is, xs, x̄s)

J i
s(Is) = min

x̄s≥xs≥xs

V ii
s (Is, xs, x̄s) = min

xs≥xs

{cs(xs − xs) + J̄ i
s(Is, xs)} (9)

and J i
N+1 ≡ 0. Clearly the total cost can be viewed as an effect of outsourcing followed by

production and, based on (9) above, it is sufficient to show that J̄A
s (Is, xs) ≥ J̄B

s (Is, xs), or
equivalently to consider the scenario when outsourcing is not allowed in the current period.

From inductional assumption, clearly hhA
s (Is, xs, x̄s) ≥ hhB

s (Is, xs, x̄s). Suppose X 1ij
s is

the optimal production threshold for V̄ ij
s (Is, xs, x̄s). Then X 1i

s = X 1ii
s . Based on Proposition
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1, we clearly have X 1ji
s = X 1i

s . Considering the total cost as a function of capacity realization
y:

ψ
xs, i
s (y)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E[bs(xs + y − Ds−1,s − Es,s(Ds−1,s))

+αs(Js+1)1(xs + y − Ds−1,s − Es,s(Ds−1,s),Ds+1)] if y < X 1i
s − xs

E[bs(X 1i
s (Ds) − Ds−1,s − Es,s(Ds−1,s))

+αs(Js+1)1(X 1i
s (Ds) − Ds−1,s − Es,s(Ds−1,s),Ds+1)] if y ≥ X 1i

s − xs

we get the following

• Since X 1i
s = X 1ji

s , given any value of xs, we have

J̄ i
s(Is, xs) = E

[
ψ

xs, i
s (Y i)

]
and min

{x̄s|x̄s≥xs}
V̄ ji

s (Is, xs, x̄s) = E
[
ψ

xs, i
s (Y j)

]

• ψ
xs, i
s (y) is a decreasing convex function of y

Now, for period s: Y A ≥v Y B ⇒ J̄A
s (Is, xs) ≥ E

[
ψ

xs, A
s (Y B)

]
. On the other hand, as argued

above, hhA
s (Is, xs, x̄s) ≥ hhB

s (Is, xs, x̄s), which implies V̄ BA
s (Is, xs, x̄s) ≥ V̄ BB

s (Is, xs, x̄s).
Therefore, we have E

[
ψ

xs, A
s (Y B)

]
≥ J̄B

s (Is, xs), which implies J̄A
s (Is, xs) ≥ J̄B

s (Is, xs), for
any xs, which we needed to prove.

D Proof of Proposition 6

Proof: Since bs(x) = E[h(x−Zs)+ + p(x−Zs)−], recall that c.d.f. of Zs is Qs. Decreasing
demand implies that Eb′s(x) = −p + (h + p)Qs(x) is concave for all the periods s. We first
prove, by induction, that (Js)′1(xs) is concave in xs.

The following three cases (for xs) can take place: xs ≤ X 0
s , X 0

s < xs ≤ X 1
s , and X 1

s < xs.
Since they are similar, we provide the detailed proof only for X 0

s < xs ≤ X 1
s , where x∗

s = xs

and x̄∗
s = X 1

s . The result obviously holds for N + 1. Suppose it also holds for s + 1. Then

(Js)
′′′
111(xs)=

∫ X 1
s−xs

0
ζ ′′s (xs + y)fs(y)dy− ζ ′s(X 1

s )fs(X 1
s−xs) ≤ 0.

The inequality follows form non-negativity of ζ ′s (based on convexity of bs and of Js+1, i.e.,
Theorem 1) and negativity of ζ

′′
s (based on concavity of Eb′s and of (Js+1)′1, which is the

inductional assumption).
Then, based on monotonicity and concavity of ζs, we have that:

θi
s(x)(y) =

{
ζi
s(x + y) if y < X 1i

s − x

0 if y > X 1i
s − x
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is increasing and concave in y. Concavity of θi
s(x)(y), combined with stochastically more

variable property of production, implies that ηAA
s ≤ ηBB

s , where ηii
s (xs) = E[θi

s(xs)(Y i)],
i = A, B. Formally, by induction that uses the logic of Appendix B, the following hold for
any period s:

a′s. X 1A
s ≥ X 1B

s ;

b′s. X 0A
s ≥ X 0B

s ;

c′s. (JA
s )′1(xs) ≤ (JB

s )′1(xs), consequently, ζA
s−1(x̄s−1) ≤ ζB

s−1(x̄s−1).

which justify Proposition 6.

E Proof of Proposition 7

Proof: Using the Newsvendor logic, the production thresholds in both facilities are X 1 :=
X 1A = X 1B = Q−1(p/p + h) > 0.

For i = A,B, let γi(x) :=
∫ X 1−x

0
[−p + (h + p)Q(x + y)]f i(y)dy. Clearly, γi(X 1) = 0, and

γi(x) is non-decreasing in x.
Since A is lower more variable than B, there exists a > 0, such that for all y ≥ a,

1 − FA(y) = 1 − FB(y), that is, for all y ≥ a, fA(y) = fB(y). Hence, for x ≤ X 1 − a.

γA(x)−γB(x)=
∫ a

0
[−p + (h + p)Q(x + y)]fA(y)dy−

∫ a

0
[−p + (h + p)Q(x + y)]fB(y)dy

Denote φa(x)(y) :=

{
−p + (h + p)Q(x + y) if 0 ≤ y < a

−p + (h + p)Q(x + a) + (h + p)q(x + a)(y − a) if y ≥ a

The assumption on the service level implies that for all x ≤ X 1, q′(x)≥0. Thus φa(x)(y) is
non-decreasing and convex in y. Y A ≥v Y B implies that, for all x ≤ X 1 − a,

γA(x)−γB(x)=E[φa(x)(Y A)]−E[φa(x)(Y B)]≥0 (10)

Notice that in one period, X 0i is defined by γi(X 0i) = −c. Let c0 = −γB(X 1 − a). Then,
if c ≥ c0, we have γA(X 1 − a) ≥ γB(X 1 − a) ≥ −c. Hence, there exists X 0i < X 1 − a, such
that γi(X 0i) = −c (i =A,B), and by (10), X 0A ≤ X 0B.
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