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Appendix A: Proofs

Proof of Proposition 1: Consider the seller’s optimal regret R

⇤C in (6). A lower bound of this

regret is obtained by restricting nature’s optimization to the subset DC
0 ✓D

C such that {v, ⌧}2D

C
0

if and only if v1 = v2 = · · · = vC and ⌧1 = ⌧2 = · · · = ⌧C , that is, all C customers have identical

valuations and arrival times. But if all customers are identical then the seller’s regret is equal to

C times the optimal regret with a single customer, that is, R

⇤C
�C R

⇤.

On the other hand, any fixed pricing strategy pt leads to an upper bound for R

⇤C in the sense that

R

⇤C
 sup

{v,⌧}2DC

⇧C
F (v, ⌧)�

C
X

i=1

e

�rd(vi,⌧i,p)
pd(vi,⌧i,p).

Furthermore, it is not hard to see that

⇧C
F (v, ⌧)

C
X

i=1

e

�r⌧i
vi

since the right-hand side is the payo↵ that a clairvoyant can get under perfect price discrimination

(i.e., charging a di↵erent price to every customer). It follows that

R

⇤C
 sup

{v,⌧}2DC

C
X

i=1

e

�r⌧i
vi � e

�rd(vi,⌧i,p)
pd(vi,⌧i,p) =

C
X

i=1

sup
{vi,⌧i}2D

e

�r⌧i
vi � e

�rd(vi,⌧i,p)
pd(vi,⌧i,p),

hence the maximization above decouples for every customer. But if the seller selects a pricing

vector p

⇤
t which is an optimal pricing strategy for the case of single customer, then each term in

the summation on the right equals R

⇤, that is, R

⇤C
C R

⇤. We conclude that R

⇤C = C R

⇤. ⇤

proof of lemma 1: Consider a price path pt such that pt � p

t
(R) for all t2 [0, T ]. The worst-case

valuation regret from pt satisfies the following inequality

max
t

e

�rt(v̄� pt)max
t

e

�rt(v̄� p

t
(R))max

t
e

�rt(v̄� (v̄� e

rt
R)) = R. ⇤

Proof of Lemma 2: Consider an arbitrary price path p 2 P (i.e., a continuous function from

[0, T ] to [v, v̄]) and let

RM(p) = sup
(v,⌧)2D

{RM(v, ⌧, p)}= sup
(v,⌧)2D

�

e

�r⌧
v� e

�r dM (v,⌧,p)
pdM (v,⌧,p)

 

,

be the corresponding seller’s worst-case regret. In what follows, we show that there always exists

a (weakly decreasing) price path p̂ such that RM(p̂)RM(p).

Indeed, for a given p 2 P, we let p̂ be the running minimum price path induced by p which is

given by p̂t := min{p⌧ : ⌧ 2 [0, t]} for t 2 [0, T ] (the ‘min’ is well-defined by the continuity of p
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and Weierstrass Theorem). By construction, p̂ is (weakly) decreasing and continuous (since p is

continuous). In order to show that RM(p) �RM(p̂) let us partition the customer type’s space D

into the following three subsets D1 := {(v, ⌧) 2 D : p⌧  v}, D2 := {(v, ⌧) 2 D : p̂⌧  v < p⌧} and

D3 := {(v, ⌧) 2D : p̂⌧ > v} and define Ri(p) := sup(v,⌧)2Di
{RM(v, ⌧, p)}. In what follows, we show

that Ri(p) = Ri(p̂) for i = 1,3 and that R2(p̂)R1(p̂). As a result,

RM(p) = max
i=1,2,3

{Ri(p)}�max
i=1,3

{Ri(p)}= max
i=1,3

{Ri(p̂)}= max
i=1,2,3

{Ri(p̂)}=RM(p̂).

-) Let (v, ⌧)2D1. By the definition of p̂, there exists a t ⌧ such that p̂(t) = p(t) p(⌧) v. Since

consumers are myopic, it follows that RM(v, t, p) = RM(v, t, p̂) = e

�r t(v � pt) �RM(v, ⌧, p). Since

(v, t)2D1, we conclude that R1(p) = R1(p̂).

-) Let (v, ⌧) 2 D3. In this case, it is easy to see that dM(v, ⌧, p) = dM(v, ⌧, p̂) (possibly 1) and

p(dM(v, ⌧, p)) = p̂(dM(v, ⌧, p̂). It follows that RM(v, ⌧, p) = RM(v, ⌧, p̂). We conclude that R3(p) =

R3(p̂).

-) Let (v, ⌧) 2 D2. Since p⌧ > p̂⌧ there exists a t 2 [0, ⌧) such that p̂(t) = p(t)  v. It follows that

RM(v, ⌧, p̂) = e

�r ⌧ (v � p̂⌧ )  e

�r t(v � p̂t) = RM(v, t, p̂). Furthermore, (v, t) 2 D1. Hence, R2(p̂) 

R1(p̂).

It follows from the three cases above that RM(p) �RM(p̂). Hence, without loss of optimality the

seller can restrict attention to (weakly) decreasing price functions. ⇤

Proof of Lemma 3: Let p2P be a decreasing function. For any customer type (v, ⌧) with v < p⌧ ,

the delay regret he generates is equal to (e�r ⌧
� e

�r dM (v,⌧,p))v. We distinguish two cases:

- Case 1: dM(v, ⌧, p) T . In this case the customer buys the product at a future time dM(v, ⌧, p)

such that pdM (v,⌧,p) = v and he generates a delay regret (e�r ⌧
� e

�r dM (v,⌧,p))pdM (v,⌧,p) which is

bounded above by (1 � e

�r dM (v,⌧,p))pdM (v,⌧,p). But, by hypothesis, the price path p satisfies pt 

R/(1� e

�r t)_ v for all t2 [0, T ]. Furthermore, from the monotonicity of p and the fact that v < p⌧

it is not hard to see that R/(1� e

�r dM (v,⌧,p))� v. As a result, (1� e

�r dM (v,⌧,p))pdM (v,⌧,p) R, that

is, the delay regret generated by the customer is less than or equal to R.

- Case 2: dM(v, ⌧, p) = 1. In this case the customer is priced out of the market. Since p is a

decreasing price path this means that v < pT . But, by hypothesis, pT R_ v, hence this case can

only occur if R > v. So, assuming R > v, the delay regret in this case is equal to e

�r ⌧
v, which is

bounded above by v, which together with the inequalities v < pT < R imply that the delay regret

generated by the customer is less than R. ⇤
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proof of Proposition 2: This result follows immediately from Lemmas 1-3. ⇤

proof of Theorem 1: Proposition 2 characterizes the set of minimax regret price paths. Region

A1 is the set of problem parameters where the solution is given by the price paths p

t
(R) and pt(R)

intersecting tangentially as described by equations (7) and (8). For this solution to be feasible, the

ratio u = v/v must satisfy u  1/2 in order to ensure the middle equation of (8) is feasible. The

solution must also satisfy p

t
(R) = v � e

rT
R  R_ v, where R = v/4 from the right-most equation

in (8). Therefore, A1 is characterized by

u

1

2
and T �min

(

ln 3

r

,

ln
�

4(1�u)
�

r

)

.

In regions A2, A3 and A4, the boundary conditions (u and/or T ) become binding and, thus, play

a role in determining the minimax regret. If u �

1
2

and the selling horizon is su�ciently long, the

binding constraint becomes p

t⇤
(R⇤

M) = p̄t⇤(R⇤
M) = v for some t

⇤, as given by equation (9). We can

solve for R

⇤
M and t

⇤ to get R

⇤
M = u(1� u)v̄ and t

⇤ = 1
r
ln 1

u
. Thus, we need T �

1
r
ln 1

u
to guarantee

to obtain t

⇤
 T . The pair of conditions u�

1
2

and T �

1
r
ln 1

u
lead to the definition of A2.

In the regime where (u,T ) /2A1 [A2, the binding constraint becomes p

T
(R⇤

M) = max{R⇤
M, v}. One

can solve the equation

v̄� e

rt
R

⇤
M = max{R⇤

M, v} (17)

and get the following results: if T min{ln(3)/r, ln(1/u�1)/r}, then the value that maximizes the

right-hand side of equation (17) is R

⇤
M, generating the solution associated with region A3; otherwise,

the right-hand side of equation (17) is maximized by v, producing the solution for region A4. ⇤

Proof of Theorem 2: Consider an arbitrary price path p with regret RM(p) and let us suppose

that RM(p) < R

⇤
M. In what follows, we will show that the previous inequality leads to a contra-

diction. For this, consider the critical time t

⇤ (see the discussion that precedes Theorem 1). It is

not hard to see that the lower bound p

t
(R⇤

M) is strictly decreasing in [0, t

⇤]. It follows, under the

assumption that RM(p) < R

⇤
M, that we must have that pt > p

t
(R⇤

M) for all t2 [0, t

⇤]. Otherwise, we

would be able to find a customer type that generates a valuation regret strictly greater than R

⇤
M

under the price path p, and this would violate our hypothesis RM(p) < R

⇤
M.

Now, consider a customer with type (v, ⌧) = (p
t⇤

(R⇤
M),0). Since pt > p

t
(R⇤

M) for all t 2 [0, t

⇤] and

p

t
(R⇤

M) is strictly decreasing in this interval, it follows that the purchasing time of this customer

under the price path p satisfies dM(p
t⇤

(R⇤
M),0, p) > t

⇤. In addition, we trivially must have that

RM(p) is greater than or equal to the delay regret generated by this consumer. It follows that

RM(p)�
�

1� exp(�r dM(p
t⇤

(R⇤
M),0, p)

�

p

t⇤
(R⇤

M) >

�

1� exp(�r t

⇤�
p

t⇤
(R⇤

M). (18)
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Let us now evaluate this expression for each of the four parameter regimes (regions A1 through

A4) identified in Theorem 1:

- In region A1, we have that R

⇤
M = v̄/4, t

⇤ = ln(2)/r and p

t⇤
(R⇤

M) = v̄/2. As a result, we have that
�

1� exp(�r t

⇤
�

p

t⇤
(R⇤

M) = R

⇤
M, which together with (18), contradicts the hypothesis RM(p) < R

⇤
M.

- In region A2, we have that R

⇤
M = v (1� v/v̄), t

⇤ = ln(v̄/v)/r and p

t⇤
(R⇤

M) = v. In this case, we

get that
�

1� exp(�r t

⇤
�

p

t⇤
(R⇤

M) = R

⇤
M, which again contradicts RM(p) < R

⇤
M.

- In region A3, we have that t

⇤ = T and so dM(p
t⇤

(R⇤
M),0, p) =1, i.e., the customer is price out

of the market. In addition, p

t⇤
(R⇤

M) = R

⇤
M. It follows from (18) that RM(p)�R

⇤
M, which contradicts

our hypothesis.

- In region A4, we have again that t

⇤ = T and dM(p
t⇤

(R⇤
M),0, p) = 1. In this case, we have

that p

t⇤
(R⇤

M) = v �R

⇤
M. Once again, it follows from (18) that RM(p)�R

⇤
M, which contradicts our

hypothesis and the proof is complete. ⇤

Proof of Lemma 4: See Part V in Rockafellar (1997). ⇤

Proof of Proposition 3: Note first that the proposed solution ✓

⇤ is feasible in the sense that

✓

⇤
2⇥(v̂). Let us define ṽ := max{v̂, v̄ exp(✓0 � 1)}. The proposed solution can be written as:

✓

⇤(x) =

⇢

✓0 if v̂  x < ṽ

1� ln(v̄) + ln(x) if ṽ  x v̄.

It follows that the regret of a customer with valuation v 2 [v̂, v̄] under ✓

⇤ is equal to

Z v

v̂

✓

⇤(x)dx+ v (1� ✓

⇤(v)) = min{v, ṽ}+ v̂ (ln(v̄)� ln(ṽ)� 1).

An important property of this regret is that it is increasing in v and it is constant in the interval

[ṽ, v̄]. Hence, the seller’s worst-case regret under ✓

⇤ is achieved in the entire interval [ṽ, v̄]. We will

use this property to prove the optimality of ✓

⇤ using a variational arguments. To this end, suppose

that ✓

⇤ is not optimal. Hence, there is a ✓ 2⇥(v̂) that generates a strictly better regret than the one

generated by ✓

⇤ and let us define ✏(x) := ✓(x)� ✓

⇤(x) for all x 2 [v̂, v̄]. By feasibility, we need ✏(x)

to be right-continuous and such that ✓(x) 2 [✓0,1] for all x 2 [v̂, v̄]. For instance, since ✓

⇤(v̄) = 1,

we must have ✏(v̄)  0. Similarly, since ✓

⇤(x) = ✓0 for all x 2 [v̂, ṽ), we must have ✏(x) � 0 in this

interval.

Now, the assumption that ✓ generates a strictly better regret than ✓

⇤ and the fact that seller’s

worst-case regret under ✓

⇤ is achieved in the entire interval [ṽ, v̄] imply that ✏(x) must satisfy

Z v

v̂

✏(x)dx� v ✏(v) < 0 for all v 2 [ṽ, v̄]. (19)
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Since ✏(x)� 0 in the interval x2 [v̂, ṽ), we must have ✏(ṽ) > 0, since ✏(ṽ) >

1
ṽ

R ṽ

v̂
✏(x)dx� 0.

Let us show that ✏(x) � 0 for all x 2 [ṽ, v̄). Suppose, by contradiction, that this is not the case.

Then, there exist a � < 0 and y = inf{v 2 (ṽ, v̄) : ✏(v) �}. Also, since ✏(x) is right-continuous and

✏(ṽ) > 0, we must have y > ṽ and

Z y

v̂

✏(x)dx > � (y� v̂)� ✏(y)(y� v̂)� y ✏(y).

This contradicts (19) and we must have ✏(x) � 0 for all x 2 [v̂, v̄). Combining the non-negativity

and right-continuity of ✏(x) and the facts that ✏(ṽ) > 0 and ✏(v̄) 0, we get

Z v̄

v̂

✏(x)dx� v̄ ✏(v̄) > 0.

This again contradicts (19), which proves the optimality of ✓

⇤. ⇤

Proof of Theorem 3: From Proposition 3 we have that for an arbitrary v̂ 2 [v, v̄]

Rv̂ = v̂ 11(v̂ > v)_ ṽ + v̂ (ln(v̄)� ln(ṽ)� 1), where ṽ := max{v̂, v̄ exp(e�r T
� 1)}.

Hence, it is a matter of relatively straightforward calculations to show that

v̂

⇤ := argmax
vv̂v̄

�

Rv̂

 

= max

⇢

v ,

v̄ exp(e�r T
� 1)

1+ e

�r T

�

and

R

⇤
0 = Rv̂⇤ = ṽ

⇤ + v̂

⇤ (ln(v̄)� ln(ṽ⇤)� 1), where ṽ

⇤ := max{v̂⇤
, v̄ exp(e�r T

� 1)}.

Recall that v̂

⇤ represents is the threshold that separates consumers’ valuations into those that buy

and those that do not buy the product. From Proposition 3, we have that the corresponding optimal

purchasing strategy of those customers that buy the product is given by ✓

⇤(v) = ✓0_1� ln(v̄)+ln(v)

for v 2 [v̂⇤
, v̄]. We can reverse the change of variable, ✓ = e

�r t, to rewrite this consumers’ purchasing

strategy in term of purchasing time. Indeed, if we let d

⇤(v) be the time at which a consumer with

valuation v 2 [v̂⇤
, v̄] buys the product, we have that

d

⇤(v) =�

1

r

ln(✓⇤(v)) =�

1

r

ln
⇣

1� ln(v̄) + ln(v)
⌘

^T for all v 2 [v̂⇤
, v̄].

The last step in the proof is a verification step. Essentially, we need to verify that the proposed

pricing strategy implements the consumers’ optimal strategy ✓

⇤(v) (or equivalently d

⇤(v)). The

optimality of the pricing strategy will then follow from the optimality of ✓

⇤(v) in Proposition 3.

Let us recall from the statement of the theorem that our proposed pricing strategy is equal to

p

⇤
S(t) =

⇢

e

r t (v̄ exp(e�r t
� 1)�R

⇤
0) for all t2 [0, d

⇤(v̂⇤)]
v for all t2 (d⇤(v̂⇤), T ].
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To verify that p

⇤
S(t) implements d

⇤(v) we need to show that the following conditions hold

a) For all v 2 [v, v̂

⇤) : max
0tT

�

e

�r t [v� p

⇤
S(t)]

 

< 0,

b) For all v 2 [v̂⇤
, v̄] : d

⇤(v) = max

⇢

argmax
0tT

�

e

�r t [v� p

⇤
S(t)]

 

�

and

c) v̂

⇤ = p

⇤
S(d

⇤(v̂⇤)).

Condition (a) guarantees that customers with valuation below v̂

⇤ leave the market without buying.

Condition (b) guarantees that the price path pt implements d

⇤(v) for v � v̂

⇤. Finally, condition (c)

ensures that the lowest type that buys the product v = v̂

⇤ gets zero utility (recall the definition of

v̂ in equation (14)).

In order to verify the three conditions above we identify three cases depending on the values of v,

v̄ and ✓0 = e

�r T : (i) v  v̄ exp(✓0 � 1)/(1 + ✓0), (ii) v̄ exp(✓0 � 1)/(1 + ✓0)  v  v̄ exp(✓0 � 1), and

(iii) v � v̄ exp(✓0 � 1). We will verify case (i) and leave the other two to the reader as they follow

similar steps. These cases correspond to the regions B1, B2 and B3 in Figure 3 respectively.

For case (i), we have that v̂

⇤ = v̄ exp(✓0 � 1)/(1+ ✓0), ṽ

⇤ = v̄ exp(✓0 � 1), R

⇤
0 = v̂

⇤ and

d

⇤(v) =

⇢

T for all v 2 [v̂⇤
, ṽ

⇤]
� ln(1� ln(v̄) + ln(v))/r for all v 2 [ṽ⇤

, v̄].

As a result, the proposed price path takes the form

p

⇤
S(t) = e

r t

✓

v̄ exp(e�rt
� 1)� v̄

exp(✓0 � 1)

1+ ✓0

◆

, for all t2 [0, T ].

Hence the consumer’s utility maximization problem is equal to

max
0tT

�

e

�r t[v� p

⇤
S(t)]

 

= max
0tT

⇢

e

�r t
v� v̄ exp(e�rt

� 1)� v̄

exp(✓0 � 1)

1+ ✓0

�

.

Since the function e

�r t
v� v̄ exp(e�rt

�1) is unimodal (inverted U-shaped) for t2 [0, T ], we can use

first-order condition to solve the consumer’s problem. This FOC is given by

r e

�r t
�

v̄ exp(e�r t)� v

�

= 0 =) t(v) =�

1

r

ln
�

1� ln(v̄) + ln(v)
�

.

It is a matter of simple calculations to show that t(v)  T if and only if v � ṽ

⇤ and so for values

of v in [v̂⇤
, ṽ

⇤] the consumer’s utility is maximized at t = T . Hence, we conclude that the optimal

purchasing time of consumers with valuation in [v̂⇤
, v̄] is precisely

d

⇤(v) =

⇢

T for all v 2 [v̂⇤
, ṽ

⇤]
� ln(1� ln(v̄) + ln(v))/r for all v 2 [ṽ⇤

, v̄]

as required. Finally, it is easy to verify that p

⇤
S(d

⇤(v̂⇤)) = v̂

⇤ and so customer with valuation equal

to v̂

⇤ makes zero utility and all customers with valuation strictly below v̂

⇤ make a negative utility

under p

⇤
S(t) and hence leave the market without purchasing the product. ⇤
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Proof of Lemma 5: To alleviate the notation, let us write pt = p

⇤
S(t) and p̃t = p̃

⇤
S(t).

The first step in the proof is to show that the function pt is continuously di↵erentiable in [0, T ].

This holds trivially for the case in which d

⇤(v̂⇤) = T . On the other hand, if d

⇤(v̂⇤) < T , what we

need to show is that the left-derivative of pt at t = d

⇤(v̂⇤) is equal to 0. To see this, note that for

all t2 [0, d

⇤(v̂⇤)],

ṗt = r (pt �R

⇤
0)� r e

�r t
pt.

Now, the condition d

⇤(v̂⇤) < T implies that d

⇤(v̂⇤) = � ln
�

1 � ln(v̄) + ln(v)
�

/r, pd⇤(v̂⇤) = v and

R

⇤
0 = v (ln(v̄)� ln(v)). Plugging these values, we get that ṗt = 0 at t = d

⇤(v̂⇤) and so pt is continu-

ously di↵erentiable in [0, T ].

Now, from the fact that pt is decreasing and continuously di↵erentiable in [0, T ], the definition of

p̃t in (11) implies that

p̃t = sup
s2(t,T ]

⇢

e

�r t
pt � e

�r s
ps

e

�r t
� e

�r s

�

= sup
s2(t,T ]

(

R s

t
r e

�r u (pu � ṗu/r)du

R s

t
r e

�r u du

)

for all t2 [0, T )

p̃T = pT .

But pt� ṗt/r = R

⇤
0 +e

�r t
pt, which is a decreasing function of t. It follows that the supremum above

is attained as s # t. Finally, from L’Hôpital’s rule, we get then that p̃t = pt� ṗt/r, which (as we just

showed) is decreasing in [0, T ]. ⇤

Proof of Theorem 4: Since the optimal price path p

⇤
S(t) was derived assuming that all customer

arrive at time t = 0 (i.e., customers such as customer ‘B’ in Figure 9), we only need to show that

the worst-case regret of a customer with type (v, t) in the upper boundary Dv̄ = {(v̄, t) : t2 [0, T ]}

is less than or equal to the regret R

⇤
0 for all t2 [0, T ]. However, this condition follows trivially since

the regret generated by customer (v̄, t) if the seller uses price p

⇤
S(t) is equal to

e

�r t[v̄� p

⇤
S(t)] =

⇢

R

⇤
0 � v̄

�

exp(e�r t
� 1)� e

�r t
�

for all t2 [0, d

⇤(v̂⇤)]
e

�r t(v̄� v) for all t2 (d⇤(v̂⇤), T ].

It is not hard to see that exp(e�r t
�1)� e

�r t
� 0 for all t� 0 and so e

�r t[v̄�p

⇤
S(t)]R

⇤
0 for all t2

[0, d

⇤(v̂⇤)]. On the other hand, the price path p

⇤
S(t) is continuous at t = d

⇤(v̂⇤) and e

�r t[v̄�p

⇤
S(t)] =

e

�r t(v̄� v) e

�r d⇤(v̂⇤)(v̄� v)R

⇤
0 for all t2 (d⇤(v̂⇤), T ]. ⇤

proof of proposition 4: For a given price path p 2 P, let us partition the space of customer

types D into Db and Dl, where Db represents the set of types that buy the product and Dl the

set of types that are priced out of the market under p. The sets Db and Dl are independent of
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whether the customers are myopic or strategic. Hence, the regret generated by a customer with

type (v, ⌧)2Dl under p is equal to R✓(v, ⌧, p) = e

�r ⌧
v for any ✓ 2 {M,S}.

For a given consume type (v, ⌧)2Db and price path p, it is straightforward to see that a strategic

consumer will purchase later than a myopic consumer, i.e., dS(v, ⌧, p) � dM(v, ⌧, p). We now show

that a strategic consumer also buys at a lower price, i.e., pd
S

(v,⌧,p)  pd
M

(v,⌧,p). Suppose pd
S

(v,⌧,p) >

pd
M

(v,⌧,p). Then the utility for the strategic customer at time dS(v, ⌧, p) is e

�rd
S

(v,⌧,p)(v� pd
S

(v,⌧,p)),

which is strictly less than e

�rd
M

(v,⌧,p)(v�pd
M

(v,⌧,p)). This implies that the strategic customer could

have gained a higher utility if he purchased the product at time dM(v, ⌧, p), which contradicts to

the fact that dS(v, ⌧, p) is the time when the utility of strategic customer is maximized.

Therefore, the seller can always extract a higher surplus from a myopic consumer than from

a strategic one, i.e., e

�rd
M

(v,⌧,p)
pd

M

(v,⌧,p) � e

�rd
S

(v,⌧,p)
pd

S

(v,⌧,p). Thus, the regret from selling

to strategic customer is higher, or RS(v, ⌧, p) � RM(v, ⌧, p) for all v, ⌧ and p. Since, R

⇤
✓ =

infp2P sup(v,⌧)2D R✓(v, ⌧, p), we obtain that R

⇤
S �R

⇤
M. ⇤

Proof of Proposition 5: From the proof of Proposition 4, we know that for under any given

price path, a strategic customer yields higher regret than a myopic customer with the same type.

We conclude that for any p 2P and (v, ⌧) 2D, nature will select a strategic buyer ✓ = S, and the

result follows. ⇤

Proof of Proposition 6: The proof follows the same steps as the proof of Proposition 1 and is

therefore omitted. ⇤

Proof of Proposition 7: The proof follows the same steps as the proof of Proposition 2 and is

therefore omitted. ⇤

Proof of Proposition 8: From the identity D0 ✓
b

D✓D we have that

R

⇤
0 = inf

p2P
sup

(v,⌧)2D
0

RS(v, ⌧, p) inf
p2P

sup
(v,⌧)2 bD

RS(v, ⌧, p) inf
p2P

sup
(v,⌧)2D

RS(v, ⌧, p) = R

⇤
S.

However, from Theorem 4 we have that R

⇤
0 = R

⇤
S. ⇤
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Appendix B: Modified Gallego and van Ryzin (1994) Model

In this appendix, we compare the optimal price path resulting from our robust minimax approach

to one of the most well-cited models of dynamic pricing within the OR/MS literature. It is probably

fair to say that one of the most influential papers on this topic is the Management Science paper

by Gallego and van Ryzin (1994), who consider a monopolist selling a finite inventory of a product

over a finite selling horizon. At the core of Gallego and van Ryzin’s pricing model is a dynamic

programming formulation that produces the following optimality condition for an optimal price

p

⇤(t, n) as function of time-to-go t and available inventory n:

p

⇤(t, n) = argmax
�

�(p)
⇥

p� (J(t, n)� J(t, n� 1)
⇤ 

, (a)

where �(p) is the demand intensity (a non-negative and decreasing function of p) and J(t, n) is the

value function, that is, the seller’s expected optimal revenues as a function of the state (t, n). (In

Gallego and van Ryzin (1994), t denotes time-to-go as opposed to calendar time).

One of the key results in Gallego and van Ryzin (1994) is Theorem 1 that shows that the value

function is strictly increasing and strictly concave in both t and n. Using this result and equation

(a) above, one can show that for many commonly used demand functions, the optimal price path

is decreasing concave in calendar time. For example, in Section 2.3 in Gallego and van Ryzin

(1994), the authors consider the special case of an exponential demand function and show that

p

⇤(t, n) = 1+ J(t, n)� J(t, n� 1), where

J(t, n) = log

 

n
X

i=0

(�⇤ (T � t))i

i!

!

, where �

⇤ := �(p⇤) and p

⇤ := argmax{p�(p)}.

Figure 12 depicts p

⇤(t, n) for n = 1,2,3 under an exponential demand model with T = 1 and �

⇤ = 10.

A distinctive feature of these prices paths in the Gallego and van Ryzin model is that they exhibit

“accelerating markdowns”. This is in contrast to some of the optimal price paths in our robust

minimax setting that have “decelerating markdowns” (e.g., upper bound price path depicted in

Figure 5.

The attentive reader may have have noticed that there is one important aspect of our model that is

not captured by the Gallego and van Ryzin (1994) framework, namely, the fact that the seller uses

a discount factor, r, to penalize future cash-flows. Since the use of a discount factor creates pressure

on the seller to try to expedite sales and possibly engage in early markdowns, it is plausible that

an optimal price path in a modified Gallego and van Ryzin setting that includes discounting could

exhibit decelerating markdowns. In what follows we show that this is not the case.
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Figure 12 Optimal price paths for the Gallego and van Ryzin model when consumers have exponential willingness to pay.

As we argued in the previous paragraph, for the purpose of having a more direct and fair (apples-

to-apples) comparison between the results in Gallego and van Ryzin and our model, we next modify

their setting to account for this di↵erence. We would also like to select the values of n and �(p) in a

way that it is consistent with our distribution-free analysis. To this end, we first note that regarding

our robust prior-free formulation, the “natural” choice for modeling consumers’ willingness-to-pay

is a Uniform distribution in [v, v̄], which is equivalent to assuming that the demand function �(p)

is linear, or �(p) = ⇤ (v̄ � p)/(v̄ � v) for p 2 [v, v̄] and for some positive scalar ⇤. In addition, by

the linearity of the regret on the number of customers (Proposition 1), we can restrict our analysis

(w.l.o.g.) to the case of a single consumer. Therefore, we set n = 1 and select the values of ⇤ and

T (the selling horizon) so that ⇤T = 1. Under these conditions, one can show that the modified

Gallego and van Ryzin model (that incorporates discounting) leads to the following optimality

(HJB) condition for the value function J(t)

�

dJ(t)

dt

= max
p

⇢

⇤
(v̄� p)

(v̄� v)
[p� J(t)]

�

� r J(t), with border condition J(T ) = 0.

After the solving the maximization on p, this HJB equation reduces to a standard Riccati equation

that leads to following solution.

J(t) = v̄ + 4
(v̄� v)

⇤

✓

A↵1 e

↵
1

t + ↵2 e

↵
2

t

Ae

↵
1

t + e

↵
2

t

◆

,

where

A =�

✓

4↵2(v̄� v) + ⇤ v̄

4↵1(v̄� v) + ⇤ v̄

◆

e

(↵
2

�↵
1

)T and ↵1,2 =
r±

p

r

2 + ⇤ r/(v̄� v)

2
.

Finally, the optimal price policy is given by

p

⇤(t) =
v̄ + J(t)

2
.
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Figure 13 Comparison of robust price paths to modified Gallego and van Ryzin solution.

Figure 13 plots this modified Gallego and van Ryzin price path using the data in Figure 5 in the

paper, namely v̄ = 1, v = 0.32, T = 35 and r = 0.045. The figure also depicts our distribution-free

upper bound p̄

⇤
t and lower bound p

⇤
t

price paths.

Again, we can see that despite the additional pressure to start marking down early created by the

discount factor, optimal price paths in the Gallego and van Ryzin framework remain concave, i.e.,

exhibit accelerating markdowns. We also note that the optimal price path in the modified Gallego

and van Ryzin model is more stable (flat) than the optimal robust counterpart.


