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Abstract

We study periodic-review inventory replenishment problems with fixed setup costs, and show

the optimality of (s, S) inventory replenishment policies. We consider several sales mechanisms,

e.g., auction mechanisms, name-your-own-price mechanisms, and multiple heterogeneous sales

channels. We prove this result by showing that these models satisfy the Unifying Assumption of

Huh and Janakiraman (2004), which is a sufficient condition for the optimality of (s, S) policies.

Thus, this paper shows the significance of (s, S) policies by demonstrating its optimality in new

settings motivated by the increasing popularity of e-commerce.
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1 Introduction

In this paper, we study periodic-review inventory replenishment problems with fixed setup costs. In

the classical literature on inventory theory, products are assumed to be sold at an exogenously fixed

price. The demand distribution in each period is exogenously determined; the manager is assumed

to have no control over demand. With the rise of e-commerce, managers have an increased capability

to control demand by (i) dynamically changing prices (from now, we refer to this as the “posted

price channel”), (ii) using electronic auctions, or (iii) a combination of such choices. When there is

a fixed cost of ordering, we show that the optimal replenishment policy is of the (s, S) type, thereby

demonstrating the robustness of this simple and popular policy in a variety of emerging settings.

We briefly discuss the possible rationales for dynamic demand control (e.g., dynamic pricing).

For non-replenishable and perishable products like airline tickets, revenues can be enhanced sig-

nificantly by changing prices dynamically based on the availability of inventory and the time until

departure. The underlying economic reason is that the marginal value of holding a unit of inventory

is continuously changing through time. For replenishable and non-perishable products, there has

been a recent interest in studying inventory models with dynamic demand control. It is easy to

see that the optimal demand control is static over time under the conditions of (i) a stationary

demand environment, (ii) a sufficiently long planning horizon, and (iii) inventory replenishment

every period. In such models, the value of holding inventory does not change over time. However,

when there is a positive setup cost, the time between two successive orders is not a constant and can

be large; therefore, the optimal demand control parameter will be dynamically changing. In this

paper, we study the optimal inventory replenishment problem with a fixed setup cost and dynamic

demand control.

As a motivating example, consider a seller who has a fixed cost for replenishing inventory

and sells through an online auction channel like eBay. Each week, she auctions her inventory

using a suitably determined reserve price. Any unsold inventory is carried over to the next week.

The seller’s optimal control problem is to maximize her expected profit over a planning horizon.

In each week, she has to decide whether to place a replenishment order or not, and, if so, how

much to order; also, she has to determine the reserve price for that week’s auction depending

on the available inventory. Also, consider an industrial parts distributor with a large number of
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customers. Buyers arrive sequentially, and the sales manager needs to decide the minimum price

at which an order will be accepted. This minimum price dynamically changes over time depending

on the inventory availability. This paper shows that under reasonable assumptions, the optimal

inventory replenishment policy in models such as these examples is of the (s, S) type.

In the classical approach, proving the optimality of (s, S) policies is based on a dynamic program-

ming formulation. Its value function exhibits a certain structure, which is shown to be preserved

by an inductive argument. When there is no sales lever, this structure is K-convexity, a concept

due to Scarf (1960). Nearly half a century later, Chen and Simchi-Levi (2003a,b) have extended it

to “symmetric K-convexity” to establish the optimality of (s, S) policies when the demand distri-

bution in each period is a function of the price set by the manufacturer in that period. A handful

of papers have emerged to show the same result for related models with dynamically posted prices,

e.g., Chen et al. (2003); Feng and Chen (2003).

A recent paper by Huh and Janakiraman (2004) provides an alternate approach for proving

optimality results in stochastic inventory models with multiple sales levers. (We call any decision

variable that affects the demand distribution as a sales lever, for example, price.) This approach

is constructive and works as follows. For any policy that is not of the (s, S) type, they construct

an alternate policy such that it experiences strictly higher expected profits than the first in the

initial periods, after which it couples with the original policy. They have identified a set of sufficient

conditions, called the Unifying Assumption, for the optimality of (s, S)-type replenishment policies.

They show that this Unifying Assumption is satisfied by existing models in the literature that

combine pricing and inventory decisions.

While Huh and Janakiraman (2004) have only considered the single sales channel with dynam-

ically posted prices, we show in this paper that the Unifying Assumption is applicable in more

general settings. For example, we use it to demonstrate the optimality of (s, S) policies when

demand is controlled using auctions with dynamically changing reserve prices. Furthermore, it is

satisfied in an environment with multiple sales channels: for example, one channel which dynami-

cally posts the unit price, and another channel which runs an auction in every period. Therefore,

this paper, together with Huh and Janakiraman (2004), demonstrates that there is sufficient struc-
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ture in inventory models for the optimality of (s, S) policies, even when sales are conducted through

a variety of channels and influenced by a variety of decision variables.

The remainder of the paper is organized as follows. In section 2, we present a review of the liter-

ature in this area. Section 3 contains the basic model and the main result of Huh and Janakiraman

(2004) since their result is essential to this paper. In section 4, we develop an inventory replen-

ishment model in which sales are conducted through auctions. Section 5 contains a model where

customers arrive and make price offers which can be accepted or rejected by the seller. Section 6

describes a model with multiple sales channels. In section 6.1, we study a model with sequential

sales channels, where the first channel is a posted price channel, and the second channel is an

auction channel. In sections 6.2 and 6.3, we analyze models in which sales are conducted through

multiple channels simultaneously. Section 7 contains a modification of the dynamic pricing model

in which the seller has the capability of dynamically changing the price between two successive

ordering epochs. We conclude in section 8.

2 Literature Survey

Combined Pricing-Inventory Control. Recently, there has been a growing interest in periodic-

review inventory models in which demand is stochastic and influenced by the pricing decision, i.e.,

demand D(p) = D(p, ε) is a function of price p, where ε is a stochastic component. When the fixed

setup cost of inventory replenishment is zero and excess demand is backordered, Federgruen and

Heching (1999) showed the optimality of the base stock inventory policy. Establishing the structure

of optimal inventory policies is more challenging when the fixed setup cost is strictly positive.

However, under the assumption of complete backlogging, Chen and Simchi-Levi (2003a,b) showed

the optimality of (s, S) inventory policies for finite and infinite horizon models under different

assumptions. They used the term (s, S, p) policy, which refers to an (s, S) inventory policy where

the price p depends on y, the inventory level after ordering. Under the assumption of lost sales,

Chen et al. (2003) showed a similar result using a finite horizon model. For stationary systems, Huh

and Janakiraman (2004) used an alternate proof technique to obtain a few extensions: (i) the joint

concavity of the expected single-period profit in Chen and Simchi-Levi (2003b) can be replaced by

the weaker assumption of joint quasi-concavity, and (ii) the lost sales result of Chen et al. (2003)
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can be extended to the infinite horizon discounted profit criterion. For more references, please see

Huh and Janakiraman (2004).

Auctions and Other Sales Channels. Single-period auctions have been well-studied in the

economics literature. We refer readers to a textbook by Krishna (2002) for details. Inspired by

industry practices such as the buy-it-now feature of eBay and other online auctions, a number of

recent papers have studied combining an auction and a buy-it-now price, e.g., Budish and Takeyama

(2001); Matthews (2003); Hidvegi et al. (2002). They showed that the seller sets the buy-it-now

price such that certain bidders may prefer buying at that posted price as opposed to participating

in the auction provided that either the buyers are risk-averse or the seller is risk-averse. These

three papers assume that only one unit is being auctioned.

There are several papers that have addressed maximizing the seller’s revenue when a finite

quantity is sold over a time horizon. Some of them use auctions exclusively (Segev et al. (2001);

Lavi and Nisan (2004); Vulcano et al. (2002); Gallien (2002)) while others use a combination of

auctions and posted prices (Etzion et al. (2004); Caldentey and Vulcano (2004)). The latter set of

papers assumes that customers arrive in a single stream, observe both channels, and decide which

channel to purchase from. In contrast to this assumption, in our multiple channel model of Section

6, customers arrive in each sales channel in a separate stream. Depending on the context of the

application, one model is certainly more applicable than the other. For an excellent review of

management science research on online auctions, see Pinker et al. (2003).

The only paper to our knowledge that considers inventory replenishment when the sales channel

is not a posted price channel is Van Ryzin and Vulcano (2004). They proved the optimality of a

base-stock policy with periodic auctions when there is no fixed cost for inventory replenishment.

When a positive fixed cost is present and an auction is run every period, there is no known result on

the structure of the optimal inventory policies. Furthermore, the optimal inventory replenishment

problem has never been studied in the presence of multiple sales channels. In this paper, we

address the inventory replenishment problem with a fixed setup cost and more general types of

sales channels.
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3 The Basic Model and the Unifying Assumption

The main result of this paper is the optimality of (s, S)-type inventory policies in systems with a

variety of sales channels. In this section, we review the Unifying Assumption of Huh and Janaki-

raman (2004) and its implication on the optimality of (s, S) policies. In subsequent sections, we

demonstrate that the systems we study satisfy the Unifying Assumption.

The basic model is the following. Let c and K be the variable cost and fixed setup cost of

inventory replenishment. Without loss of generality, we assume c = 0 by appropriately transforming

the holding and back-order cost function and assuming that all inventory at the end of the horizon

can be salvaged at c dollars per unit. We assume instantaneous inventory replenishment. Let x and

y be the inventory levels before and after possible replenishment in a period, respectively. Let d be

the vector of sales levers (e.g. price), and D(d, ε) be the stochastic demand, where ε is a random

variable. (We denote vectors by a bold-face.) In this paper, the inventory levels (x and y) and

demand D(d, ε) are assumed to be integers. When demand exceeds inventory, excess demand is

backlogged. The single-period expected profit, excluding inventory replenishment cost, is denoted

by π(y,d), which depends on both y and d.

The following sequence of events takes place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed setup cost of K

is incurred if y > x.

(3) A sales lever d is chosen. Demand is a random variable D(d) = D(d, ε) whose distribution

is determined by the choice of d. In each of the models we study, the sales lever and the

dependence of demand on it are further described in detail.

(4) Demand is realized and generates revenue. A holding and back-order cost h(y − D(d)) is

incurred. The expected single-period profit π(y,d) is the difference between the expected

revenue and E[h(y −D(d))].
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An inventory replenishment policy is said to be an (s, S) policy if there exists two numbers s

and S such that the inventory level is raised to S whenever x ≤ s. If these two numbers depend

on the period index t, then we call this an (st, St) policy.

We state the Unifying Assumption, which ensures that the problem has a sufficient structure

in terms of the expected single-period profit π.

Assumption 1 (Unifying Assumption). Let Q(y) := maxd π(y,d), and let y∗ be a maximizer of

Q(·).

(a) Q(y) is quasi-concave, i.e., Q(y) is increasing1 for y ≤ y∗, and decreasing for y ≥ y∗, and

(b) for any y1 and y2 satisfying y∗ ≤ y1 ≤ y2 and any d2, there exists

d1 ∈ { d | π(y1,d) ≥ π(y2,d2)}

such that for any ε,

y1 −D(d1, ε) ≤ max{ y2 −D(d2, ε), y∗ }. (1)

Part (a) ensures that the closer the after-replenishment inventory level is to y∗, the more the

single-period profit π we can generate. Part (b) shows that if y∗ ≤ y1 < y2, then the after-

replenishment inventory level y1 is “better than” (more precisely, not worse by more than the

setup cost) y2. In the current period, the y1-system can generate more profit than the y2-system.

In the next period, the starting inventory of the y1-system is closer to y∗ than that of the y2-system,

or it is possible for the y1-system to order up to the inventory level of the y2-system. Observe that

Assumption 1 is stated in terms of a single-period profit function.

We also state a stronger version of Assumption 1.

Assumption 2 (Strong Unifying Assumption). Assumption 1 is satisfied where (1) is replaced by

y1 −D(d1, ε) ≤ y2 −D(d2, ε).

It is easy to observe that Assumption 2 implies Assumption 1. We now state one of the main

results of Huh and Janakiraman (2004):
1In this paper, we use increasing (decreasing) to mean non-decreasing (non-increasing).
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Theorem 3 (Huh and Janakiraman (2004)). Suppose Assumption 1 holds. If K > 0, (s, S)

replenishment policies are optimal with the infinite horizon discounted-profit model. If K = 0, the

optimal replenishment policy is myopic and of the base-stock type with the finite horizon or the

infinite horizon discounted-profit model. In addition, if Assumption 2 also holds, then an (st, St)

policy is optimal for a finite-horizon model with K > 0.

Theorem 3 simplifies the task of proving the optimality of base-stock and (s, S) policies. It is

sufficient to focus on a single period and verify Assumption 1. Thus, the analysis of a multi-period

dynamic program is interestingly reduced to examining a simpler single-period problem.

4 Periodic Auctions with Inventory Replenishment and Fixed Costs

In this section, we study systems in which inventory is sold through an auction in every period. The

reserve prices used in each period are dynamically chosen based on the inventory levels. In section

4.1, we discuss the problem of determining the optimal auction to use in each period. In section

4.2, we restrict our attention to the so-called modified second-price auction, and show that the

Unifying Assumption is satisfied. In section 4.3, we extend this result to the case where backorders

are not allowed.

4.1 Optimal Auctions and Non-Concave Salvage Value Functions

Let us now consider a single-period multi-unit auction in which each customer bids for at most a

single unit. Suppose there are y units available to be auctioned. If k is the number of units sold in

the auction, then the ending inventory is y − k units. Let S(·) be the salvage value obtained as a

function of the ending inventory y−k. The seller’s problem is to design an auction maximizing the

expected revenue and the salvage value. When S(·) is concave, Vulcano et al. (2002) have shown

that an optimal auction is the modified second price auction with an appropriately chosen reserve

price vector. However, with a positive setup cost K, the profit-to-go function from the dynamic

program is not typically concave. Consequently, we are interested in the design of an optimal

auction in the case where S(·) is not necessarily concave.
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Suppose customer n has the realized value of vn, and submits a bid of bn. We assume that

customers’ values are nonnegative, and have an identical and independent distribution with CDF

F and PDF f . We let v = (v1, v2, . . .) and b = (b1, b2, . . .) be the value vector and the bid

vector, respectively. Let b(i) be the i’th highest bid, and v(i) be the i’th highest value. Ties are

broken arbitrarily. When there is no ambiguity, we also use v and b to denote (v(1), v(2), . . .)

and (b(1), b(2), . . .), respectively. Let in be the rank of bn in b when sorted from the highest, i.e.,

bn = b(in).

Maskin and Riley (1989) have shown that the expected revenue of the seller is determined by

the allocation, a result known as the revenue equivalence theorem. Let qn(v) be the binary variable

indicating whether a unit is allocated to customer n given a value vector v. Let J(v) = v− 1/ρ(v)

be the virtual value function where ρ(v) = f(v)/(1 − F (v)) is the associated failure rate function.

Then, the expected seller’s revenue is given by

Ev

[∑
n

J(vn) · qn(v)

]
,

provided that (i) the bidder with vn = 0 has an expected equilibrium profit of 0, and (ii) qn(v) ≤

qn(v′) whenever v and v′ are identical except vn < v′n.

Let ∆S(x) = S(x + 1)− S(x) be the marginal salvage value. Given that y units are available

for auction, the seller’s expected profit is

Ev

[
y∑

i=1

{J(v(i))−∆S(y − i)} · qi(v)

]
, (2)

plus an additive constant. We assume, as in Maskin and Riley (1989) and Vulcano et al. (2002),

that J is an increasing function. Therefore, if we sell k units to the bidders with the k highest

values, the expected marginal profit from the i’th unit is J(v(i)) − ∆S(y − i). If S is zero as

in Maskin and Riley (1989), or concave as in Vulcano et al. (2002), the expected marginal profit

is decreasing in i. Therefore, the modified second price auction with the reserve price vector

(J−1(∆S(y − 1)), J−1(∆S(y − 2)), . . .) is optimal.2

2In the modified second-price auction, the seller selects the reserve price vector r = (r(1), r(2), . . .) where r(1) ≤

r(2) ≤ · · · , and the i’th unit will be sold if and only if b(i) ≥ r(i). Given a particular bid vector b, the number of

sold units is given by κ(r,b) = max{i : b(i) ≥ r(i)}. The highest κ(r,b) bidders receive a unit, and pay a uniform

price of max{r(κ(r,b)), b(κ(r,b) + 1)}. It is well known that a dominant strategy for buyers is to bid their own

values in this auction.
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However, if S(·) is not concave, then J−1(∆S(y− i)) may not be increasing in i, and there may

be no reserve price vector that achieves an optimal auction. This is because it is possible that the

i’th unit will be sold even if the marginal profit J(vi)−∆S(y−i) is negative since the marginal profit

from subsequent units will be substantially high. In other words, a marginal loss from one unit may

be offset by the marginal profits from selling the subsequent units. To our knowledge, the optimal

auction with a non-concave salvage value function (or equivalently, a non-convex production cost

function) is not known. This is an interesting research question in its own right. Also, it appears

that even if such an optimal auction can be found, it would be a complex one. In this paper, we

restrict our attention to auctions the modified second-price auction of Vulcano et al. (2002).

Thus, the seller’s optimization problem is to set the reserve price vector to maximize the ex-

pected profit, i.e.,

max
r

Ev

[
y∑

i=1

{J(v(i))−∆S(y − i)} · I[v(i) ≥ r(i)]

]
(3)

s. t. r(1) ≤ r(2) ≤ · · · ≤ r(y)

where I is a binary indicator function.

We remark that our analysis also holds for the modified first-price auction (pay-your-bid auction)

as in Van Ryzin and Vulcano (2004).

4.2 Periodic Auction Sales Channel: Backorders Allowed

In this section, we consider a model in which inventory is sold using an auction in each period.

Inventory is reviewed every period and replenished, if necessary. We consider the class of modified

second-price auctions with reserve price vectors.

The number of customers and the value vectors are independently and identically distributed

across time periods, and each buyer submits his bid only once in the period he arrives. These

assumptions are also used by Van Ryzin and Vulcano (2004).

In the periodic auction model, the following sequence of events takes place in each period.

(1) The available inventory level x at the beginning of a period is observed.

10



(2) An ordering decision is made to raise the inventory to y ≥ x. A fixed setup cost of K is

incurred if y > x.

(3) A reserve price vector r = (r(1), r(2), . . .) is chosen and announced to the bidders, where

r(1) ≤ r(2) ≤ · · · .

(4) Customers arrive and submit their bids. The bid vector b = (b(1), b(2), . . .) is sorted in a

descending order.

(5) The allocation and payment decisions are made according to the modified second-price auction

mechanism. A holding and back-order cost of h(y − k) is incurred.

By the incentive compatibility property, customers’ bids are the same as their values, i.e.,

b(i) = v(i). Thus, recall that the number of units sold equals

κ(r,v) =
∞∑
i=1

I[v(i) ≥ r(i)] , (4)

where I is the indicator function. We suppose h(·) is nonnegative and convex in Z, and satisfies

h(0) = 0. Furthermore, we assume that the holding cost is linear, i.e., there exists h ≥ 0 such that

h(z) = h ·z for z ≥ 0. The back-order cost does not have to be linear. Let ∆h(z) = h(z)−h(z−1).

We note that our model allows the seller to sell more units than the inventory level. This would

occur when buyers’ bids are sufficiently high.

Let R(y, r) denote the seller’s expected single-period profit when the inventory level after re-

plenishment is y and the reserve price vector is r. The value of R(y, r) includes the holding and

back-order cost h(·), but excludes the fixed setup cost K. By the revenue equivalence theorem, we

know that R(y, r) = Ev [R(y, r,v)], where

R(y, r,v) = −h(y) +
∞∑
i=1

[J(v(i)) + ∆h(y − i + 1)] · I[v(i) ≥ r(i)]. (5)

Let

L(y) = max
r

R(y, r) .

Then, L(y) is the maximum possible expected profit in a single period. Let ∆L(y) = L(y+1)−L(y).

Let y∗ be the largest maximizer of L(y).
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We recall our assumption that the virtual value function J(·) is a strictly increasing function.

It follows that J(v(i)) is decreasing in i. Let

v∗ = J−1(0) , and v∗y(i) = J−1(−∆h(y − i + 1)). (6)

We remark that if the starting inventory is y, then v∗y(i) is the least value above which it is profitable,

in this single period, to sell the i’th unit to a customer with that value. Let

ry = (v∗y(1), v∗y(2), . . .). (7)

Then, the components of ry are increasing since J(·) is an increasing function and h(·) is convex.

Proposition 4. In the periodic auction model, the following statements are true:

(a) L(y) = R(y, ry).

(b) L(y) is concave.

(c) ∆L(y) ≤ 0 for y ≥ y∗, and ∆L(y) ≥ 0 for y < y∗.

(d) y∗ ≥ 0.

Proof. To prove (a), observe from equation (5) that ry maximizes R(y, r,v) for each v. Therefore,

ry clearly maximizes R(y, r). The proof of (b) is given in appendix A.1. Statement (c) immediately

follows from (b). To prove (d), consider the definition (5) of R(y, r,v):

R(0, r,v) = −h(0) +
∞∑
i=1

[J(v(i)) + ∆h(1− i)] · I[v(i) ≥ r(i)], and

R(−1, r,v) = −h(−1) +
∞∑
i=1

[J(v(i)) + ∆h(−i)] · I[v(i) ≥ r(i)].

For any integer z, we have h(z) ≥ 0 = h(0). By the convexity of h(·), we have ∆h(−i+1) ≥ ∆h(−i).

it follows that R(0, r,v) ≥ R(−1, r,v) for any r and v. Thus,

R(−1, r−1) = Ev[R(−1, r−1,v)] ≤ Ev[R(0, r−1,v)] = R(0, r−1) ≤ R(0, r0).

Therefore, ∆L(−1) = L(0)−L(−1) ≥ 0 from (a). Since y∗ is the largest maximizer of L(·), we get

y∗ ≥ 0.
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From (6) and (7), we recall ry = (v∗y(1), v∗y(2), . . .) where v∗y(i) = J−1(−∆h(y − i + 1)).

Lemma 5. For y2 > y∗, consider a system A with y2 units of inventory after replenishment and

the reserve price vector r = (r(1), r(2), . . .). For y1 ∈ [y∗, y2), let Ã be another system with y1

units of inventory after replenishment and the reserve price vector r̃ = (r̃(1), r̃(2), . . .), where

r̃(i) =

 min{v∗y1(i), r(i)}, if 1 ≤ i ≤ y1

v∗y1(i), if i ≥ y1 + 1.

For a given realization of v, let z1(v) and z2(v) denote the ending inventories in systems Ã and

A, respectively. Then, the single-period expected profits satisfy R(y1, r̃) ≥ R(y2, r), and

z1(v) ≤ max{0, z2(v)} ≤ max{y∗, z2(v)} . (8)

Proof. Since r is a valid reserve price vector, r(i) is increasing in i. Since v∗y(i) is increasing in i for

any fixed y, it follows that the components of r̃ are increasing.

For any given v, we recall that κ(r̃,v) and κ(r,v) are the number of units sold in Ã and A,

respectively. We show (8) by considering two disjoint cases. In the first case, suppose κ(r,v) ≤ y1,

i.e., z1(v) ≥ 0. By the construction of r̃, we have r̃(i) ≤ r(i) for each i = 1, 2, . . . , y1, implying

κ(r̃,v) ≥ κ(r,v). Thus,

z1(v) = y1 − κ(r̃,v) ≤ y2 − κ(r,v) = z2(v)

Thus, we obtain (8) in this case. In the second case, we have κ(r,v) > y1. It follows v(y1) ≥ r(y1) ≥ r̃(y1).

Therefore, we have κ(r̃,v) ≥ y1, and z1(v) ≤ 0. Now (8) follows from y∗ ≥ 0 in Proposition 4.

Next, we proceed to show R(y1, r̃) ≥ R(y2, r). We recall that κ(ry1 ,v) and κ(ry2 ,v) are the

number of units sold when the reserve price vectors are ry1 and ry2 , respectively. We claim that

for any v,

R(y2, r,v)−R(y1, r̃,v) ≤ R(y2, ry2 ,v)−R(y1, ry1 ,v) . (9)

The proof of this claim is given in appendix A.2. Then, it follows that

R(y2, r)−R(y1, r̃) = Ev

[
R(y2, r,v)−R(y1, r̃,v)

]
≤ Ev

[
R(y2, ry2 ,v)−R(y1, ry1 ,v)

]
= L(y2)− L(y1),
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where the last equality comes from Proposition 4. Since y2 > y1 ≥ y∗, we have L(y1) ≥ L(y2),

from which we obtain R(y1, r̃) ≥ R(y2, r).

Lemma 5 establishes that the Unifying Assumption holds for the periodic auction sales channel

model presented in this section. Thus we obtain the conclusion of Theorem 3, in particular the

optimality of (s, S) policies.

Theorem 6. The optimal inventory replenishment policy is of the (s, S) type under the following

assumptions: (i) the class of auctions under consideration is the class of modified second-price

auctions with increasing reserve price vectors, and (ii) the number of customers and the value

vectors are independently and identically distributed across time periods.

4.3 Periodic Auction Sales Channel: Backorders Not Allowed

In section 4.2, the seller was allowed to sell more units than the inventory level and backlog excess

demand. In this section, we assume that the seller cannot sell any more units than the inventory

level after replenishment in each period.

When back-orders are not allowed, the analysis of section 4.2 carries over by setting an arbitrarily

high cost for back-orders, i.e., h(z) = ∞ for z < 0. (It is useful to define h(z) = −∞ for z ≤ 0.)

Thus, the seller does not want to backlog any demand, i.e., r(i) = ∞ for any i > y, where y is

the inventory level after replenishment. In this case, a slightly stronger version of Lemma 5 holds.

This result will be useful later in the analysis of dual channel models.

Lemma 7. Under the assumptions and definitions in Lemma 5, if no back-orders are allowed, the

conclusions of Lemma 5 and Theorem 6 hold. Moreover, we have

z1(v) ≤ z2(v) ,

i.e., the Strong Unifying Assumption (Assumption 2) is satisfied.

Proof. Since back-orders are not allowed, the reserve price vector r̃ = (r̃(1), r̃(2), . . .) in Lemma 5

is given by

r̃(i) =

 min{v∗y1(i), r(i)}, if 1 ≤ i ≤ y1

∞, if i ≥ y1 + 1.
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We consider two separate cases. If κ(r,v) ≤ y1, then the definition of r̃ implies that κ(r̃,v) ≥

κ(r,v). Thus, we have y1 − κ(r̃,v) ≤ y2 − κ(r,v), and the required inequality holds. Otherwise,

if κ(r,v) > y1, it follows κ(r̃,v) = y1. Since back-orders are not allowed, we must have

z1(v) = 0 ≤ z2(v).

Whereas the majority of this paper uses a increasing reserve price vector, we make a brief

comment on the modified second-price auction with a uniform reserve price. Let us suppose that

the seller is restricted to set the same reserve price for each of the y units, and does not sell more

than y units. Consider Lemma 5. Suppose that for some r, the reserve price vector r satisfies

r(i) = r for i ≤ y2, and r(i) = ∞ for i > y2. Let r̃ = min{J−1(−h), r}. Then, the construction of

r̃ satisfies r̃(i) = r̃ for i ≤ y1, and r̃(i) = ∞ for i > y1. In other words, if r represents a uniform

reserve price, then r̃ also represents a uniform reserve price. Thus, when the reserve price vector is

restricted to a uniform price, the Strong Unifying Assumption result still holds, as in Lemma 7.

5 Bid-Price Control

Consider a bid-price control model. Suppose that in each period, the seller observes the available

inventory x, and has an option of raising it to y > x incurring a fixed setup cost of K. In each

period, there is at most one customer arrival, and the arrival probability is q. (This could be treated

as a discrete-time approximation of a Poisson arrival model.) The customer submits a bid of v for

a single unit, and we assume that the customer bids are independently and identically distributed

as F (v). The seller decides whether or not to accept this bid. Since the bids are independent, it

is optimal to accept the bid if it exceeds a threshold that depends on the inventory level y. An

accepted order is back-ordered if inventory is not available. If z is the inventory level at the end

of the period, a holding and back-order cost of h(z) is incurred, where h(z) = h · [z]+ + b · [z]− for

some nonnegative constants h and b. This model is motivated by the name-your-own-price practice

of priceline.com.

We will now demonstrate that this model satisfies the Strong Unifying Assumption.

Lemma 8. In the bid-price control model described in this section, the Strong Unifying Assumption

(Assumption 2) is satisfied, and the conclusion of Theorem 3 holds.
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Proof. When the inventory level is y, the maximum expected single-period profit, excluding the

setup cost, is given by

Q(y) = −h(y) + max
r

(E[v|v ≥ r] + ∆h(y)) · (1− F (r)) .

We claim that Q(·) is quasi-concave. To see this, let

φ1 = max
r

(E[v|v ≥ r]− b) · (1− F (r)) and

φ2 = max
r

(E[v|v ≥ r] + h) · (1− F (r)) .

Note that both φ1 and φ2 are independent of y. It follows that

Q(y) =


b · y + φ1 if y ≤ 0,

−h · y + φ2 if y ≥ 1.

Thus, Q is increasing for y ≤ 0, and decreasing for y ≥ 1. Thus, Q is quasi-concave on the set of

integers, proving the claim.

Furthermore, suppose y∗ ≤ y1 < y2. Consider two systems Ã and A, in which the inventory

levels after replenishment are y1 and y2, respectively. For the Ã system, let r̃ be the maximizer

of φ1 if y1 ≤ 0, and the maximizer of φ2 if y1 ≥ 1. Thus, Ã system achieves the maximum

expected single-period cost. Furthermore, the ending inventory of the Ã system is at most the

ending inventory of the A-system since the demand is at most one.

The above lemma can be extended to allow for Markov-modulated arrival probabilities.

6 Multiple Sales Channels

In this section, we study the optimal inventory policy when there are multiple sales channels. We

present a formal definition of a sales channel. A sales channel M = (D,Λ) consists of demand

function D and revenue function Λ:

• D(d) is stochastic demand as a function of the sales lever d. Let D(d) = D(d, ε), where ε is

a random variable.
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• Λ(d) is the expected single-period revenue when the sales lever is d.

We provide a few examples of sales channels. The first example is the dynamic pricing channel

with discrete additive demand (studied in Huh and Janakiraman (2004)). Here, the sales lever is

the expected demand d, which belongs to a set of consecutive integers between two numbers, dL

and dU . Then,

D(d) = d + ε,

Λ(d) = p(d) · d,

where ε is a random variable with E[ε] = 0, and p(d) is the price corresponding to d. The second

example is the auction model of section 4, where the sales lever is the reserve price vector. Let

V(ε) = (V (1, ε), V (2, ε), . . .) be the sorted value vector parameterized by a random vector ε, and

let r be a reserve price vector. We set

D(r) = κ(r,V(ε)),

Λ(r) = E

D(r)∑
i=1

J(V (i, ε))

 ,

where κ(·, ·) is the number of units sold as defined in (4).

In the next three subsections, we will present three different models of systems with multiple

sales channels. These models differ with respect to whether inventory is shared or pre-allocated

among channels, and whether the channels are operated simultaneously or sequentially.

6.1 Posted Pricing and Auctioning: A Sequential Model

In this section, we consider a dual sales channel system in which the first channel is a posted price

channel and the second is an auction channel. In each period, inventory is first allocated to the

posted price channel, and then the remaining inventory is sent to the auction channel. One may

interpret the posted price channel as a primary channel and the auction channel as a secondary

channel. This section is motivated by recent papers on online auctions such as Budish and Takeyama

(2001), Etzion et al. (2004), Van Ryzin and Vulcano (2004), and Caldentey and Vulcano (2004).
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In the posted pricing and auction dual channel model, the following sequence of events takes

place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed setup cost of K

is incurred if y > x.

(3) The sales lever d (“demand level”) for the posted price channel is chosen, where d ∈ D where

D = {dL, dL+1, . . . , dU} for some integers dL and dU . Then, demand D(d) = D(d, εP ) = d+εP

is realized, where εP is an integer random variable with E[εP ] = 0. We require εP ≥ −dL so

that D(d, εP ) is always nonnegative. Let dP = D(d, εP ) be the realized posted price channel

demand. (This is the discrete additive demand model referred to earlier.)

(4) The reserve price vector s = (s(y − dP − 1), s(y − dP − 2), . . . , s(0), s(−1), . . .) for the

auction channel is chosen, where the components of s are increasing. Then, the customer

value vector v = (v(1), v(2), v(3), . . .) is realized. The number of units sold through the

auction equals

k(s,v, dP ) =
∞∑

i=dP +1

I[v(i− dP ) ≥ s(y − i)].

(5) Holding and back-order costs are charged based on the ending inventory level y−D(d, εP )−

k(s,v, dP ). We assume a linear holding cost and a convex back-order cost function, as in

section 4.

From (3) and (4), the first dP units are sold through the posted price channel. For i > dP , s(y− i)

acts as the reserve price for the (i−dP )’th unit in the auction channel, i.e., the (i−dP )’th is sold if

and only if v(i− dP ) ≥ s(y− i). We assume a separate stream of customers for each sales channel.

Within the posted price channel, the demand distribution in each period depends only on the sales

lever d of that period. Similarly, in the auction channel, the number of bidders and their valuations

are independent over time.

The expected revenue from the posted price channel is p(d) · d, which we assume to be concave

in d. Let t = y − dP be the inventory level between steps (3) and (4), i.e., immediately after
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demand from the posted price channel is satisfied. Let RA(t, s) be the expected single-period profit

from the auction channel, similar to R in section 4. The value of RA(t, s) includes the holding

and back-order cost. Let LA(t) be the maximum expected single-period profit from the auction

channel, i.e., LA(t) = maxs RA(t, s). This LA(·) corresponds to L(·) in section 4. The maximum

value LA(·) is achieved when the reserve price vector s satisfies s(y − i) = v∗y(i), i.e.,

(s(y − 1), s(y − 2), . . .) = (v∗y(1), v∗y(2), . . .) = ry,

where we recall v∗y(i) = J−1(−∆h(y − i + 1)). It follows that the maximum total expected profit

from both channels in a single period is

Q(y) = max
d∈D

p(d) · d + E[LA(y − d− εP )] .

Proposition 9. Q(y) is a concave function.

Proof. The proof is based on constructing a continuous-space interpolation of the single period

profit function with respect to y and d. For the details, see Appendix A.3.

Theorem 10. The sequential list-price and auction channel model described in this section satisfies

the Unifying Assumption, and the conclusion of Theorem 3 holds.

Proof. We have already shown the concavity of Q. Let t∗ be the maximizer of E[LA(t− εP )] over t,

and let d∗ be the maximizer of p(d)·d over d. It is straightforward to observe that Q(·) is maximized

at y∗ = d∗ + t∗.

Suppose y1 and y2 satisfy y∗ ≤ y1 < y2. Consider two systems Ã and A, in which the inventory

levels after replenishment are y1 and y2, respectively. Let (d, s) be the pair of posted price sales

lever and reserve price vector used in A. We show how to choose (d̃, s̃) for the Ã system to satisfy

the second part of the Unifying Assumption.

Let t2 = y2 − d. Set t1 = min{y1 − d∗, t2} and d̃ = y1 − t1. We consider two disjoint cases. In

the first case, we assume t1 = t2. Then, we must have d∗ ≤ d̃ ≤ d, which implies p(d̃) · d̃ ≥ p(d) · d

by the concavity of revenue from the posted price channel. We set s̃ = s, and it follows that

E[RA(t1 − εP , s̃)] = E[RA(t2 − εP , s)].
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Furthermore, the ending inventories of Ã and A systems are the same.

In the second case, we have t1 = y1 − d∗ < t2, and d̃ = d∗. Thus, p(d̃) · d̃ = p(d∗) · d∗ ≥ p(d) · d.

Furthermore, we have t∗ ≤ t1 < t2. We set s̃ = (s̃(y − 1), s̃(y − 2), . . .) such that

s̃(y − i) =

 min { J−1(−∆h(y − i)), s(y − i + (t2 − t1)) } , if i ≤ y;

J−1(−∆h(y − i)), if i > y.

Following an argument similar to the proof of Lemma 5, it can be shown that for every realization

of εP , (i) Ã has a single-period profit no less than A, and (ii) the ending inventory of Ã is either

negative or at most the ending inventory of A.

6.2 Multiple Sales Channels with Inventory Allocation

In this section, we consider a system in which inventory is pre-allocated among multiple sales

channels at the beginning of each period.

We suppose that there are M sales channels indexed by m = 1, 2, . . . ,M . In each period,

the inventory level after possible replenishment is rationed among the M sales channels, and the

seller sets the sales lever for each channel. The demand distribution faced by each mechanism is

determined by its sales lever, and independent of one another. The following sequence of events

takes place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed setup cost of K

is incurred if y > x.

(3) The inventory is allocated among sales channels. Let ym be the amount of inventory allocated

to mechanism m. Thus, we must have
∑

m ym = y. For each mechanism m, a sales lever dm

is chosen. The expected single-period revenue from mechanism m is Λm(dm).

(4) Demand Dm(dm) is realized from for each mechanism, and the appropriate single-period

revenue is gained. Let zm = ym −Dm(dm) denote the ending inventory level of sales channel

m.
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(5) Holding cost of H(zh) and back-order cost of B(zb) are incurred, where

zh =
∑
m

[zm]+ and zb =
∑
m

[zm]− .

We assume that both the holding cost and the back-order cost are linear, i.e., H(zh) = h · zh

and B(zh) = b · zb for some nonnegative constants h and b. In the next period, inventory, if

any, should first be allocated towards back-orders. The net inventory of the entire system at

the beginning of the next period is z = zh − zb. Note that inventory can be shared among

channels before demand is realized, but not after it is realized.

Let h(z) = h · [z]+ + b · [z]−. Then, H(zh) + B(zb) =
∑

m h(zm). If we charge the holding and

back-order cost h(zm) to sales channel m, the expected profit of sales channel m is given by

πm(ym,dm) = Λm(dm)− E [h(ym −Dm(dm))] . (10)

The seller’s expected profit is the sum of expected profits in all sales channels. Let d = (d1,d2, . . . ,dM ).

For fixed y and d , the seller’s maximum system-wide expected profit is

π(y,d) = max {
∑
m

πm(ym,dm) |
∑
m

ym = y }.

We proceed by assuming that the distribution Dm(dm) is discrete, and its support is a set of

consecutive integers for each m. We need the following lemma about the optimal allocation problem

which is useful in studying the multiple channel problem.

Lemma 11. For each i = 1, 2, . . . , I, let fi(·) be a quasi-concave function defined on a set of

consecutive integers. Let s∗i be a maximizer of fi(·). Then, f(s) = max{
∑

i fi(si) |
∑

i si = s} is

quasi-concave, and achieves its maximum at
∑

i s
∗
i .

Proof. See appendix A.4.

Theorem 12. Consider the multiple sales channel model with inventory allocation. Suppose that

the support of demand in each channel is a set of consecutive integers. If each channel satisfies the

Strong Unifying Assumption (Assumption 2), then the multiple sales channel model also satisfies

the Strong Unifying Assumption. Therefore, the conclusion of Theorem 3 holds.
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Proof. Let Qm(ym) = maxdm πm(ym,dm), and Q(y) = maxd π(y,d). Since each sales channel

m satisfies Assumption 2, Qm(·) is quasi-concave. Let y∗m be a maximizer of Qm. Then, by Lemma

11, Q(·) is also quasi-concave, and achieves its maximum at y∗ =
∑

m y∗m.

Consider two systems Ã and A, in which the inventory levels after replenishment are y1 and y2,

respectively. Assume y∗ ≤ y1 < y2. Suppose that in the A system, the seller chooses an allocation

of y = (y1, . . . , yM ) where y2 =
∑

m ym, and the sales lever vector of d = (d1, . . . ,dM ).

For the Ã system, we specify the allocation vector ỹ = (ỹ1, . . . , ỹM ) and the sales lever vector

d̃ = (d̃1, . . . , d̃M ) such that they verify the second part of Assumption 2.

From
∑

m y∗m = y∗ ≤ y1 < y2 =
∑

m ym, there exists an allocation vector (ỹ1, . . . , ỹM ) satisfying

y1 =
∑

m ỹm, and

ỹm = ym, if ym < y∗m

ỹm ∈ {y∗m, y∗m + 1, . . . , ym}, if ym ≥ y∗m.

We now construct the sales levers for the Ã system. If ỹm = ym, set d̃m = dm, and we get, for

every εm,

ỹm −Dm(d̃m, εm) = ym −Dm(dm, εm), and

πm(ỹm, d̃m) = πm(ym,dm).

Otherwise, we have y∗m ≤ ỹm < ym. By Assumption 2, there exists d̃m such that, for any εm, we

have

ỹm −Dm(d̃m, εm) ≤ ym −Dm(dm, εm), and

πm(ỹm, d̃m) ≥ πm(ym,dm)

Therefore, for every ε = (ε1, . . . , εM ), it follows

y1 −
∑
m

Dm(d̃m, εm) ≤ y2 −
∑
m

Dm(dm, εm), and

π(y1, d̃) =
∑
m

πm(ỹm, d̃m) ≥
∑
m

πm(ym,dm) = π(y2,d),

satisfying the second part of Assumption 2 for the multiple sales channel model.
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We remark that these sales channels need not be identical. For example, one sales channel may

be a channel with dynamically posted posted prices such as the discrete additive demand model.

Another sales channel may be the periodic auction channel described in section 4.3.

6.3 Multiple List Price Channels with Inventory Sharing

The model presented here differs from section 6.1 since inventory is not allocated between sales

channels before demand is realized.

In the multiple channel model in section 6.2, the inventory level in each period is allocated

among sales channels before demand is realized, and the underage cost is incurred if demand in a

channel exceeds inventory allocated to that channel. In this section, we consider a model in which

inventory is shared among channels, and the underage cost is incurred only if the total demand

exceeds the inventory level. We focus on posted price channels.

Suppose there are M sales channels, each of which is a list-pricing model with additive demand,

i.e., demand in channel m is given by Dm(dm) = Dm(dm, εm) = dm + εm. The expected single-

period revenue from channel m is Λm(dm) as a function of the sales lever dm, which is assumed to

be a concave function of dm. The sequence of events is similar to section 6.2 with a few differences.

First, in step (3), inventory level y is not allocated among sales channels. Second, the holding and

back-order cost is given by h(z) = h · [z]+ + b · [z]− where z = y −
∑

m Dm(dm).

Let d = (d1, d2, . . . , dM ). The expected profit in a single period, as a function of the after-

replenishment inventory level y, is given by

π(y,d) =
∑
m

Λm(dm)− E[h(y −
∑
m

Dm(dm, εm))]

=
∑
m

Λm(dm)− h · E[y −
∑
m

dm −
∑
m

εm]+ − b · E[y −
∑
m

dm −
∑
m

εm]− ,

where the expectation is taken over ε = (ε1, ε2, . . . , εM ). Thus, it is straightforward to show that π

is jointly concave in (y,d). It follows maxd π(y,d) is concave in y. Let y∗ be its maximizer.

Theorem 13. The multiple posted price channel model with inventory sharing satisfies the Unifying

Assumption, and the conclusion of Theorem 3 holds.
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Proof. The first part of the Strong Unifying Assumption follows from the concavity of maxd π(y,d)

in y. We will now prove the second part. Consider any y1 and y2 satisfying y∗ ≤ y1 < y2, and any

d2 = (d2
1, . . . , d

2
M ). Let d∗ = arg maxd π(y∗,d) and d◦ = arg maxd{π(y2,d) |

∑
m dm =

∑
m d2

m}.

By an application of the proof of Lemma 11, we can assume, without loss of generality, that we

have either (i) d◦m ≤ d∗m for all m, or (ii) d◦m ≥ d∗m for all m. If (i) occurs, set d1
m = d∗m for each m.

Otherwise, in case of (ii), define λ = (y1 − y∗)/(y2 − y∗), and set d1
m = (1 − λ)d∗ + λd◦m. In both

cases, it is straightforward to show

π(y1,d1) ≥ π(y2,d◦) ≥ π(y2,d2) , and

y1 −
∑
m

Dm(d1
m, εm) ≤ y2 −

∑
m

Dm(d◦m, εm) = y2 −
∑
m

Dm(d2
m, εm),

where d1 = (d1
1, . . . , d

1
M ). Therefore, the Strong Unifying Assumption is satisfied.

7 Dynamic Pricing with Limited Ordering Opportunities

Suppose now that inventory can be replenished in every T > 2 periods. For example, inventory

replenishment is allowed at the beginning of every week, whereas prices can be changed every day.

Alternatively, we assume that inventory is replenished in every period, and a single period is divided

into T sub-periods, in which prices are set and sales take place. We study posted pricing with the

additive demand model here.

The following sequence of events takes place in each period:

(1) The available inventory level x at the beginning of a period is observed.

(2) A replenishment decision is made to raise the inventory to y ≥ x. A fixed setup cost of K

is incurred if y > x.

(3) For each sub-period t = 1, 2, . . . , T , let yt be the inventory level at the beginning of sub-period

t. A sales lever dt is chosen, and demand is a random variable given by Dt(dt) = Dt(d, εt) =

dt + εt. An appropriate revenue is realized and the holding and back-order cost is incurred.

We assume full backlogging, and α ∈ [0, 1] is the discount factor per sub-period.
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We suppose that the expected single sub-period profit πt(yt, dt), the difference between the

revenue and the holding and back-order cost, is jointly concave.

Lemma 14. In the posted price model with limited ordering opportunities described in this section,

the Unifying Assumption (Assumption 1) is satisfied, and the conclusion of Theorem 3 holds.

Proof. For each t, we define Lt(·) recursively as following:

Lt(yt) =

 maxdt πt(yt, dt) + α · E[Lt+1(yt − dt − εt)], if t < T .

maxdt πt(yT , dT ), if t = T .

By the convexity of π, Lt is convex for each t. Let y∗ be the maximizer of L1.

Suppose y∗ ≤ y1 ≤ y2. For a fixed sequence of ε1, ε2, . . . , εT , let A∗ be the optimal system

starting with the inventory level y∗. Let d∗1, d
∗
2, . . . , d

∗
T be the optimal sequence of decisions in A∗.

(Clearly, d∗t depends on ε1, . . . , εt−1, but we suppress that dependence to simplify notation.) Let

y∗t be the beginning of sub-period inventory level in A∗.

Consider two systems Ã and A, and suppose that the inventory levels at the beginning of sub-

period t = 1 are y1 and y2, respectively. Suppose that for fixed ε1, ε2, . . . , εT , the decisions of A are

given by d2
1, d

2
2, . . . , d

2
T . Let λ ∈ [0, 1] such that y1 = λy∗+(1−λ)y2. For each t, choose the decision

d1
t of the Ã system such that d1

t = λd∗t + (1− λ)d2
t . Let z∗t , z1

t and z2
t be the ending inventories in

sub-period t in systems A∗, Ã and A, respectively. Thus, if y1
t = λy∗t + (1− λ)y2

t , then

z1
t = y1

t − (d1
t + εt)

= [λy∗t + (1− λ)y2
t ]− [λd∗t + (1− λ)d2

t + εt]

= λ[y∗t − d∗t − εt] + (1− λ)[y2
t − d2

t − εt]

= λz∗t + (1− λ)z2
t .

By induction, we show the above result for all t. Since z∗T ≤ y∗, it follows z1
T ≤ max{z2

T , y∗}.

Furthermore, the expected single sub-period profit in t satisfies

πt(y1
t , d

1
t ) ≥ λ · πt(y∗t , d

∗
t ) + (1− λ) · πt(y2

t , d
2
t ),

where expectation is taken over εt. Thus, the total expected profit in all T sub-periods satisfies
T∑

t=1

αt−1πt(y1
t , d

1
t ) ≥ λ ·

T∑
t=1

αt−1πt(y∗t , d
∗
t ) + (1− λ) ·

T∑
t=1

αt−1πt(y2
t , d

2
t ).
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Therefore, the total expected profit in the Ã system (left-hand side) is at least the total expected

profit in the A system (last term on the right-hand side).

8 Conclusion

In this paper, we establish the optimality of (s, S) inventory replenishment policies in the pres-

ence of a fixed setup cost. We allow for a variety of sales mechanisms (e.g., name-your-own-price

mechanisms). In particular, this is the first paper that considers a fixed setup cost when the sales

mechanism is a periodic auction. We further extend the optimality of (s, S) policies to systems in

which multiple heterogeneous sales channels are present.

Our results are proved by demonstrating that these models satisfy the Unifying Assumption of

Huh and Janakiraman (2004), a sufficient condition for the optimality of (s, S) policies. While this

assumption was originally developed for the posted price demand models, the present paper shows

that the applicability of this assumption extends far beyond traditional models.

References

Budish, E. B., and L. N. Takeyama. 2001. Buy Prices in Online Auctions: Irrationality on the

Internet? Economics Letters 72:325–333.

Caldentey, R., and G. Vulcano. 2004. Online Auction and List Price Revenue Management. Working

Paper .

Chen, X., and D. Simchi-Levi. 2003a. Coordinating Inventory Control and Pricing Strategies with

Random Demand and Fixed Ordering Cost: The Finite Horizon Case. Working Paper .

Chen, X., and D. Simchi-Levi. 2003b. Coordinating Inventory Control and Pricing Strategies with

Random Demand and Fixed Ordering Cost: The Infinite Horizon Case. Working Paper .

Chen, Y., S. Ray, and Y. Song. 2003. Optimal Pricing and Inventory Control Policy in Periodic-

Review Systems with Fixed Ordering Cost and Lost Sales. Working Paper .

26



Etzion, H., E. J. Pinker, and A. Seidmann. 2004. Analyzing the Simultaneous Use of Auctions and

Posted Prices for ON-Line Selling. Working Paper .

Federgruen, A., and A. Heching. 1999. Combined Pricing and Inventory Control Under Uncertainty.

Operations Research 47:454–475.

Feng, Y., and F. Y. Chen. 2003. Joint Pricing and Inventory Control with Setup Costs and Demand

Uncertainty. Working Paper .

Gallien, J. 2002. Dynamic Mechanism Design for Online Commerce. Working Paper .

Hidvegi, Z., W. Wang, and A. B. Whinston. 2002. Buy-Price English Auction. Working Paper .

Huh, W. T., and G. Janakiraman. 2004. Alternate Approaches to Important Results in Inventory

and Pricing Control. Working Paper .

Krishna, V. 2002. Auction theory. Academic Press.

Lavi, R., and N. Nisan. 2004. Competitive Analysis of Incentive Compatible On-line Auctions.

Theoretical Computer Science 310.

Maskin, E., and J. Riley. 1989. Optimal Multi-Unit Auctions. In The Economics of Missing

Markets, Information, and Games, ed. F. Hahn. Oxford University Press.

Matthews, T. 2003. The Impact of Discounting on an Auction with a Buyout Option: A Theoretical

Analysis Motivated by eBay’s Buy-It-Now Feature. Working Paper .

Pinker, E., A. Seidmann, and Y. Vakrat. 2003. Managing Online Auctions: Current Business and

Research Issues. Management Science 49:1457–1484.

Scarf, H. 1960. The Optimality of (s, S) Policies for the Dynamic Inventory Problem. In Proceedings

of the First Stanford Symposium on Mathematical Methods in the Social Sciences. Stanford, CA:

Stanford University Press.

Segev, A., C. Beam, and J. G. Shanthikumar. 2001. Optimal Design of Internet-Based Auctions.

Information Technology and Management 2.

27



Van Ryzin, G., and G. Vulcano. 2004. Optimal Auctioning and Ordering in an Infinite Horizon

Inventory-Pricing System. Operations Research 52:346–367.

Vulcano, G., G. V. Ryzin, and C. Maglaras. 2002. Optimal Dynamic Auctions for Revenue Man-

agement. Management Science 48:1388–1407.

A Appendix

A.1 Concavity of L(·) in Proposition 4

In this section, we prove that the maximum single-period profit L(y) is concave in y. This result is

one of the components of Proposition 4.

We note y ∈ Z. By part (a) of Proposition 4 and the definition of R(y, r), it follows

L(y) = R(y, ry) = Ev[R(y, ry,v)]. (11)

Now, we fix the the vector v. From (5),

R(y, ry,v) = max
k∈Z+

{J(v(1)) + J(v(2)) + . . . + J(v(k))− h(y − k) } .

For each k ∈ <+, we define J̄(k,v) as follows:

J̄(k,v) =


0, if k = 0;

J(v(1)) + J(v(2)) + · · ·+ J(v(k)), if k ∈ N ;

(dke − k) · J̄(bkc) + (k − bkc) · J̄(dke), otherwise.

That is, for any fixed v, J̄(k,v) is a piecewise linear function of k with slope changes only at

integers. Let h̃(·) be a piecewise-linear extension of h(·) to <. We also define, for y ∈ < and

k ∈ <+,

ϕ(y, k,v) = J̄(k,v)− h̃(y − k) (12)

Thus, for each integer y and value vector v, we have

R(y, ry,v) = max
k∈Z+

ϕ(y, k,v). (13)

28



We claim that for any fixed v, ϕ(y, k,v) is jointly concave in (y, k) in <×<+. It is easy to see

that J̄(·) is concave, and h̃(·) is convex. Since y − k is a linear function of (y, k). Equation (12)

implies ϕ(y, k,v) is jointly concave in (y, k).

Thus, for any fixed v and integer y, ϕ(y, k,v) is concave in k ∈ <+. Since ϕ(y, k,v) is piecewise

linear in k with slope changes only at integer points, there exists an integer value of k that maximizes

ϕ(y, k,v). Thus, maxk∈Z+ ϕ(y, k,v) = maxk∈<+ ϕ(y, k,v).

Since ϕ(y, k,v) is a jointly concave function in (y, k) ∈ < × <+, maxk∈<+ ϕ(y, k,v) is concave

with respect to y in <. Thus, maxk∈<+ ϕ(y, k,v) is also concave, in the discrete sense, with respect

to y in Z. It follows from (13) that R(y, ry,v) is concave with respect to y in Z. From (11), we

conclude L(y) is concave in y.

A.2 Proof of (9) in Lemma 5

In this section, we provide the proof of claim (9), i.e., for any v,

R(y2, r,v)−R(y1, r̃,v) ≤ R(y2, ry2 ,v)−R(y1, ry1 ,v) .

We consider two disjoint cases. In the first case, assume κ(ry1 ,v) = κ(r̃,v). It follows I[v(i) ≥

v∗y1(i)] = I[v(i) ≥ r̃(i)] for each i. Then,

[J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ v∗y1(i)]

= [J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ r̃(i)],

implying R(y1, ry1 ,v) = R(y1, r̃,v) by (5). Similarly,

[J(v(i)) + ∆h(y2 − i + 1)] · I[v(i) ≥ v∗y2(i)]

= [J(v(i)) + ∆h(y2 − i + 1)]+

≥ [J(v(i)) + ∆h(y2 − i + 1)] · I[v(i) ≥ r(i)],

implying R(y2, ry2 ,v) ≥ R(y2, r,v). Thus, we obtain claim (9).

In the second case, we have κ(r̃,v) 6= κ(ry1 ,v). By the definition of r̃, we get r̃(i) ≤ v∗y1(i) for

i ≤ y1, and r̃(i) = v∗y1(i) for i > y1. Thus, from κ(r̃,v) 6= κ(ry1 ,v), we get

κ(ry1 ,v) < κ(r̃,v) ≤ y1.
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Recall v∗y1(i) = J−1(−∆h(y1 − i + 1)). Thus, if i ≤ κ(ry1 ,v), then we have i ≤ y1, and v(i) ≥

v∗y1(i) = J−1(−h). Otherwise, we have i > κ(ry1 ,v), and thus

v(i) ≤ v(κ(ry1 ,v) + 1) ≤ v∗y1(κ(ry1 ,v) + 1) = J−1(−h),

since i ≥ κ(ry1 ,v) + 1 and κ(ry1 ,v) + 1 ≤ y1.

For any i ∈ {1, 2, . . . , y1}, r̃(i) is either r(i) or v∗y1(i). If r̃(i) = v∗y1(i), then,

[J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ r̃(i)]

= [J(v(i)) + h] · I[v(i) ≥ v∗y1(i)]

≥ [J(v(i)) + h] · I[v(i) ≥ r(i)]

=
[
J(v(i)) + ∆h(y2 − i + 1)

]
· I[v(i) ≥ r(i)].

Otherwise, if r̃(i) = r(i), then

[J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ r̃(i)] =
[
J(v(i)) + ∆h(y2 − i + 1)

]
· I[v(i) ≥ r(i)].

Now consider i ≥ y1. In that case, the event v(i) ≥ r̃(i) is equivalent to i ≤ κ(r̃,v), which never

occurs. Furthermore, since i ≥ y1 > κ(ry1 ,v), we get

J(v(i)) + ∆h(y2 − i + 1) ≤ J(v(i)) + h

≤ J(v(κ(ry1 ,v) + 1)) + h

≤ 0.

Thus, from I[v(i) ≥ r̃(i)] = 0,[
J(v(i)) + ∆h(y2 − i + 1)

]
· I[v(i) ≥ r(i)] ≤ 0

= [J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ r̃(i)].

Finally, for any i,

[J(v(i)) + ∆h(y2 − i + 1)] · I[v(i) ≥ v∗y2(i)]

= [J(v(i)) + ∆h(y2 − i + 1)]+

≥ [J(v(i)) + ∆h(y1 − i + 1)]+

= [J(v(i)) + ∆h(y1 − i + 1)] · I[v(i) ≥ v∗y1(i)].

Therefore from (5), we obtain (9).
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A.3 Proof of Proposition 9

Let D̃ be the compact interval [dL, dU ]. Thus, D is the set of integers in D̃. For any fixed integer

y and d ∈ D, define π(y, d) = π1(d) + π2(y − d), where

π1(d) = p(d) · d , and

π2(r) = E[LA(r − εP )] .

Now, for any integer y and real d ∈ D̃, define

π̃1(d) = (1− λ) · π̃1(bdc) + λ · π̃1(dde)

where λ = d− bdc. Similarly, for any real r, define

π̃2(r) = (1− λ) · π̃2(brc) + λ · π̃2(dre)

where λ = r − brc. For any real y and d ∈ D̃, let

π̃(y, d) = π̃1(d) + π̃2(y − d) .

Since the expected revenue from the posted price channel, π1(d) = p(d) · d, is assumed to be

concave with respect to d ∈ D, its linear interpolation π̃1(d) is also concave with respect to d ∈ D̃.

The concavity of LA(t), the maximum expected single-period profit from the auction channel, is

proved in Proposition 4 of section 4. Thus, π̃(y, d) is jointly concave with respect to y and d. Thus,

maxd∈D̃ π̃(y, d) is concave with respect to y.

Moreover, from the construction of π̃, if y is an integer, then π̃(y, d) is a piece-wise linear

interpolation of π(y, d) with respect to d. Thus, for fixed integer y, the single-dimensional function

π̃(y, ·) has at least one integer maximizer, i.e.,

Q(y) = max
d∈D

π(y, d) = max
d∈D̃

π̃(y, d) .

The conclusions of the last two paragraphs together imply that Q(y) is concave with respect to

y.
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A.4 Proof of Lemma 11

First, we provide the proof assuming that the domain of fi is the set of all integers. Since s∗i is the

maximizer of fi(·), we have fi(si) ≤ fi(si + 1) for si < s∗i , and fi(si) ≥ fi(si + 1) for si ≥ s∗i . Let

s∗ =
∑

i s
∗
i .

Suppose s < s∗. Then, we claim that there exist s1, s2, . . . , sI such that s =
∑

i si and f(s) =∑
i fi(si) satisfying si ≤ s∗i for each i. To see this claim, suppose that there exists j such that

sj > s∗j and sk < s∗k. Then, by decreasing sj by 1 and increasing sk by 1, we weakly increase the

objective function. By repeating this process, we prove the claim.

Furthermore, there exists i′ such that si′ < s∗i′ . Then,

f(s) =
∑

i

fi(si) = fi′(si′) +
∑
i6=i′

fi(si) ≤ fi′(si′ + 1) +
∑
i6=i′

fi(si) ≤ f(s + 1).

Similarly, it can be argued that s > s∗ implies f(s) ≤ f(s− 1).

If the domain of fi is a subset of all integers, extend fi by defining fi(si) = −∞ for each si

outside the domain.
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