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Abstract

We study a class of two echelon, serial systems with identical ordering capacities or limits for

both echelons. For the case where the lead time to the upstream echelon is one period, the

optimality of state-dependent, modified echelon base-stock policies is proved using a decom-

position approach. For the case where the upstream lead time is two periods, we introduce a

new class of policies called “two-tier, base-stock policies,” and prove their optimality. Some

insight about the inventory control problem in N echelon, serial systems with identical ca-

pacities at all stages and arbitrary lead times everywhere is also provided. We argue that a

generalization of two-tier, base-stock policies, which we call “multi-tier, base-stock policies,”

are optimal for these systems; we also provide a bound on the number of parameters required

to specify the optimal policy.



1 Introduction

We consider a periodic review inventory control problem for a three stage supply chain con-

sisting of one supplier, one distribution center and one retailer. The supplier is considered

as being external; that is, we are interested only in optimally managing inventory at the

distribution center and the retailer. Consequently, we call this a two-echelon, serial system.

The supplier and the distribution center can ship up to C units in any period. The retailer

is only an inventory storage stage with unlimited storage capacity. We label the supplier,

distribution center and retailer as L3, L2, and, L1, respectively. Inventory at L1 is used to

meet customer demand. Excess demand at L1 is assumed to be backordered. The costs con-

sidered are linear holding costs and linear backorder costs. Customer demands are Markov

modulated and lead times are deterministic.

We prove the following results: (a) the optimal inventory control problem for this system

can be decomposed into C problems, each one of which represents a subsystem that consists

of a two echelon serial system with unit capacity at each stage, (b) under the additional

assumption that the lead time between L3 and L2 is one period, the optimal policy is a

modified echelon base-stock policy at L1 and L2 and (c) when the lead time between L3 and

L2 is two periods, the optimal policy is a “two-tier, base-stock policy” (we will define this

term later) at L1 and L2. The decomposition technique used for these two-echelon systems

also holds for N echelon, serial systems with arbitrary lead times and identical capacities

everywhere. Moreover, we provide a bound on the number of parameters required to describe

the optimal policies in such N echelon systems.

The approach we use is an extension of the “single-unit, single-customer” approach in-

troduced by Axsater (1990) and subsequently used by Katircioglu and Atkins (1998) and

Muharremoglu and Tsitsiklis (2003). Axsater (1990) develops a cost evaluation technique

which is based on examining the costs associated with an individual unit and uses this to

optimize base-stock levels for two-echelon inventory systems with one-for-one replenishment
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rules. He extends this technique to systems with batch-ordering in Axsater (1993). While

Axsater uses this approach to evaluate costs and to find optimal parameters within the class

of one-for-one replenishment policies or re-order point, re-order quantity policies, Katircioglu

and Atkins (1998), Muharremoglu and Tsitsiklis (2003) and this paper are concerned with

the derivation of the structure of optimal policies using the single-unit, single-customer ap-

proach. Katircioglu and Atkins (1998) study a continuous review, single-stage system with

arbitrary inter-arrival distributions with increasing failure rates. Muharremoglu and Tsit-

siklis (2003) study uncapacitated, serial systems under periodic-review.

Next, we briefly review the related literature. We refer the reader to Muharremoglu and

Tsitsiklis (2003) and Kapuscinski and Tayur (1999) for more extensive reviews.

In their seminal paper, Clark and Scarf (1960) showed that echelon base-stock policies

are optimal for uncapacitated serial systems with deterministic lead times under the assump-

tion that demands are independent and identically distributed from period to period and

procurement costs are linear. The infinite horizon extensions were achieved by Federgruen

and Zipkin (1984). A key extension of this result is Chen and Song (2001), where the opti-

mality of state dependent echelon base-stock policies is proved when the demands are driven

by a Markov Chain (also known as Markov modulated demand). This result has recently

been extended by Muharremoglu and Tsitsiklis (2003) to systems where lead times are sto-

chastic and non-crossing. They allow both lead times and demands to be Markov modulated.

The optimality of modified base-stock policies for a single stage, capacitated system

with deterministic lead times and stationary demand was proved by Federgruen and Zipkin

(1986a) and Federgruen and Zipkin (1986b). This work was extended to the case of periodic

demand processes and Markov modulated demand processes by Aviv and Federgruen (1997)

and Kapuscinski and Tayur (1998), respectively. Tayur (1992) uses the “shortfall distribu-

tion”, applying the theory of stochastic storage processes (see Prabhu (1998)), and provides
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a method to compute the optimal base-stock level for the stationary case.

The only result that has been proved about the structure of the optimal policy for a

serial system with capacities is due to Parker and Kapuscinski (2004). They consider a two

echelon serial system of the type we described earlier assuming the lead time between L3 and

L2 is one period and assuming the lead time between L2 and L1 is an arbitrary, deterministic

integer. There is a capacity of C units per period at L3 and L2. (Note: Their model allows

for a higher capacity at L3 than L2; but, the optimal policy is the same as the optimal policy

when the capacity at L3 is replaced by the capacity at L2.) They show that a modified

echelon base-stock policy, specified by two parameters S1 and S2, is optimal for this system

for both the finite and infinite horizon cases with Markov modulated demands. This policy

suggests that L1 should order up to the level S1, if possible. L2 should order as much as

possible to raise the echelon inventory position to S2 or enough to raise the inventory on

hand at L2 to C, whichever is smaller. We present an alternate proof of this result. A key

difference between their paper and ours is that they use the dynamic programming approach

to obtain their results, while we use a decomposition approach to establish ours.

Glasserman and Tayur have made significant contributions to the analysis of multi-

echelon inventory systems that have capacities and that follow echelon base-stock policies.

In Glasserman and Tayur (1994), they study stability conditions and long-run convergence

properties. In Glasserman and Tayur (1995), they show how IPA (Infinitesimal Perturbation

Analysis) can be used to find near-optimal base-stock levels. They develop simple approxi-

mations in Glasserman and Tayur (1996) to find base-stock levels.

The literature on the control of tandem queues is also related to the problem studied

here. Please see Parker and Kapuscinski (2004) for a brief discussion on this connection.
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The remainder of the paper is organized as follows. Section 2 describes the inventory

systems to be studied in greater detail and the notation used throughout the paper. In

Sections 3 and 4, we study the capacitated, two echelon, serial system when the lead time

between L3 and L2 is one period and two periods, respectively. Specifically, we prove the

optimality of modified, echelon base-stock policies (MEBS policies, in short) and two-tier,

base-stock policies for these systems, respectively. Our proof methodology is based on a

decomposition of a capacitated two-echelon serial system into a collection of two-echelon

serial systems with unit capacities at both echelons. In Section 5, we discuss how the

analysis can be extended to longer supply chains, that is, serial systems with more stages

and/or longer lead times; in particular, we explain the optimality of multi-tier policies, a

generalization of two-tier policies, and provide a bound on the number of tiers or parameters

required to describe these policies.

2 Notation and Preliminaries

3

The most general system we consider in this paper is a serial system with N + 1 stages,

L1, L2, . . ., LN+1, in series where L1 is the closest to the customers and LN+1 is the farthest

from the customer. LN+1 is an external supplier with infinite supply. We are interested in

determining or characterizing the structure of an optimal inventory policy for stages L1, L2,

. . ., LN . Every stage Ln, n ∈ {2, 3, . . . , N +1}, has a shipping capacity of C units per period.

L1 is simply an inventory storage stage that serves the customers and has infinite storage

capacity. The amount ordered by Ln, n ∈ {1, 2, . . . , N}, in period t is shipped by Ln+1 in

the same period and this inventory reaches Ln after ln periods, the lead time for stage Ln.

Ln orders qnt units from Ln+1 in period t only if there are at least qnt units available to be

shipped by Ln+1 in that period and qnt is no larger than the capacity C. We refer to L2, L3,

3At the end of the paper, individual glossaries of notation are provided in tabular format for the main

sections of the paper.
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. . ., LN+1 as “physical stages”.

We initially assume the planning horizon consists of T periods, numbered t = 1, 2, . . .,

T in that order. In Section 3.4, we examine the infinite horizon case.

We assume that there is an exogenous, finite-state, ergodic Markov Chain {st} that

governs the demand process. st is observed at the beginning of each period t. Ω is the

sample space of st. The transition probabilities for the Markov Chain {st} are assumed to

be known. Furthermore, given st, the probability distribution of dt, the demand in period t,

is known. Demand is assumed to be an integer.

2.1 Customers and Distances

Our analysis is motivated by the “single-unit, single-customer” approach. In this and in

the following sub-section, we introduce the concepts of customers and units, and also the

associated concepts of distances and locations that are the basis for our analysis. This con-

struction is identical to the one presented in Muharremoglu and Tsitsiklis (2003).

We consider each unit of demand as an individual customer. Suppose at the beginning

of period 1 there are v0 customers waiting to have their demand satisfied. We index these

customers 1, 2, . . ., v0 in any order. All subsequent customers are indexed v0 + 1, v0 + 2, . . .

in the order of the period of their arrivals, arbitrarily breaking ties among customers that

arrive in the same period.

Next, we define the concept of the distance of a customer at the beginning of any period.

(See Figure 1.) Every customer who has been served is at distance 0; every customer who has

arrived, placed an actual order, but who has not yet received inventory, is at distance 1; all

customers arriving in subsequent periods are said to be at distances 2, 3, . . ., corresponding

to the sequence in which they will arrive. Distances are assigned to customers that arrive in
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the same period in the same order as their indices. This ensures that customers with higher

indices are always at “higher” distances.

We assume that there is a backorder cost of b associated with every unit backordered at

the end of a period, that is, every unit at distance 1.

2.2 Units and Locations

Next, we discuss the concepts of “units” and “locations”. Inventory is considered to be dis-

crete throughout this paper and every unit of inventory is referred to as “unit”. If a unit has

been used to satisfy a customer’s order, the unit is in location 0. If it is part of the inventory

on hand at L1, it is said to be in location 1. If it has been shipped by Ln+1 (in other words,

ordered by Ln) t periods ago (1 ≤ t ≤ ln), it is said to be in location 1+ l1 + . . .+(ln− t). If

the unit is waiting at Ln+1, it is said to be in location 1+ l1 + l2 + . . .+ ln. For compactness,

let us denote 1 + l1 + l2 + . . . + ln−1 by Mn; that is, Mn is the location of stage Ln. Thus,

there are 2 +
∑N

n=1 ln possible “locations” at which a unit can exist in a N echelon serial

system. (See Figure 1 for an example of a two echelon serial system.) Observe that there

are ln−1 − 1 locations in the pipeline between Ln and Ln−1; therefore, if l2 = 1, L3 and L2

will be adjacent to each other.

At the beginning of period 1, we assign an index to all units in a serial manner, starting

with units at location 1, then location 2, . . ., location MN+1, and arbitrarily assign an order

to units present at the same location. We assume a countably infinite number of units is

available at the supplier, that is, location MN+1, at the beginning of period 1.

There is an echelon holding cost hn associated with each unit of inventory downstream

of Ln+1 at the end of a period.
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2.3 Sequence of Events

We now define the sequence of events in a period. We will use j and k to denote the indices

of both units and customers. We define zjt to be the location of unit j and yjt to be the

distance of customer j at the beginning of period t.

Let S refer to the entire system with all the units and all the customers and the capacity

constraint of C units per period at stages 2, 3, . . . , N + 1. The state of the system at

the beginning of period t is given by the vector xt = (st, (z1t, y1t), (z2t, y2t), . . .). Let Znt

be the amount of inventory on hand at Ln at the beginning of period t. That is, Znt =

|{j : zjt = Mn}|. The number of backorders at the start of period t is |{k : ykt = 1}|.

Next, we explain the sequence of events in period t. (Though redundant at this point,

we repeat the phrase “in S” for the sake of conciseness later in the paper.)

(1) xt is observed. (2) Next, L1 places an order for q1t units from L2, where 0 ≤ q1t ≤
min(Z2t, C), and integer. All units in any of the locations M1 + 1, M1 + 2, . . ., M2− 1 move

to the next location. The q1t units move from location M2 to location M2 − 1. Then, L2

places an order for q2t units from L3, where 0 ≤ q2t ≤ min(Z3t, C), and integer. All units in

any of the locations M2 + 1, M2 + 2, . . ., M3 − 1 move to the next location. The q2t units

move from location M3 to location M3 − 1. This process continues sequentially until LN

places an order on the external supplier LN+1 for qNt units and the corresponding movement

of units occurs, where qNt is constrained only by C, since LN+1 is assumed to carry infinite

inventory. The ordering decisions can formally be represented as follows: for each n ≥ 2,

ujt ∈ {0, 1} is decided for all j ∈ S 4 such that zjt = Mn. Unit j is ordered (we will use

“released” from stage n and “ordered” by stage n− 1 interchangeably since they mean the

same action) if and only if ujt = 1. We will use hold to refer to the action of not releasing

4By j ∈ S, we refer to any unit that belongs to S. This becomes more relevant when we define a

subsystem, Sw in the following section and say j ∈ Sw.
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a unit. The number of units released from Ln+1 (n ≥ 1) is

qnt =
∑

j∈S:zjt=Mn+1

ujt .

For capacity feasibility, qnt is C or less. (3) Demand dt is realized. That is, customers in S
at distances 2, 3, . . ., 2 + dt − 1 all arrive and are by definition at distance 1. Customers

in S currently at distances 2 + dt, 3 + dt, . . . move dt steps towards distance 1. (4) Units

on-hand, at stage L1, in S are matched with waiting customers in S to the extent possible.

That is, as many waiting customers are satisfied as possible and as many units on hand are

consumed as possible. Without loss of generality, we assume that units and customers in S
at location 1 and distance 1, respectively, are matched in a first-come, first-serve order based

on their indices, starting from the lowest index. Let E
′
nt be the echelon-n inventory position

at this point in time. That is,

E
′
nt = |{j : 1 ≤ z

′
jt ≤ Mn+1 − 1}| − |{k : y

′
kt = 1}| ,

where z
′
jt and y

′
jt denote the location of unit j and the distance of customer j at the end of

period t, respectively. (5) hn dollars are charged per unit of inventory downstream of stage

Ln+1 in S and b dollars are charged per waiting customer (at distance 1) in S. The cost

incurred in period t can be written as

N∑

n=1

hn · E ′
nt + (b +

N∑

n=1

hn) · |{k : y
′
kt = 1}| .

Note: Though we have not mentioned purchase costs or transportation costs in the model,

linear purchase or transportation costs payable at the time of receipt of inventory can easily

be accommodated. (See Janakiraman and Muckstadt (2004) for a general discussion.)

The performance measure under consideration is the expected sum (discounted or undis-

counted) of costs over the T period planning horizon. A set of mappings, one for every

t, from xt to (ujt) is called a policy. A feasible policy is one that satisfies the constraints

qnt ≤ min(Z(n+1)t, C) for all n ≤ N , t and xt. A monotone policy is one that satisfies
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the constraint ujt ≥ u(j+1)t for all j, t and xt such that zjt = z(j+1)t . That is, a monotone

policy always releases a lower indexed unit no later than a higher indexed unit. Similarly,

we define a monotone state to be one where lower indexed units are in the same or lower

indexed locations. That is, zkt ≤ zjt if k ≤ j. Next we state a lemma with some facts about

monotone policies. The proofs are trivial and hence omitted.

Lemma 1 (i) For every feasible policy, we can construct a monotone, feasible policy that

incurs the same cost in every period along every sample path. Consequently, the class of

monotone policies contains an optimal policy. (ii) When a monotone policy is used in every

period, no unit other than j can satisfy customer j’s demand since customer demands are

satisfied based on the indices. Thus, unit j and customer j are matched when monotone

policies are used. (iii) When a monotone policy is used in every period, xt is a monotone

state for all t.

From now on, our attention is restricted to monotone states when analyzing the system

S without any loss of generality.

We are now ready to derive the optimal policy in two-echelon serial systems. The follow-

ing preliminary lemma bounds the amount of inventory between consecutive stages when an

optimal policy is followed and is important for our analysis.

Proposition 1 (Parker and Kapuscinski (2004): Corollary 1(b) and Remark 2)

Let Ent be the echelon n inventory position at the start of period t. Assume that En1 −
E(n−1)1 ≤ ln ·C. Then, any policy that leads to a state where Ent − E(n−1)t > ln ·C in some

period, t, is not optimal.

The proof, which is omitted, is a consequence of the fact that at most ln · C units can be

processed by Ln within the next lead time number of periods; if Ent − E(n−1)t exceeds this

quantity, the holding cost can be reduced without increasing the backorder cost by reducing

Ent − E(n−1)t.
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Assumption 1 We assume throughout that En1 − E(n−1)1 ≤ ln · C.

Consequently, when an optimal policy is followed in periods 1, 2, . . . , t− 1, we know that

the condition Ent − E(n−1)t ≤ ln · C will be satisfied.

Before proceeding further, we introduce a useful definition.

Definition 1 For all n, Tn is the smallest positive integer such that when there are at least

Tn periods left in the horizon, it is optimal to have a non-negative echelon n inventory position

after ordering, if possible.

In other words, it is optimal to release enough inventory into the pipeline below stage n+1 to

meet all existing backorders at stage 1, if possible, if there are Tn or more periods remaining

in the planning horizon. If the number of periods remaining in the horizon is less than Tn, it

is optimal NOT to release any more units from stage n+1. Mathematically, Tn is the small-

est positive integer such that the discounted cost of backordering a customer and holding the

unit at Ln+1 for Tn periods exceeds the discounted holding costs accumulated by a unit from

the period it is released from Ln+1 until the period it is received by L1 and the backorder

costs incurred by the customer during that time, assuming that the unit is released from

every intermediate stage as soon as it is received. For example, T1 is the smallest positive

integer T such that (b + h2)(1 + α + α2 + . . . + αT ) > (b + h1 + h2)(1 + α + α2 + . . . + αl1−2),

where α is the discount factor. Tn can be computed in a similar way using b, h1, h2, . . ., hn.

Next we state a simple property of the sequence {Tn}; the proof is straight forward and

hence omitted.

Proposition 2 There exists α0 < 1 such that the sequence {Tn} increases in n for all

α ≥ α0.

Assumption 2 We assume throughout that α ≥ α0. In other words, we assume the sequence

{Tn} increases in n.
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This assumption is necessary only for the finite horizon results; even there, the purpose of

the assumption is to ensure that a separate and elaborate analysis is not required for periods

close to the end of the horizon.

3 Two Echelon Serial Systems with a One Period Up-

stream Leadtime

In this section, we examine in detail a two echelon serial system (see Figure 2) where l2, the

lead time between L3 and L2, is exactly one period. We study the optimal policy structure

for such systems using a decomposition approach.

Parker and Kapuscinski (2004) prove the optimality of “modified echelon base-stock poli-

cies” for this system. A modified echelon base-stock policy has the following structure. In

period t, echelon 1 raises its inventory position to a target level, S1(t, st), if sufficient capacity

and inventory are available. If not, the inventory position is raised to the maximum possible

level. Furthermore, L2 should order enough to raise its (i.e., echelon 2) inventory position

to S2(t, st), or enough to raise the inventory on hand at L2 to C, whichever is smaller. In

this section, we will provide an alternate proof of this result.

Our proof of this result has the following key steps. We first show that the system can

be decomposed into C two-echelon subsystems, each having unit capacity. Subsequently, we

prove that each subsystem can be managed optimally by using a “critical distance” policy at

each echelon. We also prove that when the same “critical distance” policy is used to manage

each subsystem, the original system follows a modified echelon base-stock policy.

Note: Throughout this section, we will assume that the number of units at stage 2, that is

L2, is less than or equal to C at the start of period t. Proposition 1 justifies this assumption.

This is identical to the assumption of “being within the band” in Parker and Kapuscinski
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(2004).

We proceed to discuss how the system under consideration can be decomposed into C

subsystems of unit capacity.

3.1 Decomposition into Unit Capacity Subsystems

We start by defining a subsystem.

Definition 2 Subsystem w, represented by Sw, 1 ≤ w ≤ C, refers to the subset of unit-

customer pairs with indices w, w + C, w + 2C, . . . . Each subsystem has a unit capacity at

stages L3 and L2.

The intuitive reason for defining a subsystem in this way is the fact that when a monotone

policy is used in S, unit j can be affected by the capacity constraint at stage L3(L2) in a

period if unit j − C has still not been released from stage L3(L2). This provides a natural

connection between unit j and unit j − C for any j.

The sequence of events in S are steps (1)-(5) of Section 2.3 as applied to a two echelon

system with l2 = 1. The sequence of events in Sw are the same with the additional modifi-

cations: S is replaced by Sw and C is replaced by 1. Note that we still assume that xt, the

information about the entire system S, is available when managing Sw.

For subsystem Sw, a policy is monotone if unit j is released no later than unit j + C

from stages L3 and L2 for any unit j in Sw. Note that the class of monotone policies is op-

timal to each subsystem Sw and these policies ensure that unit j is matched with customer j.

We now claim that the subsystems can be optimally managed separately even though

the demand processes of different subsystems are not stochastically independent and that

these policies, when combined, form an optimal policy for S. Let us first define xw
t =def
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(st, (zwt, ywt), (z(w+C)t, y(w+C)t), . . .), that is, the information in xt that pertains to Sw.

Theorem 2 For any monotone state xt, the optimal expected discounted (undiscounted) cost

in periods t, t + 1, . . . T for system S equals the optimal expected discounted (undiscounted)

cost in periods t, t+1, . . . T for the group of subsystems {Sw}. Sw can be optimally managed

using xw
t instead of xt. Furthermore, when each Sw is managed optimally using xw

t in periods

t, t + 1, . . . T , the resulting policy is optimal for the entire system, S.

Proof : A feasible policy for subsystem Sw can be constructed from any feasible, monotone

policy in S by implementing the (ujt) actions suggested by the latter policy on the elements

of Sw. Similarly, a feasible policy for S can be constructed from any set of feasible policies for

{Sw} by combining these policies as follows: for every unit j ∈ S implement the ujt action

suggested by the policy for the subsystem to which j belongs. Furthermore, note that the

cost incurred by S in any period is the sum of the costs incurred by the units and customers

belonging to the C subsystems. Combining these three observations with the optimality of

the class of monotone policies in S proves the first statement.

Next, notice that the cost incurred in Sw in period t depends only on xw
t , and the prob-

abilities necessary to describe the transition from a state xw
t to xw

t+1 depend only on the

actions in Sw and the information in xw
t . This proves the second statement.

The last statement in the theorem is a direct consequence of the first two statements. 2

Note: Theorem 2 and the proof hold for serial systems with deterministic lead times

and an arbitrary number of stages as long as the capacities are identical.

13



3.2 Analysis of Subsystem Sw

We will now show the existence of an optimal policy with a special structure for every sub-

system.

Before examining an individual subsystem, we first observe that all subsystems are iden-

tical in the sense that (i) they have identical cost structures and (ii) given a state xw
t and

a fixed operating policy for a subsystem, the stochastic evolution of the subsystem is in-

dependent of the index w. Consequently, the optimal policy(ies) is(are) identical across all

subsystems.

Next, we develop some necessary preliminaries about optimal policies for the subsystems

by examining a subsystem Sw. We consider only the class of monotone policies for the sub-

system, which contains at least one optimal policy. Let us assume that we have used such

an optimal policy in periods 1, 2, . . ., t − 1. Therefore, in any period t, the state xw
t is

monotone. That is, zwt ≤ z(w+C)t ≤ . . . . Therefore, the units in location 2 + l1, that is,

L3, are indexed in a serial manner with consecutive indices differing by C. Let jwt be the

lowest such index, that is, unit jwt is the candidate for being released from L3 in period t

in subsystem w. There are two possibilities regarding L2: either unit jwt − C is present at

L2 or L2 is empty. L2 cannot contain more than one unit because both stages have a unit

capacity and consequently, it is never optimal to have more than one unit at stage 2 (see

Proposition 1).

Recall that in every period, we make the stage 2 decision before the stage 3 decision. If xw
t

is such that unit jwt−C is present at stage 2, that is, at location 1+ l1, then a Release/Hold

decision has to be made for that unit at stage 2. We define U∗
2t(x

w
t ) ⊆ {1, 0} to be the set of

optimal stage 2 decisions at time t, where 1 refers to ordering/releasing the unit and 0 refers

to holding the unit. If state xw
t is such that there is no unit at stage 2, there is no decision

to take at stage 2 and consequently, U∗
2t(x

w
t ) = ∅. Similarly, U∗

3t(x̃
w
t ) ⊆ {1, 0} is the set of
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optimal stage 3 decisions for subsystem w in period t, where x̃w
t is the state of subsystem

w after stage 2 has taken its Release/Hold decision. That is, if the stage 2 decision were to

release a unit, then we are examining the subsystem after the unit has been released from

stage 2. For example, if U∗
3t(x̃

w
t ) = {1} and subsystem w is in state x̃w

t at time t after the

stage 2 decision, then it is optimal to release unit jwt from location 2 + l1, that is, L3, and

suboptimal to hold it there.

3.2.1 Sufficient Information Vectors

Let us now examine the information that is actually required to manage subsystem w using an

optimal, monotone policy. Consider a given t, st and jwt. Through a sequence of incremental

observations, we will show that the information required to optimally manage Sw is much

smaller than xw
t .

Observation 1 (st, jwt, zjwt−C,t, yjwt−C,t, yjwt,t, yjwt+C,t, . . .) is a sufficient information vector

for optimally managing Sw from period t.

Proof: Since there is at most one unit at stage 2, monotonicity implies that all units in-

dexed below jwt − C in subsystem w have already been released from location 1 + l1 (stage

2). Consequently, the expected costs associated with all these units and the corresponding

customers are sunk; that is, these costs are the same for all policies from period t onward.

Therefore, having information about the locations(distances) of units(customers) in subsys-

tem w with indices below jwt − C is unnecessary. Furthermore, we know that the location

of all units with indices higher than jwt is 2 + l1. 2

That is, the knowledge of the location of unit jwt −C and the distances of all customers

in w with indices jwt − C and higher is sufficient for this subsystem. Even this information

turns out to be more than needed, as we will see next.

Since unit jwt is still at location 2 + l1, yjwt,t cannot be 0. Assume yjwt,t > 1, that is,

customer jwt has not yet arrived.
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Observation 2 If yjwt,t > 1, (st, jwt, yjwt,t, zjwt−C,t) is sufficient to manage Sw optimally

from period t.

Proof: yjwt,t > 1 implies that all customers with indices higher than jwt have also not arrived

and that the subsequent customer in w is at distance yjwt,t + C, the next one at yjwt,t + 2C

and so on. Also, this means that customer jwt − C is at distance max(yjwt,t − C, 1) or 0.

If unit jwt − C is in location 1 + l1 (stage 2), then the distance of this customer cannot be

zero and is therefore max(yjwt,t − C, 1). If unit jwt − C is downstream of stage 2, the cost

associated with the unit-customer pair jwt−C is sunk and the distance of customer jwt−C

is not required for the decision in this period. 2

Let us now assume that yjwt,t = 1.

Observation 3 If yjwt,t = 1, (st, jwt, yjwt,t, zjwt−C,t) is sufficient to optimally manage Sw

from period t.

Proof: In this case, customers jwt and jwt − C have arrived and it is not known whether

some subsequent customers have also arrived. However, since customer jwt has arrived, it

is optimal to release unit jwt from stage 3 if and only if T − t ≥ T2 (see Definition 1 for

the meaning of T2) and release unit jwt−C from stage 2, if it is located there, if and only if

T−t ≥ T1. Consequently, any information about other customer distances is unnecessary. 2

The two observations above show that yjwt,t alone provides us with sufficient information

about all customer distances from the point of view of finding the optimal decisions.

Let us now define iwt ∈ {0, 1} to be an indicator of whether unit jwt − C is located at

stage 2 or not. In other words, iwt is the indicator of whether stage 2 is empty or not.

We are now able to compress the information requirement even further.
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Lemma 3 (st, yjwt,t, iwt) is a sufficient information vector for managing Sw optimally from

period t onwards.

Proof: If iwt = 0, it means unit jwt−C has already departed stage 2 and the cost associated

with that unit-customer pair is sunk; so, in this case zjwt−C,t does not provide any additional

information for managing Sw. If iwt = 1, then zjwt−C,t is immediately known to be 1 + l1

(stage 2). So, all useful information about zjwt−C,t is obtained from iwt itself.

It is now clear that (st, jwt, ywt, iwt) is a minimally sufficient information vector to op-

timally manage subsystem w from period t using a monotone policy. Furthermore, since

all subsytems and units are identical, w (a subsystem index) and jwt (a unit index) do not

provide useful information for decision making purposes; so, we can use a more compact

information vector (st, y, i) where y = yjwt,t and i = iwt. 2

3.2.2 Optimal Policy for Sw

We define R∗
2t(st, y, i) ⊆ {1, 0} as the set of optimal stage 2 decisions at time t if the state of

the exogenous Markov Chain is st and if yjwt,t is y and iwt is i. R∗
2t(st, y, 0) = ∅ since there

is no decision to take at stage 2 if i is zero. Similarly, let ĩwt ∈ {0, 1} be an indicator of

whether unit jwt − C is located at stage 2 or not after the stage 2 decision. R∗
3t(st, y, ĩ) ⊆

{1, 0} is the set of optimal stage 3 decisions at time t if the state of the exogenous Markov

Chain is st and if yjwt,t is y and ĩwt is ĩ. Proposition 1 implies that R∗
3t(st, y, 1) is {0}. That

is, if a unit is present at L2 in a subsystem, it will not be optimal for L3 to release a unit.

Next, we show that there is a “critical distance” policy that is optimal for a subsystem.

We need the following Lemma to prove this fact. The lemma states that if it is (uniquely)

optimal for subsystem w to release unit jwt − C from L2 in period t when the system is in

the Markovian-state st and customer jwt is at a distance y + 1, then it would be (uniquely)

optimal to release it if the customer were any closer. An equivalent claim can be made about

releasing unit jwt from L3.
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Lemma 4 R∗
3t(st, y + 1, 0) = (⊇) {1}, for some y > 1, implies that R∗

3t(st, y, 0) = (⊇) {1}.
Also, R∗

2t(st, y + 1, 1) = (⊇) {1} for some y > C + 1, implies that R∗
2t(st, y, 1) = (⊇) {1}.

Proof: Consider the statement R∗
3t(st, y+1, 0) = {1}, for some y > 1, implies that R∗

3t(st, y, 0)

= {1}. We will prove this by contradiction.

Assume ∃ y > 1 such that R∗
3t(st, y + 1, 0) = {1}, and {0} ∈ R∗

3t(st, y, 0). Consider

two unit capacity subsystems, S1 and S2 at the time of making the stage 3 release decision.

Assume that ĩ1t = ĩ2t = 0, yj1t,t = y, yj2t,t = y + 1, j1t = j and j2t = j + 1. Let S1 and

S2 follow some optimal policies, say Π1 and Π2, respectively. In particular, in period t, Π1

holds unit j1t at L3 in S1 and Π2 releases unit j2t from L3 in S2. By our assumption on R∗
3t,

we know that the decision in S1 is optimal and the decision in S2 is strictly optimal.

Now consider the combined system S1
⋃S2, that contains the units and customers be-

longing to both S1 and S2. (Please see Figure 2.) This new system has a capacity of two

units in each period.

Let us now construct a policy for the combined system S1
⋃S2. In any period from t

onwards, S1
⋃S2 releases the same number of units from L3(L2) as the number of units

released by S1 plus the number of units released in S2 from L3(L2). Furthermore, units in

S1
⋃S2 are always released in a monotone fashion. Let us refer to this policy as Π̃ and its

applications to S1 and S2 as Π̃1 and Π̃2, respectively.

The construction of Π̃ and the fact that customers arrive in the order of their indices

imply that the cost incurred by S1
⋃S2 in any period under Π̃ is no larger than the sum of

the costs incurred by S1 under Π1 and S2 under Π2 in that period, with probability 1. Also,

notice that the cost of S1
⋃S2 under Π̃ equals the sum of the costs for S1 under the policy

Π̃1 and S2 under the policy Π̃2.
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However, notice that Π̃ releases unit j, which belongs to S1, and holds unit j + 1, which

belongs to S2, in period t. From the underlined statement earlier, it is clear that the action in

S2 is strictly suboptimal. This implies that when S1 and S2 use Π1 and Π2, respectively, the

expected sum of the costs incurred by S1 and S2 is strictly smaller than the corresponding

expected sum under Π̃1 and Π̃2.

The conclusions of the preceding two paragraphs contradict each other. This proves the

first statement. The proofs of the remaining statements are identical. 2

Next, we use this lemma to develop the notion of “critical distance” policies. Let us

define

Y ∗
2t(s)

def
= max{y ≥ C + 1 : R∗

2t(s, y, 1) ⊇ {1} } if T − t ≥ T1 and −∞ otherwise;

Y ∗
3t(s)

def
= max{y ≥ 1 : R∗

3t(s, y, 0) ⊇ {1} } if T − t ≥ T2 and −∞ otherwise.

Y ∗
2t(s) is defined in such a way that it is optimal to release unit jwt − C from L2 if and

only if customer jwt is at a distance of Y ∗
2t(s) or closer. This distance Y ∗

2t(s) is a “critical

distance” for L2 at time t and Markovian state st for every subsystem. Similarly, Y ∗
3t(s) is a

critical distance for stage 3.

Now, consider the policy

R2t(s, y, 1) = {1} if y ≤ Y ∗
2t(s) and {0} o.w.

R3t(s, y, 0) = {1} if y ≤ Y ∗
3t(s) and {0} o.w., and,

R3t(s, y, 1) = {0} ∀ y .

It is clear that we have defined the functions R2t and R3t such that they constitute an

optimal policy for a subsystem. We now prove this result.

Theorem 5 Consider subsystem Sw. Assume that there are no units or one unit located at

stage 2, that is L2, at the start of period t. Then, an optimal policy for Sw is to use R2t at

stage 2 and R3t at stage 3 in period t.
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Proof: When iwt is zero, there is no decision to take at L2. When iwt is one, R2t prescribes

an optimal stage 2 decision and this can be seen directly from the definitions of R2t(y, s, 1)

and Y ∗
2t(s). Furthermore, if it is optimal to hold unit jwt − C at L2, Proposition 1 implies

that the optimal decision at stage 3 is to hold unit jwt at L3. For the case where ĩwt is

zero, R3t prescribes an optimal stage 3 decision and this can be seen from the definitions of

R3t(y, s, 0) and Y ∗
3t(s). 2

3.3 Optimality of Modified Echelon Base-Stock Policies in System

S
We are ready to prove that when each subsystem follows the policies prescribed by R2t and

R3t in every period t, the resulting policy for the original system is of the echelon base-stock

type, with the exception that the number of units shipped from either of the two stages, L3

and L2, and the inventory at L2 are never allowed to exceed C. Furthermore, this policy

is optimal for the entire system S according to Theorem 2. Parker and Kapuscinski (2004)

introduced the term “Modified Echelon Base-stock Policies” to refer to such policies.

Theorem 6 Assume that there are γ2 ≤ C units at stage 2, that is L2, at the start of period

t. Consider the beginning of period t and some state s ∈ Ω. An optimal policy for the system

S from this state is ordering q1 units at stage 1 and ordering q2 units at stage 2, that is,

shipping q1 and q2 units from L2 and L3, respectively, where:

q1 = min(γ2, (Y
∗
2t(s)− (C + 1)− E1t)

+) and

q2 = min((Y ∗
3t(s)− 1− E2t)

+, C − γ2 + q1) ,

and E1t and E2t are the echelon-1 and echelon-2 inventory positions at the start of period

t, respectively. That is, a state-dependent, modified echelon base-stock policy with base-stock

levels Y ∗
2t(s)− (C + 1) and Y ∗

3t(s)− 1 at echelons 1 and 2, respectively, is optimal for S.

Proof: It is sufficient to prove that the policy stated in the theorem will be followed by S
when each subsystem Sw follows the policy prescribed by R2t and R3t at stages, 2 and 3,
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respectively.

If there are no backorders at L1, we can renumber the existing units and customers

1, 2, . . . and we will have the relationship yjt = j + 1 for all j. If backorders exist, we can

start numbering the units and customers beyond the backordered customers and the corre-

sponding units as 1, 2, . . .; again, we will have yjt = j + 1 for all j ≥ 1. (Customers with

indices zero or below are backordered, i.e. at distance 1.)

We consider three cases: (i) E1t +γ2 ≤ C and E1t ≥ 0, (ii) E1t ≤ 0, and (iii) E1t +γ2 ≥ C

and E1t ≥ 0.

Case (i): E1t + γ2 ≤ C and E1t ≥ 0.

Now, SE1t+1, . . . ,SE1t+γ2 are the only subsystems that can take release decisions at L2 in

t. Furthermore, using the definition of jwt (recall that jwt is the unit waiting at L3 whereas

the release decision at stage 2 is taken on unit jwt − C), we get

yjwt,t = w + 1 + C ∀ w ∈ {E1t + 1, . . . , E1t + γ2} .

The unit at L2 in Sw in this set will be released if and only if w + 1 + C ≤ Y ∗
2t(s). So, we get

q1 = min{γ2, (Y
∗
2t(s)− (E1t + C + 1))+} .

Case (ii): E1t ≤ 0. Therefore, E1t + γ2 ≤ C. We now have two subcases.

Subcase (iia): E1t + γ2 ≤ 0: In this case, since the total inventory in the system is

negative after accounting for backorders, the customers corresponding to the γ2 units at L2

have already arrived and are therefore at a distance of 1. So, all γ2 units are released if

T − t ≥ T1 and are held otherwise. So,

q1 = 0 if Y ∗
2t(s) = −∞ and = γ2 otherwise.

Using the fact that Y ∗
2t(s) ≥ C +1 when T − t ≥ T1, it is easy to check that this also satisfies

the required formula under the assumptions of the subcase.
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Subcase (iib): E1t +γ2 > 0: Here again, q1 = 0 if Y ∗
2t(s) = −∞. Otherwise, the first −E1t

units from L2 will be released because the corresponding customers have already arrived. In

addition, unit jwt−C will be released from Sw, w ∈ {−E1t +1,−E1t +2, . . . , γ2}, if and only

if yjwt,t ≤ Y ∗
2t(s). For these w, yjwt,t can be verified to be w + C + E1t + 1. So, the unit in

Sw, w ∈ {−E1t + 1,−E1t + 2, . . . , γ2}, is released if and only if w ≤ Y ∗
2t(s)− E1t − (C + 1).

In total, the number of units released from L2 over the γ2 subsystems is

q1 = min{γ2, Y
∗
2t(s)− E1t − (C + 1)} .

Case (iii): E1t + γ2 ≥ C. Therefore, E1t ≥ 0. Here again, q1 = 0 if Y ∗
2t(s) = −∞. Otherwise,

of units in {E1t+1, . . . , E1t+γ2}, we release unit E1t+j if and only if yE1t+j+C,t ≤ Y ∗
2t(s). This

is equivalent to releasing units E1t+j from j ∈ {1, . . . , γ2} such that j ≤ Y ∗
2t(s)−E1t−(C+1).

Therefore,

q1 = min{γ2, Y
∗
2t(s)− E1t − (C + 1)} .

The expression for q1 agrees with the formula in the statement in all three cases. The

derivation for q2 is similar. 2

3.4 Infinite Horizon

Let us briefly discuss two results on the infinite horizon, discounted problem for the two-

echelon system studied in this section.

Theorem 7 Assume that {st} is a time-homogeneous Markov Chain and that there are C

units or less at stage 2, that is L2, at the start of period t. The class of state-dependent,

modified echelon base-stock policies, as described in Theorem 6, is optimal for the system

S when the planning horizon is infinite and the performance measure is the total expected

discounted cost. Furthermore, since {st} is time-homogeneous, the policy does not depend

on the period index, t. That is, for every state s ∈ Ω, there exist parameters y∗2(s) and y∗3(s)

such that

q1 = min(γ2, (y
∗
2(s)− (C + 1)− E1t)

+) and

q2 = min((y∗3(s)− 1− E2t)
+, C − γ2 + q1) ,
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where γ2, q1 and q2 represent the same quantities as in Theorem 6.

Proof: The existence of optimal stationary policies for the system and the subsystems is a

consequence of Theorem 4.1.4 of Sennott (1999). The rest of the proof is the same as the

finite horizon proof. 2.

Next, we show an additional result for systems where |Ω| is one, that is, {dt} is a sequence

of independent and identically distributed random variables. We show the existence of an

optimal policy where the base-stock levels for the two echelons do not differ by more than

C. This result is similar to Proposition 1 in Glasserman and Tayur (1994).

Lemma 8 In addition to the assumptions of Theorem 7, assume |Ω| is one, that is, the

sequence of random variables {dt} is independent and identically distributed. In this case,

an optimal policy can be defined using two stationary parameters, y∗2 and y∗3. Also, assume

that E1t ≤ y∗2 − (C + 1) and γ2 ≤ C, at the start of period 1, that is, echelon 1’s inventory

position is lower than its base-stock level and the on-hand inventory at L2 is not more than

C. Then, there exists an optimal policy such that the base-stock level for echelon 2 is at most

C in excess of the base-stock level for echelon 1. In particular, using the same notation as

Theorem 7, the optimal policy in period t is given by

q1 = min(γ2, (y
∗
2 − (C + 1)− E1t)

+) and

q2 = min[(min{y∗3, y∗2} − 1− E2t)
+, C] .

That is, an echelon base-stock policy is optimal.

Proof: The optimal policy is prescribed in Theorem 7, where y∗2(s) and y∗3(s) are replaced by

y∗2 and y∗3, respectively. Since E1t is smaller than the base-stock level at the start of period 1,

it will always be smaller than the base-stock level when this policy is followed. That is, E1t

≤ y∗2 − (C + 1) at the start of any period t. Since the policy limits the amount of inventory

that can be stocked at L2 to be less than or equal to C, it is clear that the maximum value
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that echelon 2’s inventory position can reach at any time is y∗2−1. Therefore, we can replace

echelon 2’s target base-stock level of y∗3 − 1 with min{y∗3 − 1, y∗2 − 1}. It can be verified that

the expression for q2 stated in this lemma is exactly the same as the corresponding expression

in Theorem 7, though the expression is more compact here. 2

Let us summarize the main structural results of this section. We showed that a state-

dependent, modified echelon base-stock policy is optimal for the system S for the finite

horizon problem and the infinite horizon discounted cost problem. When demands are sta-

tionary through time, we showed that the optimal policy is an echelon base-stock policy for

the infinite horizon, discounted cost problem. The optimality of echelon base-stock policies,

in the stationary, infinite horizon discounted model, is a refinement of the optimality of

modified echelon base-stock policies shown in Corollary 3 of Parker and Kapuscinski (2004)

for the same model.

This concludes our discussion of the two echelon system with a one period lead time

between L3 and L2. Next, we present some results for the case where this lead time is two

periods.

4 Two Echelon Serial Systems with a Two Period Up-

stream Leadtime

In this section, we consider two echelon serial systems with identical capacities at stages 2

and 3 and a two period lead time between these stages. Clearly, the important question is

whether the class of MEBS policies is optimal for these problems. If not, what can we say

about the optimal policy? How complicated can the structure of the optimal policy be? We

answer these questions here.
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Let us first extend the definition of MEBS policies to these systems. When the lead

time between L3 and L2 was one period, we knew that it was never optimal to stock L2 in

excess of C. Now, since the lead time is two periods, it is never optimal for the stock on

hand at L2 plus the stock in the pipeline from L3 to L2 to exceed 2C. This should be the

modification to echelon base-stock policies. However, this does not appear to be the form

of the optimal policy according to an example presented in Speck and van der Wal (1991).

They show that in the optimal policy, the number of units released from stage 2 depends

non-trivially on the number of units in stock at L2 and in the pipeline between L3 and L2.

In particular, as this total amount of inventory increases, the amount released from stage 2

may increase and this is observed to happen even when the quantity released from stage 2 is

initially strictly less than the stock there. This clearly violates the conditions of an MEBS

policy. As Parker and Kapuscinski (2004) comment, it is still possible that the structure of

the policy is a modification of echelon base-stock policies in some other way. From a more

abstract perspective, it might be possible to find an optimal policy that depends only on

two parameters, one for each echelon for a given set of problem data, in every period and

state s ∈ Ω. We show that an optimal policy will depend on a maximum of four parameters,

rather than two. The rest of this section is devoted to the development of this result. We

omit those proofs that are identical to corresponding proofs for the one period lead time case.

First, we know from Lemma 1 that monotone policies are optimal for this system. We

also know from Theorem 2 that this system can be decomposed into C subsystems, each with

unit capacities at L2 and L3. Optimally managing each of these subsystems is an optimal

policy for the entire system.

Note: Throughout this section, we will assume that the number of units at L2 and in the

pipeline between L3 and L2 is less than or equal to 2 · C at the start of period t. This

assumption is justified by Proposition 1.
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4.1 Analysis of a Subsystem

Let us now examine subsystem w’s decision problem in period t. We start by finding a

sufficient information vector for the subsystem.

As before, let jwt be the lowest index of the units in subsystem w located at stage 3, that

is, location l1 + 3. In other words, unit jwt is the only candidate for being released from L3

in period t. Note that location l1 + 2 represents the pipeline between L3 and L2. Location

l1 + 1 is L2. There are five possibilities regarding units being present at locations l1 + 2 and

l1 + 1. Let (i1, i2) ∈ I2, where I2 is {(0, 2), (1, 1), (1, 0), (0, 1), (0, 0)}, represent the number

of units at these two locations. That is, at the time of stage 2’s release decision, there are i1

units in the pipeline between stages 2 and 3, and, i2 units at stage 2. Note that I2 represents

all the possible realizations of (i1, i2) if an optimal policy has been followed in periods 1, 2,

. . . t − 1 and there were 2 units or less, in total, in locations 2 + l1 and 1 + l1 at the start

of period 1. This can be seen from the following facts: (i) i1 is the number of units shipped

by L3 in the previous period and is constrained to be 0 or 1 because of the unit capacity

restriction and (ii) i1 + i2 ≤ 2 when an optimal policy is followed, as proved in Proposition 1.

Let y be the distance of customer jwt. Using exactly the same arguments as in Section

3, we can see that (t, s, i1, i2, y) is a sufficient information vector required by subsystem w at

the start of period t. Similarly, let i
′
2 be the number of units at L2 after the stage 2 shipments

are sent out and the i1 units are moved from the pipeline to stage 2 inventory, but before

the stage 3 decision. Clearly i
′
2 ≤ 2 and (t, s, i

′
2, y) is a sufficient information vector required

at the time of stage 3’s decision.

Let us now examine stage 2’s decision problem closely. Clearly, the only states where

a decision needs to be taken at stage 2 are states such that i2 ≥ 1, that is, (i1, i2) ∈
{(0, 1), (1, 1), (0, 2)}. Observe that the optimal release decision for stage 2 is the same when

(i1, i2) is either (1, 1) or (0, 2) because any pair of stage 2 and stage 3 decisions in {1, 0}2
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leads to exactly the same state of the system at the beginning of the next period, in either

case.

Let R∗
2t(s, y, i1, i2) and R∗

3t(s, y, i
′
2) ⊆ {1, 0} be the set of optimal stage 2 and stage 3

decisions given the information vectors. Using arguments similar to those in the proof of

Lemma 4, we can prove the following lemma.

Lemma 9

(0) R∗
2t(st, y + 1, 1, 1) = R∗

2t(st, y + 1, 0, 2)

(i) R∗
3t(st, y + 1, 0) = (⊇) {1} , for some y > 1 ⇒ R∗

3t(st, y, 0) = (⊇) {1} ,

(ii) R∗
3t(st, y + 1, 1) = (⊇) {1} , for some y > 1 ⇒ R∗

3t(st, y, 1) = (⊇) {1} ,

(iii) R∗
2t(st, y + 1, 0, 1) = (⊇) {1} , for some y > C + 1

⇒ R∗
2t(st, y, 0, 1) = (⊇) {1} and

(iv) R∗
2t(st, y + 1, 1, 1) = R∗

2t(st, y + 1, 0, 2) = (⊇) {1} , for some y > 2C + 1

⇒ R∗
2t(st, y, 1, 1) = R∗

2t(st, y, 0, 2) = (⊇) {1} ,

It is also clear that R∗
3t(st, y, 2) = {0} due to Proposition 1. Furthermore, we know that

R∗
3t(st, 1, 0) = R∗

3t(st, 1, 1) is {1} if T − t ≥ T2 because the customer corresponding to the

unit under consideration has arrived already. Similarly, when T − t ≥ T1, R∗
2t(st, y, 0, 1) is

{1} if y ≤ C + 1, and, R∗
2t(st, y, 1, 1) and R∗

2t(st, y, 0, 2) are both {1} if y ≤ 2C + 1. This is

because if i1 + i2 is two, then the unit waiting to be released at stage 2 is jwt − 2C. So, if

customer jwt is within a distance of 2C + 1, customer jwt − 2C has arrived.

Let us now proceed in exactly the same fashion as the one period lead time case and

develop the notion of “critical distance” policies. Let us define

Y ∗
2t(s, 2)

def
= max{y ≥ 2 · C + 1 : R∗

2t(s, y, 1, 1) = R∗
2t(s, y, 0, 2) ⊇ {1}} if T − t ≥ T1 and

def
= −∞ o.w.;

27



Y ∗
2t(s, 1)

def
= max{y ≥ C + 1 : R∗

2t(s, y, 0, 1) ⊇ {1}} if T − t ≥ T1 and −∞ o.w.;

Y ∗
3t(s, 0)

def
= max{y ≥ 1 : R∗

3t(s, y, 0) ⊇ {1}} if T − t ≥ T2 and −∞ o.w.;

Y ∗
3t(s, 1)

def
= max{y ≥ 1 : R∗

3t(s, y, 1) ⊇ {1}} if T − t ≥ T2 and −∞ o.w..

Now, consider the policy

R2t(s, y, 1, 1) = R2t(s, y, 0, 2) = {1} if y ≤ Y ∗
2t(s, 2) and {0} o.w.

R2t(s, y, 0, 1) = {1} if y ≤ Y ∗
2t(s, 1) and {0} o.w.

R3t(s, y, 0) = {1} if y ≤ Y ∗
3t(s, 0) and {0} o.w.

R3t(s, y, 1) = {1} if y ≤ Y ∗
3t(s, 1) and {0} o.w., and,

R3t(s, y, 2) = {0} ∀ y .

This is clearly an optimal policy for the subsystem. We state this result formally.

Lemma 10 Assume that the total amount of inventory at stage 2 and in the pipeline to

stage 2 is not more than two units at the start of period t. Then, an optimal policy for any

subsystem is to use R2t at stage 2 and R3t at stage 3 in period t.

We are now ready to state a lemma that relates the critical distances for each echelon

through inequalities.

Lemma 11 (i) Y ∗
2t(s, 2) ≥ Y ∗

2t(s, 1) + C and (ii) Y ∗
3t(s, 0) ≥ Y ∗

3t(s, 1).

Before proving this lemma, let us discuss the intuition. First, consider the inequality

relating the stage 2 critical distances. Let us consider two scenarios, (A) and (B), at the

start of period t in state s ∈ Ω. In (A), subsystem w has units j and j + C located at

stage 2 and unit j + 2C waiting at stage 3. In (B), unit j is located at stage 2 while unit

j + C is waiting at stage 3. Let us assume the vector of customer distances are the same in

both the scenarios. In (A), observe that unit j is constraining unit j + C, in the sense that

unit j + C cannot be released prior to unit j and is forced to wait at stage 2 until unit j

is released. Consequently, if we Hold unit j in this period, we are constraining unit j + C
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for at least one more period. In (B), if we Hold unit j, we will not constrain unit j + C

in the next period because it cannot reach stage 2 in the next period even if it is released

from stage 3 in the current period. So, intuitively, a unit is more likely to be released from

stage 2 if one more unit belonging to the same subsystem is located at stage 2 or is in transit

to stage 2 than otherwise because of the constraint the unit imposes on the next unit in

the same subsystem. It is easy to see that this notion can be formalized by the inequality

Y ∗
2t(s, 2) ≥ Y ∗

2t(s, 1) + C (Statement (i) of the lemma). Using identical reasoning, we can

argue intuitively that a unit is less likely to be released from stage 3 if a unit belonging to the

same subsystem is located at stage 2 at the time of the stage 3 decision than otherwise. This

notion could be expressed by the inequality Y ∗
3t(s, 0)≥ Y ∗

3t(s, 1) (Statement (ii) of the lemma).

Proof: We prove statement (i) by using an approach similar to the proof of Lemma 4. As-

sume Y ∗
2t(s, 2) < Y ∗

2t(s, 1) + C. We will contradict this statement by constructing two new

systems A and B both with unit capacity. We index the units and customers in A(B) as

1A, 2A . . .(1B, 2B, . . .), respectively.

We assume that the customer distances in each of these two systems evolves as follows.

Customers 1A and 1B are mapped to customer 1 in S, customers 2A and 2B are mapped

to customer 1 + C in S, customers 3A and 3B are mapped to customer 1 + 2 · C in S, . . ..

In other words, the customer arrival processes in A and B are identical to that in S1. Note

that in A and B, customers with consecutive indices are separated by a distance of C. In

that sense, the construction of A and B is different from both S and S1.

We further assume that (a) z1A,t = 1 + l1 (stage L2), z2A,t = 2 + l1 and z3A,t = 3 + l1

(stage L3), (b) y3A,t = Y ∗
2t(s, 1) + C (this implies that y3A,t > Y ∗

2t(s, 2)), (c) z1B,t = 1 + l1

(stage L2), z2B,t = 3 + l1 (stage L3), (d) y2B,t = Y ∗
2t(s, 1). (Please see Figure 3.)
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Now, (d) implies it is optimal to release unit 1B from L2 and (b) implies it is strictly

optimal to hold unit 1A at L2. Let A and B make these decisions in period t and also use

an optimal policy in all subsequent periods.

We can now consider two new systems C and D that are identical initially to A and B,

respectively. We consider a policy on C and D such that the total number of units released

from L2 and from L3 is the same as the corresponding quantities in A and B; in addition,

units are released from the union of C and D in the precedence order 1A < 1B < 2A <

2B < 3A < 3B . . .. Note that the states of A⋃B and C ⋃D, at the beginning of period t,

are monotone with respect to this precedence order.

It is easy to see that the cost incurred by C ⋃D in any period is no larger than the cost

incurred by A⋃B in that period, with probability 1. However, the release decisions in C ⋃D
are the reverse of the release decisions in A⋃B in period t. However, the strict optimality of

the decision to hold unit 1A at L2 implies that the expected cost incurred by A⋃B in peri-

ods [t, T ] is strictly smaller than the expected cost incurred by C ⋃D. This is a contradiction.

The proof of statement (ii) is identical. 2

4.2 Optimality of Two-tier Base-stock Policies in S
We now use the structure of the optimal policy for a subsystem to infer the structure of the

optimal policy for the entire system, S.

Notice that there are two stage 2 critical distances for a subsystem; the release decision

is based on the critical distance corresponding to whether the inventory vector at locations

(2 + l1, 1 + l1) is (0, 1) or (1, 1). Similar distinctions exist for stage 3 also. So, in order

to know how many units are released from stage 2 in the entire system, we need to know

how many subsystems have the inventory vector compositions (0, 1), (1, 1) etc. This necessi-
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tates the classification of the subsystems into different sets. This is the next step in our study.

Let A1 and A2 be the number of units in the system in transit to stage 2 and at stage

2, respectively, at the beginning of period t. Without loss of generality, we can assume that

the A2 units at stage 2 are numbered 1, 2, . . ., A2 and the A1 units in transit to 2 are

numbered A2 + 1, A2 + 2, . . ., A1 + A2. Notice that this numbering determines the num-

ber of units at stage 2, i2w, and number of units in transit to stage 2, i1w, in each subsystem w.

Let us now classify the C subsystems into 5 mutually exclusive categories. Let Nab

= {w : i1w = a, i2w = b} for (a, b) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}. Let nab = |Nab|.
Clearly, n02 = (A2 − C)+, because subsystems 1, 2, . . . , (A2 − C)+ have two units present

at stage 2 and none in transit. That is, N02 = {1, 2, . . . , (A2 − C)+}. Similarly, N11 =

{(A2−C)+ +1, (A2−C)+ +2, . . . , (A1 +A2−C)+} and consequently, n11 = (A1 +A2−C)+

- (A2 − C)+. (Recall that A1 + A2 ≤ 2C by assumption and A1 ≤ C because C is the

maximum number of units that could have been released by stage 3 in the previous period.

These inequalities are useful in verifying the composition of these 5 sets.) Furthermore, we

have n11 + n01 + 2n02 = A2 and consequently, n01 = min(A2, C) − (A1 + A2 − C)+. Also,

N01 = {(A1 + A2 − C)+ + 1, (A1 + A2 − C)+ + 2, . . . , min(A2, C)}.

Let us first discuss the optimal ordering policy for echelon 1, that is, the optimal release

policy for stage 2. The following theorem characterizes the structure of an optimal policy,

which is derived by using policy R2t at stage 2 in every subsystem in period t. The proof is

similar to the proof of Theorem 6 and is omitted.

Theorem 12 Assume that there are 2C units or less at stage 2 and in transit to stage 2 at

the start of period t. Consider the beginning of period t and some state s ∈ Ω. An optimal

ordering policy for echelon 1, or equivalently, an optimal release policy for stage 2, dictates

the release of q1 units from stage 2, where q1 = q
(1)
1 + q

(2)
1 , where, q

(1)
1 and q

(2)
1 are computed
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as follows.

q
(1)
1 = min

(
(Y ∗

2t(s, 2)− (2C + 1)− E1t)
+, n02 + n11

)
.

If q
(1)
1 < n02 + n11, then q

(2)
1 = 0. Otherwise,

q
(2)
1 = min

(
(Y ∗

2t(s, 1)− (C + 1)− (E1t + q
(1)
1 ))+, n01

)
.

In words, the optimal policy says the following: first, echelon 1 should order-up-to Y ∗
2t(s, 2)−

(2C + 1), if possible, using only the units that are elements of N02 ∪N11. If all the elements

of N02 ∪N11 have now been released, then echelon 1 should order up to Y ∗
2t(s, 1)− (C + 1), if

possible, using the elements of N01. (We refer to this policy as a “two-tier, echelon base-stock

policy”.)

Let us now proceed to analyze the structure of an optimal policy for echelon 2. That is,

let us examine the stage 3 release decision after the stage 2 release decision has been taken,

and the units released from stage 2 have moved to the subsequent location and the units in

transit to stage 2 have moved to stage 2. So there are no units in transit to stage 2 at this

point in time.

Let A be the number of units at stage 2. Without loss of generality, we can assume that

the A units at stage 2 are numbered 1, 2, . . ., A. Notice that this numbering determines ĩw,

the number of units at stage 2 in each subsystem w. Let us now classify the C subsystems

into 3 mutually exclusive categories. Let Na = {w : ĩw = a}, a ∈ {0, 1, 2} and let na denote

|Na|. It is easy to verify that n0 = (C − A)+ and n1 = min(A,C)− (A− C)+. Since there

are C subsystems in total, n2 is C − (n0 + n1), that is, (A− C)+.

The following theorem characterizes the structure of an optimal policy, which is derived

by using policy R3t at stage 3 in every subsystem in period t. The proof is similar to the

proof of Theorem 6 and is omitted.

Theorem 13 Assume there are 2C units or less at stage 2 plus in transit to stage 2 at the

start of period t. Consider the point in time when stage 3’s release decision has to be made
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in period t and some state s ∈ Ω. An optimal ordering policy for echelon 2, or equivalently,

an optimal release policy for stage 3, dictates the release of q2 units from stage 3, where q2

= q
(1)
2 + q

(2)
2 , where, q

(1)
2 and q

(2)
2 are computed as follows.

q
(1)
2 = min

(
(Y ∗

3t(s, 0)− 1− E2t)
+, n0

)
.

If q
(1)
2 < n0, then q

(2)
2 = 0. Otherwise,

q
(2)
2 = min

(
(Y ∗

3t(s, 1)− 1− (E2t + q
(1)
2 ))+, n1

)
.

In words, the optimal policy says the following: first, echelon 2 should order-up-to Y ∗
3t(s, 0)−1,

if possible, using only the units that are elements of N0. If all the elements of N0 have now

been released, then echelon 2 should order up to (Y ∗
3t(s, 1)−1), if possible, using the elements

of N1.

Theorem 13 indicates that this optimal policy for echelon 2 is also a “two-tier” echelon

base-stock policy.

Note that Theorems 12 and 13 can also be shown to hold in the infinite horizon, dis-

counted cost version of the problem. See the discussion in section 3.4.

One final comment about “two-tier” echelon base-stock policies: note that the policy for

echelon 1 requires the knowledge of A1 and A2, the inventory in transit to stage 2 and on

hand at stage 2 explicitly. An echelon base-stock policy would have required the knowledge

of A2 only. Similarly, the “two-tier” policy at echelon 2 requires the knowledge of A, the

number of units at stage 2, which an echelon base-stock policy would not.
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5 Longer Serial Systems: Optimality of Multi-Tier Base-

stock Policies

Next, we comment briefly about the optimal policy when the lead time between stages 3 and

2 is an arbitrary integer and/or when there are more than three stages in the serial system.

We know Proposition 1 holds for these systems. Also, Theorem 2 can be used to decom-

pose N echelon, serial systems with identical capacities at all physical stages and arbitrary

lead times into serial systems with unit capacities at all physical stages. Now, we can use

the proof technique we used for the two echelon system with a two-period upstream lead

time. For every echelon n, we can classify the subsystems into several categories based on

the positioning of inventories within each subsystem. For each of these categories, the opti-

mality of monotone policies leads to the existence of a critical distance, which in turn, leads

to a base-stock level. This is a multi-tier, base-stock policy, in the sense that there is a

base-stock level corresponding to every category of subsystems. Thus, for each echelon, a

“multi-tier base-stock policy” is optimal. The number of “tiers” grows exponentially in the

total leadtime of the system between stages 2 and N + 1. In fact, it is easy to show that the

number of tiers at each echelon is less than 2MN+1−M2 .

Lemma 14 Consider any subsystem Sw. Assume that for every n, the number of units at

stage n plus the number of units in transit to stage n, at the start of period t, does not exceed

ln. Then, in period t, the optimal release decision at any stage is determined by at most

2MN−M2 parameters.

Proof: Consider a particular subsystem, Sw, at the time the stage n release decision is

made. Let a = (aMN
, aMN−1 . . . , aM2+1, aM2) be the vector denoting the number of units lo-

cated at each of the locations (MN , MN − 1 . . . , M2 + 1,M2). Each component in this vector

corresponding to a transit location belongs to {0, 1}. The component corresponding to any
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stage Lm belongs to {0, 1, . . . , lm}.

As in earlier sections, a and yjwt,t (the distance of the customer corresponding to the

waiting unit at stage LN+1) are sufficient to determine the optimal decision. Furthermore,

as discussed for the simpler models earlier, the optimal decision for any vector that has mul-

tiple units at some stages is identical to the optimal decision for a vector whose components

are all in {0, 1}. For example, consider a two echelon subsystem with a leadtime of 3 periods

between L3 and L2. Let the vector a = (1, 0, 2) or (0, 0, 3) or (0, 1, 2). The optimal decision

at any stage given any of these vectors is identical to the optimal decision given the vector

(1, 1, 1).

So, the optimal decisions for a subsystem in a period are determined by mapping a to

the appropriate binary vector. Therefore, it suffices to determine the optimal decisions for

the 2MN−M2 such vectors. 2

Let us now study the optimal policy for the entire system. From the lemma above, we

know that for every stage there are at most 2MN−M2 critical distances determining the release

decision. So, the aggregate number of units released optimally in a system is computed as

follows. Determine the subsystems corresponding to each of the 2MN−M2 inventory configu-

rations. For each such configuration, the critical distances determine a base-stock policy at

each echelon. The aggregate number of units released from each stage as a result of these

base-stock policies prescribes the optimal policy for the entire system. Since there are several

base-stock levels possible for each stage, we call these policies multi-tier base-stock policies.

Corollary 1 Assume there are ln · C or fewer units at stage n plus in transit to stage n at

the start of period t, for every n. The optimal policy in this period can be characterized by

at most 2MN−M2 ·N parameters; in other words, for every stage, there are at most 2MN−M2

base-stock levels.
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6 Endnotes

1. Timewise Convex Penalty Costs: We briefly discuss the case of holding and backorder

costs that are increasing and convex with respect to time. For example, consider a supplier

who has an advertised delivery-time promise which is backed-up by discounts to the customer

when the promise cannot be met. This could lead to convex backordering costs. Please see

Bhargava et al. (2005) for several examples from the online retail industry that are similar

in spirit.

Let hn(t) denote the holding cost associated with a unit if it stays at stage n for exactly

t time periods. Similarly, b(t) denotes the backorder cost associated with a unit of demand

that is backordered for exactly t time periods. hn(0) is zero for all n and b(0) is zero.

It can easily be verified that the results of this paper hold under the assumptions that

(a) hn(t) is convex and non-decreasing for all n, and, (b) b(t) is convex and non-decreasing.

This is related to Derman and Klein (1958); they present conditions under which FIFO (first

in, first out) or LIFO (last in, first out) release policies are optimal in an environment where

units of different ages are available to meet future demands.

2. Stochastic Lead Times: Consider the following stochastic lead time model first introduced

by Kaplan (1970) and subsequently redefined and simplified by Nahmias (1979), both in the

context of single stage systems. The key feature of this model is that units do not overtake

one another despite the randomness in the lead times.

Model L: There is a random variable ρnt, whose distribution is determined completely by

st, that specifies the least “age” of units that will be delivered in period t at Ln. This means

all units shipped by Ln+1, or ordered by Ln, in period t− ρnt or earlier are delivered at Ln

no later than period t. The maximum value the random variable ρnt can take is ln and the

probability mass function of ρnt is known for every possible value of st. It can be verified
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that the maximum possible lead time to stage Ln under this model is also ln.

All the results and the proofs in this paper hold under this model with the understanding

that ln now represents the maximum possible leadtime to Ln. In particular, the following

result can be shown for two echelon systems. If the leadtime between L3 and L2 is random

but never exceeds two periods, two-tier base-stock policies are optimal. For serial systems

with arbitrary number of stages and stochastic leadtimes, multi-tier base-stock policies are

optimal and the bound on the number of tiers is still the same.

7 Conclusions

We have extended the “single-unit single-customer” approach to a class of capacitated serial

systems. In particular, two echelon serial systems with identical capacities at both echelons

are studied in detail. When the lead time at the upstream echelon is one period, we show

that modified echelon base-stock policies are optimal using a decomposition approach. For

the stationary infinite horizon discounted cost model, we further refine this result by demon-

strating that echelon base-stock policies are optimal. When the lead time to the upstream

echelon is two periods, the class of “two-tier base-stock policies” are shown to be optimal.

We also argue that a generalization of these policies, ones we call “multi-tier base-stock poli-

cies”, are optimal for multi-echelon serial systems with identical capacities at all physical

stages and stochastic, non-crossing lead times. We also provide a bound on the number of

tiers or parameters required to specify these policies.
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Table 1: Glossary of General Notation

Notation Meaning

n index for a stage.

N, N + 1 number of echelons and stages

C shipping capacity in units per period

LN+1 external supplier: infinite inventory and a capacity of C

L2, . . . , LN other stages with shipping capacity of C

L1 inventory storage facility serving customers

ln lead time between Ln+1 and Ln

t, T period index and number of time periods

st state of the exogenous Markov chain in t

dt demand in t

Mn location of Ln, that is, 1 + l1 + . . . + ln−1

yjt(zjt) distance(location) of customer(unit) j in t

S system consisting of all units and customers

xt (st, (z1t, y1t), (z2t, y2t), . . .)

Znt inventory on hand at Ln at the beginning of t

qnt quantity ordered by Ln and shipped by Ln+1 in t

ujt 1, if unit j is released from some stage in t and 0, otherwise

Ent echelon n inventory position at the beginning of t

E
′
nt echelon n inventory position at the end of t

{hn}, b echelon holding costs and backorder cost

Tn min{T : when there are at least T periods left in the horizon,

it is optimal to have a non-negative echelon n inventory position, if possible.}
α discount factor
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Table 2: Glossary of Notation for Section 3

Notation Meaning

xw
t (st, (zwt, ywt), (z(w+C)t, y(w+C)t), . . .)

jwt min{j ∈ {w, w + C, w + 2C, . . .} : unit j is at L3}
U∗

2t(x
w
t ) ⊆ {0, 1}; set of optimal stage 2 decisions at time t,

if xw
t is such that unit jwt − C is present at L2

x̃w
t state of Sw after the stage 2 decision

U∗
3t(x̃

w
t ) ⊆ {0, 1}; set of optimal stage 3 decisions for Sw

iwt ∈ {0, 1}; indicator of whether unit jwt − C is located at stage 2 or not.

R∗
2t(st, y, i) ⊆ {1, 0}; set of optimal stage 2 decisions if yjwt,t is y and iwt is i.

ĩwt ∈ {0, 1}; indicator of whether unit jwt − C is located at stage 2 or not

at the time of the stage 3 decision.

R∗
3t(st, y, ĩ) ⊆ {1, 0}; set of optimal stage 3 decisions if yjwt,t is y and ĩwt is ĩ

Y ∗
2t(s) max{y ≥ C + 1 : R∗

2t(s, y, 1) ⊇ {1} } if T − t ≥ T1 and −∞ otherwise

Y ∗
3t(s) max{y ≥ 1 : R∗

3t(s, y, 0) ⊇ {1} } if T − t ≥ T2 and −∞ otherwise

R2t(s, y, 1) {1} if y ≤ Y ∗
2t(s) and {0} o.w.

R3t(s, y, 0) {1} if y ≤ Y ∗
3t(s) and {0} o.w.

R3t(s, y, 1) {0} ∀ y.

γ2 number of units at L2 in S
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Table 3: Glossary of Notation for Section 4

Notation Meaning

xw
t (st, (zwt, ywt), (z(w+C)t, y(w+C)t), . . .)

jwt min{j ∈ {w, w + C, w + 2C, . . .} : unit j is at L3}
(i1, i2) ∈ I2, where I2 = {(0, 2), (1, 1), (1, 0), (0, 1), (0, 0)};

represents the number of units at locations (2 + l1, 1 + l1)

i
′
2 number of units at L2 after the stage 2 shipments are sent out

and the i1 units are moved from the pipeline to stage 2

R∗
2t(s, y, i1, i2) ⊆ {1, 0}; set of optimal stage 2 decisions

R∗
3t(s, y, i

′
2) ⊆ {1, 0}; set of optimal stage 3 decisions

Y ∗
2t(s, 2) max{y ≥ 2 · C + 1 : R∗

2t(s, y, 1, 1) = R∗
2t(s, y, 0, 2) ⊇ {1}} if T − t ≥ T1

and −∞ o.w.

Y ∗
2t(s, 1) max{y ≥ C + 1 : R∗

2t(s, y, 0, 1) ⊇ {1}} if T − t ≥ T1 and −∞ o.w.

Y ∗
3t(s, 0) max{y ≥ 1 : R∗

3t(s, y, 0) ⊇ {1}} if T − t ≥ T2 and −∞ o.w.

Y ∗
3t(s, 1) max{y ≥ 1 : R∗

3t(s, y, 1) ⊇ {1}} if T − t ≥ T2 and −∞ o.w.

R2t(s, y, 1, 1) {1} if y ≤ Y ∗
2t(s, 2) and {0} o.w.

= R2t(s, y, 0, 2)

R2t(s, y, 0, 1) {1} if y ≤ Y ∗
2t(s, 1) and {0} o.w.

R3t(s, y, 0) {1} if y ≤ Y ∗
3t(s, 0) and {0} o.w.

R3t(s, y, 1) {1} if y ≤ Y ∗
3t(s, 1) and {0} o.w.

R3t(s, y, 2) {0} ∀ y

A1 number of units in S in transit to stage 2

A2 number of units in S at stage 2

Nab {w : i1w = a, i2w = b} for (a, b) ∈ {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}
nab |Nab|
A number of units at L2 in S at the time of the stage 3 decision

Na {w : ĩw = a}, a ∈ {0, 1, 2}
na |Na|
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Figure 1: Locations of Units and Distances of Customers
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Figure 2: Proof of Lemma 4 – S1
⋃S2
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