
Feature-Based Dynamic Pricing

Maxime C. Cohen
NYU Stern School of Business, New York, NY 10012, maxime.cohen@stern.nyu.edu

Ilan Lobel
NYU Stern School of Business, New York, NY 10012, ilobel@stern.nyu.edu

Renato Paes Leme
Google Research, New York, NY 10011, renatoppl@google.com

We consider the problem faced by a firm that receives highly differentiated products in an online fashion.

The firms needs to price these products to sell them to its customer base. Products are described by vectors

of features and the market value of each product is linear in the values of the features. The firm does not

initially know the values of the different features, but can learn the values of the features based on whether

products were sold at the posted prices in the past. This model is motivated by applications such as online

marketplaces, online flash sales, and loan pricing. We first consider a multi-dimensional version of binary

search over polyhedral sets and show that it has a worst-case regret which is exponential in the dimension of

the feature space. We then propose a modification of the prior algorithm where uncertainty sets are replaced

by their Löwner-John ellipsoids. We show that this algorithm has a worst-case regret which is quadratic in

the dimension of the feature space and logarithmic in the time horizon. We also show how to adapt our

algorithm to the case where valuations are noisy. Finally, we present computational experiments to illustrate

the performance of our algorithm.

Key words : online learning, contextual bandits, ellipsoid method, revenue management

1. Introduction

Most dynamic pricing models assume that a firm sells identical products to its customer base over

time. Even the models that do allow for product differentiation, generally assume that the seller

offers a manageable number of distinct products. However, there exist important business settings,

such as online marketplaces, where sellers offer an enormous number of different products to its

customer base. Our paper addresses the following problem: how should a seller price its products

when they arrive in an online fashion and are significantly differentiated from each other?

Specifically, we consider a firm selling products to customers over a finite time horizon. In each

period, a new product arrives and the firm must set a price for it. The product features are chosen

antagonistically by nature. The firm can base its pricing decision on the features of the product

at hand, as well as on the history of past prices and sales. Once a price is chosen, the product

is either accepted or rejected by the market, depending on whether the price is below or above

1

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
2 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

the product’s market value. The firm does not know the market value of each product, except for

the fact that the market value of each product is linear in the value of the product features (we

also consider some commonly used non-linear models in Section 7). The seller can therefore use

past prices and sales data to estimate the market values of the different features, and use those

estimates to inform future pricing decisions. Our goal is to find a pricing algorithm that performs

well in the sense that it generates a low worst-case regret. Our concern is how the regret scales with

the time horizon, as well as how it performs with respect to the dimension of the feature space.

Assuming the feature vectors are chosen antagonistically by nature ensures that our solution is

robust to important considerations such as features appearing in correlated form and the set of

relevant features changing over time (some features may have zero value throughout most of the

time horizon, but be important in later periods).

Our first attempt is to propose a multi-dimensional version of binary search in order to learn

the values of the different features. In each period, the seller represents the possible values of

the different features by a polyhedral-shaped uncertainty set. Whenever a new product arrives,

the seller solves two linear programs, one to compute the maximum possible market value of the

product, and the other to compute the minimum possible market value of the product given the

uncertainty set. If these two numbers are close together, the seller uses the minimum possible

market value as an “exploit” price, in order to ensure that a sale occurs. If these two numbers

are far apart, the seller performs a binary search step (or “explore” step), and chooses a price

halfway between the minimum and the maximum possible market values. We call this algorithm

PolytopePricing. However, despite seeming to be a suitable algorithm for the problem at hand,

we show in Theorem 1 that this algorithm has a worst-case regret that is exponential in the

dimension of the feature space. This occurs because nature can choose a sequence of vectors of

features that forces the seller to explore for exponentially many periods without exploiting.

Fortunately, we can modify PolytopePricing to make it a low-regret algorithm. The modifi-

cation invokes an idea from the ellipsoid method for solving a system of linear equations. At every

step of the algorithm, we replace the convex uncertainty set (previously a polytope) by its Löwner-

John ellipsoid. The Löwner-John ellipsoid of a convex body is the minimal volume ellipsoid that

contains that convex body. We call this modified algorithm EllipsoidPricing. The main result

of our paper is Theorem 2, which proves that EllipsoidPricing generates a worst-case regret

that is quadratic in the dimension of the feature space and logarithmic in the time horizon. The

proof is based on two ideas. The first is the classical idea from the ellipsoid method: the volume of

the ellipsoidal uncertainty set shrinks exponentially fast with the number of cuts (in our problem,

the cuts are explore prices). The second main idea is that, under EllipsoidPricing, the smallest

radius of the ellipsoid cannot shrink below a given threshold. To prove this second idea, we build on

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 3

linear algebra machinery that characterizes the evolution of the eigenvalues after rank-one updates.

This machinery is useful because an ellipsoid can be represented by a matrix whose eigenvalues

correspond to the squares of the ellipsoid radii, and using an explore price corresponds to per-

forming a rank-one update. Combining the two ideas, we get a quadratic bound on the number of

possible explore steps, which yields our bound on the regret of the algorithm. EllipsoidPricing

is also computationally more efficient than PolytopePricing, since it does not require solving

linear programs in each iteration. In fact, all computational steps—optimizing a linear function

over an ellipsoid and replacing a half-ellipsoid by its own Löwner-John ellipsoid—require nothing

more than matrix-vector products.

The basic form of EllipsoidPricing assumes that the market value of each product is a deter-

ministic function of its features. We also propose two variants of the algorithm that add robustness

to noisy valuations. We call the first one ShallowPricing. The ShallowPricing algorithm is

based on the idea of a shallow cut of an ellipsoid, which is an off-center cut, designed to maintain

more than half of the original uncertainty set. By using shallow cuts, we can add a safety margin

to each cut, and hence still obtain similar regret guarantees under a low-noise regime. Our second

proposal is an algorithm we call EllipsoidEXP4, which is a combination of ShallowPricing

with the standard adversarial contextual bandits algorithm EXP4. For EllipsoidEXP4, we show

a regret guarantee that (i) matches the bound of EllipsoidPricing in the limit when the noise

vanishes, (ii) approximately matches the regret guarantee of EXP4 under high-noise settings, and

(iii) leads to an intermediate regret guarantees in moderately noisy environments. We discuss these

algorithms and their regret guarantees in detail in Section 6.

Online marketplaces are one area in which the algorithms we develop in this paper can be applied.

Consider Airbnb, the popular sharing economy platform for subletting homes and individual rooms.

The products in Airbnb are stays, which are highly differentiated products: they involve different

locations, amenities, and arrival dates, among many other features. Airbnb offers a service to its

hosts called Smart Pricing, which, when turned on, allows Airbnb to choose prices on the hosts’

behalf (see Bray 2017, Ye et al. 2018). As in our model, if a given good (in this case, a one night

stay in a home at a particular date) is not sold, it generates no revenue and becomes obsolete.1 To

offer a service such as Smart Pricing to its hosts, a platform like Airbnb must use a feature-based

dynamic pricing algorithm following the same spirit as our algorithms. Other online marketplaces,

such as eBay or Etsy, could also use an algorithm such as ours to help sellers price their products.

An additional application is online flash sales websites such as Gilt, Rue La La, and Belle &

Clive. These vendors periodically receive various goods from luxury brands to sell online. Usually,

1 Though the value of outside options is normalized to zero in our model, they can be incorporated by adding one
additional feature associated with the outside option value.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
4 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

a flash sale lasts for a short time period, and the vendor needs to choose the price of each good.

As in our model, the owner sells highly differentiated products and must set prices to balance

exploration and exploitation. There also exist classical markets that involve highly differentiated

products that arrive over time, such as the high-end art and the premium wine markets. The

algorithms we propose in this paper may also be useful in these contexts since it is natural to set

prices based on the values of the product features.

One of the key applications that has motivated the dynamic pricing with learning literature is

the pricing of financial services (see Phillips 2005, Harrison et al. 2012, Keskin and Zeevi 2014).

Consider a bank offering loans or other forms of consumer credits. After a consumer requests a

loan, the bank must select a price (an interest rate), which the consumer can accept or reject.

This literature studies how such a bank should balance immediate profit maximization with price

exploration. A typical assumption in this literature is that consumers are indistinguishable from

each other. In reality, consumers have several features (e.g., credit history, annual income, FICO

score) which can be used by the bank to price loans. With our framework, the bank would be able

to take these features into account when choosing interest rates to offer individual customers.

2. Related Literature

Our work lies at the intersection of two literature streams: dynamic pricing with learning and

contextual bandits, and is also connected to learning from revealed preferences, conjoint analysis,

and the ellipsoid method from optimization theory.

Dynamic pricing with learning. The literature on dynamic pricing with learning studies

pricing algorithms for settings where the demand function is unknown. The problem is typically

modeled as a variant of the multi-armed bandit problem, where the arms represent prices and the

payoffs from the different arms are correlated since the demand evaluated at different price points

are correlated random variables. The first paper that modeled dynamic pricing as a multi-armed

bandit problem is Rothschild (1974). Kleinberg and Leighton (2003) deserve credit for formulating

the finite-horizon, worst-case regret version of the problem of dynamic pricing with learning, a

formulation that we use in our paper. In particular, they solve the one-dimensional version of our

problem, as we discuss in Section 4.1. A large body of literature has recently emerged studying

this topic. This includes both parametric approaches (Araman and Caldentey 2009, Broder and

Rusmevichientong 2012, Harrison et al. 2012, Chen and Farias 2013, den Boer and Zwart 2013,

Besbes and Zeevi 2015) as well as non-parametric ones (e.g., Besbes and Zeevi 2009, Keskin and

Zeevi 2014). The literature also includes models that, like ours, use a robust optimization approach

to model uncertainty (see, e.g., Bertsimas and Vayanos 2015). Another important dimension in

pricing problems is that of limited supply (Besbes and Zeevi 2009, Badanidiyuru et al. 2013,

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 5

Babaioff et al. 2015). For example, Badanidiyuru et al. (2013) study a problem where the seller has

a fixed number of goods, so s/he must trade-off learning and earning not only across time but also

across supply levels. The authors provide near optimal results for this setting. In fact, their result

is cast in a more general setting of bandits with knapsacks, where bandit algorithms have resource

constraints. In their follow-up paper, Badanidiyuru et al. (2014) extend this analysis to contextual

settings and obtain a non-trivial improvement over the standard reduction to contextual settings.

This line of work has been further improved in a series of papers by Agrawal and Devanur (2015a,b)

and Agrawal et al. (2016).

Contextual bandits. A crucial aspect of our model is that products arrive over time and are

characterized by vectors of features. The literature that studies multi-armed bandit problems in

settings where the payoff in each period depends on a particular set of features (that are relevant

only for a specific period) is called contextual bandits. This literature started with Auer et al. (2002)

and Auer (2003), and has recently grown into a large literature (see, for example, Dudik et al.

2011, Agarwal et al. 2014). Auer et al. (2002) proposed a regret-optimal algorithm for contextual

bandits called EXP4 that we use as a building block in one of our algorithms in Section 6. Many

models of contextual bandits (but certainly not all) assume that payoffs are linear in the feature

vector (Chu et al. 2011, Abbasi-Yadkori et al. 2011, Agrawal and Devanur 2015a). In our model, we

make a sightly different assumption: we assume market values are linear in the features. Products

having market values which are a function of their features is a typical assumption in marketing,

which is referred to as hedonic pricing (see Milon et al. 1984, Malpezzi 2003, Sirmans et al. 2005).

In a related work by Chu et al. (2011), the authors propose an algorithm called LinUCB that also

use ellipsoids to design uncertainty regions in contextual learning settings, but both the problem

they study and the resulting algorithms are very different from ours. In Chu et al. (2011), the

payoffs are assumed to be linear in the context and are observed for the arm played. In our model,

in contrast, the payoffs are discontinuous pricing functions and we only observe whether there is a

sale or not. Also, the updates in Chu et al. (2011) are not based on cuts (as in our algorithm) but

on high-dimensional statistical bounds.

Pricing with features. Closest to our paper is the work by Amin et al. (2014), which also

studies a feature-based dynamic pricing problem. In their model, features are stochastically drawn

from a distribution, whereas in our model, features are adversarially selected by nature. Amin

et al. (2014) propose an algorithm that is based on stochastic gradient descent, and obtain a regret

bound of 󰁨O(T 2/3).2 However, they do not investigate how their algorithm performs with respect

to the dimension of the feature set. In their stochastic setting, Amin et al. (2014) also analyze a

version of the algorithm in which buyers strategically react to the algorithm.

2 The Õ(·) notation is a variant of the O(·) notation that ignores logarithmic terms.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
6 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

In a paper subsequent to ours, Qiang and Bayati (2016) also consider a dynamic pricing problem

in a model where the value of different features (or covariates) need to be learned. Their model

is stochastic, as opposed to our adversarial model, and features arrive in an i.i.d. fashion. They

show that a greedy least squares approach performs well, which is not the case in a model with-

out covariates. Approaches based on least squares can be used in stochastic models, but not in

adversarial models such as the model considered in this paper.

Learning from revealed preferences. There exist additional learning problems for which

researchers have developed techniques that are somewhat related to the algorithm we propose in

this paper. In the problem called “learning from revealed preferences,” a seller sells an identical

bundle of goods in each period to a single buyer. The seller does not know the utility function of

the buyer, but can learn from the past bundles purchased by the buyer. Amin et al. (2015) and

Roth et al. (2016, 2017) study the problem of dynamic pricing in multiple dimensions and propose

several algorithms for this problem, some of which are, like our algorithm, based on the ellipsoid

method (Khachiyan 1979). There are at least two important differences between this line of work

and our paper. First, no features are present in this line of work. Second, the decision variable in

our problem at each time period is a single price, while in this literature the seller selects a price for

each item at each period. An algorithm that selects multiple prices in each period may seem more

general than an algorithm that selects only a single price per period, as in our setting. However,

this intuition is misleading. When applying the ellipsoid method to the problem of learning from

revealed preferences, one can choose the direction of each cut by selecting an appropriate vector of

prices. In our problem, however, we are given a cut direction chosen adversarially by nature (the

vector of features) and thus, we are only able to select where to position the hyperplane.

Conjoint analysis. Another related field of study is adaptive choice-based conjoint analysis,

where a market researcher wants to design an adaptive survey to elicit the preferences of indi-

viduals in a population. Though the problem is different from ours, some of the most commonly

used solutions share with our algorithm the property that they heavily rely on the geometry of

polyhedra and ellipsoids (see, e.g., Toubia et al. 2003, 2004, 2007, Bertsimas and O’Hair 2013).

A key distinction that makes our problem more difficult to solve than conjoint analysis is that

we cannot choose directions of cuts (vectors of features), while the market researcher in conjoint

analysis is allowed to do so.

The ellipsoid method. One of the key ideas that we use in our paper is to replace an uncer-

tainty set that is polyhedral by its Löwner-John ellipsoid. This idea is not novel, dating back to

Khachiyan (1979)’s proof that linear programs are solvable in polynomial time. There are several

key advantages of using ellipsoids instead of polyhedra. In particular, it is easy to cut an ellipsoid

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 7

through its center. In addition, by cutting an ellipsoid through its center and replacing the remain-

ing half-ellipsoid with its own Löwner-John ellipsoid, a fixed fraction of the volume is removed.

The idea of replacing polyhedra with ellipsoids has been used in other papers after Khachiyan

(1979), including Toubia et al. (2003, 2004, 2007). Removing a fixed fraction of the volume of the

uncertainty set in each iteration is also a well-known idea, and has found applications in prefer-

ence elicitation (Boutilier et al. 2006) and recommender systems (Viappiani and Boutilier 2009).

Several of the challenges that emerge in our problem are related to (i) not being able to control

the direction of cuts and thus, not being able to cut orthogonally to the direction in which the

uncertainty is the largest, as the aforementioned papers do; and (ii) having to manage not only the

volume, but also the radii of the ellipsoids since the regret in our model is a function of the length

of an ellipsoid along a direction chosen by nature.

3. Model

Consider a setting with a seller that receives a different product at each time period t= 1,2, . . . , T .

Each product is described by a vector of features xt ∈X ⊂Rd and has a market value vt = v(xt),

which is unknown to the seller. Upon receiving each product, the seller observes the vector of

features xt and then, chooses a price pt. The market either accepts the price, which occurs if the

price pt is less or equal than the market value vt, or rejects it, in which case the product is lost.3

The goal of the seller is to design a pricing policy to maximize revenue. The main challenge here is

that the market value is unknown to the seller and, at each time, the seller wants to earn revenues

but also to refine his/her knowledge about the market value function v.

In order for this problem to be tractable, we need to make assumptions about the market value

function v. We assume that the market value of a product is a linear function of its features,

i.e., vt = θ′xt, an assumption that we partially relax in Section 7. We also assume for the sake of

normalization that 󰀂xt󰀂 ≤ 1 for all xt ∈X and that 󰀂θ󰀂 ≤R, where 󰀂·󰀂 refers to the ℓ2-norm. The

exact value of θ is unknown to the seller. We encode the initial uncertainty of the seller as a polytope

K1 ⊆Rd, which represents all feasible values of θ. The set K1 could either be a d-dimensional box

or encode some initial domain specific knowledge about the problem.

The seller sets a price pt at each time period, and collects revenues if a sale occurs. If the price

selected by the seller is below or equal the market value, i.e., pt ≤ θ′xt, a sale occurs and the seller

earns a revenue of pt. If the seller sets pt > θ′xt, no sale occurs and no revenue is generated. At

each time period, the seller may learn some new information about the value of θ that can be used

in subsequent time periods. More precisely, the seller naturally updates the uncertainty set with

3 The assumption of no outside value if the offer is rejected is without loss of generality since the outside value could
be encoded as an additional feature with negative value associated with it.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
8 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Kt+1 =Kt ∩ {θ ∈ Rd : θ′xt ≥ pt} or Kt+1 =Kt ∩ {θ ∈ Rd : θ′xt ≤ pt} depending on whether a sale

occurred or not, where Kt denotes the uncertainty set at time t.4

Our goal is to find a simple and computationally efficient dynamic pricing policy that achieves

a good performance in terms of regret. Let Π be the seller’s policy and X the strategies available

to nature (nature adversarially selects the true value of the parameter θ, and the feature vectors

xt in each round). Both the seller and nature are allowed to use closed-loop policies, where their

actions at time t depend on the history of events up to time t− 1. The worst-case regret induced

by policy Π is given by:

Regret(Π) = max
θ∈K1, X∈X

T󰁛

t=1

󰁫
θ′xt − ptI{θ′xt ≥ pt}

󰁬
, (1)

where I{·} denotes the indicator function and X ∈ X represents the policy used by nature to

select the sequence of feature vectors {xt}. The first term inside the summation corresponds to the

maximal revenue the seller could extract if s/he knew the value of θ, and the second term is the

actual revenue generated by policy Π for a given (θ,X) pair. We are concerned not just with how

the regret scales with T , as it is typical in multi-armed bandit problems, but also with how the

regret scales with the dimension of the feature space d.

Most of the paper focuses on the model described above where the valuation is a fixed linear

function of the item’s features. This serves as the main building block for tackling richer models.

We consider extensions in two directions: noisy and non-linear valuations. The setting with noisy

valuations is studied in Section 6. A special case of non-linearity is addressed via a Lipschitz

continuity argument in Section 7.

4. A First Attempt: Multi-Dimensional Binary Search

4.1. Binary Search and the One-Dimensional Problem

The simplest special case of our problem is when there is only a single dimension, i.e., d= 1. Assume

further that R= 1, i.e, θ ∈ [0,1] and xt = 1 for every t (note that the exact value of xt does not affect

the problem in the one-dimensional case). Then, the problem consists of picking a price pt in each

time step and collecting revenue pt · I{pt ≤ θ}. A natural strategy is to perform binary search for

a few steps, build a good estimate of θ, and then set the price using this estimate. More precisely,

start with K1 = [0,1], for each step t, keep Kt = [ℓt, ut] and then set the price pt =
1
2
(ℓt + ut). If a

sale occurs, set Kt+1 = [pt, ut] and otherwise, Kt+1 = [ℓt, pt]. Repeat this as long as ut − ℓt ≥ 󰂃, for

some 󰂃> 0. From this point onwards, set the price at pt = ℓt. Note that under this price, the seller

4 If a sale does not occur at time t, the seller learns that θ′xt < pt. However, in order to maintain our uncertainty sets
closed, we add the constraint θ′xt ≤ pt to update the uncertainty set, rather than using a strict inequality.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 9

is guaranteed to sell the item. The algorithm uses log2(
1
󰂃
) steps to build a good estimate of θ, and

from then onwards, uses the lower estimate to price. It is not hard to see that the total regret is:

Regret≤ log2

󰀕
1

󰂃

󰀖
+

󰀕
T − log2

󰀕
1

󰂃

󰀖󰀖
· 󰂃=O(log2 T) for 󰂃=

1

T
.

This regret is surprisingly not optimal for the one-dimensional problem. Kleinberg and Leighton

(2003) show that the optimal regret for the one-dimensional problem is O(ln lnT). This result

implies a lower bound of Ω(d ln lnT) for any algorithm in our multidimensional problem. Determin-

ing if Kleinberg and Leighton (2003) is extendable to higher dimensions is a difficult problem that

we do not attempt to address. Instead, we focus on the simpler binary search algorithm, which has

sufficiently low regret in T , O(lnT), and aim to see if we can generalize it to higher dimensions.

4.2. Binary Search in High Dimensions

We now return to our original setting with d dimensions and features xt chosen adversarially by

nature. Our first instinct might be to follow the same approach and use the first few iterations

to build a good estimate of θ (we call this the explore phase), and then use this estimate to set

a close-to-optimal price (we call this the exploit phase). One problem with this approach is that

the features selected by nature may never offer an opportunity for the seller to learn θ precisely.

Some features might not appear with a non-zero value often enough to allow for their values to

be learned. Features might also be chosen in a correlated fashion by nature, making learning more

difficult. Finally, even in the case where all the different features are present and not correlated,

it might still not be wise for the seller to wait until s/he reaches a good estimate of θ to start

exploiting, as some features may only appear with non-zero values close to the time horizon T . We

therefore need an algorithm that dynamically decides whether or not to explore in each period,

rather than having fixed exploration and exploitation phases.

4.3. Explore and Exploit Prices

Based on our discussion so far, we know that we cannot hope to learn the value of θ exactly. Also,

pre-determined exploration and exploitation phases do not seem to be adequate here. Instead, for

each product that arrives, we will decide whether to exploit or not. In particular, we will exploit if

we have gathered enough information on the market value for this particular set of features.

To evaluate the amount of information we have for the feature vector xt, the seller can use the

current uncertainty set Kt to compute an interval [bt, b̄t] that contains the actual market value

vt = θ′xt, by solving the following pair of linear programs:

bt = min
θ̂∈Kt

θ̂′xt and b̄t =max
θ̂∈Kt

θ̂′xt. (2)

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
10 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

K1	

θ1	

θ2	

Exploit	
Price	

Explore	
Price	 x1	

(a) x1 = (1,0)

K1	

θ1	

θ2	Exploit	
Price	

Explore	
Price	

x1	

(b) x1 = (1/
√
2,1/

√
2)

Figure 1 Explore and exploit prices when x1 = (1,0) and x1 = (1/
√
2,1/

√
2).

By pricing the item at pt = bt, the seller is guaranteed to sell the item and generate revenue bt.

However, the seller will learn nothing about the market value from such a price. We call such a

price an exploit price. Inspired by binary search, we define an explore price as the price that will

provide us with most information about the buyer’s valuation for that particular feature vector,

which is: pt =
1
2
(b̄t + bt).

In the simple two-dimensional examples shown in Figure 1, the explore price always divides the

feasible region into two parts, whereas the exploit price is always located at the boundary of the

set. Note that by definition an exploit price guarantees some revenue, while an explore price may

or may not generate a sale.

Now, we describe the algorithm PolytopePricing, which is parametrized by a threshold value

󰂃 > 0. Starting from an initial uncertainty set K1, for each t, compute the values bt and b̄t. If

b̄t − bt ≤ 󰂃, set the exploit price pt = bt, collect revenue pt, and set Kt+1 =Kt. If b̄t − bt > 󰂃, set

the explore price pt =
1
2
(b̄t + bt). If a sale occurs, update the uncertainty set to Kt+1 =Kt ∩ {θ ∈

Rd : θ′xt ≥ pt}. Otherwise, update it to Kt+1 =Kt ∩ {θ ∈Rd : θ′xt ≤ pt}.

4.4. The Exponential Regret of PolytopePricing

Although PolytopePricing is a straightforward generalization of the single-dimensional binary

search algorithm, it is far from an ideal algorithm. First, it needs to keep track of a complicated

polytope. Second, each step is computationally expensive as it requires solving two linear programs.

Furthermore, for any parameter 󰂃> 0, the worst-case regret of PolytopePricing is exponential

in d. The proof of this result is presented in the Appendix.

Theorem 1. For any parameter 󰂃 > 0, the algorithm PolytopePricing suffers worst-case

regret Ω(Rad lnT) for some constant a> 1.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 11

We remark that the proof of Theorem 1 shows that the PolytopePricing algorithm has expo-

nential regret in d even for an adversary that draws the feature vectors from a very simple i.i.d.

distribution that samples 1/4 of the features.

5. Ellipsoid Pricing

In this section, we modify the PolytopePricing algorithm from the previous section so as to

achieve a regret that is polynomial (in fact, quadratic) in the dimension. As a bonus, the algorithm

becomes also simpler to implement and computationally cheap. The algorithm now requires only

to maintain a d× d matrix and to perform a few matrix-vector products in each iteration.

Our new algorithm is inspired by Khachiyan’s celebrated ellipsoid method (Khachiyan 1979).

The central idea is that instead of keeping the uncertainty set Kt in each iteration, we “round”

it up to the smallest ellipsoid Et that contains Kt. This is often referred to as the Löwner-John

ellipsoid of the set Kt.

We call our algorithm EllipsoidPricing. The algorithm starts from the smallest ellipsoid E1

that contains K1, or in fact any ellipsoid that contains K1 (see Figure 2). At each time step t, the

algorithm computes the values bt and b̄t using the ellipsoid Et instead of the uncertainty set Kt:
5

bt =min
θ̂∈Et

θ̂′xt and b̄t =max
θ̂∈Et

θ̂′xt. (3)

If b̄t − bt ≤ 󰂃, the seller offers the exploit price pt = bt, collects revenue pt, and sets Et+1 = Et

(see Figure 3). If b̄t − bt > 󰂃, the seller offers the explore price pt =
1
2
(b̄t + bt). If a sale occurs, let

Ht+1 =Et ∩ {θ ∈Rd : θ′xt ≥ pt}. Otherwise, let Ht+1 =Et ∩ {θ ∈Rd : θ′xt ≤ pt}. Now, let Et+1 be

the smallest ellipsoid that contains the half-ellipsoid Ht+1 (see Figures 4 and 5). Our main result

is reported next.

Theorem 2. The worst-case regret of the EllipsoidPricing algorithm with parameter 󰂃 =

Rd2/T is O(Rd2 ln(T/d)).

We defer the proof of this theorem until Section 5.3. Interestingly, efficiency is achieved by

enlarging the uncertainty set. At the expense of adding candidate vectors θ̂ that are known not to

be the true θ (when we enlarge Ht+1 to Et+1) at each iteration t, we are regularizing the uncertainty

sets. In other words, we are making the uncertainty sets symmetric and easier to analyze. We

are not the first to propose this kind of technique. The same principle was at play in Khachiyan

(1979)’s proof that the ellipsoid method solved linear programming in polynomial time, as well as

in more recent papers that also rely on the underlying mechanics of the ellipsoid method.

5 Note that we slightly abuse notation by reusing the variable names bt and bt in this section.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
12 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

θ1	

θ2	
K1	

(a) The initial uncertainty set K1 is a polytope.

θ1	

θ2	

E1	

K1	

(b) The smallest ellipsoid E1 that contains K1.

Figure 2 The polytope K1 and its Löwner-John ellipsoid E1.

θ1	

θ2	
x1	

E1	
<ε	

(a) Solve for the max and min over E1.

θ1	

θ2	
x1	

E1	

p1	

(b) Compute the exploit price p1.

Figure 3 The vector x1 = (1/
√
2,1/

√
2) induces an exploit price p1.

θ1	

θ2	

E1	

x1	

>ε	

(a) Solve for the max and min over E1.

θ1	

θ2	
p1	

E1	

x1	

(b) Compute the explore price p1.

Figure 4 The vector x1 = (1/
√
2,1/

√
2) induces an explore price p1.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 13

θ1	

θ2	

H2	

p1	

(a) Update the uncertainty set by observing a

sale.

θ1	

θ2	

H2	E2	

(b) Compute the Löwner-John ellipsoid E2.

Figure 5 Updating the uncertainty set and computing the Löwner-John ellipsoid E2.

The reader familiar with the mechanics of the ellipsoid method will readily recognize it here:

we start with an ellipsoid, and at each time we find a hyperplane passing through its center, cut

it in half, and replace the remaining half by its smallest enclosing ellipsoid. The guarantee that

the ellipsoid method offers is that the volume of the ellipsoid decreases at each time step. More

precisely, after n cuts (which in our case correspond to n exploration rounds), the volume of the

ellipsoid is at most e−
n
2d of the original volume. However, it provides no guarantee about the shape

of the ellipsoid. An ellipsoid of small volume could definitely be very skinny in some dimensions,

but quite long in other dimensions.

To prove Theorem 2, we show that if we cut the ellipsoid only along directions in which it is not

very skinny yet (i.e., we explore only if the gap b̄t − bt is large) sufficiently many times, then the

ellipsoid will eventually become small in every direction. Consequently, we will not need to explore

from that point onwards. To do so, instead of bounding the volume of the ellipsoid, we need to

bound the eigenvalues of the matrix defining the ellipsoid.

We will make the statements in the previous paragraph precise in a moment. Before that, we

provide the reader with a quick introduction of the theory of ellipsoids. We refer the reader to the

book by Grötschel, Lovász, and Schrijver (Grötschel et al. 1993), or the survey by Bland, Goldfarb,

and Todd (Bland et al. 1981) for an in-depth discussion.

5.1. A Primer on Ellipsoids

We invite readers who are familiar with the ellipsoid method to skip this subsection and move

directly to Section 5.2. A d× d matrix A is symmetric if A=A′, i.e., it is equal to its transposed

matrix. It is a basic fact of linear algebra that every symmetric matrix A admits an eigenvalue

decomposition, i.e., we can write A=QΛQ′, where Q is a d× d orthogonal matrix (i.e., Q′Q= I)

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

and Λ is a diagonal matrix with elements λ1 ≥ λ2 ≥ . . .≥ λd in its main diagonal and zero elsewhere.

We refer to λi(A) as the i-th largest eigenvalue of A. A symmetric matrix is said to be positive

definite if all of its eigenvalues are strictly positive, i.e., λd(A)> 0.

An ellipsoid E is a subset of Rd defined by a vector a ∈ Rd, which we call the center and a

positive definite matrix A as follows:

E(A,a) := {θ ∈Rd : (θ− a)′A−1(θ− a)≤ 1}.

Each of the d radii of E(A,a) corresponds to the square root of an eigenvalue of A and the

volume of the ellipsoid is given by:

Vol E(A,a) = Vd ·
󰁳󰁔

i λi(A),

where Vd is a constant that depends only on d and corresponds to the volume of the unit ball in

Rd. Since the volume depends on the matrix A and not on a, we will often write Vol E(A) instead

of Vol E(A,a), when the center is not important or can be inferred from the context.

For any vector x ∈ Rd \ {0}, argmaxθ∈E(A,a) x
′θ = a+ b and argminθ∈E(A,a) x

′θ = a− b for b =

Ax/
√
x′Ax (see, Grötschel et al. 1993). Furthermore, the hyperplane perpendicular to x passing

through a is given by x′(θ− a) = 0. This plane cuts the ellipsoid E(A,a) in two symmetric pieces.

The smallest ellipsoid containing each of these pieces (called the Löwner-John ellipsoid) can be

computed by the following closed form formula. The smallest ellipsoid containing E(A,a) ∩ {θ ∈
Rd : x′(θ−a)≤ 0} is E(Ã, a− 1

d+1
b) and the smallest ellipsoid containing E(A,a)∩{θ ∈Rd : x′(θ−

a)≥ 0} is E(Ã, a+ 1
d+1

b), where:

Ã=
d2

d2 − 1

󰀕
A− 2

d+1
bb′

󰀖
. (4)

A central fact used in the analysis of the ellipsoid method is the following:

Vol E(Ã)≤ e−1/2d ·Vol E(A).

One can note that while the volume (and hence the product of eigenvalues) decreases after an

update, some eigenvalues might increase whereas other eigenvalues decrease. To see this, consider

for example the ellipsoid where A= I (here I denotes the identity matrix) and assume x1 = e1 =

(1,0, . . . ,0), i.e., the coordinate vector in the 1-direction. Using Eq. (4), we obtain that Ã is the

diagonal matrix with eigenvalue d2

(d+1)2
< 1 in direction e1, and

d2

d2−1
in all other directions. In

general, the ellipsoid shrinks in the direction of x1 but expands in directions orthogonal to x1

(see Figure 6 for an illustration). For example, if one starts with a unit ball, successively cut the

ellipsoid along the e1 direction and replace one of the halves by its Löwner-John ellipsoid, then one

direction shrinks exponentially while the other directions grow exponentially.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 15

θ1	

θ2	

E1	
x1	

p1	

(a) Assume E1 is a sphere and x1 = (1,0).

θ1	

θ2	

E1	
x1	

p1	

H2	E2	E1	

(b) The half-ellipsoid H2 and ellipsoid E2.

Figure 6 After an explore step where x1 = (1,0), the new ellipsoid E2 shrinks along the θ1-axis but expands

along the θ2-axis.

5.2. Revisiting EllipsoidPricing

Before analyzing the regret of the EllipsoidPricing algorithm, we revisit it using the tools

introduced in Section 5.1. We can represent the ellipsoid at time t by Et =E(At, at). Furthermore,

computing bt and b̄t can be done in closed form:

bt =min
θ̂∈Et

x′
tθ̂= x′

t

󰀗
at −

Atxt√
x′
tAtxt

󰀘
= x′

tat −
󰁳

x′
tAtxt.

Similarly, b̄t = x′
tat +

√
x′
tAtxt, which means that the gap b̄t − bt = 2

√
x′
tAtxt. First, note that

deciding between exploration and exploitation as well as setting the appropriate price can be

accomplished by computing a matrix-vector product instead of solving two linear programs (as

it was the case for PolytopePricing). Second, updating the ellipsoid can be done via Eq. (4).

The algorithm needs to keep track only of a d × d matrix and a d-dimensional vector. Unlike

PolytopePricing, the amount of information that the algorithm needs to maintain does not

depend on T .

5.3. Regret Analysis for EllipsoidPricing

To show that the regret of EllipsoidPricing is small, we prove that if 󰂃 is set properly, then the

number of exploration rounds is bounded. To be precise:

Lemma 1. EllipsoidPricing will choose the explore price in at most 2d2 ln(20R(d+1)/󰂃) time

periods.

We defer the proof of this lemma to Section 5.5. It is simple to see how Lemma 1 can be used

to prove our main result by setting the parameter 󰂃 appropriately.

Proof of Theorem 2. In an exploitation round, since we collect revenue bt and the best possible

revenue from that round is b̄t, the regret from that round is at most b̄t − bt ≤ 󰂃. For exploration

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
16 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

rounds, we use the trivial bound of regret R per round. So, if we have at most N exploration

rounds, Regret≤NR+(T −N)󰂃. By Lemma 1 we have: Regret≤ 2Rd2 ln(20R(d+1)/󰂃)+T 󰂃.

Choosing 󰂃=Rd2/T , the total regret becomes Regret=O(Rd2 ln(T/d)). □
The core of our analysis consists of proving Lemma 1. Recall that the algorithm explores if and

only if b̄t−bt = 2
√
x′
tAtxt > 󰂃. If the matrix At is such that max{x∈Rd: 󰀂x󰀂≤1} 2

√
x′Atx≤ 󰂃, then all the

feature vectors will lead the algorithm to exploit. We note that the quantity max{x∈Rd: 󰀂x󰀂≤1} x
′Atx

corresponds to the largest eigenvalue λ1(At) of the matrix At. Our goal, then, is to show that

after 2d2 ln(20R(d + 1)/󰂃) exploration steps, all the eigenvalues of At are at most 󰂃2/4, so that

max{x∈Rd: 󰀂x󰀂≤1} 2
√
x′Atx≤ 󰂃.

The proof of this claim will crucially rely on the fact that we only perform exploration steps if
√
x′
tAtxt is sufficiently large for the feature vector xt. If instead we were to explore in every round,

then, even though the volume is shrinking by the usual ellipsoid argument, the largest eigenvalue

may not shrink, as shown in the example at the end of Section 5.1.

Conceptually, we would like to show that after sufficiently many exploration steps, the largest

eigenvalue cannot be too large. We prove this result in a roundabout way. We first construct a

lower bound for the smallest eigenvalue. Such a bound automatically implies a lower bound on the

volume of the ellipsoid. Since at each exploration step the volume decreases by a constant factor,

we also have an upper bound on the volume of the ellipsoid after a given number of exploration

steps. Combining these two results, we obtain an upper bound on the number of exploration steps,

which allows us to prove that EllipsoidPricing is a low-regret algorithm.

5.4. More Tools from Linear Algebra

To study how the eigenvalues of At change when we explore, we introduce some tools from linear

algebra to bound the variation in eigenvalues, when a matrix is perturbed by a rank-one matrix.

Given a symmetric d×dmatrix A, its characteristic polynomial is defined as ϕA(z) = det(A−zI),

which is a polynomial of degree d with the eigenvalues of A as roots.

Given a vector b ∈Rd and β > 0, consider the rank-one perturbation D=A− βbb′. If λ1 ≥ λ2 ≥

. . .≥ λd are the eigenvalues of A, Wilkinson (1965) showed that the characteristic polynomial of D

can be written as:

ϕD(z) = det(A−βbb⊤ − zI) =
󰁜

j

(λj − z)−β
󰁛

i

b2i
󰁜

j ∕=i

(λj − z).

It is often convenient to write for z ∕= λi for all i, the characteristic polynomial as:

ϕD(z) =
󰁜

j

(λj − z) · ϕ̂D(z) where ϕ̂D(z) = 1−β
󰁛

i

b2i
λi − z

. (5)

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 17

We refer to Golub (1973) for an in-depth discussion of this result. An important consequence

is the fact that evaluating the characteristic polynomial ϕD(z) at λi, we obtain: ϕD(λd) ≤ 0,

ϕD(λd−1) ≥ 0, ϕD(λd−2) ≤ 0, and so on. Then, the intermediate value theorem allows us to pin

down the exact intervals in which the eigenvalues of D lie. Let σ1 ≥ σ2 ≥ . . .≥ σd be the eigenvalues

of D, then:

λd −βb′b≤ σd ≤ λd ≤ σd−1 ≤ λd−1 ≤ σd−2 ≤ λd−2 ≤ . . .≤ λ2 ≤ σ1 ≤ λ1. (6)

Consequently, this provides us with a tool to lower bound the smallest eigenvalue of D, as we show

in the next lemma.

Lemma 2. Let λ1 ≥ . . . ≥ λd be the eigenvalues of A and σ1 ≥ . . . ≥ σd be the eigenvalues of

D=A−βbb′. Consider any z < λd. If ϕD(z)≥ 0, then σd ≥ z.

Proof. For any z < λd, the sign of ϕD(z) is the same as the sign of ϕ̂D(z) since in Eq. (5),

we have
󰁔

j(λj − z)> 0. Thus, ϕD(z)≥ 0 implies ϕ̂D(z)≥ 0. Note that ϕ̂D(·) is a non-increasing

function since ∂ϕ̂D(z)

∂z
= −β

󰁓
i

b2i
(λi−z)2

≤ 0. We also have that ϕ̂D(σd) = 0 by the definition of the

characteristic polynomial. Therefore, ϕ̂D(z)≥ 0 implies σd ≥ z. □

5.5. Back to the Regret Analysis

As discussed at the end of Section 5.3, our proof strategy is to lower bound the smallest eigenvalue

of At, and then to use the traditional ellipsoid method argument that upper bounds the volume of

the ellipsoid. The two bounds combined can then be used to upper bound the number of exploration

steps. First, we use Lemma 2 to show that the smallest eigenvalue does not decrease by much in

any given iteration:

Lemma 3. For any exploration step t, we have: λd(At+1)≥ d2

(d+1)2
λd(At).

Proof. From the update rule in Eq. (4), we can write At+1 =
d2

d2−1
D for D=At− 2

d+1
bb′, where

b = Atxt/
√
x′
tAtxt. For convenience, we move to the base of eigenvalues of At, which we do by

writing At =QΛQ′. We define Ãt+1 =Q′At+1Q and D̃=Q′DQ. We thus obtain Ãt+1 =
d2

d2−1
D̃ and

D̃=Λ− 2
d+1

b̃b̃′, where b̃=Q′b=Λc/
√
c′Λc and c=Q′xt.

Since the eigenvalues are invariant by changes of bases, λd(At+1) = λd(Ãt+1). We know that

λd(Ãt+1) =
d2

d2−1
λd(D̃), so we only need to prove that λd(D̃)≥ d2−1

d2
· d2

(d+1)2
λd(At) =

d−1
d+1

λd(At).

To simplify notation, we refer to λd(At) as simply λd from now on. Using Lemma 2, we only

need to argue that ϕ̂D̃(
d−1
d+1

λd)≥ 0. We have:

ϕ̂D̃

󰀕
d− 1

d+1
λd

󰀖
= 1− 2

d+1

󰁛

i

b̃2i
λi − d−1

d+1
λd

≥ 0.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
18 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Using the fact that b̃i = λici/
󰁴󰁓

j λjc2j , one can rewrite the expression as follows:

1− 2

d+1

󰁛

i

λic
2
i󰁓

j λjc2j

1

1− d−1
d+1

λd
λi

≥ 1− 2

d+1
max

i

1

1− d−1
d+1

λd
λi

= 1− 2

d+1

1

1− d−1
d+1

λd
λd

= 0.

The inequality follows from the fact that the term
λic

2
i󰁓

j λjc
2
j
depicts a convex combination and can

be bounded by its maximal element. The equality follows from λd being the smallest eigenvalue. □

Lemma 3 shows that the smallest eigenvalue of At decreases in each time step by at most

d2/(d+ 1)2. The intuition for this result is as follows. At the end of Section 5.1, we argued that

when the matrix At corresponds to the unit sphere and x1 = e1, the new matrix At+1 will have

d2/(d+1)2 as its smallest eigenvalue, which will correspond to direction e1. The same statement

is true in general. Assume xt is the eigenvector that corresponds to the smallest eigenvalue of an

arbitrary matrix At. Then, the smallest eigenvalue of At+1 is equal to
d2

(d+1)2
λd(At). Lemma 3 proves

that this particular xt is the one that causes the smallest eigenvalue to shrink the most.

In the next lemma, we show that this eigenvalue cannot decrease past a certain point. More

precisely, we show that there exists a constant k(d) such that once the smallest eigenvalue is below

k(d)󰂃2, then either (i) x′
tAtxt ≤ 1

4
󰂃2, resulting in an exploit step, or (ii) λd(At+1)≥ λd(At), i.e., the

smallest eigenvalue does not decrease.

Lemma 4. There exists a sufficiently small k= k(d) such that if λd(At)≤ k󰂃2 and x′
tAtxt >

1
4
󰂃2,

then λd(At+1)≥ λd(At), i.e., the smallest eigenvalue does not decrease after the update. In addition,

one can take k= 1
400d2

.

Proof. In this proof, we assume d ≥ 2. Note that the lemma trivially holds for d = 1. Using

the same notation as in the proof of Lemma 3, we need to show that λd(At+1) =
d2

d2−1
σd ≥ λd(At),

where σd is the smallest eigenvalue of D̃. To prove that σd ≥ d2−1
d2

λd(At), it is sufficient to show that

ϕD̃

󰀓
d2−1
d2

λd

󰀔
≥ 0 by using Lemma 2. Note that ϕD̃

󰀓
d2−1
d2

λd

󰀔
≥ 0 holds if and only if ϕ̂D̃

󰀓
d2−1
d2

λd

󰀔
≥

0 since d2−1
d2

λd < λd. Therefore, the remainder of the proof focuses on showing that ϕ̂D̃

󰀓
d2−1
d2

λd

󰀔
≥ 0.

We next split the sum in the definition of ϕ̂D into two parts, depending on whether the eigenvalue

λi is smaller or larger relative to
√
k󰂃2. We obtain:

ϕ̂D̃

󰀕
d2 − 1

d2
λd

󰀖
= 1− 2

d+1

󰀵

󰀷
󰁛

i: λi≤
√
k󰂃2

λic
2
i󰁓

j λjc2j

1

1− d2−1
d2

λd
λi

+
󰁛

i: λi>
√
k󰂃2

λic
2
i󰁓

j λjc2j

1

1− d2−1
d2

λd
λi

󰀶

󰀸 .

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 19

To bound the previous expression, we use some bounds on the eigenvalues. For the first sum, we

know that λi ≤
√
k󰂃2,

󰁓
j λjc

2
j >

1
4
󰂃2, and λi ≥ λd. For the second sum, we use λi ≥

√
k󰂃2 = k󰂃2√

k
≥ λd√

k
.

Therefore, we obtain:

ϕ̂D̃

󰀕
d2 − 1

d2
λd

󰀖
≥ 1− 2

d+1

󰀵

󰀷
󰁛

i: λi≤
√
k󰂃2

√
k󰂃2c2i
1
4
󰂃2

1

1− d2−1
d2

+
󰁛

i: λi>
√
k󰂃2

λic
2
i󰁓

j λjc2j

1

1− d2−1
d2

√
k

󰀶

󰀸

≥ 1− 2

d+1

󰀥
4d2

√
k+

1

1− d2−1
d2

√
k

󰀦
.

The last inequality follows from the facts that
󰁓

i c
2
i ≤ 1 and

󰁓
i

λic
2
i󰁓

j λjc
2
j
= 1. In the limit when

k→ 0, the above expression approaches 1− 2
d+1

, and hence is positive. Consequently, there exists

a sufficiently small k= k(d) such that ϕ̂D

󰀓
d2−1
d2

λ1

󰀔
≥ 0. This concludes the proof of existence. By

substituting k= 1/400d2 in the final bound of ϕ̂D̃

󰀓
d2−1
d2

λd

󰀔
, inspecting the first few values of d and

the derivative, we conclude that taking k= 1/400d2 is enough. □
The intuition behind Lemma 4 is as follows. Assume λd is sufficiently small (λd ≤ k󰂃2). If xt

is equal to the eigenvector that corresponds to the smallest eigenvalue, the algorithm will choose

to exploit (thus preserving the ellipsoid). If xt is not far from this eigenvector, the algorithm

still chooses an exploit price. More generally, any xt that is approximately a convex combination

of eigenvectors associated with small eigenvalues (where small means λi ≤
√
k󰂃2) will induce an

exploit step. For the algorithm to choose an explore step, the vector xt has to be approximately

a convex combination of eigenvectors that correspond to large eigenvalues (where large means

λi >
√
k󰂃2). However, such an xt cannot cause the smallest eigenvalue to shrink, as this xt will be

nearly orthogonal to the eigenvectors corresponding to the smallest eigenvalues (see Figure 6 for a

2-dimensional illustration).

Finally, we are in the position of proving Lemma 1, which is the missing piece of our argument:

Proof of Lemma 1. Let Ẽ1 =E1 and Ẽn be the ellipsoid obtained after the n-th explore step. Let

Ãn be the matrix defining Ẽn. We will build two bounds on the volume ratio Vol Ẽn+1/Vol Ẽ1.

The first bound is the usual upper bound from the ellipsoid method (see Section 5.1) given by:

Vol Ẽn+1

Vol Ẽ1

≤ e−
n
2d .

Next, we construct a lower bound by using the previous lemmas. Since Ẽ1 lies in the ball of radius

R, we know that Vol Ẽ1 ≤ Vd ·Rd, for a constant Vd defined in Section 5.1. For Ẽn+1, we can use:

Vol Ẽn+1 = Vd ·
󰁶󰁜

i

λi(Ãn+1)≥ Vd ·λd(Ãn+1)
d/2.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
20 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

From Lemma 4, when the smallest eigenvalue is below 󰂃2/400d2, it cannot shrink further. Also,

from Lemma 3, whenever the smallest eigenvalue shrinks, it has to shrink by at most d2/(d+1)2,

and hence, at any given time:

λd(Ãn+1)≥
d2

(d+1)2
· 󰂃2

400d2
=

󰂃2

400(d+1)2
.

Therefore, we have:

Vol Ẽn+1 ≥ Vd ·
󰀕

󰂃

20(d+1)

󰀖d

.

The ratio of those two expressions gives us a bound on the volume decrease. Putting the two

bounds together, we obtain:

󰀕
󰂃

20R(d+1)

󰀖d

≤ Vol Ẽn+1

Vol Ẽ1

≤ e−
n
2d ,

which implies that the number of explore steps satisfies n≤ 2d2 ln
󰀓

20R(d+1)

󰂃

󰀔
. □

6. Noisy Valuations

Up until now, we have assumed that the market value of product t is determined according to

a linear model, that is, vt = θ′xt. In this section, we extend the model to allow for idiosyncratic

additive noise: vt = θ′xt + δt, where δt is an i.i.d. zero-mean random variable representing an error

in our estimate of vt.

In this noisy model, the original regret definition, Regret =
󰁓T

t=1 vt − ptI{vt ≥ pt}, becomes

overly demanding and no algorithm (even in the one-dimensional context-free case) can achieve

sublinear regret. The natural approach is to compare against a benchmark that knows the value

of θ but not the realization of δt. Therefore, we can redefine the regret as follows:

Regret=E
T󰁛

t=1

󰀗
max
p∗t

󰀕
p∗t ·Pr

δt
(θ′xt + δt ≥ p∗t)

󰀖
− pt · I{vt ≥ pt}

󰀘
,

where the expectation is taken over both the noise and any randomness used by the algorithm.

Assumption. Throughout this section, we assume that the distribution of the noise δt is fixed

over time, known, and σ-subgaussian, which are common assumptions for tractability. With this

assumption, we can focus on learning the weights for each feature instead of learning the noise

distribution itself. We say that a distribution is σ-subgaussian if Pr(|δt| > t) ≤ e−t2/(2σ2) for all

t > 0.6

Before analyzing the contextual case, it is instructive to start with the one-dimensional version

of our problem, where the valuation is simply vt = v+δt for a fixed v ∈R+. Kleinberg and Leighton

6 This is a common assumption in the literature. The Gaussian distribution is σ-subgaussian for its standard deviation
σ. In addition, uniform, Rademacher, and bounded random variables are all subgaussian for suitable σ parameters.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 21

(2003) proved that no learning algorithm can obtain o(
√
T) regret and also show a matching upper

bound of O(
√
T) under certain assumptions on the distribution of δt. Given this lower bound, we

will generally aim for sublinear, but not logarithmic, regret in the noisy contextual case.

Returning to our setting, we will show that the ellipsoid technique is useful in designing

feature-based pricing algorithms with noisy valuations. In particular, we will construct two

algorithms, ShallowPricing and EllipsoidEXP4. ShallowPricing is a robust version of

EllipsoidPricing that will allow us to be robust to low noise (σ = O(1/T lnT)) without per-

formance degradation. EllipsoidEXP4 is a combination of ShallowPricing and EXP4, a

standard contextual bandit algorithm from the literature. We will prove a regret bound of

O
󰀓
d5/2 ln(T/d) ·

󰁫
1+T 2/3d2/3(σ ln(T))1/3

󰁳
ln(T/σ)

󰁬󰀔
for EllipsoidEXP4. This regret bound is

logarithmic in T when the noise vanishes (i.e., σ→ 0), and has approximately the same dependence

in T as EXP4, i.e., Õ(T 2/3) for high-noise settings (σ=O(1)). In addition, under moderate noise

such as σ = O(1/
√
T) or σ = O(T−2/3), we incur Õ(

√
T) or Õ(T 4/9) regret, respectively; that is,

lower than EXP4. The EllipsoidEXP4 algorithm uses ShallowPricing to localize the solu-

tion to a narrow region, and then applies EXP4 on the localized region. The performance boost

comes from the fact that the regret of EXP4 depends heavily on the number of possible actions

the learner can choose from. By first localizing the solution to a narrow region using the ellipsoid

method, we can run the algorithm with a smaller set of actions, and hence improve the regret.

Though we explicitly combine ShallowPricing with EXP4 to obtain a regret bound, our

approach is generic in the sense that we could replace EXP4 with other contextual bandits algo-

rithms. For example, if the features are i.i.d. over time, we could use a stochastic gradient descent

algorithm as in Amin et al. (2014) instead of EXP4 and obtain a similar regret bound.

Our approach will be as follows. In Section 6.1, we introduce ShallowPricing, prove that it

does not incur too many explore steps, and show a regret bound for low-noise environments. In

Section 6.2, we analyze the EXP4 algorithm and show how to obtain Õ(d1/3T 2/3) regret under

either a noiseless or noisy regime. We then combine the two algorithms to produce EllipsoidEXP4

and prove its regret bound in Section 6.3.

6.1. A Robust Version of EllipsoidPricing

We now propose a version of EllipsoidPricing that is designed to offer some protection against

noise. Recall that δt is assumed to be σ-subgaussian. We define

δ=
√
2σ lnT, (7)

Then, Pr(|δt|> δ)≤ e− ln2 T . Using the union bound, we can write Pr(|δt|> δ for some t= 1, .., T)≤
Te− ln2 T and

Pr(|δt|≤ δ for all t= 1, .., T)≥ 1−Te− ln2 T ≥ 1− 1/T, (8)

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
22 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

where the last inequality holds for T ≥ 8. That is, with probability at least 1− 1/T all the noise

terms δt are bounded by δ in absolute value. Therefore, if we use a buffer of size δ when adding

cuts to the ellipsoid, we are unlikely to remove the true θ from the uncertainty set.

We will add a buffer in the following way. When we choose a price pt and observe a sale, we can

no longer infer that θ′vt ≥ pt. Instead, we will infer that θ′vt ≥ pt − δ. Similarly, in the event of a

no sale, all that we will infer is θ′vt ≤ pt + δ. We will call the version of our algorithm that adds

these buffers ShallowPricing.

ShallowPricing will keep uncertainty sets Kt in the form of ellipsoids and for each vector xt,

it will compute bt and bt in the same way as EllipsoidPricing. For a given parameter 󰂃≥ 4dδ,

if bt − bt ≥ 󰂃, the algorithm will suggest the price pt =
1
2
(bt + bt). If bt − bt ≥ 󰂃 and a sale occurs, we

remove elements from the uncertainty set as if we had used the price pt − δ, i.e., Kt+1 =Kt ∩ {θ ∈

Rd : θ′xt ≥ pt− δ}. Similarly, when a sale does not occur, we remove elements from the set as if we

had used the price pt + δ, i.e., Kt+1 =Kt ∩ {θ ∈Rd : θ′xt ≤ pt + δ}. If bt − bt < 󰂃, we do not update

the uncertainty set. ShallowPricing also reduces the exploit prices from EllipsoidPricing by

δ, using pt = bt−δ. The cuts we used in Section 5 remove half of the volume of the ellipsoid and are

called central cuts. The cuts we propose here remove less than half of the volume of the ellipsoid

and are called shallow cuts. Figure 7 illustrates the difference between central and shallow cuts.

θ1	

θ2	
p1	

E1	

x1	
p1-δ	

Figure 7 If we remove the half-ellipsoid below p1, we are performing a central cut of the ellipsoid E1. If we

remove only the subset below p1 − δ, we are performing a shallow cut of E1.

To analyze ShallowPricing, we need to introduce the concept of the depth of a cut, which is

given by:

αt =− δ√
x′
tAtxt

.

The depth of a cut is a number between -1 and 0, where -1 represents a supporting hyperplane of

the ellipsoid and 0 represents a central cut of the ellipsoid. Our analysis does not involve the third

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 23

type of standard cuts, the deep cut, which is a cut that removes more than half of the volume of

the ellipsoid and thus, has positive depth.

For ShallowPricing to work, the depth of the cuts has to be at least −1/d. With αt ≥−1/d,

the following machinery allows us to compute the Löwner-John ellipsoids of the sets that remain

after shallow cuts (see Eq. (3.1.17) in Grötschel et al. 1993). The Löwner-John ellipsoid of the

set Kt+1 = E(At, at) ∩ {θ ∈ Rd : θ′xt ≥ (bt + bt)/2 − δ} is given by E(At+1, at +
1+dαt
d+1

bt), where

bt =Atxt/
√
x′
tAtxt and

At+1 =
d2

d2 − 1
(1−α2

t)

󰀕
At −

2(1+ dαt)

(d+1)(1+αt)
btb

′
t

󰀖
. (9)

Similarly, the Löwner-John ellipsoid of the set Kt+1 =E(At, at)∩ {θ ∈Rd : θ′xt ≤ (bt + bt)/2+ δ}
is given by E(At+1, at − 1+dαt

d+1
bt).

Note that Eq. (9) is not all that different from Eq. (4). We can therefore adapt our analysis

for central cuts to allow for shallow cuts. We are now ready to present a bound of the number of

explore steps used by ShallowPricing. Recall from Eq. (8) that with probability at least 1−1/T ,

all the noise terms δt are bounded by δ.

Theorem 3. If δt ≤ δ for all t, then the ShallowPricing algorithm with parameter 󰂃 =

max{Rd2/T,4dδ} will observe bt − bt > 󰂃 in at most O(d2 ln(min{T/d,R/δ})) steps.

Proof. The proof of this result closely mimics the proof of Theorem 2. Therefore, instead of

repeating all the steps in the proof of Theorem 2 and its intermediary lemmas, we restrict ourselves

to pointing out the necessary changes.

Let N be the number of steps with bt− bt > 󰂃. We call such a step an exploration step. To bound

this quantity, we first need to show that Lemmas 3 and 4 still apply in the noisy setting. We next

show that for any exploration step t,

λd(At+1)≥
d2(1−αt)

2

(d+1)2
λd(At), (10)

which is a shallow-cut equivalent of Lemma 3. We define the matrix D = At − 2(1+dαt)

(d+1)(1+αt)
btb

′
t so

that At+1 =
d2

d2−1
(1−α2

t)D according to Eq. (9). We then perform the same change of basis as in

the proof of Lemma 3 to define D̃. Eq. (10) is equivalent to d2

d2−1
(1−α2

t)λd(D̃)≥ d2(1−αt)
2

(d+1)2
λd(At),

which is itself equivalent to showing that

λd(D̃)≥ (1−αt)(d− 1)

(1+αt)(d+1)
λd(At).

Using Lemma 2, we can prove the statement above by showing that

ϕ̂D̃

󰀕
(1−αt)(d− 1)

(1+αt)(d+1)
λd(At)

󰀖
= 1− 2(1+ dαt)

(d+1)(1+αt)

󰁛

i

b̃2i

λi(At)− (1−αt)(d−1)

(1+αt)(d+1)
λd(At)

≥ 0,

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
24 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

where b̃i is as defined in the proof of Lemma 3. The lowest possible value of the right-hand side of

the equation above occurs when b̃2d = λd(At) and b̃2i = 0 for i ∕= d. Thus,

ϕ̂D̃

󰀕
(1−αt)(d− 1)

(1+αt)(d+1)
λd(At)

󰀖
≥ 1− 2(1+ dαt)

(d+1)(1+αt)

1

1− (1−αt)(d−1)

(1+αt)(d+1)

= 0,

proving Eq. (10). This equation immediately implies the weaker statement λd(At+1)≥ d2

(d+1)2
λd(At)

since αt ≤ 0.

We next prove a shallow-cut equivalent of Lemma 4. We argue that for a sufficiently small

k = k(d) such that if λd(At)≤ k󰂃2 and x′
tAtxt >

1
4
󰂃2, λd(At+1)≥ λd(At). As in Lemma 4, one can

take k= 1
400d2

. To show this result, it is sufficient to prove that

ϕ̂D̃

󰀕
(d2 − 1)

d2(1−α2
t)
λd(At)

󰀖
≥ 0.

We can mimic the proof of Lemma 4 to obtain

ϕ̂D̃

󰀕
(d2 − 1)

d2(1−α2
t)
λd(At)

󰀖
≥ 1− 2(1+ dαt)

(1+ d)(1+αt)

󰀵

󰀷 4
√
k

1− d2−1
d2(1−α2

t)

+
1

1− d2−1
d2(1−α2

t)

√
k

󰀶

󰀸 . (11)

Since we assumed that 󰂃≥ 4dδ and we know that
√
x′
tAtxt ≥ 1

2
󰂃, by the definition of αt we have

αt =−δ/
√
x′
tAtxt ≥−2δ/󰂃≥−1/2d. Since αt ∈ [−1/2d,0], the quantity inside the square brackets

in Eq. (11) converges to 1 when k goes to infinity. The limit as k goes to infinity of the right-hand

side of the inequality above is therefore 1− 2(1+dαt)

(1+d)(1+αt)
, which is strictly positive when d > 1 (as in

the proof of Lemma 4, we ignore the trivial case of d= 1). We thus reach our desired result.

We have now proved that Lemmas 3 and 4 still apply in the noisy setting. We are thus ready

to prove our theorem. Just as in Theorem 2, our core argument is that the volume of the ellipsoid

decreases exponentially fast in the number of explore steps, and that Lemmas 3 and 4 together

provide a bound on the smallest possible volume of the ellipsoid. If we use an explore price at step

t, the following volume decrease bound applies under a shallow cut:

Vol Et+1

Vol Et

≤ e−
(1+dαt)

2

5d ,

as shown in Eq. (3.3.21) of Grötschel et al. (1993). Since αt ≥−1/2d,

Vol Et+1

Vol Et

≤ e−
1

20d .

We can therefore repeat the proof of Lemma 1, with the sole difference that we replace e−n/2d by

e−n/20d. We then obtain a bound on the number of explore steps N :

N ≤ 20d2 ln

󰀕
20R(d+1)

󰂃

󰀖
.

By using 󰂃=max{Rd2/T,4dδ}, we obtain N =O(d2 ln(min{T/d,R/δ})). □

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 25

The result of Theorem 3 immediately implies that for σ=O(1/T lnT), the regret of Shallow-

Pricing is O(Rd2 ln(T/d)). That is, under low noise, we recover the same regret bound as in the

noiseless regime (Theorem 2).

Corollary 1. Suppose σ = O
󰀃

Rd
T lnT

󰀄
. Then, the worst-case regret of the ShallowPricing

algorithm with parameter 󰂃=Rd2/T is O(Rd2 ln(T/d)).

Proof. Let δ be as defined in Eq. (7). By Eq. (8), there is at most probability 1/T that |δt|> δ

for some t. Therefore, the regret incurred by potentially removing θ from the uncertainty set is at

most RT/T =R. The regret incurred by the explore steps is R times the number of explore steps as

given by Theorem 3, which is equal to O(Rd2 ln(T/d)) by the right choice of δ. The regret incurred

by exploit steps is at most T (󰂃+ δ) since 󰂃+ δ is the maximum loss from a sale per round. By the

choices of 󰂃 and δ, this regret term is also bounded by O(Rd2 ln(T/d)), completing the proof. □
However, under a high-noise setting (e.g., σ = O(1)), the performance of ShallowPricing

deteriorates. In particular, adding a buffer to all exploit prices becomes too costly. To address

this issue, one needs to adapt the algorithm to allow some learning to take place also during the

exploitation periods. With this motivation in mind, we will show how to combine ShallowPricing

with EXP4 to achieve a better regret bound in a high-noise setting. Before doing so, we turn our

attention to EXP4 and show how to apply it to our feature-based pricing problem.

6.2. Applying EXP4 to Our Feature-Based Pricing Problem

We now focus on EXP4 of Auer et al. (2002), the oldest and best-known algorithm for adversarial

contextual bandits. While the ideas we use originate from Auer et al. (2002), we will present them

using the modern language in Section 4.2.1 of the survey by Bubeck and Cesa-Bianchi (2012).

EXP4 is a regret-optimal general purpose bandit algorithm, but one that is computationally ineffi-

cient. In this subsection, we will instantiate EXP4 to our problem and study its regret performance.

In Section 6.3, we will propose an algorithm that combines our ellipsoid technique with EXP4.

The generic setup of EXP4 comprises a space X of contexts, a space A of actions, and a set Π of

policies. Each policy π ∈Π is a mapping π :X →A. In each step t, the adversary chooses a context

xt ∈ X and a function rt(·) mapping actions a ∈A to rewards. The learner observes the context

xt but not the function rt(·). The learner chooses an action at and obtains the reward rt(at). The

regret is defined as:

Regret=E

󰀥
max
π∈Π

󰁛

t

rt(π(xt))−
󰁛

t

rt(at)

󰀦
,

where the expectation is taken over the choice of at by the algorithm.

The EXP4 algorithm maintains weights wt(π) for each policy π ∈ Π, which are initialized as

w1(π) = 1 for all policies. For each t, a policy π is drawn with probability proportional to wt(π)

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
26 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

and the algorithm chooses according to the recommendation at = π(xt) given by this policy, and

then observes the reward rt(at) for the chosen action. Subsequently, the algorithm comes up with

the following unbiased estimator of the function rt(·) for each policy:

r̃t(π) =

󰀻
󰁁󰀿

󰁁󰀽

rt(at) ·
󰁓

π∈Πw(π)󰁓
π: π(xt)=at

w(π)
if π(xt) = at;

0 otherwise,

and uses r̃t(π) to update the weights according to:

wt+1(π) =wt(π) · exp(η · r̃t(π)),

for a given fixed parameter η> 0. The total regret guarantee is given by:

Regret≤ ln(|Π|)
η

+
η

2

󰁛

t

|{π(xt) : π ∈Π}| . (12)

The regret bound in Eq. (12) is drawn from the last equation in the proof of Theorem 4.2 in the

survey by Bubeck and Cesa-Bianchi (2012) (the original source of this result is Auer et al. (2002)).

There are two minor differences between Eq. (12) and the one in Bubeck and Cesa-Bianchi. First,

our parameter η is a constant while they allow it to change over time. Second, we replaced the

total number of available actions with the number of actions that may be selected by any policy,

that is, |{π(xt) : π ∈Π}|.

Since {π(xt) : π ∈ Π} ⊆ A, the last term is bounded by |A| leading to the overall bound of
󰁳
2T |A| ln(|Π|) given the appropriate choice of η. We refer to the excellent survey in Bubeck and

Cesa-Bianchi (2012) for a modern version of the regret analysis of EXP4.

6.2.1. Instantiating EXP4 for the noiseless regime. We start by instantiating EXP4 for

the noiseless case (δt = 0 for all t) of the dynamic pricing problem. Both the action and context

spaces are continuous in our original feature-based pricing problem. Thus, to get a reasonable

guarantee, we will need to discretize them by balancing the error induced by the discretization and

the size of the discretized action and context spaces.

For a fixed discretization parameter γ ≥ 0, we define the discretization operator ⌊·⌋γ as follows.

For any real number y ∈R, we let:

⌊y⌋γ = γ · ⌊y/γ⌋.

For a vector y ∈Rd, we define ⌊y⌋γ as the Rd vector obtained by applying ⌊·⌋γ to each component,

i.e., (⌊y⌋γ)i = ⌊yi⌋γ . Finally, for a set K ⊆Rd, we define ⌊K⌋γ = {⌊y⌋γ : y ∈K}.

Having defined the discretization operator, we are now ready to instantiate EXP4. For the

remainder of this section, we assume K1 = [0,1]d to keep the discretization arguments clean. We

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 27

associate a policy with each vector θ ∈ ⌊[0,1]d⌋γ such that there are |Π| = O(1/γd) policies. For

every vector θ ∈ ⌊[0,1]d⌋γ , let policy πθ associate xt with the following price

πθ(xt) = ⌊θ′xt⌋γ√d − γ
√
d.

This discretization ensures that policies always post prices that are integral multiples of γ
√
d

and thus, |A| ≤ O((γ
√
d)−1). The EXP4 guarantee in Eq. (12) implies that the performance of

the algorithm is away from the performance of the best policy by at most O
󰀓󰁳

T |A| ln(|Π|)
󰀔
=

O

󰀕󰁴
T
√
d

γ
ln(1/γ)

󰀖
. If θ ∈ Rd is the true vector of weights, then the policy that prices according

to the discretized policy π⌊θ⌋γ always sells and incurs a discretization loss of at most O(γ
√
d)

per iteration with respect to the optimal policy, since ⌊θ⌋γ ′xt − θxt ≤ 󰀂θ−⌊θ⌋γ󰀂 ≤ γ
√
d so that

θ′xt ≥ π⌊θ⌋γ (xt)≥ θ′xt − 2γ
√
d.

We now need to select a discretization parameter γ that minimizes the sum of the learning loss

incurred by EXP4, O

󰀕󰁴
T
√
d

γ
ln(1/γ)

󰀖
, and the loss due to discretization, O

󰀓
Tγ

√
d
󰀔
. Choosing

γ = (T
√
d)−1/3, we obtain a regret bound of:

O

󰀳

󰁃
󰁶

T
√
d

γ
ln

󰀕
1

γ

󰀖󰀴

󰁄+O
󰀓
Tγ

√
d
󰀔
= Õ

󰀃
T 2/3d1/3

󰀄
.

This discretization is valid as long as γ ∈ (0,1]. Compared to EllipsoidPricing, the discretized

version of EXP4 offers a better regret bound with respect to d, but a much worse regret bound

with respect to T .

6.2.2. Instantiating EXP4 for the noisy regime. The key modification required to adapt

the analysis above to the noisy regime is to change the definition of a policy as follows. Define

p∗(v) = argmaxp p ·Pr(v+ δ≥ p) and for every discretized vector θ define:

πθ(xt) = p∗
󰀓
⌊θ′xt⌋γ√d − γ

√
d
󰀔
.

To show that the same regret bound of Õ
󰀃
T 2/3d1/3

󰀄
also holds in the noisy case, all we need to

do is to show that the total discretization loss is still O(Tγ
√
d). The following lemma proves this.

Lemma 5. Consider a random variable δ. Let p∗v = argmaxp[p ·Pr(v+ δ ≥ p)]. Let also Rv(p) =

p ·Pr(v+ δ≥ p). Then, if v ∈ [v̂− 󰂃, v̂+ 󰂃] then: Rv(p
∗
v̂−󰂃)≥Rv(p

∗
v)− 2󰂃.

Proof. We first note that Rv(p) is monotone in v:

Rv(p
∗
v̂−󰂃) = p∗v̂−󰂃 ·Pr(v+ δ≥ p∗v̂−󰂃)≥ p∗v̂−󰂃 ·Pr(v̂− 󰂃+ δ≥ p∗v−󰂃) =Rv̂−󰂃(p

∗
v̂−󰂃).

We next bound Rv̂−󰂃(p
∗
v̂−󰂃):

Rv̂−󰂃(p
∗
v̂−󰂃)≥Rv̂−󰂃(p

∗
v − (v− v̂+ 󰂃))≥ (p∗v − 2󰂃)Pr(v̂− 󰂃+ δ≥ p∗v − (v− v̂+ 󰂃))≥Rv(p

∗
v)− 2󰂃.

The first inequality follows from the optimality of p∗v̂−󰂃, the second inequality from v ∈ [v̂− 󰂃, v̂+ 󰂃],

and the third inequality from the monotonicity of Rv(p). □

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
28 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

6.3. Combining ShallowPricing and EXP4

In this subsection, we introduce a new algorithm, EllipsoidEXP4, which combines Shallow-

Pricing and EXP4. This new algorithm will recover the logarithmic regret with respect to T

in the limit as the noise vanishes (σ → 0); incur regret similar to EXP4, Õ(T 2/3), in high-noise

settings (σ =O(1)); and obtain an intermediate regret performance in moderately noisy settings.

Our results are in the spirit of earlier work that smoothly interpolates between deterministic and

noisy regimes (Hazan and Kale 2011).7 The main idea is to use the ellipsoid technique to prune

the space of possible policies such that all policies output only a small set of actions per context.

With that, we will exploit the last term in Eq. (12) to improve the regret guarantee.

Our algorithm will maintain both an uncertainty set Kt and a set of weights for each discretized

point of the uncertainty set, i.e., for a fixed discretization parameter γ > 0, we will keep a weight

w(θ) for each θ ∈ ⌊Kt⌋γ . We initialize K1 as before and w(θ) = 1 for every θ ∈ ⌊γ(K1)⌋γ . At each

point, bt and bt refer to the minimum and maximum possible values of θ′xt based on the current

uncertainty set. The algorithm has three parameters: a discretization term γ, a shallow cut margin

󰂃, and an EXP4 update parameter η.

The EllipsoidEXP4 algorithm uses the same explore prices and ellipsoid updates as Shal-

lowPricing. However, the exploit steps are replaced by EXP4 steps. Whenever an explore step

occurs, EXP4 is reinitialized. Since we know from Theorem 3 that the number of explore steps is

relatively small, the EXP4 reinitializations are not very costly in terms of regret. EllipsoidEXP4

proceeds as follows. In each period t:

• ShallowPricing exploration: If bt− bt > 󰂃, we price at pt =
1
2
(bt+ bt) and update the uncer-

tainty set according to the ShallowPricing rule. When this occurs, we restart the EXP4 algo-

rithm by resetting to 1 the weights of all policies in ⌊γ(Kt+1)⌋γ .

• EXP4: If bt − bt ≤ 󰂃, we proceed according to the EXP4 algorithm in the noisy regime with

parameter η, by selecting θ ∈ ⌊γ(Kt)⌋γ with probability proportional to w(θ), choosing the price

pt = πθ(xt) (see the policy definition in Subsection 6.2.2) and updating the weights according to

the EXP4 update rule. The uncertainty set is unchanged, i.e., Kt+1 =Kt.

Theorem 4. Suppose8 K1 = [0,1]d. Then, the EllipsoidEXP4 algorithm with parameters 󰂃=

O(max{d5/2/T,dσ ln(T)}), η=
󰁳
γd1/2 ln(1/γ)/(σT ln(T)), and γ = (d1/2T−1σ ln(T))1/3 incurs the

following regret:

O
󰀓
d5/2 ln(T/d) ·

󰁫
1+T 2/3d2/3(σ ln(T))1/3

󰁳
ln(T/σ)

󰁬󰀔
.

7 There is also a line of research that interpolates between stochastic and adversarial bandits (see Bubeck and Slivkins
2012, Lykouris et al. 2018).

8 This regret bound does not involve R since we assumed K1 = [0,1]d. Consequently, R=
√
d.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 29

Proof. Recall that with probability 1− 1/T , |δt|≤ σ ln(T) for all t, so that ShallowPricing

will never remove the true θ from the uncertainty set. There are at most O(d2 ln(T/d)) iterations

in which we use ShallowPricing, so EXP4 is restarted at most as many times. In each con-

secutive run of EXP4, we can bound the regret by the bound of Eq. (12) plus the additional

loss from discretization. By the condition that bt − bt ≤ 󰂃, the policies πθ will suggest at most

max(1, 󰂃/(γ
√
d))≤max(1,

√
dσ ln(T)/γ) actions (per round) by using the definition of 󰂃. If all poli-

cies suggest the same action for all contexts, then the regret with respect to the best policy is

equal to zero. Otherwise, we can use Eq. (12) to bound the regret with respect to the best action

in ⌊γ(Kt)⌋γ by:

ln(γ−d)

η
+

ηT

2
·
√
dσ ln(T)

γ
=O

󰀕󰁴
Tγ−1d3/2σ ln(T) ln(1/γ)

󰀖
,

for η=
󰁳
γd1/2 ln(1/γ)/(σT ln(T)). The best policy in ⌊γ(Kt)⌋γ has regret at most O(Tγ

√
d) with

respect to the optimal policy due to discretization, so the total regret from a sequence of consecutive

runs of EXP4 is at most:

O

󰀕󰁴
Tγ−1d3/2σ ln(T) ln(1/γ)+Tγ

√
d

󰀖
=O

󰀕
T 2/3d2/3(σ ln(T))1/3

󰁴
ln(T/(σ

√
d lnT))

󰀖

for γ = (d1/2T−1σ ln(T))1/3. This quantity can be bounded by:

O
󰀓
T 2/3d2/3(σ ln(T))1/3

󰁳
ln(T/σ)

󰀔
.

By the guarantee in Theorem 3, there are at most O(d5/2 ln(T/d)) runs of ShallowPricing.

Thus, there are also at most O(d5/2 ln(T/d)) consecutive runs of EXP4, and hence the total regret

is bounded by:

O
󰀓
d5/2 ln(T/d) · [1+T 2/3d2/3(σ ln(T))1/3

󰁳
ln(T/σ)]

󰀔
. □

In the limit as the noise vanishes (σ→ 0), EllipsoidEXP4 recovers the performance of Ellip-

soidPricing. In a high-noise setting (σ = O(1)), it performs approximately as well as EXP4.

In moderately-noisy settings such as σ = O(1/
√
T), EllipsoidEXP4 incurs a regret of Õ(

√
T),

which is superior to EXP4’s performance. The bounds we derived are potentially not tight. For

example, whether a regret bound better than Õ(T 2/3) can be obtained in a high-noise setting under

adversarial contexts is an open research question.

The reader should note that the technique of localizing the solution to a narrow region using

ShallowPricing and then switching to a contextual-bandit algorithm is more broadly applicable,

and EXP4 could be replaced by a more computationally efficient algorithm. For example, if the

feature vectors are i.i.d., we can replace EXP4 by the stochastic gradient approach of Amin et al.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
30 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

(2014) and obtain similar regret bounds with a better computational performance. Alternatively,

one could replace EXP4 by one of the recent computationally-efficient approaches to contextual

bandits by Syrgkanis et al. (2016a,b). This would come at a cost, however, since these algorithms

yield a worse regret performance than EXP4. We want to emphasize that this is not a meta-

algorithm in which one can plug a generic contextual-bandit algorithm, but rather a general design

principle that can be applied to several existing algorithms. For example, we rely on the property

that the regret depends on the number of actions that could potentially be the optimal action

for any given context (as opposed to the total number of actions). This is fortunately true for all

algorithms discussed above.

7. Extensions

In this section, we extend our results to non-linear market value models and to the case where the

length of the horizon T is not known in advance.

7.1. Non-Linear Models

So far, we assumed that the market value follows a linear model of the form vt = θ′xt. An alternative

common model is the logistic regression: vt = [1 + exp(θ′xt)]
−1 — see Richardson et al. (2007)

and Chakrabarti et al. (2008) for examples where market values are learned from data via logistic

regressions. More generally, a basic set of features xt is often transformed by a feature-map φ(·)

to capture correlations and non-linear dependencies on the features. In applications of hedonic

pricing, popular models of market values are (i) the log-log model, i.e., lnvt =
󰁓

i θi ln(xt,i) and (ii)

the semi-log (or log-linear) model: lnvt = θ′xt. In all such cases, one can express: vt = f(θ′φ(xt))

for some given functions f(·) and φ(·). Next, we argue that Theorem 2 can easily be extended to

this more general setting:

Proposition 1. Let f be a non-decreasing and continuous function with Lipschitz constant L

over the domain [−R,R]. Denote f̄ = f(R). Let φ(·) be a feature map such that 󰀂φ(xt)󰀂 ≤ 1 and

let the market value take the form vt = f(θ′φ(xt)). Then, the EllipsoidPricing algorithm with

parameter 󰂃= f̄d2/LT incurs regret O(f̄Ld2 · ln(RT/f̄d)).

Proof. Denote by x̃t = φ(xt), so that vt = f(θ′x̃t). For every exploitation round, we know that

the value of θ′x̃t lies in an interval It = [bt, b̄t] of length at most 󰂃. The loss by pricing at f(bt) is

at most f(b̄t)− f(bt)≤ L · (b̄t − bt)≤ L󰂃. Using the trivial loss of f̄ in each exploration round, we

obtain:

Regret≤ TL󰂃+ f̄ · 2d2 ln(20R(d+1)/󰂃)≤O(f̄ · d2 ln(RT/f̄d)),

where the second inequality follows from taking 󰂃= f̄d2/LT . □

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 31

Note that our Lipschitz assumption is different but somewhat related to the one in the line of

work on Lipschitz bandits (see, Kleinberg et al. 2013, and the references therein). In our setting, the

unknown is a d-dimensional vector, whereas in Lipschitz bandits the entire mapping from contexts

to values is unknown.

7.2. Unknown Horizon

An additional assumption that can be relaxed is the knowledge of the time horizon T . Note that

when we set the EllipsoidPricing parameter 󰂃 = Rd2/T in Theorem 2, we need to know the

value of T in advance. By using the standard doubling trick9 in online learning, one can make the

algorithm agnostic in T at the expense of a constant factor. Consequently, this extends our result to

the case where the value of T is unknown. We construct a sequence of phases of doubly exponential

size: call phase 0 the first 22
0
time steps, phase 1 the next 22

1
steps and so on, i.e., phase k has 22

k

time steps. In each phase k, we re-start the algorithm (forgetting all of the information gained in

the past) and run it with T = 22
k
. In other words, for each phase k, we decrease 󰂃 to Rd2/22

k
and

restart our algorithm.

Proposition 2. By applying the EllipsoidPricing algorithm with 󰂃 = Rd2/22
k
in phase k,

we obtain a total regret O(Rd2 lnT), while being agnostic about the length of the horizon T .

Proof. Given T time steps, let k̄ be the minimum value such that
󰁓k̄

k=0 2
2k ≥ T . Therefore, for

T time steps, the algorithm will have k̄ ≤ ⌈log2 log2 T ⌉ phases. The total regret from all the time

steps in phase k is at most O(Rd2 ln(22
k
)) =O(Rd22k). Therefore, the total regret over all phases

is at most
󰁓⌈log2 log2 T⌉

k=0 O(Rd22k) =O(Rd22log2 log2 T) =O(Rd2 lnT). □

8. Computational Experiments

In this section, we computationally test the performance of EllipsoidPricing algorithm. We also

compare its regret performance to EXP4’s.

8.1. Regret as a Function of lnT and d

So far, we have considered a setting where nature adversarially selects the vectors of features xt at

each time, as well as the vector θ within a bounded set. Computing an actual optimal (minimax)

policy for nature is a hard task, so we test our algorithm in a stochastic environment. We consider

the case where nature selects both xt and θ in an i.i.d. fashion.

We consider a setting where the vectors xt and θ are drawn i.i.d. from a multivariate Gaussian

distribution N(0, I), with each component being replaced by its absolute value, and with the values

normalized so that ||xt||= 1 for all t. We also tested several other continuous distributions (e.g.,

9 For settings like ours where the regret is logarithmic in T , the technique is sometimes called the squaring trick since
the length of a phase is the square of the length of the previous phase (see Amin et al. 2011).

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
32 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

(a) d∈ {5,10,15,20} (b) T = 10,000

Figure 8 Regret of the EllipsoidPricing algorithm as a function of lnT and d.

uniform and exponential) and the results in terms of regret happen to be very similar. We vary the

value of T between 100 and 50,000 and the value of d between 5 and 30. For simplicity, we use R= 1.

In Figure 8(a), we plot the regret as a function of lnT for different values of d; in Figure 8(b), we

plot the regret as a function of d with T = 10,000. The driving force behind the shape of the regret

function in Figure 8(a) is the fact that the scale of the x-axis is logarithmic. For small values of

T , the curve looks exponential because the regret is approximately linear in T while the algorithm

is mostly learning. When the algorithm switches to mostly exploiting (earning), which occurs for

medium and large values of T , the curve becomes linear in lnT , as predicted by our theorems. We

also consider a setting where xt are drawn i.i.d. from a Bernoulli distribution to represent binary

features, where we obtain a similar regret as Figure 8 (the plots are omitted for conciseness).

8.2. Adaptability

In the previous cases, the algorithm explores until some threshold time, and then it mostly exploits.

The separation between the exploration and exploitation phases follows from the fact that the

vectors xt are drawn from an i.i.d. distribution. We illustrate this phenomenon in Figure 9, where

we plot the proportion of exploration rounds as a function of time intervals of length T/20. However,

this is not always the case. As we mentioned earlier in the paper, our algorithm can explore and

exploit without a clear separation between the phases. Depending on the amount of uncertainty

in a specific direction, it can decide whether or not to explore. To illustrate this behavior, we test

a situation where the setting evolves over time by changing the distribution of xt after half of the

time periods have elapsed.

In what follows, we show that our algorithm can adapt to dynamic environments. We consider

two different settings, depicted in Figure 10. Figure 10(a) considers the case where in the first half of

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 33

Figure 9 Explore rounds versus exploit rounds for the EllipsoidPricing algorithm as a function of T for d= 15.

We show the average results over 100 independent instances.

the iterations (i.e., during the first T/2 time periods), the vectors of features are the absolute values

of components drawn from normally distributed N(0, I); and in the second half of the periods, the

vectors of features are uniformly distributed U [−1,1]d (in both cases, the vector xt is normalized

such that ||xt||= 1 for all t).

(a) Normal then uniform features. (b) Half then all features.

Figure 10 Regret of the EllipsoidPricing algorithm as a function of T for d= 15 when the distribution of the

features changes at T/2. We show the average results over 100 independent instances.

Figure 10(b) considers the case where the vector is random but in the first half of the iterations,

the last half of the components are zero. In other words, we have random values in the first d/2

elements and 0 in the second half. After T/2, all the d elements of xt are random. Both before and

after, all features are drawn from the same normalized Gaussian distribution. One can see that in

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
34 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

the two different settings, the regret of our algorithm remains low, while adapting to the change

in the distribution. In these cases, the algorithm will explore again when needed. Figure 11 shows

the algorithm starting to explore again after the change in distributions at T/2, under the same

settings as in Figure 10. This type of situations is very typical as the vectors of features can depend

on external factors such as seasonality and trends.

(a) Normal then uniform features. (b) Half then all features.

Figure 11 Explore versus exploit rounds for the EllipsoidPricing algorithm as a function of T for d= 15 when

the distribution of the features changes at T/2. We show the average results over 100 independent instances.

8.3. Comparing Our Algorithm to a Benchmark from the Literature

We next compare the performance of our algorithm to EXP4, a general purpose regret-optimal

algorithm for adversarial contextual bandits (Auer et al. 2002). We focus on low values of the

dimension d= 2, . . . ,7 given that EXP4 has poor computational performance in high dimensions.

For computational convenience, given the discretization used in EXP4, we draw the parameters

θ and xt uniformly at random in [0,1]d. The results of EXP4 depend on a parameter η which

represents the learning rate. We plot the results for the best learning rate we could find for each

instance.

As one can see from Figure 12, the EllipsoidPricing algorithm yields a significantly smaller

regret when compared to EXP4 (the right panel has a y-axis scaled by 104). This is expected

as EXP4 is a general purpose algorithm whereas EllipsoidPricing is tailored to our problem

setting. It is still reassuring to observe that EllipsoidPricing is able to reduce significantly the

regret by exploiting the structure of our problem. In addition, its running time is much lower,

allowing us to solve the problem for settings with higher dimensions in reasonable timeframes.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 35

(a) Regret of EllipsoidPricing. (b) Regret of EXP4 (the y-axis is scaled by 104).

Figure 12 Regret of EllipsoidPricing and EXP4 as a function of lnT for different values of d. Note that the

scales of the y-axes are different in the two plots.

We next test the performance of EllipsoidPricing, ShallowPricing, and EXP4 in a noisy

setting. Specifically, we consider an additive noise δt drawn i.i.d Gaussian with mean zero and

standard deviation σ = 0.1, T = 50,000, and d= 2,3,4,5 (as before, given EXP4’s computational

limitations, we restrict the dimension to be low). We compare the performance of Ellipsoid-

Pricing, ShallowPricing, and EXP4 by computing the difference in regret relative to EXP4,

i.e., Regret(EXP4) - Regret(EllipsoidPricing) and Regret(EXP4) - Regret(ShallowPricing).

The results are presented in Table 1. Both of our algorithms outperform EXP4 even in the noisy

setting. We also varied some of the parameters such as T and σ and observed consistent results.

Table 1 Average regret difference relative to EXP4 for T = 50,000

Regret(EXP4) - Regret(EllipsoidPricing) Regret(EXP4) - Regret(ShallowPricing)
d= 2 12,450 11,715
d= 3 18,955 19,435
d= 4 23,855 26,365
d= 5 30,235 30,970

8.4. Numerical Insights

This section allowed us to test and validate computationally the performance of the algorithms

proposed in this paper. We draw the following insights:

• Our results are robust to the distributions of both the vector θ and the vectors of features

xt. We tested several different distributions (both continuous and discrete) and observed that the

magnitude of the regret attained by our algorithm is robust to the distribution.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
36 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

• Our algorithm is able to adapt to the data. In particular, if the vectors of features vary in time

and have a time-dependent distribution, the algorithm still estimates θ correctly and the regret

remains small. This follows from the fact that our algorithm does not separate the exploration and

exploitation phases, as in some other classical approaches. Instead, the algorithm always learns

from new features and reacts accordingly.

• Our algorithm outperforms EXP4, a general purpose regret-optimal algorithm for adversarial

contextual bandits for both noiseless and noisy settings.

9. Conclusions and Future Directions

In this paper, we considered the problem of pricing highly differentiated products described by

vectors of features. The firm has to set the price of each product in an online fashion. The market

value of each product is linear in the values of the features, and the firm does not initially know

the values of the different features. Our goal was to propose an efficient online pricing method by

balancing the exploration/exploitation tradeoff to achieve a low regret. We first considered a multi-

dimensional version of binary search over polyhedral sets and showed that it has exponential worst-

case regret with regard to the dimension of the feature space. We then proposed a modification

of the prior algorithm where uncertainty sets are replaced by their Löwner-John ellipsoids. We

showed that the algorithm we proposed has a worst-case regret that is quadratic in the dimension

of the feature space and logarithmic in the time horizon.

We also proposed two variants of the algorithm that add robustness to noisy valuations: (1)

ShallowPricing which is based on shallow cuts of an ellipsoid, allowing us to add a safety

margin to each cut and (2) EllipsoidEXP4 which is a combination of ShallowPricing with

the standard adversarial contextual-bandits algorithm EXP4. For EllipsoidEXP4, we showed

a regret guarantee that (i) matches the bound of EllipsoidPricing as the noise vanishes, (ii)

approximately matches the regret guarantee of EXP4 in high-noise settings, and (iii) leads to

intermediate regret guarantees in moderately noisy environments.

We would like to end by discussing some future research directions. Closing the gap between our

regret bound and the best-known lower bound of Ω(d ln lnT) is an interesting (and challenging)

problem that we do not attempt to resolve in this paper. Understanding whether a better regret

bound could be achieved in a setting with stochastic rather than adversarial features is another

important open problem. A limitation of the EllipsoidEXP4 algorithm is its requirement to know

a bound on the noise parameter σ. An interesting extension is to develop an approach for estimating

σ. The case of an unknown σ with a gaussian noise is tractable under certain conditions. However,

the general case of estimating a σ-subgaussian noise is left as an avenue for future research. One

last direction would be to consider a setting where the parameter θ varies over time. For example,

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 37

one could consider a problem where, at each period, a vector θt takes a different value, but under

the assumption of limited variation, that is, 󰀂θt+1 − θt󰀂 ≤∆t.

Acknowledgments

We would like to thank Kevin Jiao, who helped us implement the EXP4 algorithm, and Arash Asadpour for

his insightful suggestions regarding the proof of Lemma 6. We also thank Mohsen Bayati, Dirk Bergemann,

Omar Besbes, Vahab Mirrokni, Hamid Nazerzadeh, Georgia Perakis, Umar Syed, and the participants of the

2016 Google Market Algorithms Workshop and of the 2016 Utah Winter Operations Conference for their

comments and suggestions. Part of this work was completed while the first two authors were hosted by

Google Research in New York City. The authors thank Google Research for its generous support.

References

Abbasi-Yadkori, Yasin, Dávid Pál, Csaba Szepesvári. 2011. Improved algorithms for linear stochastic bandits.

Proceedings of NIPS . 2312–2320.

Agarwal, Alekh, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, Robert E Schapire. 2014. Taming the

monster: A fast and simple algorithm for contextual bandits. Proceedings of ICML.

Agrawal, Shipra, Nikhil R Devanur. 2015a. Linear contextual bandits with global constraints and objective.

Working paper, Columbia University.

Agrawal, Shipra, Nikhil R Devanur. 2015b. Linear contextual bandits with knapsacks. Working paper,

Columbia University.

Agrawal, Shipra, Nikhil R. Devanur, Lihong Li. 2016. An efficient algorithm for contextual bandits with

knapsacks, and an extension to concave objectives. Proceedings of COLT . 4–18.

Amin, Kareem, Rachel Cummings, Lili Dworkin, Michael Kearns, Aaron Roth. 2015. Online learning and

profit maximization from revealed preferences. Proceedings of AAAI .

Amin, Kareem, Michael Kearns, Umar Syed. 2011. Bandits, query learning, and the haystack dimension.

Proceedings of COLT . 87–106.

Amin, Kareem, Afshin Rostamizadeh, Umar Syed. 2014. Repeated contextual auctions with strategic buyers.

Proceedings of NIPS . 622–630.

Araman, Victor F, René Caldentey. 2009. Dynamic pricing for nonperishable products with demand learning.

Operations Research 57(5) 1169–1188.

Auer, Peter. 2003. Using confidence bounds for exploitation-exploration trade-offs. The Journal of Machine

Learning Research 3 397–422.

Auer, Peter, Nicolo Cesa-Bianchi, Yoav Freund, Robert E Schapire. 2002. The nonstochastic multiarmed

bandit problem. SIAM journal on computing 32(1) 48–77.

Babaioff, Moshe, Shaddin Dughmi, Robert Kleinberg, Aleksandrs Slivkins. 2015. Dynamic pricing with

limited supply. ACM Transactions on Economics and Computation (TEAC) 3(1) 4.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
38 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Badanidiyuru, Ashwinkumar, Robert Kleinberg, Aleksandrs Slivkins. 2013. Bandits with knapsacks. Pro-

ceedings of FOCS . 207–216.

Badanidiyuru, Ashwinkumar, John Langford, Aleksandrs Slivkins. 2014. Resourceful contextual bandits.

Proceedings of COLT . 1109–1134.

Bertsimas, Dimitris, Allison O’Hair. 2013. Learning preferences under noise and loss aversion: An optimiza-

tion approach. Operations Research 61(5) 1190–1199.

Bertsimas, Dimitris, Phebe Vayanos. 2015. Data-driven learning in dynamic pricing using adaptive opti-

mization. Working Paper, MIT.

Besbes, Omar, Assaf Zeevi. 2009. Dynamic pricing without knowing the demand function: Risk bounds and

near-optimal algorithms. Operations Research 57(6) 1407–1420.

Besbes, Omar, Assaf Zeevi. 2015. On the (surprising) sufficiency of linear models for dynamic pricing with

demand learning. Management Science 61(4) 723–739.

Bland, Robert G, Donald Goldfarb, Michael J Todd. 1981. The ellipsoid method: A survey. Operations

Research 29(6) 1039–1091.

Boutilier, Craig, Relu Patrascu, Pascal Poupart, Dale Schuurmans. 2006. Constraint-based optimization and

utility elicitation using the minimax decision criterion. Artificial Intelligence 170(8-9) 686–713.

Bray, Janna. 2017. The price is right. Airbnb (https://airbnb.design/smart-pricing-how-we-used-host-

feedback-to-build-personalized-tools).

Broder, Josef, Paat Rusmevichientong. 2012. Dynamic pricing under a general parametric choice model.

Operations Research 60(4) 965–980.

Bubeck, Sébastien, Nicolo Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed

bandit problems. Foundations and Trends R© in Machine Learning 5(1) 1–122.

Bubeck, Sébastien, Aleksandrs Slivkins. 2012. The best of both worlds: stochastic and adversarial bandits.

Conference on Learning Theory . 42–1.

Chakrabarti, Deepayan, Deepak Agarwal, Vanja Josifovski. 2008. Contextual advertising by combining

relevance with click feedback. Proceedings of WWW . 417–426.

Chen, Yiwei, Vivek F Farias. 2013. Simple policies for dynamic pricing with imperfect forecasts. Operations

Research 61(3) 612–624.

Chu, Wei, Lihong Li, Lev Reyzin, Robert E Schapire. 2011. Contextual bandits with linear payoff functions.

Proceedings of AISTATS . 208–214.

den Boer, Arnoud V, Bert Zwart. 2013. Simultaneously learning and optimizing using controlled variance

pricing. Management Science 60(3) 770–783.

Dudik, Miroslav, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, Tong Zhang.

2011. Efficient optimal learning for contextual bandits. Proceedings of UAI .

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 39

Golub, Gene H. 1973. Some Modified Matrix Eigenvalue Problems. SIAM Review 15(2) 318–334.

Grötschel, Martin, László Lovász, Alexander Schrijver. 1993. Geometric Algorithms and Combinatorial

Optimization. 2nd ed. Springer-Verlag.

Harrison, J Michael, N Bora Keskin, Assaf Zeevi. 2012. Bayesian dynamic pricing policies: Learning and

earning under a binary prior distribution. Management Science 58(3) 570–586.

Hazan, Elad, Satyen Kale. 2011. Better algorithms for benign bandits. Journal of Machine Learning Research

12(Apr) 1287–1311.

Keskin, N Bora, Assaf Zeevi. 2014. Dynamic pricing with an unknown linear demand model: asymptotically

optimal semi-myopic policies. Operations Research 62(5) 1142–1167.

Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR 244

1093–1096.

Kleinberg, Robert, Tom Leighton. 2003. The value of knowing a demand curve: Bounds on regret for online

posted-price auctions. Proceedings of FOCS . 594–605.

Kleinberg, Robert, Aleksandrs Slivkins, Eli Upfal. 2013. Bandits and experts in metric spaces. arXiv preprint

arXiv:1312.1277 .

Lykouris, Thodoris, Vahab Mirrokni, Renato Paes Leme. 2018. Stochastic bandits robust to adversarial

corruptions. Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing .

ACM, 114–122.

Malpezzi, Stephen. 2003. Hedonic pricing models: a selective and applied review . Section in Housing Eco-

nomics and Public Policy: Essays in Honor of Duncan Maclennan.

Milon, J Walter, Jonathan Gressel, David Mulkey. 1984. Hedonic amenity valuation and functional form

specification. Land Economics 60(4) 378–387.

Phillips, Robert Lewis. 2005. Pricing and revenue optimization. Stanford University Press.

Qiang, Sheng, Mohsen Bayati. 2016. Dynamic pricing with demand covariates. Working Paper, Stanford

University.

Richardson, Matthew, Ewa Dominowska, Robert Ragno. 2007. Predicting clicks: estimating the click-through

rate for new ads. Proceedings of the 16th international conference on World Wide Web. ACM, 521–530.

Roth, Aaron, Aleksandrs Slivkins, Jonathan Ullman, Zhiwei Steven Wu. 2017. Multidimensional dynamic

pricing for welfare maximization. Proceedings of the 2017 ACM Conference on Economics and Com-

putation. ACM, 519–536.

Roth, Aaron, Jonathan Ullman, Zhiwei Steven Wu. 2016. Watch and learn: Optimizing from revealed

preferences feedback. Proceedings of STOC .

Rothschild, Michael. 1974. A two-armed bandit theory of market pricing. Journal of Economic Theory 9(2)

185–202.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
40 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Sirmans, Stacy, David Macpherson, Emily Zietz. 2005. The composition of hedonic pricing models. Journal

of Real Estate Literature 13(1) 1–44.

Syrgkanis, Vasilis, Akshay Krishnamurthy, Robert Schapire. 2016a. Efficient algorithms for adversarial

contextual learning. International Conference on Machine Learning . 2159–2168.

Syrgkanis, Vasilis, Haipeng Luo, Akshay Krishnamurthy, Robert E Schapire. 2016b. Improved regret bounds

for oracle-based adversarial contextual bandits. Advances in Neural Information Processing Systems.

3135–3143.

Toubia, Olivier, John Hauser, Rosanna Garcia. 2007. Probabilistic polyhedral methods for adaptive choice-

based conjoint analysis: Theory and application. Marketing Science 26(5) 596–610.

Toubia, Olivier, John R Hauser, Duncan I Simester. 2004. Polyhedral methods for adaptive choice-based

conjoint analysis. Journal of Marketing Research 41(1) 116–131.

Toubia, Olivier, Duncan I Simester, John R Hauser, Ely Dahan. 2003. Fast polyhedral adaptive conjoint

estimation. Marketing Science 22(3) 273–303.

Viappiani, Paolo, Craig Boutilier. 2009. Regret-based optimal recommendation sets in conversational recom-

mender systems. Proceedings of the third ACM conference on Recommender systems. ACM, 101–108.

Wilkinson, James Hardy. 1965. The Algebraic Eigenvalue Problem, vol. 87. Clarendon Press Oxford.

Ye, Peng, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer De Mars, Frank Yang, Li Zhang.

2018. Customized regression model for airbnb dynamic pricing. Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining . ACM, 932–940.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 1

Online Appendix

To prove Theorem 1, we first prove the following combinatorial lemma.

Lemma 6. Let d be a multiple of 8 and S1, S2, S3, . . . be a sequence of uniformly-drawn random

subsets of {1, . . . , d} of size d/4. Then, t0 =Ω(1.2d):

Pr (|Sj ∩Sk|≤ d/8,∀1≤ j < k≤ t0)≥ 1/2.

Proof of Lemma 6. Let Sj and Sk be two randomly sampled subsets of the set {1, . . . , d} of cardi-

nality d/4. Consider a given feasible set Sk (a subset of {1, . . . , d} of size d/4). Then, there exists

exactly
󰀃

d
d/4

󰀄
possibilities for the set Sj. The number of possibilities for the set Sj that share exactly

i elements with the set Sk is given by the product of binomials
󰀃
d/4
i

󰀄󰀃
3d/4
d/4−i

󰀄
. Therefore, the number

of possible sets Sj with more than d/8 elements from Sk is given by
󰁓d/4

i=d/8+1

󰀃
d/4
i

󰀄󰀃
3d/4
d/4−i

󰀄
. Thus,

Pr (|Sj ∩Sk|>d/8) =

d/4󰁛

i=d/8+1

󰀃
d/4
i

󰀄󰀃
3d/4
d/4−i

󰀄
󰀃

d
d/4

󰀄 ≤O(1.69−d), (13)

where we will demonstrate the last inequality shortly. Now, consider a collection of S1, S2, ..., St0

sets where t0 = 1.2d. Using the union bound, we can write:

Pr (|Sj ∩Sk|≤ d/8,∀1≤ j < k≤ t0) = 1−Pr (∃ j < k ∈ {1, ..., t0} | |Sj ∩Sk|>d/8)

≥ 1−
󰁛

1≤j≤t0

󰁛

1≤k<j

Pr (|Sj ∩Sk|>d/8)

≥ 1− (1.2d)2 ·O(1.69−d)

≥ 1/2 for sufficiently high d.

This proves the statement of the lemma.

We now prove the inequality in Eq. (13). From Stirling inequalities,
√
2πn(n/e)n ≤ n! ≤

e
√
n(n/e)n, we have

󰀕
d

d/4

󰀖
≥ p1(d)

dd

(d/4)(d/4)(3d/4)(3d/4)
= p1(d)1.755

d, (14)

where we use p1(d) to represent a polynomial function of d. Our next step is to use the same tech-

nique to show that the numerator from Eq. (13),
󰁓d/4

i=d/8+1

󰀃
d/4
i

󰀄󰀃
3d/4
d/4−i

󰀄
, is bounded by p2(d)1.038

d,

where p2(d) is a polynomial function of d. We define:

h(d) =

d/4󰁛

i=d/8+1

󰀕
d/4

i

󰀖󰀕
3d/4

d/4− i

󰀖
.

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
2 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

Using the Stirling inequalities once more, we can bound the quantity above by

h(d) =

d/4󰁛

i=d/8+1

(d/4)!

i!(d/4− i)!

(3d/4)!

(d/4− i)!(d/2+ i)!

≤ p̃2(d)

d/4󰁛

i=d/8+1

(d/4)(d/4)

ii(d/4− i)(d/4−i)

(3d/4)(3d/4)

(d/4− i)(d/4−i)(d/2+ i)
(d/2+i)

,

for some polynomial p̃2(d). Note that we can bound the sum by (d/4−d/8) times the highest value

of i and therefore

h(d) ≤ p2(d) max
i∈{d/8,....,d/4}

(d/4)(d/4)

ii(d/4− i)(d/4−i)

(3d/4)(3d/4)

(d/4− i)(d/4−i)(d/2+ i)
(d/2+i)

,

with a slightly different polynomial p2(d) than before. We now replace i by yd for some y ∈ [1/8,1/4]

to obtain the following bound:

h(d) ≤ p2(d) max
y∈[1/8,1/4]

(d/4)(d/4)

(yd)(yd)(d/4− yd)(d/4−yd)

(3d/4)(3d/4)

(d/4− yd)(d/4−yd)(d/2+ yd)
(d/2+yd)

= p2(d) max
y∈[1/8,1/4]

󰀗
(1/4)(1/4)(3/4)(3/4)

yy(1/4− y)(1/2−2y)(1/2+ y)(1/2+y)

󰀘d

. (15)

Now consider the function g(y) defined as

g(y) = yy(1/4− y)(1/2−2y)(1/2+ y)(1/2+y).

The second derivative of the logarithm of g(y) is equal to

d2 lng(y)

dy2
=

−y2 +2.75y+ .05

(y− 1)2y(y+1)
,

which is positive in the region [1/8,1/4]. Therefore lng(y) is strictly convex within this region and

thus, has a unique minimizer. Using the first order condition, we can compute this minimizer to

be y= 0.169. In addition, g(0.169) evaluates to 0.549. Replacing this value in Eq. (15), we obtain:

h(d)≤ p2(d)

󰀕
.570

.549

󰀖d

= p2(d)1.038
d. (16)

The ratio between the two bounds from Eqs. (14) and (16) gives us

p2(d)1.038
d

p1(d)1.755d
=O(1.69−d),

since the polynomials are absorbed by the exponential terms. This proves Eq. (13), completing our

proof. □

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 3

Proof of Theorem 1. Consider a setting where K1 = [1,2]d. For Ω(ad) steps, assume that

nature draws a random subset St of {1, . . . , d̃} with size d̃/4, where d̃= 8⌊d/8⌋. Nature chooses the

feature vectors xt =
1√
d̃/4

I{St}, i.e., the i-th coordinate of the vector xt is 1√
d̃/4

if i ∈ St, and 0

otherwise. We first show that with probability at least 1/2, the regret incurred over Ω(ad) steps is

at least Ω(Rad), where a is the constant 1.2 from Lemma 6. We will assume that d is a multiple of

8, and therefore use d instead of d̃.

We divide the proof into two cases depending on the value of 󰂃.

1. Assume that 󰂃< 0.5
√
d and consider the case θ= (1,1, . . . ,1). We now analyze the event where

the pairwise intersection of sets St is at most d/8. In this case, we have:

min
θ̂∈K1

θ̂′x1 =
󰁳
d/4 = 0.5

√
d and max

θ̂∈K1

θ̂′x1 =
2(d/4)󰁳

d/4
=
√
d.

The difference is equal to 0.5
√
d and is larger than 󰂃, so that our algorithm will explore and set

an explore price of p1 = 0.75
√
d. Since θ′x1 < p1, a sale does not occur, and the algorithm incurs a

regret of 0.5
√
d.

We next claim by induction that for every t, we have:

min
θ̂∈Kt

θ̂′xt = 0.5
√
d and max

θ̂∈Kt

θ̂′xt =
√
d.

As a result, the price is set to pt = 0.75
√
d, no sale occurs, and the algorithm incurs a regret of

0.5
√
d in every period. The base case (t= 1) was shown above. Assume that the claim is true for t

and we next show that it holds for t+1.

We have: Kt+1 = Kt ∩ {θ′xt ≤ 0.75
√
d} = K1 ∩s=1,2,...t {θ′xs ≤ 0.75

√
d}. Note that for any s =

1,2, . . . , t, we have: (1,1, . . . ,1)′xs = 0.5
√
d and hence, θ= (1,1, . . . ,1)∈Kt+1. Therefore, we obtain:

min
θ̂∈Kt+1

θ̂′xt+1 = (1,1, . . . ,1)′xt+1 = 0.5
√
d.

Consider the vector 󰁨θ such that 󰁨θi = 2 for i∈ St+1, and 󰁨θi = 1 otherwise. If we show that 󰁨θ ∈Kt+1,

then we have:

max
θ̂∈Kt+1

θ̂′xt+1 ≥ 󰁨θ′xt+1 =
√
d.

Since the maximum over the initial set K1 is also equal to
√
d, the above maximum cannot be

larger than
√
d. The last step is to show that 󰁨θ ∈Kt+1. We know that 󰁨θ ∈K1. In addition, we have

for any s= 1,2, . . . , t:

󰁨θ′xs =
1󰁳
d/4

󰁛

i∈Ss

[1+ I{i∈ St+1}] =
1󰁳
d/4

󰀗
d

4
+ |Ss ∩St+1|

󰀘

≤ 1󰁳
d/4

󰀗
d

4
+

d

8

󰀘
= 0.75

√
d,

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
4 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

where the inequality follows from Lemma 6. Therefore, 󰁨θ ∈Kt+1.

For all t= 1,2, ..., k, our algorithm incurs a regret of 0.5
√
d. Recall that we have k=Ω(ad) such

steps, so that the total regret is given by: 0.5
√
d ·Ω(ad) =Ω(

√
d · ad).

2. Assume that 󰂃≥ 0.5
√
d and consider the case θ= (2,2, . . . ,2). In this scenario, our algorithm

will always exploit (as the difference between the maximum and minimum is equal to 0.5
√
d). The

total regret is then: (
√
d− 0.5

√
d) ·Ω(ad) =Ω(

√
d · ad).

Note that in the argument above, we assumed K1 = [1,2]d, which is an uncertainty set where

R =maxθ∈K1
󰀂θ󰀂 = 2

√
d. If we replace the uncertainty set with K1 = [α,2α]d, for some α > 1, R

would increase to 2α
√
d and the regret would scale with α. Consequently, the regret incurred over

Ω(ad) steps is Ω(Rad).

We next show the lnT part of the regret. Recall that K1 = [1,2]d and θ = (1,1, ...,1). Let T̂ =

Ω(ad) be the period in which the sequence of steps outlined above ends. We first argue that the

vectors zi belong to the set KT̂ , for all i= 1, ..., d, where zi is a vector with 2 in dimension i and

1 in all other dimensions. To see this, we show that zi satisfies (zi)
′xt ≤ pt for all t= 1, ..., T̂ . We

have: (zi)
′xt = 2xi +

󰁓d

j=2 xj ≤ 4√
d
+ d

4
2√
d
using the way xis are chosen in this construction. Recall

that pt = 0.75
√
d, and hence we obtain (zi)

′xt ≤ 4√
d
+ d

4
2√
d
≤ pt, for d≥ 16.

For periods k = T̂ + i for i= 1, ..., d, we will assume that nature chooses the vectors xT̂+i = ei.

For k= T̂ +1, we have

min
θ̂∈K

T̂+1

θ̂′xT̂+1 = θ′e1 = 1 and max
θ̂∈K

T̂+1

θ̂′xT̂+1 = (z1)
′e1 = 2.

Therefore, pT̂+1 = 3/2. Note that this does not eliminate any of the vectors zi from the uncertainty

set for i > 1. Repeating this argument d times, we will have added the inequalities θi ≤ 3/2 for all

i= 1, ..., d by step k= T̂ + d.

It remains to argue that KT̂+d+1 = [1,3/2]d, which requires proving that no point in [1,3/2]d was

removed from the set during steps k= 1, ..., T̂ . This is equivalent to showing that for all θ̂ ∈ [1,3/2]d,

θ̂′xt ≤ pt =
3
4

√
d. It is sufficient to show this inequality for θ̂= (3/2,3/2, ...3/2), which is the worst

value of θ̂. By the construction of xt, (3/2,3/2, ...3/2)
′xt =

3
2

󰁓d/4

i=1
2√
d
= 3

4

√
d, satisfying the desired

inequality.

With this construction, we have returned in period T̂ + d + 1 to the same stage we were in

period 1, except that the uncertainty set has been reduced by half in all dimensions. We can now

repeat the same argument by using the identical sequence of contexts, xt =
1√
d̃/4

I{St}, and argue

that the price will be pt = (3/8)
√
d, resulting in no sales for Ω(ad) steps, followed by the contexts

xt = ei for d steps, where we again reduce by half each dimension of the uncertainty set.

After repeating this entire argument k times, we are left with an uncertainty set equals to

[1,1 + 2−k]d. After k = log2(1/󰂃) iterations, the uncertainty set becomes [1,1 + 1/󰂃]d. The regret

Cohen and Lobel and Paes Leme: Feature-Based Dynamic Pricing
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 5

is bounded by (i) the loss due to explore periods, which is proportional to the number of explore

steps, ad log2(1/󰂃) plus (ii) the loss due to exploit periods, which corresponds to the maximum loss

under an exploit price, 󰂃
√
d, multiplied by the number of exploit steps, (T − ad log2(1/󰂃)):

ad log2(1/󰂃)+ 󰂃
√
d · (T − ad log2(1/󰂃)).

The value of 󰂃 that minimizes this regret is 󰂃 = ad/(T
√
d), yielding a regret bound of

Ω(ad ln(T
√
d/ad)). Replacing a= 1.2 with any number strictly between 1 and 1.2 yields the desired

Ω(ad ln(T)). □

