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Summary. This paper considers a dynamic version of Akerlof’s (1970) lemons
problem where buyers and sellers must engage in search to find a trading partner.
We show that if goods are durable, the market itself may provide a natural sorting
mechanism. In equilibrium, high-quality goods sell at a higher price than low-
quality goods but also circulate longer. This accords with the common wisdom
that sellers who want to sell fast may have to accept a lower price. We then
compare the equilibrium outcomes under private information with those under
complete information. Surprisingly, we find that for a large range of parameter
values the quilibrium outcomes under the two information regimes coincide,
despite the fact that circulation time is used to achieve separation.
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1 Introduction

Since the seminal work by Akerlof (1970), there has been an abundance of
contributions dealing with the lemons problem. Typically, these models involve
the use of a sorting variable such as, e.g., education (Spence, 1973), insurance
deductibles (Rothschild and Stiglitz, 1976), or warranties (Grossman, 1980).1 If
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1 More recently, several models have emphasized the role of institutional innovations in ame-
liorating the lemons problem. Papers falling into this category are, e.g., Taylor (1999) (on quality
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the marginal rate of substitution between money and the sorting variable differs
for different types of informed agents (“single-crossing property”), the sorting
variable can be used to separate informed agents according to their type. In many
practical situations of interest, however, explicit sorting variables either do not
exist or are not used for whatever reasons. For instance, in the market for second-
hand cars, warranties typically play no role, except perhaps when the seller is a
professional car dealer.

In this paper we show that for certain goods the market itself may provide a
natural sorting mechanism, thus making an explicit sorting variable unnecessary.
We do this by considering a model of decentralized trade in a search market en-
vironment. Following recent developments in the theory of search and matching
(see, for instance, Mortensen and Pissarides, 1998), we allow for the co-existence
of different trading environments or submarkets where different prices prevail.2

Moreover, we restrict consideration to durable goods which, by definition, allow
the potential seller to derive (flow) utility while searching for a buyer. For in-
stance, in the case of second-hand cars, car owners can usually drive their car
until it is sold.

We show that the trade of durable goods in a search market environment
naturally induces separation. In equilibrium, high-quality goods sell at a higher
price than low-quality goods but also circulate longer. As a consequence, we
find that the major inefficiency commonly associated with the lemons problem,
viz., that the number of trades may be less than the number of agents on the
short side of the market, disappears in a durable goods market. More precisely,
if search frictions are sufficiently low, the short side of the market is always
fully served. Surprisingly, we find that the equilibrium under private information
may coincide with that where quality is observable, despite the fact that search
time is used to achieve separation. This leads us to conclude that decentralized
markets for (used) durable goods may perform surprisingly well once a dynamic
perspective is taken.

Technically, our paper adds to the growing literature on the co-existence
of different trading environments. The primitives of our model are the time
invariant flows of prospective buyers and sellers arriving at the market fringe.
Prospective buyers and sellers entering the (grand) market subsequently choose
between one of several submarkets. Similar settings have been examined by,
e.g., Shimer (1996), Moen (1997), Mortensen and Wright (1997), and Mortensen
and Pissarides (1998).3 In contrast to our model, however, these models do not
consider private information.4

inspections), Hendel and Lizerri (1999a) (on the interaction between the new and used car market),
and Waldman (1999) and Hendel and Lizerri (1999b) (on leasing contracts).

2 For a recent overview of search theory see McMillan and Rothschild (1994).
3 While Gale (1992) and Peters (1997) also allow for the co-existence of different submarkets,

their approach differs from both our approach and the approach in the above papers in that Gale and
Peters consider a one-shot setting where all trade must take place instantaneously.

4 Albrecht and Vroman (1992) also study a search market with private information. In their model,
however, there is only a single market.
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The idea that delay or the probability of trade can be used to sort between
different types of sellers has been recognized earlier. However, existing contribu-
tions consider only consumption goods. For instance, Evans (1989) and Vincent
(1989) consider a potential seller of a consumption good that must yet be pro-
duced. The important assumption is that high-quality goods are more costly to
produce than low-quality goods, which makes low-quality sellers more impa-
tient to trade.5 Clearly, delay loses its sorting power with respect to consumption
goods that have already been produced (all sellers then have the same marginal
rate of substitution between time and price). In this case, the probability of trade
may act as a sorting device if the number of trading rounds is limited (see, e.g.,
Wilson 1980). If all goods are traded eventually, however (e.g., because there
are more buyers than sellers and the number of trading rounds isnot limited),
the probability of trade also loses its power as a sorting device. As is shown in
our model, this is different if we consider durable goods.

Our paper is also related to recent work by Janssen and Roy (1999). In this
paper, the authors show that in a Walrasian market sellers may sort themselves
by selling in different time periods. All sellers enter the market at time zero. Over
time, the market gradually empties. From a cross-sectional perspective, this im-
plies that in any given point in time there exists at most a single price in the
market.6 By contrast, in our model sellers of different quality sort themselves by
trading in different search market environments, implying that in each period dif-
ferent prices naturally coexist. Even more important, we consider a search market
environment where delay is basically unavoidable. Indeed, for a given search or
matching technology, speeding up trade for one side (e.g., sellers) naturally in-
creases the expected delay for the other side (e.g., buyers). We demonstrate that
this feature is essential for our efficiency results, which, incidentally, are absent
in the paper by Janssen and Roy.

The rest of the paper is organized as follows. Section 2 presents the model
and defines the equilibrium concept. As a first benchmark, Section 3 derives the
set of competitive equilibria if trade takes place instantaneously, while Section
4 solves the search market model. Section 5 compares the derived equilibria
with the benchmark of complete information. Section 6 concludes with possible
extensions.

5 A similar setup also underlies the dynamic auction game by Vincent (1990) where buyers compete
for a good of unknown quality. Delay also plays an important role in the literature on private values
bargaining with incomplete information. See, e.g., Fudenberg and Tirole (1983), Sobel and Takahashi
(1983), Cramton (1984), Fudenberg, Levine, and Tirole (1985), and Gul, Sonnenschein, and Wilson
(1986). In the present paper, however, we only consider common values environments.

6 There may be also periods where no good is offered at all; Janssen and Roy refer to this as
“break in trading”. In a follow-up paper, Janssen and Roy (2000) allow for cohorts of new sellers
arriving in later periods. Still, it remains true that in any given period there is at most a single price
in the market.
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2 The model

2.1 Agents and preferences

Agents are endowed with either zero or one unit of an indivisible good. We
frequently refer to agents who are endowed with zero units as potential buyers
and agents who are endowed with one unit as potential sellers. The good comes
in two qualitiesq ∈ Q := {l , h}. All agents are risk neutral and discount future
payoffs at the same rater > 0. The model is set in continuous time with an
infinite time horizon. Potential sellers derive a constant flow utilityvq from using
the good. If the good is sold, the seller’s flow utility from using the good is zero.
Likewise, the flow utility of a potential buyer before and after the purchase is
zero anduq , respectively. We assume that for both types of agents the flow utility
from a high-quality good is greater than the flow utility from a low-quality good,
i.e., vh > vl > 0 anduh > ul > 0. Moreover, we assume that for both types
of goods there are strictly positive gains from trade, i.e.,uh > vh and ul > vl .
Finally, any agent can derive utility from at most one unit of the good at any
point in time. For instance, if the good is a car, this means that agents can derive
utility from driving the car, but not from owning it per se.

Theasset value of a good is defined as the discounted stream of utilities from
using the good until the indefinite future. Accordingly, the asset value of a good
of quality q for a potential seller isVq := vq/r , and the corresponding asset
value for a potential buyer isUq := uq/r .

During one unit of time (what constitutes a time unit is implicitly defined
by the discount rater), the measure one of agents appears at the market fringe
and may possibly enter the market.7 Of these agents, a fractionb ∈ (0, 1) are
potential buyers. The fraction 1− b = s of potential sellers is divided further
into a fractionsh > 0 of owners of high-quality goods and a fractionsl > 0 of
owners of low-quality goods. The quality of a good is private information. For
simplicity, we restrict attention to generic parameter valuesb /= s, b /= sq for all
q ∈ Q , andvh /= ul . Agents arriving at the market fringe can choose whether to
enter the market or stay outside. If they do not enter, their utility is determined
by their initial endowment.

2.2 Matching technology and asset value equations

The good is traded in a search market where potential buyers are matched with
potential sellers. While searching, agents incur a time-invariant search cost of
c > 0. The market consists of a continuum of potential buyers and sellers, which
implies that the probability of trade is determined by the respective measures of
agents engaging in search. We restrict attention to stationary equilibria where the
stock of agents is constant over time (see condition (E.2) below). The measure
of potential buyers in the market is denoted byβ, and the measure of potential

7 This is similar to Mortensen and Wright (1997).
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sellers of typeq is denoted byσq . The measure of buyer-seller matches per unit of
time is expressed by the matching functionx (β, σ), whereσ = σl +σh . Following
standard assumptions, the matching function is continuous and homogeneous of
degree one in both arguments. The transition rates for potential buyers and sellers
are thenf (k ) := x (β, σ)/β = x (1, 1/k ) and x (β, σ)/σ = f (k )k , respectively,
wherek := β/σ denotes the “market tightness” from the perspective of potential
buyers.8 Define g(k ) := f (k )k . Following again standard assumptions,f (k ) is
strictly decreasing ink with limits limk→0 f (k ) = ∞ and limk→∞ f (k ) = 0, and
g(k ) is strictly increasing ink with limits limk→0 g(k ) = 0 and limk→∞ g(k ) =
∞.9 The search market is fully characterized by the tightnessk , the distribution
of offered qualitiesπ(q) := σq/σ, and the prevailing pricep. Note that by
restricting attention to prices, we implicitly rule out more complicated contractual
arrangements where, e.g., buyers are given an option to sell back the good after
they have observed its quality.

Denote byV M
q (k , p) the utility of a potential seller of a good of qualityq

in a market with tightnessk and pricep. The asset value (or continuous-time
Bellman) equation forV M

q (k , p) is then

rV M
q (k , p) = −c + vq + g(k )

[
p − V M

q (k , p)
]
. (1)

Equation (1) is intuitive. While searching for a potential buyer, a potential seller
of type q incurs search cost ofc and derives flow utility ofvq from using
the good. With probability rateg(k ), which depends on the market tightnessk , a
buyer is found, in which case the good is exchanged at the pricep.10 Rearranging
(1) yields

V M
q (k , p) =

vq − c + g(k )p
r + g(k )

. (2)

Similarly, denote byU M (π, k , p) the utility of a potential buyer. As the good
comes in different qualities,U M (π, k , p) depends on the distribution of qualities
in the market. The asset value equation forU M (π, k , p) is

rU M (π, k , p) = −c + f (k )


∑

q∈Q

π(q)Uq − p − U M (π, k , p)


 ,

which can be rearranged as

U M (π, k , p) =
−c + f (k )

[∑
q∈Q π(q)Uq − p

]
r + f (k )

. (3)

8 The market tightness is an indirect measure of the expected time that goods must circulate
before trade takes place. As the tightness is defined from the perspective of potential buyers, a
greater tightness implies a shorter circulation time.

9 On occasion, it will be convenient to assume additionally thatf andg are differentiable.
10 Agents will find it optimal to trade if and only ifp satisfies

∑
q∈Q

π(q)Uq −p ≥ 0 andp ≤ Vq

for all q with π(q) > 0.
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2.3 Equilibrium conditions

The “grand” market consists of several submarkets indexed by natural numbers
n ∈ N = {1, 2, ..., n̄}. Each submarket constitutes an independent search envi-
ronment with corresponding submarket pricepn .11 As an illustration, consider
the case of used cars referred to in the Introduction. Used cars are frequently
offered via classified ads in newspapers or on the internet. There, cars of a given
type are typically grouped into different clusters according to their respective bid
or ask price.

We denote the time invariant measures of agents in marken by σn
q and

βn respectively. Without loss of generality, we restrict ourselves to “active”
submarkets populated by both buyers and sellers. An immediate implication of
this is thatk n = βn/σn andπn (q) = σn

q /σn , whereσn = σn
l + σn

h . Both potential
sellers and buyers must decide i) whether or not to enter the grand market, and
ii) if entry occurs, which of then submarkets to enter.12

We now present the equilibrium concept. The equilibrium conditions closely
resemble those in Moen (1997), Mortensen and Wright (1997), and Mortensen
and Pissarides (1998), except that our conditions apply to markets with private
information. Given some set of active submarketsN , define by

U ∗ := max

{
0, max

n∈N
U M (πn , k n , pn )

}

and

V ∗
q := max

{
Vq , max

n∈N
V M

q (k n , pn )

}

the utility of potential buyers and sellers of typeq , respectively, when choosing
optimally between their outside option and the submarket with the highest utility.

Similarly, for all n ∈ N define by

U ∗
N \{n} := max

{
0, max

n′∈N \{n}
U M (πn′

, k n′
, pn′

)

}

and

V ∗
q,N \{n} := max

{
Vq , max

n′∈N \{n}
V M

q (k n′
, pn′

)

}

the utility of potential buyers and sellers of typeq , respectively, when choosing
optimally between their outside option and the submarket with the highest utility
which is different from submarketn. As agents can choose between different

11 By requiring thatpn /= pn′
for any pairn, n′ ∈ N , n /= n′, we may rule out the possibility of

redundant markets. However, unless one imposes additional restrictions on the matching technology,
this will typically not suffice to ensure uniqueness.

12 We implicitly assume that once a submarket is entered, agents must stay in this submarket until
trade occurs. This assumption is only restrictive if agents are indifferent between different submarkets
or between entering and not entering the grand market, in which case they may want to switch back
and forth between submarkets or between the grand market and their outside option. Allowing for
this possibility is straightforward but does not generate any new results.
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search environments but face frictions to find a trading partner, this type of
model is often referred to as one of “directed search”.

As we restrict ourselves to stationary equilibria, the measures of potential
buyers and sellers of typeq in submarketn are time-invariant. Denote these
measures bybn and sn

q , respectively. The first equilibrium condition requires
that entry be optimal.

(E.1) Optimality. The decision to enter a submarket must be optimal. Hence the
measure of potential sellers of typeq entering submarketn ∈ N must satisfy

sn
q =




0 if V M
q (k n , pn ) < V ∗

q,N \{n}
sq if V M

q (k n , pn ) > V ∗
q,N \{n}

∈ [
0, sq

]
if V M

q (k n , pn ) = V ∗
q,N \{n},

where
∑

n∈N sn
q ≤ sq .

Likewise, the measure of potential buyers entering submarketn must satisfy

bn =




0 if U M (πn , k n , pn ) < U ∗
N \{n}

b if U M (πn , k n , pn ) > U ∗
N \{n}

∈ [0, b] if U M (πn , k n , pn ) = U ∗
N \{n}

for all n ∈ N , where
∑

n∈N bn ≤ b.
Note that (E.1) takes care of the fact that the measure of agents entering the

grand market cannot exceed the measure of agents arriving at the market fringe.
We now come to the second equilibrium condition: stationarity.

(E.2) Stationarity. In each submarket, the flow of entries must equal the flow
of exits, i.e.,sn

q = σn
q g(k n ) for all q ∈ Q andbn = βn f (k n ) for all n ∈ N .

Our third and last requirement is that markets be competitive. The equilib-
rium condition is adopted from Mortensen and Wright (1997) and Mortensen
and Pissarides (1998). Basically, it says that it must not be profitable for mid-
dlemen to open up new submarkets. Middlemen can open up new submarkets
by announcing a pair (p, k ) which potential entrants then compare with the price
and tightness prevailing in existing submarkets.13,14 As Mortensen and Wright
(1997) and Mortensen and Pissarides (1998) consider complete information en-
vironments, we augment their condition by adding the requirement that agents
deciding whether to enter a particular submarket must form rational expectations
about the distribution of qualities in that submarket.

13 A crucial assumption underlying this concept of competitiveness is that deviating submarkets
are negligible in size. As a consequence, opening up a new submarket does not affect the equilibrium
utilities prevailing in the existing set of submarkets.

14 Note that by offering pairs (p, k ), middlemen can avoid the well-known coordination failure
according to which profitable new submarkets do not open up as agents from either side have
(rational) beliefs that they will not find a counterparty to trade with. An alternative approach would
be to assume that each price is associated with a unique value ofk . For more on this, see Gale
(1996).
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(E.3) Competitiveness.There must not exist a pair (p, k ) /= (pn , k n ) such that
V M

q (p, k ) > V ∗
q for someq ∈ Q andU M (π, k , p) > U ∗ for all π ∈ ∆Q′ , where

∆Q′ is the set of probability distributions satisfyingπ(q) = 0 for all q /∈ Q ′,
whereQ ′ is defined asQ ′ :=

{
q ∈ Q | V M

q (p, k ) > V ∗
q

}
.15

Alternatively, (E.3) could be replaced by the following requirement adopted
from Moen (1997). Suppose buyers could open up new submarkets by posting
a new pricep. For any such price, one can then determine the set of pairs
(k , π) that are consistent withp in the following sense. Ifπ(q) > 0 for someq ,
sellers of this type must enter the new submarket until the tightnessk satisfies
V M

q (k , p) = V ∗
q . On the other side, ifπ(q) = 0, the tightness must adjust to

ensure that sellers of this type weakly prefer to stay out of the submarket, i.e.,
V M

q (k , p) ≤ V ∗
q . It can be shown that this alternative requirement yields identical

results.16

Observe that the informational requirements underlying (E.3) are minimal
as only a negligible fraction of market participants needs to know about the
existence of new submarkets. By contrast, for (E.1) to be satisfied all agents
must have perfect foresight about the price and market tightness in each of the
n submarkets.

To summarize, asearch market equilibrium consists of a setN of active
submarkets with characteristics (pn , βn ,

{
σn

q

}
q∈Q

) satisfying conditions (E.1)-
(E.3). As a benchmark, we first derive the set of competitive equilibria for a
static economy where prices are set by a Walrasian auctioneer to equate supply
and demand. In Section 4, we then continue with our analysis of search market
equilibria.

3 Standard competitive analysis

Consider a static version of the model in which all trade takes place instan-
taneously. The economy is populated by a measure one of agents, of which a
fractionb ∈ (0, 1) constitutes potential buyers. The fraction 1−b = s of potential
sellers is divided further into a fractionsh > 0 of owners of high-quality goods
and a fractionsl > 0 of owners of low-quality goods. The utilities of potential
sellers and buyers from the good arevq anduq , respectively, whereq ∈ Q . The
supply correspondence is then

S (p) =




0 if p < vl

∈ [0, sl ] if p = vl

sl if vl < p < vh

∈ [sl , s] if p = vh

s if p > vh .

15 In fact, it makes no difference whether the inequality in the definition ofQ ′ is strict or weak.
16 For a formal analysis, we refer the reader to the working paper version (Inderst and Müller

1999). The analysis there is similar in spirit to the (refinement) approach by Gale (1996).
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Clearly, whenever a positive fraction of the high-quality good is supplied, the
entire fraction of the low-quality good must be supplied as well. For a given value
S > 0, the distribution of qualities is thereforeπ(h, S ) = max{0, S − sl} /S and
π(l , S ) = 1− π(h, S ). Hence the demand correspondence is

D(p, π) =




0 if π(l )ul + π(h)uh < p
∈ [0, b] if π(l )ul + π(h)uh = p
b if π(l )ul + π(h)uh > p.

A competitive equilibrium is a triple (D , S , p) such thatD = S ≥ 0, S ∈ S (p),
andD ∈ D(p, π(S )). Recall that we restrict attention to generic parameter values.
We can then distinguish between three cases. The first two cases represent buyer
markets (s > b), whereas the third case represents a seller market (b > s). Since
the analysis is standard, we confine ourselves to summarizing the results.

Case 1 (sl > b). There exists a unique equilibrium where all potential buyers
purchase the low-quality good at the pricep = vl .

Case 2 (s > b > sl ). We can distinguish between three subcases. Ifvh < ul ,
there are gains from trade regardless of the distribution of qualities. In this case,
there exists a unique equilibrium where both low- and high-quality goods are
traded atp = vh . In this equilibrium, the measuresl of buyers purchases the
low-quality good, and the measureb − sl of buyers purchases the high-quality
good. If vh > ul and sl ul + (b − sl )uh < bvh , there exists a unique equilibrium
where only the low-quality good is traded at the pricep = ul . The measureb − sl

of potential buyers does not trade despite the presence of high-quality sellers
in the market. Finally, ifvh > ul and sl ul + (b − sl )uh ≥ bvh , there exist two
equilibria. Either only the low-quality good is traded atp = ul , or both the low-
and high-quality good are traded at the pricep = vh .

Case 3 (b > s). The analysis is similar to Case 2. We can again distinguish
between three subcases. Ifvh < ul , there exists a unique equilibrium where all
goods are traded at the pricep = (ul sl + shuh ) /s, which implies that potential
buyers are forced down to their reservation utility of zero. Second, ifvh > ul and
sl ul + shuh < svh , there exists a unique equilibrium where only the low-quality
good is traded at the pricep = ul . In this case, the measuresh of high-quality
sellers does not trade despite the presence of potential buyers in the market.
Finally, if vh > ul andsl ul + shuh ≥ svh , there exist three equilibria. Either only
the low-quality good is traded atp = ul , or both the low- and high-quality good
are traded at the pricep = (ul sl + shuh ) /s, or p = vh , in which case high-type
sellers are indifferent. In the last case, we can then specify that only the measure
0 < s̄h < sh of high-type sellers trades. To make buyers indifferent, it must then
be true that (sl ul + s̄huh )/(sl + s̄h ) = vh . It can be checked that this equation has
a solution ¯sh < sh if sl ul + shuh > svh .

To summarize, for a large range of parameter values there are gains from
trade which remain unexhausted in equilibrium. In particular, ifvh > ul , a
strictly positive fraction of the short side of the market does not trade (Cases 2
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and 3). This is different if we consider a search market environment. As we show
in the following section, all members of the short side of the market engage in
trade if search costs are sufficiently low.

4 Competitive search market equilibria

We begin with a characterization of the equilibrium utilities for the long side
of the market (in terms of potential entrants). Suppose first that potential buyers
outnumber potential sellers (b > s). Since buyers and sellers must exit the market
in pairs, potential buyers must be indifferent between entering and not entering
the grand market to ensure that the stock of agents in the market remains constant
(this follows immediately from combining (E.1) with (E.2)). Consequently, all
potential buyers must receive their reservation utility of zero.

Next, consider the case where sellers outnumber buyers (s > b). By (2), we
have (

V M
l (k , p) − Vl

) − (
V M

h (k , p) − Vh
)

=
g(k ) (vh − vl )

r(r + g(k ))
> 0, (4)

which implies that if high-quality sellers weakly prefer to enter the market, low-
quality sellers must strictly prefer to enter. Accordingly, ifsl > b, potential sellers
of the low-quality good must be indifferent between entering and not entering
the market, whereas potential sellers of the high-quality good must strictly prefer
not to enter. Consequently, all potential sellers must receive their reservation
utility of Vq , whereq ∈ Q . On the other hand, ifs > b > sl , potential sellers
of the high-quality good must be indifferent between entering and not entering
the market, which implies that they must receive their reservation utility ofVh .
The following lemma summarizes these results.

Lemma 1. In equilibrium, the following must hold:

Case 1 (sl > b). Potential sellers obtain their reservation utility of Vq , where
q ∈ Q .

Case 2 (s > b > sl ). Potential sellers of the high-quality good obtain their
reservation utility of Vh .

Case 3 (b > s). Potential buyers obtain their reservation utility of zero.

Given a transition rateg(k ), the expected search time of potential sellers is
T := 1/g(k ). The expected utility from searchV M

q (k , p) is then
(
T (vq − c) + p

)
/

(Tr + 1), which implies that the marginal rate of substitution between search time
and sales price depends on the good’s quality and equals

dp
dT

= −vq − c − rp
Tr + 1

. (5)

Hence, for a given increase in expected search time, high-quality sellers must
be compensated with a smaller increase in price than low-quality sellers. Recall
from our introductory remarks that this condition holds only with respect to
durable goods. If the good is a consumption good, potential sellers derive no
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flow utility from the good while engaging in search. Consequently, the marginal
rate of substitution between search time and price is the same for both types of
sellers.

It is now straightforward to show that there cannot exist a submarket which
attracts more than one type of seller.

Lemma 2. In equilibrium, there cannot exist a pooling submarket. Moreover, in
any separating equilibrium where submarket n attracts high-quality sellers and
submarket m attracts low-quality sellers, it must hold that pn > pm and k n < k m.

Proof. Consider first the claim that there cannot exist a pooling submarket.
Suppose to the contrary that submarketn ∈ N is pooling, implying thatπn (q) > 0
for q ∈ Q . We show that this violates (E.3). Define for allV ≥ Vq andp > V
the tightnesskq (p, V ) which ensures that potential sellers of typeq stay on their
indifference curveV M

q (k , p) = V , implying that

g
(
kq (p, V )

)
=

rV + c − vq

p − V
.

Observe thatkq (p, V ) is unique and continuous with respect to both argu-
ments. Next, take some pricep = pn +ε, whereε > 0, and setkε := kl (pn +ε, V ∗

h ).
From (5) and the fact thatV M

q (k n , pn ) = V ∗
q for q ∈ Q , it follows that

V M
h (kε, pn + ε) > V ∗

h . Moreover, sinceπ(l ) > 0 anduh > ul , it must also hold
that U M (πn , k n , pn ) < U M (π, k n , pn ) = U ∗, whereπ(l ) = 0. Hence, by continu-
ity there must exist sufficiently small valuesε, ε′ > 0 such thatp′ = pn + ε − ε′,
k = kε , andπ(l ) = 0 together imply thatV M

h (k , p′) > V ∗
h , V M

l (k , p′) < V ∗
l , and

U M (π, k , p′) > U ∗, contradicting (E.3).
Consider next the second claim. We argue to a contradiction and assume

that pn ≤ pm . By buyer optimality, this implies thatk n < k m . To ensure seller
optimality, (E.2) requires thatV M

h (k n , pn ) ≥ V M
h (k m , pm ) and V M

l (k m , pm ) ≥
V M

l (k n , pn ). However, given the sorting condition (5) andk n ≥ k m , these two
inequalities cannot be jointly satisfied. Hence it must be true thatpn > pm . But
this implies thatk n < k m as otherwiseall sellers would strictly prefer submarket
n to submarketm. 	


Lemma 2 follows immediately from condition (5). In particular, it states
that in any equilibrium where both high- and low-quality goods are traded, high-
quality goods must sell at a higher price but also circulate longer than low-quality
goods. Whether it is actually true that both types of goods are traded depends on
the initial distribution of buyers and sellers in the population. In what follows,
we provide a full characterization of the set of competitive search equilibria for
each of the three cases analyzed in Section 3. For expositional clarity, the results
are stated in three separate propositions. If search is too costly, there may be no
trade at all. In all three propositions, we therefore assume that search costs are
sufficiently low.
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We begin with Case 1. We obtain the intuitive result that high-quality goods
are never traded if the supply of low-quality goods already exceeds the potential
demand. The outcome is thus the same as in the standard analysis in Section 3.17

Proposition 1. If sl > b and search costs are sufficiently low, an equilibrium
exists. Moreover, in any equilibrium only low-quality goods are traded. More
precisely,

∑
n∈N bn = b,

∑
n∈N sn

l = b < sl , and
∑

n∈N sn
h = 0.

Proposition 1 is proved in the Appendix. Note that the proposition is silent
about the precise values ofpn andk n prevailing in equilibrium. In the existence
proof in the Appendix, we show that any pair (pn , k n ) must solve a particular
program. In that program, (pn , k n ) is chosen to maximize the utility of potential
buyersU M (π, k , p), whereπ(l ) = 1, subject to the binding participation con-
straint of the low-quality sellerV M

l (k , p) = Vl . We will have more to say about
equilibrium prices and transition rates in Section 5 where we discuss welfare
issues.

Next, consider Case 2. If there are more potential buyers than low-quality
sellers, the equilibrium outcome changes dramatically. In particular, it is then
always true that i) both low- and high-quality goods are traded, and ii) all agents
on the short side of the market (here: potential buyers) engage in trade.

Proposition 2. If s > b > sl and search costs are sufficiently low, an equilibrium
exists. Moreover, any equilibrium exhibits the following characteristics:

i) Both low- and high-quality goods are traded. More precisely,
∑

n∈N bn = b,∑
n∈N sn

l
= sl , and

∑
n∈N sn

h = b − sl < sh .
ii) The set of submarkets is fully separating.
iii) High-quality sellers obtain their reservation utility of V ∗

h = Vh. The equilib-
rium utilities of buyers and low-quality sellers are uniquely determined and
satisfy U ∗ > 0 and V ∗

l > Vl , respectively.

The proof of Proposition 2 is relegated to the Appendix. While Proposition 2
suggests that embedding the lemons problem in a dynamic framework may re-
solve the problem that some agents on the short side of the market are rationed,
the solutionmay come at a cost: to achieve separation high-quality goods must
circulate longer than low-quality goods. By condition (E.3), which states that
markets be competitive, separation must now be achieved at least costs for sell-
ers of high-quality goods. Proposition 2 is illustrated in the following diagram.

For an interpretation of Figure 1, consider first the indifference curve of
high-quality sellers. Recall that a seller prefers both a higher price and a higher
tightnessk = β/σ, as this reduces expected search costs. Hence, his indiffer-
ence curve must be strictly decreasing. It is denoted byV M

h (k , p) = V ∗
h . For the

17 Recall that the gains from trading either type of good are strictly positive. To ensure that the
market operates, these gains must not be fully offset by the total expected search costs incurred by
the buyer and seller. While this is clearly the case forc = 0, it also holds for all sufficiently low
values ofc > 0 by a standard continuity argument.
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Figure 1

purpose of illustration, we assume that this curve is strictly convex. By Propo-
sition 2 the assumptions > b > sl ensures that high-quality sellers realize just
their reservation utilityV ∗

h = Vh in the market. Clearly, this implies that their
indifference curve converges to the price levelp = Vh as the tightnessk and thus
the seller’s probability rate of finding a buyer goes to infinity. The indifference
curve of a low-quality seller is denoted byV M

l (k , p) = V ∗
l . While this curve

is also strictly decreasing, there are two differences relative to the indifference
curve of a high-quality seller. First, we know from Proposition 2 that low-quality
sellers realize strictly more than their reservation valueVl in the market. Sec-
ond, by condition (5), which was used in Lemma 2, the indifference curve of a
low-quality seller must cross that of a high-quality seller from above. Intuitively,
high-quality sellers are more willing to accept a greater delay in return for an
increase in the price than low-quality sellers.

Consider next a representative buyer who prefers both a lower price and a
lower tightnessk . For the purpose of illustration, we assume that his indifference
curves in Figure 1 are strictly concave. If a buyer trades in the low-quality
market, his indifference curve is denoted byU M (π, k , p)m = U ∗, where we
set π = 0. By our assumptions concerning the shape of indifference curves,
there exists at most one point of tangency with the indifference curve of a low-
quality seller, which is denoted by (kl , pl ). Condition (E.3) ensures that in this
example there then opens at most one submarket for low-quality goods which
has precisely these characteristics. Consider next buyers trading in a market for
high-quality goods. Clearly, trade in a high-quality market shifts their indifference
curve to the north-east. It is denoted byU M (π, k , p)m = U ∗, where we now set
π = 1. If there were only high-quality goods in the economy, (E.3) would again
ensure that the equilibrium utility for high-quality sellersV ∗

h and the respective
characteristics (kh , ph ) are determined by a tangency condition. With two goods
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in the economy and private information about quality, this may, however, not be
incentive compatible. As a consequence, the characteristics in markets for high-
quality goods must be chosen appropriately to ensure separation. In the example,
this is achieved at least costs exactly at the intersection of the indifference curves
of high- and low-quality sellers.

We finally come to Case 3, which is very similar to Case 2. If potential buyers
outnumber potential sellers, the major inefficiencies associated with the lemons
problem disappear, i.e., both types of goods are traded in equilibrium and the
short side of the market (here: potential sellers) is never rationed. The proof of
Proposition 3 is provided in the Appendix.

Proposition 3. If b > s and search costs are sufficiently low, an equilibrium
exists. Moreover, any equilibrium exhibits the following characteristics:

i) Both low- and high-quality goods are traded. More precisely,
∑

n∈N bn = s <
b and

∑
n∈N sn

q = sq , where q ∈ Q.
ii) The set of submarkets is fully separating.
iii) Buyers obtain their reservation utility of U ∗ = 0. The equilibrium utilities

of both low- and high-quality sellers are uniquely determined and satisfy
V ∗

q > Vq for q ∈ Q.

5 Market performance

In this section we assess the performance of competitive search markets under
adverse selection. We do so by comparing the equilibrium outcomes in Section
4 with those under complete information. Surprisingly, we find that for certain
parameter values the presence of private information entails no efficiency loss.
Hence, both the choice of traded goods and market characteristics may not de-
pend on the information regime. As the allocation under complete information
is efficient, this implies that markets with private information may perform sur-
prisingly well even if there exists no explicit (contractual) sorting variable.

5.1 The benchmark of complete information

Under complete information, the sellers’ types are publicly known, which im-
plies that it is possible to regulate the access of particular types to submarkets.
By common values, it is then obvious that in a properly specified equilibrium
goods of different qualities cannot sell at the same price. Without loss of gener-
ality, we therefore restrict attention to submarkets which are fully separating.
For any given set of submarketsN , define Nq := {n ∈ N | πn (q) > 0} and
V ∗

q := max
{

Vq , maxn∈Nq V M
q (k n , pn )

}
. For potential buyers,U ∗ is defined as

in Section 2. Analogous to (E.1)-(E.3), we then have the following equilibrium
conditions for the case of complete information.

(E.1’) Optimality. For all n ∈ Nq , the measure of potential sellers of typeq in
submarketn must satisfy



Competitive search markets for durable goods 613

sn
q =




0 if V M
q (k n , pn ) < max{Vq , maxn′∈Nq \{n} V M

q (k n′
, pn′

)}
sq if V M

q (k n , pn ) > max{Vq , maxn′∈Nq \{n} V M
q (k n′

, pn′
)}

∈ [
0, sq

]
if V M

q (k n , pn ) = max{Vq , maxn′∈Nq \{n} V M
q (k n′

, pn′
)},

where
∑

n∈N sn
q ≤ sq . The condition for potential buyers is identical to (E.1).

(E.2’) Stationarity. The condition is identical to (E.2).

(E.3’) Competitiveness.There must not exist a pair (p, k ) /= (pn , k n ) and a type
q ∈ Q such thatV M

q (p, k ) > V ∗
q andU M (π, k , p) > U ∗, whereπ(q) = 1.

To characterize the equilibrium outcomes under complete information and
confront them with the outcomes under private information, we must compare
the gains from trade for goods of different qualities. For this purpose, define for
q ∈ Q

∆q := uq − vq .

The following proposition provides a full characterization of the equilibrium
outcomes under complete information. The proof is provided in the Appendix.

Proposition 4. If search costs are sufficiently low, an equilibrium under complete
information exists. Moreover, any equilibrium exhibits the following characteris-
tics:

i) b > s :
∑

n∈N sn
q = sq , V ∗

q > Vq for q ∈ Q , and U ∗ = 0.
ii) b < s :

∑
n∈N bn = b and U ∗ > 0. As for sellers, the following holds:

∆h < ∆l :
∑

n∈N sn
l = min[b, sl ],

∑
n∈N sn

h = b − ∑
n∈N sn

l , and V ∗
h = Vh .

∆h > ∆l :
∑

n∈N sn
h = min[b, sh ],

∑
n∈N sn

l = b − ∑
n∈N sn

h , and V ∗
l = Vl .

∆h = ∆l : V ∗
q = Vq .

iii) Submarkets must solve the following program: if πn (q) > 0, k maximizes
V M

q (k , p), where p is determined by U M (π, k , p) = U ∗ (given π(q) = 1).
iv) If both goods are traded and ∆q > ∆q′ , it must hold for any pair of submar-

kets (n, n ′) with πn (q) = 1 and πn′
(q ′) = 1 that k n > k n′

.

By Claims i) and ii), goods with lower gains from trade are only traded if
all goods with higher gains from trade are traded. Claim iii) follows from (E.3’)
and requires that submarket characteristics (i.e., price and circulation time) be
chosen efficiently. In the present context, this means that the marginal rates of
substitution between price and delay must be the same for buyers and sellers.
This gives rise to Claim iv), according to which goods with higher gains from
trade must sell faster. Applying the arguments of Moen (1997), it can now be
shown that under complete information the equilibrium is efficient.

5.2 Comparison of information regimes

Recall from Section 4 that in a competitive search market all agents on the
short side of the market trade even under private information. While this already
eliminates a major inefficiency associated with the static setting, we should still



614 R. Inderst and H.M. M̈uller

expect that the outcomes under symmetric and private information differ for
two reasons. First, if sellers outnumber buyers, the “wrong” goods (i.e., those
with lower gains from trade) may be traded. Second, even if the right set of
goods is traded, market characteristics in (by Lemma 2 separating) submarkets
may be chosen inefficiently to ensure separation. This intuition can be confirmed
whenever the gains from trade are higher for low-quality goods. On the other side,
if this is not the case and buyers are the short side of the market, we can show
that the set of equilibria is independent of the information regime. Before going
into details, observe first that the inefficiencies arising under the static analysis
of Section 3 do not depend on the sign of the difference∆h − ∆l . Moreover,
given that all players derive more utility from goods with higher quality, there is
a priori no reason how the gains from trade should change with quality, which
makes the cases∆h < ∆l and∆h > ∆l equally realistic.

By comparison with Proposition 4, we obtain the following result stating
conditions under which equilibria with private information are still efficient.

Proposition 5. If search costs are sufficiently low, an equilibrium under private
information is also an equilibrium under complete information if and only if

i) ∆h ≤ ∆l and b < sl , or
ii) ∆h < ∆l and sl < b < s.

Proposition 5 is proved in the Appendix. The result is rather immediate for
Case i) where we know from Proposition 1 that only low-quality goods are
traded. This implies no loss of efficiency as the respective gains from trade are
not smaller than for high-quality goods. Moreover, condition (E.3) ensures that
the characteristics in (sub-) markets for low-quality goods are chosen efficiently.
Both arguments regarding the set of traded goods and the conditions under which
low-quality sellers trade carry over to Case ii). In addition, we must now consider
trade of high-quality goods. Recall from Lemma 2 that under private information
high-quality goods always trade more slowly but at a higher price than low-
quality goods, which was proved by appealing to incentive compatibility. We
argue now that in Case ii) the differences in circulation times between high- and
low-quality goods are chosen efficiently even under private information.

To see this, observe first that the requirementssl < b < s and ∆h < ∆l

imply intuitively thatV ∗
h = Vh andV ∗

l > Vl . Hence, while sellers of high-quality
goods only realize their respective reservation value, sellers of low-quality goods
are strictly better off when entering the market. In other words, the entire sur-
plus from trading high-quality goods is appropriated by potential buyers, while
the surplus is shared (more equally) when trading low-quality goods. Suppose
now that there is complete information regarding quality, which from Section 5.1
(and Proposition 4) implies that the characteristics in the respective submarkets
must be chosen efficiently. Consider any submarket where high-quality goods
are traded. Recall next that searching and delay involves two types of inefficien-
cies due to the direct costsc > 0 and discounting withr > 0. The efficient
choice of submarket characteristics for high-quality goods must thus balance two
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conflicting objectives. To minimize aggregate search costs due toc > 0, it is
optimal to choose “intermediate” values for the tightnessk . On the other side,
as players discount future utilities and as the entire surplus is realized by buyers
due to V ∗

h = Vh , the expected waiting time of buyers should be much lower
than that of sellers. Asc → 0, the second objective dominates the first, implying
that the tightnessk converges to zero such that the transition rate of high-quality
sellersf (k ) converges to zero.18 Consider now for these (low) choices ofk the
payoff of a (deviating) low-quality seller. Clearly, asr > 0 and as trade is ex-
tremely delayed, his payoff becomes arbitrarily close to his reservation valueVl

asc → 0, which again is strictly less than his equilibrium payoffV ∗
l . Summing

up, as search costsc become sufficiently low, the efficient characteristics chosen
under complete information ensure incentive compatibility if quality is private
information. Hence, even though goods of different quality are traded in equilib-
rium at different prices, we find also for Case ii) that private information does
not imply inefficiencies.

The key to the previous argument is the existence of a search market environ-
ment, where frictions due to delay are unavoidable. Indeed, if trade is speeded up
for one side, expected delay must increase for the other side. In such an environ-
ment it may hold for reasonable parameter choices that the efficient characteristics
chosen under complete information already ensure incentive compatibility under
private information.19

6 Conclusion

In this paper we consider a search market for durable goods where sellers have
private information about the good’s quality. In sharp contrast to the standard
(static) analysis, we show that in equilibrium goods of different qualities sell
at different prices. To ensure incentive compatibility, high-quality goods must
circulate longer than low-quality goods. This accords with the common wisdom
that sellers who want to sell fast may have to accept a lower price. Moreover,
we show that if search costs are sufficiently low, all agents on the short side of
the market trade. This is again in sharp contrast to the static analysis where part
of the short side is typically rationed.

To analyze the welfare properties of competitive search markets, we compare
the market outcome with the benchmark of complete information. Surprisingly,
we find that for a large range of parameter values the outcomes under complete
and private information coincide. This is despite the fact that under private in-
formation high-quality goods must circulate longer than low-quality goods to
ensure incentive compatibility. In the working paper version (Inderst and Müller
1999) we also allow for heterogeneous buyers who value goods differently. The

18 Hence the argument relies on the fact thatc becomes very smallrelative to the interest rater .
19 Instead of choosing a benchmark where information is complete, we could have considered

the case of a regulator who controls the characteristics prevailing in the different submarkets. The
corresponding analysis is found in the working paper version (Inderst and Müller, 1999).
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standard static analysis where a single price clears the market then leads to an in-
efficient allocation of goods across buyers. This inefficiency can again be resolved
in a market with directed search. Overall, these results suggest that markets with
private information may function much better than what is commonly thought.

As we argued repeatedly in the paper, our results depend crucially on the
fact that goods are durable. If the good is a consumption good, potential sellers
derive no utility from the good while engaging in search. Consequently, delay (or
circulation time) cannot act as a sorting device, and the lemons problem remains
present in full force. Having said this, we should emphasize that this clear-cut
distinction between durable goods and consumption goods vanishes if quality has
other (external) effects, e.g., if low-quality consumption goods depreciate faster
than high-quality consumption goods. In this case, the considerations underlying
our model may apply as well to consumption goods.

7 Appendix: Proofs

Proof of Propositions 1–3. Though Propositions 1–3 do not make any claims
regarding the characteristics of submarkets (besides the fact that they must be
separating by Lemma 2), we will prove more here. We will identify programs
which characterize submarkets. These results will also be used in Propositions
4–5 below.

We begin by defining the following programs.

Unconstrained programs

ProgramPS
q (U ). For given 0≤ U ≤ Uh the programPS

q (U ) choosesk ∈
[0,∞) to maximizeV M

q (k , p), wherep is uniquely defined by the requirement
U M (π, k , p) = U with π(q) = 1. By c > 0, which ensures that an optimalk is
bounded, and by the continuity of payoffs, a solution exists. Denote the realized
utility by V̄ S

q (U ), which is continuous by an application of the maximum theorem.
Moreover,V̄ S

q (U ) is strictly decreasing inU . The correspondence of solutions
is denoted byK S

q (U ).

Program PB
q (V ). For given 0≤ V ≤ Uh the programPB

q (V ) choosesk ∈
[0,∞) to maximizeU M (π, k , p), wherep is uniquely defined by the requirement
V M

q (k , p) = V and whereπ(q) = 1. Again a solution exists and the maximum,
which is denoted byŪ B

q (V ), is continuous and strictly decreasing inV . The
correspondence of solutions is denoted byK B

q (V ).
Actually, one of the two programsPS

q (U ) and PB
q (V ) is redundant as

V̄ S
q (Ū B

q (V )) = V and Ū B
q (V̄ S

q (U )) = U , while for the respective utility levels it
holds thatK S

q (U ) = K B
q (V ). The proof is straightforward and omitted.
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Constrained program

Program PC (U , V ). For given 0≤ U ≤ Uh and Vl ≤ V ≤ Uh the program
PC choosesk ∈ [0,∞) to maximizeV M

h (k , p) subject toV M
l (k , p) ≤ V , where

p is uniquely defined by the requirementU M (π, k , p) = U with π(h) = 1. Ob-
serve first that the set of feasible valuesk , which is denoted byK (U , V ), is
non-empty as byc > 0 incentive compatibility is ensured by choosingk suffi-
ciently low. Denote the realized utility bȳV C (U , V ). Observe thatV̄ C (U , V )
is strictly decreasing inU and nondecreasing inV .20 We show next that it is
also continuous. AsK (U , V ) may not change continuously, this is not imme-
diate. However,K (·) is surely upper semi-continuous in both arguments, while
for U > U ′ it holds (strictly) thatK (U , V ) ⊃ K (U ′, V ) for all V . Given
the strict monotonicity ofV̄ C (U , V ) in U this indeed implies continuity inU .
Consider next the behavior inV . The previous argument does not apply in
this case asV̄ C (U , V ) is nondecreasing inV , while V > V ′ may well im-
ply K (U , V ) ⊃ K (U , V ′). However, if V̄ C (U , V ) is not continuous atV for
some givenU , this must imply existence of a pairk > k ′ with k ∈ K (U , V ),
k ′ ∈ K (U , V ), V M

l (k , p) = V M
l (k ′, p′) = V (where p and p′ are given by

U M (π, k , p) = U M (π, k ′, p′) = U ), andV M
h (k , p) > V M

h (k ′, p′). But this contra-
dicts the single-crossing property of (5). Hence,V̄ C (U , V ) must be also continu-
ous inV . Denote finally the arg-max correspondence ofPC (U , V ) by K C (U , V ).

We proceed by proving a series of claims relating to the characteristics of
active submarkets. Observe that we use throughout the analysis that submarkets
must be separating from Lemma 2.

Claim 1. If b < sl and the market opens up, then in any submarket n it holds
that k n ∈ K B

l (Vl ), while pn is uniquely defined by V M
l (k n , pn ) = Vl . This implies

U ∗ = Ū B (Vl ).

Proof. By Lemma 1 and (E.2) only low-quality goods may be traded, while it
holds thatV ∗

l = Vl . Suppose next thatk n /∈ K B
l (Vl ). By the definition of the

programPB
l this implies existence of a pair (k , p) with p defined byV M

l (k , p) =
Vl where U M (πn , k , p) > U M (πn , k n , pn ) = U ∗. By continuity we can thus
choose some (k ′, p′) implying V M

l (k ′, p′) > V ∗
l andU M (π, k ′, p′) > U ∗ for all

π ∈ ∆Q , which contradicts (E.3). 	

Claim 2. If sl < b < s and if all buyers enter the market, the characteristics in
two submarkets n and m where πn (h) = 1 and πm (l ) = 1 must satisfy the following
requirements:

i) k m ∈ K B
l (V ∗

l ), while pm is uniquely defined by V M (k m , pm ) = V ∗
l .

20 One way to see the strict monotonicity inU is to consider the modified programs where (k , p)
are chosen jointly to maximizeV M

h (k , p) subject toV M
l (k , p) ≤ V and U M (π, k , p) ≥ U . Using

the single-crossing condition (5) it can be shown that the buyers’ participation constraint must bind
at an optimum, implying that the optimal pairs (k , p) coincide with those derived underPC (U , V ).
Moreover, this implies that the set of solutions differs for any pairU ′ > U ′′, which proves the strict
monotonicity.
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ii) k n ∈ K C (U ∗, V ∗
l ), while pn is uniquely defined by V M (k n , pn ) = V ∗

h .
iii) V ∗

h = Vh, while U ∗ and V ∗
l are uniquely defined by

U ∗ = Ū B
l (V ∗

l ), (6)

V̄ C (U ∗, V ∗
l ) = Vh .

Proof. Observe first that by assumption
∑

i∈N bi = b, implying from (E.2) and
Lemma 1 that

∑
i∈N si

l = sl and
∑

i∈N si
h = b−sl > 0. Given equilibrium utilities,

assertion i) for markets with low-quality goods is immediate from the argument
in Claim 1. Turn therefore to assertion ii) regarding high-quality goods, where
we suppose thatk n /∈ K C (U ∗, V ∗

l ). By construction ofPC (U ∗, V ∗
l ) this implies

existence of somek ∈ K C (U ∗, V ∗
l ) realizing V M

h (k , p) = V̄ C (U ∗, V ∗
l ) > V ∗

h ,
wherep solvesU M (πn , k , p) = U ∗. By continuity we can slightly adjust the price
p downwards to somep′ < p such thatV M

h (k , p′) > V ∗
h , U M (πn , k , p′) > U ∗,

and V M
l (k , p′) < V ∗

l , where we use thatV M
l (k , p) ≤ V ∗

l by construction of
PC (U ∗, V ∗

l ). Hence, the original set of submarkets does not satisfy (E.3).
Turn next to assertion iii). By Lemma 1 it must hold thatV ∗

h = Vh . Moreover,
by assertions i) and ii) and due to (E.1) the pair (U ∗, V ∗

l ) must indeed satisfy
(6). It remains to prove that a solution is unique. By substitution we obtain the
requirementV̄ C (Ū B

l (V ∗
l ), V ∗

l ) = Vh , where the left side is strictly decreasing in
V ∗

l . (Observe that we do not assert existence, which will be proved below for
sufficiently low values ofc.). 	

Claim 3. If b > s and if high-quality goods are traded, the characteristics in
two separating submarkets n and m with πn (h) = 1 and πm (l ) = 1 must satisfy
the following requirements:

i) k m ∈ K S
l (0), while pm is uniquely defined by U M (πm , k m , pm ) = 0.

ii) k n ∈ K C (0, V ∗
l ), while pn is uniquely defined by U M (πn , k n , pn ) = 0.

iii) U ∗ = 0, V ∗
l = V̄ S

l (0), and V ∗
h = V̄ C (0, V ∗

l ).

Proof. Recall thatK S
l (U ) = K B

l (V ) if U = Ū B
l (V ). The proof is now analogous

to that in Claim 2. 	

For the following claims, it is convenient to analyze how the solutions to the

programs defined above change inc. In a slight abuse of notation, we will some-
times denote the solutions bȳU B

q (V , c), V̄ S
q (U , c), andV̄ C (U , V , c) respectively.

By the arguments following the definitions of the respective programs and by
continuity of (market) payoffs inc, the realized utilities are all continuous inc.
The following results follow then immediately from inspection of the objective
functions in the respective programs.

Claim 4. limc→0 Ū B
q (Vq , c) = Uq − Vq and limc→0 V̄ S

q (0, c) = Uq .

We use now Claim 4 to derive the characterization of entry flows.

Claim 5. If c is sufficiently small, all agents of the short side must enter, i.e.∑
n∈N bn = b if b < s and

∑
q∈Q

∑
n∈N sn

q = s if b > s. Moreover, (6) has a
solution.
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Proof. We can now use the characteristics derived in Claims 1-3. We consider
all three parameter constellations (discussed in Propositions 1-3) in turn. For
b < sl observe from Claim 4 that̄U B

l (Vl ) > 0 holds forc sufficiently small. As
U ∗ = Ū B

l (Vl ) by Claim 1, all buyers must indeed enter by (E.1).
Suppose nextsl < b < s, where we show again thatU ∗ > 0, which is

now defined implicitly by (6). We start by rewriting this condition. Observe
first that U ∗ = Ū B

l (V ∗
l ) implies V ∗

l = V̄ S
l (U ∗), which allows to rewrite the

second requirement in (6) as̄V C (U ∗, V̄ S
l (U ∗)) = Vh . Observe that the left-side

is continuous and strictly decreasing inU ∗. We will prove that it strictly exceeds
Vh for U ∗ = 0 if c is sufficiently small. The objective function ofPC (U ∗, V ∗

l )
transforms forU ∗ = 0 to

vh − c + g(k )(Uh − c/f (k ))
r + g(k )

, (7)

while the (incentive compatibility) constraint becomes

vl − c + g(k )(Uh − c/f (k ))
r + g(k )

≤ V̄ S
l (0). (8)

Given limc→0 V̄ S
l (0, c) = Ul > Vl by Claim 4 and the properties off (k ) and

g(k ), we can find a pair ¯c > 0, k̄ > 0 such that (8) is satisfied for allc < c̄ and
k < k̄ . Moreover, by (7) we can find for anyk > 0 a thresholdc(k ) > 0 such
that the objective function strictly exceedsVh for all c < c(k ). As a consequence,
V̄ C (0, V̄ S

l (0)) > Vh holds for allc < min
{

c̄, c(k̄ )
}

, which completes the proof
for sl < b < s.

Suppose finallyb > s. By U ∗ = 0 and Claim 4,V̄ S
l (0) > Vl holds for

sufficiently low values ofc. As V ∗
h = V̄ C (0, V̄ S

l (0)) by Claim 3, the further
argument is analogous to that forsl < b < s. 	


We are now in a position to complete the proof of Propositions 1–3. The
characterization follows directly from combining Lemmas 1-2 with Claim 5 such
that it remains to prove existence. This is done by construction, where we use the
characterization in Claims 1-3. By the derivation of equilibrium utilities (E.1) and
(E.2) are satisfied, while the programs defining the characteristics of submarkets
ensure that (E.3) holds.	

Proof of Proposition 4. We prove first the following auxiliary result where we
use the programs defined in the proof of Propositions 1-3.

Claim. If ∆q > ∆q′ , k∈ K S
q (U ) and k ′ ∈ K S

q′ (U )imply k > k ′.

Proof. Considering the programsPS
q (U ) for q ∈ Q , it follows by optimality that

c(1 + k ) + ∆q + rU (k − 1)
r + kf (k )

≤ c(1 + k ′) + ∆q + rU (k ′ − 1)
r + k ′f (k ′)

,

c(1 + k ′) + ∆q′ + rU (k ′ − 1)
r + k ′f (k ′)

≤ c(1 + k ) + ∆q′ + rU (k − 1)
r + kf (k )

.

These requirements imply
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∆q − ∆q′

r + kf (k )
≤ ∆q − ∆q′

r + k ′f (k ′)
,

which proves thatk > k ′. 	

It is next immediate from (E.3’) thatk n must solvePS

q (U ∗) in case goods of
quality q are traded in submarketn, i.e. if πn (q) = 1. Together with the Claim this
proves assertions iii)-iv). Regarding the characterization in assertion i), observe
that (E.1’)-(E.2’) determineU ∗ = 0. By (E.3’) this impliesV ∗

q = V̄ S
q (0), which

by Claim 4 in the proof of Propositions 1-3 strictly exceedsVq for sufficiently
low c.

Regarding assertion ii), we choose first the case where∆h > ∆l andb > sl .
For low c both qualities must be traded. Otherwise, (E.2’) impliesU ∗ = 0 and
V ∗

q = Vq for someq . As V̄q (0) > Vq holds for low c, (E.3’) would not be
satisfied. Moreover, given some equilibrium utilityU ∗ for buyers, it must hold
for both types thatV ∗

q = V̄ S
q (U ∗). Inspection of the objective functions of the

programsPS
q (U ∗) reveals that this impliesV ∗

h − Vh > V ∗
l − Vl due to∆h > ∆l .

By (E.1’)-(E.2’) this implies nextV ∗
l = Vl and V ∗

h > Vh . Finally, using the
results in the proof of Propositions 1-3 we can solveV̄ S

l (U ∗) = Vl for a unique
valueU ∗ > 0 if c is sufficiently low. The arguments for the remaining cases in
assertion ii) are analogous. This completes the proof of Proposition 4.	

Proof of Proposition 5. We derive first additional properties of the equilibria
characterized in Propositions 2-3 where goods of both qualities are traded under
asymmetric information.

Claim 1. Suppose sl < b < s and ∆h < ∆l . If c is sufficiently low, then in any
equilibrium under asymmetric information it holds that k n ∈ K B

h (Vh ) if πn (h) = 1.

Proof. By the proof of Propositions 1-3, it holds that (U ∗, V ∗
l ) are jointly

determined by (6), whileV ∗
h = Vh . Moreover, it holds thatk n ∈ K C (U ∗, V ∗

l ). By
construction of the programPC , the following result is immediate. If there exists
somek ∈ K S

h (U ∗) such that additionallyV M
l (k , p) ≤ V ∗

l , where p uniquely
solves U M (π, k , p) = U ∗ with π(h) = 1, then it holds thatK C (U ∗, V ∗

l ) ⊆
K S

h (U ∗). Recall also thatK S
h (U ∗) = K B

h (V ∗
h ). Consider nextPB (V ∗

h ), where
from V ∗

h = Vh the objective function becomes

Uh − Vh − 1
k

c(1 + k )
r + f (k )

− ∆h

r + f (k )
.

Denotek̄ (c) = supK B
h (Vh ) and observe thatlimc→0k̄ (c) = 0 by the properties

of f (·). Observe next thatU ∗ = Ū B
h (Vh ) < ∆h/r , which by∆h < ∆l andV ∗

l =
V̄ S

l (U ∗) implies existence of some lower boundaryV l (c) such thatV ∗
l ≥ V l (c)

for given c and limc→0V l (c) > Vl . By limc→0k̄ (c) = 0 and limc→0V l (c) > Vl

we can now choosec sufficiently small such that somek ∈ K B
h (Vh ) solves also

PC (U ∗, V ∗
l ) as incentive compatibility is satisfied. By the previous remarks this

proves the claim. 	

Claim 2. Suppose b > s. If c is sufficiently small, then in any equilibrium under
asymmetric information πn (h) = 1 implies k n < inf K S

h (0).
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Proof. Recall from Proposition 3 that in any equilibrium it holds thatU ∗ = 0.
With this specification, the objective function for the programPS

h (0) transforms
to

Uh − c(1 + k ) + ∆h

r + kf (k )
.

In analogy to Claim 1, denotek (c) = inf K S
h (0) and observe that by optimality

and the properties off (·) it holds thatk (c) → ∞ for c → 0, while limc→0 V̄ S
h (0) =

Uh . The expected utility of a low-quality seller entering a submarket where (k , p)
are determined by a solution toPS

h (0) must therefore converge toUh for c → 0.
As the equilibrium utility satisfiesV ∗

l = V̄l (0), which converges toUl for c → 0,
this is not incentive compatible.	


We are now in a position to prove Proposition 5. We treat four cases in
turn. First, forb > s the assertion follows from Claim 2. Second, forb < sl

the assertion follows directly from inspection of the proof of Propositions 1-3
and from Proposition 4. Third, forsl < b < sh and ∆h < ∆l , the assertion
follows from Claim 1 and Proposition 4. Finally, we discuss the case where
sl < b < sh and∆h ≥ ∆l . If the latter inequality is strict, the assertion follows
immediately from comparing entries under both information regimes as specified
in Propositions 2 and 4. In case of equality, it is straightforward to show that
any equilibrium outcome under symmetric information would not be incentive
compatible under asymmetric information for anyc. 	
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