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In a seminal paper, B. R. Holmstrém and P. R. Milgrom (1987, Econometrica 55,
303-328) examine a principal-agent model in which the agent continuously controls
the drift rate of a Brownian motion. Given a stationary environment, they show
that the optimal sharing rule is a linear function of aggregated output. This paper
considers a variant of the Brownian model in which control revisions take place in
discrete time. It is shown that no matter how “close” discrete time is to continuous
time, the first-best solution can be approximated arbitrarily closely with a random
spot check and a suitably chosen sequence of step functions. Journal of Economic
Literature Classification Numbers: D82, J33.  © 2000 Academic Press

1. INTRODUCTION

In the well known principal-agent model by Holmstréom and Milgrom
[4], an agent continuously controls the drift rate vector of a multi-dimen-
sional Brownian motion. In this model, the optimal sharing rule is a linear
function of the end-of-period values of “accounts” that list the number of
times that each possible output level has occurred. If the principal cannot
observe the time paths of the different accounts, but only that of some coarser
linear aggregate (e.g., total output), Holmstrom and Milgrom moreover show
that the optimal sharing rule is a linear function of the end-of-period value
of this aggregate. Recently, the Brownian model has been generalized and
extended by Schéttler and Sung [9] and Sung [10].

!'This is a revised version of an earlier paper entitled “Randomization in Dynamic
Principal-Agent Problems,” Working Papers in Economics E-96-5, Hoover Institution, which
was written while I was visiting Stanford University. Financial support from Schweizerischer
Nationalfonds and Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 504, is grate-
fully acknowledged. An earlier version of this paper was presented at the Econometric Society
European Meeting 1997 in Toulouse. I have benefitted from comments and suggestions by
Ralf Becker, Martin Hellwig, Paul Milgrom, Heinz Miiller, Klaus Schmidt, Jae Sung, Dimitri
Vayanos, and participants in seminars at the Universities of Bonn, Copenhagen, Lund,
Mannheim, Munich, Stockholm, and the Stockholm School of Economics.

292

0022-0531/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.



DYNAMIC PRINCIPAL-AGENT PROBLEMS 293

This paper considers a version of the Brownian model in which control
revisions take place in discrete time. It is shown that, no matter how
“close” discrete time is to continuous time, linear sharing rules are not
optimal as the principal can approach the first-best solution asymptotically
with a random spot check and a suitably chosen sequence of step functions.
To see this, suppose the relevant time interval is partitioned into 7 subin-
tervals of equal length, and the agent can revise his control only at the
beginning of each subinterval. Consider the following incentive scheme.
Ex post, the principal randomly selects one of the T subintervals and the
agent is compensated with a step function based on the output produced
in this subinterval. Given a stationary environment, this incentive scheme
creates uniform incentives: as the agent does not know in advance which
subinterval will be selected, he optimally chooses a constant control. Accord-
ingly, the problem can be treated as a static problem in which the agent
controls the mean of a normally distributed random variable and the prin-
cipal is a priori restricted to step functions. As Mirrlees [5, 6] has shown,
this implies that the principal can approximate the first-best solution
arbitrarily closely.

The emphasis in this paper is on random spot checks as these—like
linear sharing rules—are widely used in practice. Our result that the principal
can approach the first-best solution does not hinge on the use of a random
sharing rule, however; the first-best solution can be approximated as well
if a step function is applied to each of the T outputs separately. What
makes this incentive scheme unattractive though is that it becomes pro-
hibitively expensive if auditing is costly and the number of subintervals
becomes large.

2. THE MODEL AND MAIN RESULT

The model is a one-dimensional version of the Brownian model by
Holmstrom and Milgrom [ 4] in which control revisions take place in discrete
time. In the time interval [0, 1] the agent controls a publicly observable out-
put process X with boundary condition X,=0 and stochastic differential
equation

dX,= f(u,) dt+ o dB,, (1)

where f(u,) is the instantaneous mean, u, =u,(t, X) is the agent’s control at
date ¢, o is the diffusion rate, and B is a standard Brownian motion. The
control u is not observable and can only be revised at times =0, 1/7, ...,
(T—1)/T, where T denotes the total number of revisions. The length of a subin-
terval with constant control is then 47 = 1/T. Moreover, u is an Z-predictable
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process which takes values in some open bounded control set U < Z.,, .2 Denote
the class of all such control processes by %. The “production function”
f(-) is bounded with derivatives f'(-) >0 and f”(-) <0, and the diffusion
rate ¢ lies in a bounded subset of #_ .. Additionally, the agent incurs
effort cost c¢(u,), where ¢(-) is bounded with derivatives ¢'(-)>0 and
¢"(+)=0. For convenience, we assume that the principal is risk neutral. The
agent has negative exponential von Neumann—Morgenstern utility with
coefficient of risk aversion r.

In principle, the sharing rule S(-) may depend on the entire history of X.
The principal maximizes expected profits subject to two constraints: (i) the
agent weakly prefers the random allocation (S(X), u) to the certain income
W ,, and (ii) given the sharing rule S(X), the agent’s optimal control is u.
Formally,

max E[ X, —S(X)] (2)
S(X), u
s.t.
dX,= f(u,) dt + o dB,, (3)
E{ —exp {—r <S(X) —(T_l)/TC(ut) AZ>H > —exp{ —rW,}, (4)
t=0

and
(T—1)/T
ueargmaxE{—exp{—r(S(X)— Y c(ﬁ,)At>H. (5)
ae¥U t=0
In the absence of incentive constraints, the principal’s first-best problem

is characterized by (2)—(4). The following lemma follows from Miiller [ 8].

LemMmA 1. In the discrete-time version of the Brownian model, the first-best
sharing rule is

Srp= W4+ c(ugp), (6)

where the first-best control u,pg=urg is unique and constant over time.

Since the cumulative output in subintervals [ ¢, # + 4¢] is normally distri-
buted, the Brownian model with discrete-time control revisions is concep-
tionally equivalent to a discrete-time model in which the agent repeatedly

2 Any left-continuous, measurable process that is adapted to the filtration { %} is Z-predictable.
See [ 1] for details.
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chooses the mean f(u,) At of a normally distributed random variable 4X,.
Among other things, this implies that each subinterval has a “Mirrlees
structure,” i.e., powerful MLRP tests can be performed in the tails of the
distribution that almost perfectly reveal the agent’s effort choice. In a static
context, Mirrlees [5, 6] has shown that in this environment the first-best
outcome can be approximated arbitrarily closely with a suitably chosen
sequence of step functions. In a dynamic context, this is not necessarily
true. As an illustration, consider the case where T=2 and suppose a step
function is applied to the aggregated end-of-period output X;. From the
perspective of the second (and final) revision date 7= 1, the end-of-period
output X, is normally distributed with mean f(u,,) 4¢ + X, and variance
g At. Consequently, the agent’s optimal second-period control Uy Will
depend on the underlying state X ,,. In particular, if X, is high, the agent
will choose a low control, and if X, is low, he will choose a high control.
In the face of this fact, Hart and Holmstrém [ 2, p. 93] conclude that “step
functions will induce a path of effort that will be both erratic and, on
average, low.... This suggests that the optimality of step functions is highly
sensitive to the assumption that the agent chooses his labor input only
once.”

While in the above example step functions indeed fail to implement the
(constant) first-best control, this is not because effort is chosen repeatedly,
but because the agent’s compensation is based exclusively on aggregated
end-of-period output X;. With a more elaborate incentive scheme based on
intermediate output values, however, it is not only possible to implement
any desired constant control, but also to approximate the first-best solution
arbitrarily closely. To see this, consider the following incentive scheme.

DEerFINITION: RANDOM SpOoT CHECK. At time 1, the principal randomly
selects one of the 7" output increments 4X, = X, , ,,— X,. Subsequently, the
agent is compensated with a step function based on A4X,.

The randomizing device in question is assumed to be symmetric. Thus,
to perform a random spot check the principal need only observe the value
of one randomly selected output increment A4X,. In particular, the principal
need not observe the values of the other 7— 1 increments or the time order in
which these increments were generated.> In other words, it is not necessary
that the principal knows the entire history of the output process X.

3 In many practical examples, obtaining such information is either too costly or not possible.
Consider, for instance, a quality control department where random spot checks are used to test
the quality of transistors. Typically, the tester faces a pile of transistors from which he randomly
selects a few candidates. Both the quality of the remaining transistors and the time order in
which the transistors were generated remain unknown, however.



296 HOLGER M. MULLER

Given a random spot check, the agent faces the same control problem in
each subinterval. Accordingly the agent’s overall control problem can be
expressed as a simple multivariate optimization problem. For instance, if
there are only two subintervals, the agent’s overall control problem is

max — 3 F(AX | ug) exp{ —r(s — c(up) At — c(uy) A1)}

Up> Uy
— Y (1= F(4X | ug)) exp{ —r(5 — c(ug) At —c(uy ) A1)}
% (AX | u1/2) exp{ —r(s —clug) 4t — C(u1/2) AI)}
—5(1=F(4X | uy)) exp{ —r(5— c(ug) At — c(u, 5) A1)}, (7)

where 4X denotes the cutoff, s is the payment if 4X, < AX, § is the payment
if AX,>AX, and F(AX | u,) is the probability that 4X,<AX conditional
upon the fact that u, is chosen. In (7), the first two rows represent the
agent’s expected utility if the selected increment is 4X,=A4X,, weighted
with the probability 1 that the first subinterval is selected. Analogously, the
last two rows represent the agent’s expected utility if 4X, = 4X, ,, weighted
with the probability 3 that the second subinterval is selected.

Like linear sharing rules, random spot checks provide the agent with
constant incentives over time. As the following lemma shows, the principal
can implement any desired constant control provided that the payments s
and § are chosen appropriately and the cutoff 4X is sufficiently small.

LemMA 2. Let F(AX | it) denote the value of the distribution function of a
normally distributed random variable AX with mean f(it) At and variance o® At
at AX = AX. Given an arbitrary constant control i, there exists a random spot
check with payments

s=W +c(u) —;111[1 —rc' (@) (1 — F(4X | 0))/F (4X | )] (3)
and
§=W  +c(i) —%ln[l +rc'(it) F(AX | 2)/F,(AX | @) ] 9)

such that (1) the agent chooses u, = it in each subinterval, and (ii) the agent’s par-
ticipation constraint (4) holds with equality.

Proof. Note that both payments are well defined for sufficiently small AX
since F (4X|i)<0 and limy%_, _ F(4X|u)/F,(4X | #)=0. Given a ran-
dom spot check, the agent’s control problem is
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| @1y (T—1)/T
max —— Y  F(AX|u,) exp {—r <s— Yo eluy) At>}
o> o (T 1)/T t=0 t=0
| =1y o (T—1)/T
—— Y (1—F(4X| u,))exp{—r(s— Y c(u,)Al)}. (10)
r = =0

As is shown in the working paper version [ 7], the agent’s objective function
is strictly concave in u, if AX is sufficiently small. Differentiating (10) with
respect to u, and rearranging yields the set of first-order conditions

F(AX | u,) +rc'(u,) At T30 F(AX | u,)
F(AX | u)—rc'(u,) 4t TGV (1 F(AX | 1))

—exp{—r(5—s)}.  (11)

By symmetry, u, =u for all ¢, i.e., the agent chooses the same control in each
subinterval. Inserting (8)—(9) in (11) shows that the agent’s first-order condi-
tion is satisfied at u =& The agent’s participation constraint is then

—exp{ —r(s—c(it))} F(AX | @t) —exp{ —r(§—c(ir))} (1 — F(4X | it))

> —exp{ —rW,}, (12)

which holds with equality if s and § are replaced by (8) and (9), respectively.
|

We are now in the position to show that the principal can approximate
the first-best solution arbitrarily closely. Consider a random spot check
with payments s and § given by (8)—(9) where i =upp and where AX is
sufficiently small. By Lemma 2, this incentive scheme implements the
(constant) first-best control, i.e., the agent chooses u 5 in each subinterval
and his participation constraint is satisfied. The principal’s expected utility
is then

E[ X, | upp] —SF(AX | upp) —5(1 — F(AX | upp)). (13)

In particular, since §>s, the expected payment to the agent is bounded
from above by 5§, which implies that (13) is bounded from below by

F(H/ | trp)

—. 14
F(AX | ugp) (14

1
E[X, |uppg] — W4 — c(upg) +;ln 1 +rc'(upg)
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As 4X is normally distributed with mean f(u ) 4t and variance o2 At, we
have

Cim PAXum) (15)
A% > —oo F(AX | tpg)

which implies that the rightmost term in (14) converges to zero as AX — — oo.
In other words for any & > 0, the principal can find a cutoff 4X(¢) such that
his expected utility is equal to the first-best utility E[ X, | upg] — W, —
c(upg) minus &. As in [5, 6], this is due to the fact that the likelihood ratio
S AAX | ugp)/f(AX | ugp) tends to —oo as AX — — oo, implying that low
values of 4X are an extremely accurate signal that the agent has shirked.
We thus have the following result.

THEOREM 1. In the discrete-time version of the Brownian model, the
principal can approach the first-best outcome asymptotically.

3. EXTENSIONS AND DISCUSSION

3.1. Private Information about Timing of Control Revisions

While Section 2 assumes that the timing of the agent’s control revisions
is common knowledge, our results continue to hold if the agent is privately
informed about the number of control revisions as long as 7 is finite (that
is, as long as the agent cannot revise his effort continuously) and the
principal knows the partition of [0, 1] associated with each possible value
of T. As an illustration, consider the case where the principal only knows
that Te{l1,2,3} and that all subintervals have equal length. By using a
random spot check with “test interval” length § (i.e., the randomly selected
increment 4X, is chosen from one of the subintervals [0, 1/6], ..., [5/6, 1]),
the principal can ensure that during any of the six possible test intervals
the agent’s control is constant. As a consequence, the agent faces the same
control problem in each subinterval, which once again implies that the
principal can implement any desired constant control. More generally, if it
is common knowledge that Te{T7,.. T}, where T<co, any constant
control can be implemented by choosing a test interval of length 1/(T(T —1)).
The rest is analogous to Section 2.

If the partition of [0, 1] associated with a particular value of T is not
common knowledge, the principal can no longer approximate the first-best
outcome. For instance, if it is common knowledge that the agent can revise
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his control T times but the dates at which the revisions take place are
private information, step functions fail to implement the constant first-best
control—very much like in the example at the beginning of Section 2 where
step functions were based on aggregated end-of-period output X;.

3.2. Implementation via Alternative Incentive Schemes

In many applications of interest, performing a random spot check after
the entire output has been produced is impossible. For instance, if produc-
tion process is organized as a kamban system, work-in-progress is not
accumulated but transported directly to the production unit where it is
used next. Nevertheless, the principal can implement any desired constant
control by randomly selecting a subinterval [z, ¢+ A¢] at time 0 and
measuring the corresponding increment 4X, immediately after it has been
produced, ie., at time 7+ A4¢. As long as the agent remains in the dark
about the timing of the principal’s inspection, he faces the same control
problem in each subinterval and optimally selects a constant control.
Consequently, both the random draw at time 0 and the inspection at time
t + At must be secret but verifiable ex post. In practice, such “secret inspec-
tions” are possible if, e.g., the output is forwarded to a different work unit
where it can be checked by the principal without the agent’s noticing it.

So far, attention has been restricted to random spot checks as these
—Ilike linear sharing rules—are widely used in practice. However, this does
not imply that random spot checks are the on/y incentive schemes allowing
the principal to approximate the first-best solution in the discrete-time
version of the Brownian model. For instance, consider an incentive scheme
where each of the T subintervals is checked and where the agent receives
s for each subinterval where 4X,<AX and § for each subinterval where
AX,> AX. As the agent’s control problem is the same in each subinterval,
he optimally chooses a constant control. Moreover, by letting AX — — oo,
the principal can approach the first-best solution asymptotically by straight-
forward analogy with the analysis in Section 2. What makes this scheme
unattractive though is that for arbitrarily small inspection costs ¢ >0 per
subinterval, the costs of providing constant incentives explodes as the
number of subintervals goes to infinity.

3.3. General Discussion

This paper has shown that, if the agent acts in discrete time rather than
in continuous time, linear sharing rules are no longer optimal in the Brownian
model by Holmstrom and Milgrom [4] as the first-best solution can then
be approximated arbitrarily closely with a random spot check and a
suitably chosen sequence of step functions. Intuitively, this is because in the
discrete-time version of the Brownian model, the principal’s compensation
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options are no longer smaller than the agent’s action options, implying that
the principal has many ways to implement any desired action.*

In their paper, Holmstrém and Milgrom already indicate that the Brownian
model may be viewed as the limit of different processes with very different
discrete-time behavior.® The issue is therefore not so much whether the
linearity result is robust with respect to the choice of discrete-time approxi-
mation, but to what extent the differences in results obtained from looking
at different discrete-time approximations help us to understand the relation
between the economic and technical aspects of the Brownian model. In the
present (i.e., discrete-time) version, each output A4X, is associated with a
unique control u,, which may be viewed as, e.g., the choice of input quality
used in the production of the output. If, for whatever reasons, the input
quality cannot be changed during the production of 4X, (e.g., because of
technological constraints), the discrete-time model may be descriptively
more relevant. On the other hand, if the input quality can be adjusted
while 4X, is being produced, the continuous-time version of the Brownian
model may be better suited in representing the situation.
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