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A1. Technical proofs

Proof of Lemma 1
The lowest threshold z such that the customer is still willing to purchase every product launched
is, by the one-stage deviation principle, the one that makes the customer indi↵erent to buying
at a given product launch. Since the game is stationary, we can verify whether the customer is
indi↵erent to purchasing the first launch assuming he will buy at all future launches. From Eq.
(1), if customer c is indi↵erent to the first purchase then from Eq. (1):
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By assumption, the technology at this launch is qc
1

= z. We can thus simplify the equation above
to

z(1� E[e��X(z)]) =
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v
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� c
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and is the random variable that represents the time it takes for a Brownian
motion of drift µ and variance �2 to hit level z. The moment generating function E[e��X(z)] of the
hitting time X(z) of a Brownian motion is well known to be e��z, where � is given in Eq. (4) —
e.g., see Karatzas and Shreve [22].
The uniqueness of the solution is guaranteed by the fact that the function f(z) = z(1 � e��z) is
strictly increasing, with lim

z!0

f(z) = 0, and lim
z!1

f(z) = 1.

Proof of Theorem 1
We first argue there exists an MPE where the firm releases a new product whenever the gap
between the technology on hand and the technology in the market is greater than or equal to z⇤,
i.e., Z(t) � w(t) � z⇤, and all (or almost all) consumers buy at all releases when the technology
gap is at least z⇤. By Lemma 1, consumers do not have a profitable deviation. We now show
the firm neither has a profitable deviation. Let U⇤ denote the firm’s equilibrium expected utility.
Consider a state of the game at time t where Z(t)�w(t) = z0 for some z0 � z⇤. By launching, the
firm would earn a continuation payo↵ of e��t(p� c�K +U⇤), where U⇤ comes from the fact that
consumers would buy the product anticipating the next launch to occur after a new technology
gain of z⇤, leading the game back to its starting state M(t) = M(0) = (0, (0, 1)). By delaying a
launch to t0 > t, the continuation payo↵ would be reduced to e��t

0

(p�c�K+U⇤), thus eliminating
this deviation. Now, consider the state M(t) = (z0, (0, 1)) for some z0 < z⇤. If the firm were to
deviate and launch a new product, consumers would anticipate that another launch would occur
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when hitting technology level z⇤ and so would choose not to purchase. Therefore, this deviation is
also not profitable.
We now argue that no other path is possible in an MPE. For any Markovian policy of the firm sf ,
consider the valuem(sf ) = inf{m : sf (m, (0, 1)) = 1}— the lowest value of the di↵erence Z(t)�w(t)
at which the firm would launch a new product when all consumers own the latest technology in the
market w(t). If m(sf ) > z⇤, the firm would have an incentive to deviate whenever Z(t) � w(t) =
z

⇤

+m(s

f

)

2

, as the continuation value of the deviation at time t would be e��t(p� c�K +U⇤), while

the continuation value of the original strategy would be e��t

0

(p�c�K+U⇤) where t0 > t is the time
the technology gap would reach m(sf ). Now, consider the case where m(sf ) < z⇤. Anticipating
that another product would be released when hitting technology level z⇤, consumers would choose
not to purchase. Therefore, in all MPE m(sf ) = z⇤.
The only remaining possible deviation is for some of the consumers not to purchase at a given
launch. This would seem plausible by Lemma 1, as consumers are indi↵erent on making any one
purchase when products are released every time the technology gain reaches z⇤. However, if that
were to happen, the firm would deviate and delay the product launch until reaching a technology
level z⇤ + ✏, with ✏ > 0. The marginal cost due to the delay associated with this strategy is
continuous in ✏ (through the hitting time distribution of a Brownian motion with drift), but the
gain is discontinuous in ✏ since the consumers would no longer be indi↵erent between buying and
not buying, and would all purchase immediately. Therefore, this profitable deviation rules out
MPEs that involve asymmetric consumer behavior, except among a set of consumers of measure
zero.

Proof of Lemma 2
We first argue that we can focus on symmetric consumer equilibria without loss of optimality. If
there are multiple di↵erent strategies employed by the consumers in equilibrium, they must be
indi↵erent between them since they are homogeneous in their valuations. We assumed the con-
sumers adopt at most finitely many di↵erent strategies, so let sc1 , sc2 , ..., scN be consumer strategies
adopted by respective fractions ⇡

1

,⇡
2

, ...,⇡
N

of the consumer market. For any firm policy z, the
firm’s profit is a weighted average of the profit from each strategy cohort, i.e.,

Uf (z, (sc1 , ..., scN )) =
NX

i=1

⇡
i

Uf (z, sci).

By selecting the cohort i with the highest Uf (z, sci), we find a symmetric equilibrium with a
(weakly) higher profit for the firm than under the original asymmetric equilibrium.
We now argue that in a symmetric equilibrium consumers do not need to delay purchases, thus
buying as soon as products are released. Consider a firm policy z and a consumer policy sc where
the consumers delay purchases with positive probability. Let i⇤ 2 N be the first launch where the
set of realizations ! 2 ⌦ that lead to a purchase has positive measure, but less than 1. The problem
faced by the consumers at launch i⇤ is independent of the realization ! since they all purchased
at launch i⇤ � 1, buying technology z

i

⇤

�1

and the technology is now exactly at z
i

⇤ . Therefore,
without loss of utility, the consumers can ignore the realization ! and either buy at launch i⇤ with
probability 0 or with probability 1.
If consumers do not buy at launch i⇤ under any realization ! 2 ⌦, the firm should delay this
introduction. Both the firm and the consumer would be better o↵ if the firm delayed the launch
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until a time when all consumers would buy. Thus, the set of purchases is identical to the set of
launches at optimality, and consumers need only consider deviations to buying at a subset of the
launches when considering their best responses.

Proof of Lemma 3
It is su�cient to show that U c(z, q) is submodular pathwise. Consider technology level z

i

2 z with
corresponding launch time ⌧

i

and any q ✓ z\{z
i

}. Let k0 be the technology level of the product
owned by the consumer at time ⌧

i

and k00 be the technology level of the next product purchased
after time ⌧

i

, with 00 being the purchasing time of technology k00. The di↵erence in consumer
utility between policies q and q [ {z

i

} is

U c(z, q [ {z
i

})� U c(z, q) =
v

�
(z

i

� k0)(e��⌧

i � e��

00

)� pe��⌧

i ,

with z
i

> k0. Note that the di↵erence in utilities is decreasing in k0 and increasing in k00. Thus, if
we consider two di↵erent consumer policies, q ✓ q̄, we obtain that

U c(z, q [ {z
i

})� U c(z, q) � U c(z, q̄ [ {z
i

})� U c(z, q̄),

which is a characterization of a submodular function.

Proof of Proposition 1
The purchasing policy z being a best response immediately implies that E[U c(z, z)] � E[U c(z, z\{z

i

})]
for all i 2 N. Consider a consumer policy q ⇢ z and represent the elements in the set z\q by
{l

1

, l
2

, ...}. The consumer’s expected utility from purchasing according to z is equal to the utility
from purchasing according to q plus the di↵erences in utility from adding each element in z\q, i.e.,

E[U c(z, z)] = E

2

4U c(z, q) +

|z\q|X

i=1

(U c(z, q [ {l
1

, ..., l
i

})� U c(z, q [ {l
1

, ..., l
i�1

}))

3

5 .

Since q [ {l
1

, ..., l
i�1

} ⇢ z, using the submodularity result from Lemma 3 on each of the terms
inside the summation above, we obtain that

E[U c(z, z)] � E[U c(z, q)] +

|z\q|X

i=1

E[(U c(z, z)� U c(z, z\{l
i

}))].

Therefore, if E[U c(z, z)� U c(z, z\{l
j

})] � 0 for all i 2 z\q, then E[U c(z, z)] � E[U c(z, q)], which
characterizes the purchasing policy z as the best response to the launch policy z.

Proof of Theorem 2
To prove this theorem, we relax the firm’s optimization problem and explicitly find an optimal
solution for this relaxed counterpart. We then show that the solution generated is feasible for the
original problem and thus, optimal.
We relax the problem OPT-3 by ignoring all constraints where i is an even number. That is, we
consider the relaxed problem

max
r

i

2[0,1]

1X

i=1

e��

P
i

j=1 rj (RELAX-1)

s.t. f(r
i

, r
i+1

) � 0 for all i = 1, 3, 5, ...
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where we define f(x, y) = v

�

x(1� e��y)� p.
This relaxation is tractable because the constraints are disconnected in the following sense: each
decision variable r

i

appears in exactly one constraint. Note that the objective is decreasing in all
r
i

’s and, for any i, the function f(r
i

, r
i+1

) is increasing in both r
i

and r
i+1

. Therefore, all the
constraints in the relaxed problem must be binding since otherwise we could decrease the value of
r
i

and increase the firm’s profit without violating any constraint. Therefore, problem RELAX-1 is
equivalent to

max
r

i

2[0,1]

1X

i=1

e��

P
i

j=1 rj (A1)

s.t. f(r
i

, r
i+1

) = 0 for all i = 1, 3, 5, ...

Define the constant

� =
�p

v
.

The constraint f(r
1

, r
2

) = 0 holds and the decision variables r
1

and r
2

are non-negative reals
whenever r

1

� � and

e��r2 = 1� �

r
1

.

We can use this relationship to eliminate the variable r
2

from (A1), obtaining

max
r1��

r

i

2[0,1] for i�3

e��r1

✓
2� �

r
1

◆
+ e��r1

✓
1� �

r
1

◆
1X

i=3

e��

P
i

j=3 rj (A2)

s.t. f(r
i

, r
i+1

) = 0 for all i = 3, 5, 7, ...

Let K
1

(r
1

) = e��r1

⇣
2� �

r1

⌘
and K

2

(r
1

) = e��r1

⇣
1� �

r1

⌘
. Consider now the optimization prob-

lem holding constant some r
1

> �, i.e.,

max
r

i

2[0,1] for i�3

K
1

(r
1

) +K
2

(r
1

)
1X

i=3

e��

P
i

j=3 rj

s.t. f(r
i

, r
i+1

) = 0 for all i = 3, 5, 7, ...

The set of optimal solutions of this problem is independent of r
1

and is identical to the set of
optimal solutions of (A1) since the two problems are identical except for a linear scaling of the
objective function. In order to characterize the optimal solution, there are two cases to consider
based on the relationship between the decision variable r

1

and �.

• As long as r
1

> �, any value that optimizes r
1

must also optimize r
3

. By induction, the same
values must also optimize r

5

, r
7

, . . .. Equivalently, any value that optimizes r
2

also optimizes
r
4

, r
6

, . . ..

• In case r
1

= �, then r
2

= 1 and K
2

(r
1

) = 0, and thus none of the other decision variables
matter.
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Let ↵̂ be the optimal value of (A1). Note that ↵̂ is finite: We have constraints f(r
i

, r
i+1

) = 0,
for i � 1, i.e. r

i

= �

1�exp(��r

i+1)
. This implies that r

i

� �, hence trivially, r
i

+ r
i+1

� �. We use

these two bounds in the objective function so that for i even,
P

i

j=1

r
i

� (i/2)�; and for i odd,
P

i

j=1

r
i

� ((i�1)/2)�+� = ((i+1)/2)�. This yields that the objective function is bounded above
by

2⇥
1X

i=1

exp (�i��) =
2

1� exp (���)
< 1,

which completes the argument.
From (A2), ↵̂ must meet the necessary optimality condition

↵̂ = max
r1��

e��r1


2� �

r
1

+

✓
1� �

r
1

◆
↵̂

�
,

or equivalently,

↵̂ = max
r1��

e��r1


(↵̂+ 2)� (↵̂+ 1)�

r
1

�
. (A3)

The function in the RHS to be maximized is of the form

g(x)
M
= e��x


c
1

� 1

x

�
,

where c
1

= ↵̂+2

(↵̂+1)�

. The function g(·) is unimodal in R
+

for any positive c
1

, as g0(x) = e

��x

x

2 (�c
1

�x2+

�x+1) has a unique positive root in R
+

. Therefore, there is a unique r
1

that satisfies (A3) for the
optimal value ↵̂.
This observation implies that an optimal solution for (A1) necessarily satisfies r

1

= r
3

= r
5

=
. . . = r

2i+1

, and r
2

= r
4

= r
6

= . . . = r
2i

, for all i; which leads to the following problem equivalent
to (A1), but defined over just two variables:

max
r1��,r2�0

1X

i=1

e�i�(r1+r2) + e��r1

1X

i=0

e�i�(r1+r2)

s.t.:

f(r
1

, r
2

) = 0. (A4)

Using the geometric progression formula, we get:

max
r1��,r2�0

e��r1 + e��(r1+r2)

1� e��(r1+r2)

s.t.:

f(r
1

, r
2

) = 0.

Using the expression f(r
1

, r
2

) = 0, we replace exp(��r
2

) by 1��/r
1

in the objective function and
drop the constraint. This reduces the problem to the following formulation:

max
r1��

e��r1 + e��r1

⇣
1� �

r1

⌘

1� e��r1

⇣
1� �

r1

⌘ .
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Multiplying above and below by r
1

, and then adding and subtracting r
1

in the numerator, we get

max
r1��

r
1

e��r1 + r
1

r
1

� e��r1(r
1

� �)
� 1.

From the function we wish to maximize, we define

r(x) =
xe��x + x

x� e��x(x� �)
.

Lemma A1. The function r : R
��

! R has a unique maximizer x̄. In particular, x̄ = max{r̄
1

,�},
where r̄

1

is the unique unconstrained maximizer over the extended domain R
+

.

Proof: We have

r0(x) =
�2�e�xx2 + �(1 + e�x(1 +�x))

[� + (e�x � 1)x]2
= 0, (A5)

where � = �p

v

. The function r(·) defined over the extended domain R
+

is increasing in the interval
(0, r̄

1

) and decreasing in (r̄
1

,1), where r̄
1

is the unique positive solution to r0(x) = 0. Thus,

x̄
M
= argmax

x��

r(x) = max{r̄
1

,�}.

In terms of our original problem, we get r̂
1

= max{r̄
1

,�}. Note that the expression for r(·) is also
continuous in � and �. In particular, when r̄

1

= �, condition (A5) reduces to r0(�) = 0, i.e.,

2��e�� = 1 + e��(1 +��). (A6)

Using the Lambert W function, defined by the equation

z = W (z) exp(W (z)),

where z is any complex number, we can rewrite equation (A6) as �� = W
�
1

e

�
+ 1 ⇡ 1.27846.

The unique solution to equation (A6) is ��
M
= �. Recalling that � = p�/v, we have for p/v =

�/(��), r̂
1

= � = r̄
1

. The relation between p/v and problem parameters splits the plane in two
parts:

r̂
1

=

⇢
p�/v if p/v � �/(��),
determined by (A5) otherwise.

The optimal r̂
2

will be determined from f(r̂
1

, r̂
2

) = 0, i.e., from the equation

r̂
1

[1� e��r̂2 ] = �. (A7)

In case p/v � �/(��), r̂
2

= 1. Otherwise, r̂
1

> � and r̂
2

< 1, and the optimal policy is to o↵er
products in cycles alternating between r̂

1

and r̂
2

.
We are left with proving that our solution to the relaxed problem (RELAX-1) is also feasible for the
original problem (OPT-3). Since we dropped even numbered constraints and we have r̂

1

= r
2i+1

and r̂
2

= r
2i

for all i; we are just left with showing that f(r̂
2

, r̂
1

) � 0. In fact, if we could prove
that r̂

1

< r̂
2

, then from Eq. (A7), we could use the following sequence of equivalences to argue that
f(r̂

2

, r̂
1

) � 0:

r̂
1

< r̂
2

, 1� e��r̂1

r̂
1

� 1� e��r̂2

r̂
2

as g
1

(x)
M
=

1� e��x

x
is decreasing in x

, r̂
2

[1� e��r̂1 ] � r̂
1

[1� e��r̂2 ]

, r̂
2

[1� e��r̂1 ] � �

, f(r̂
2

, r̂
1

) � 0, by definition of f .
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In what follows, we show that indeed r̂
1

< r̂
2

holds. Note that there exists a unique value z⇤ such
that f(z⇤, z⇤) = 0, i.e.

z⇤(1� e��z

⇤

) = �. (A8)

Since f is strictly increasing in both arguments and f(r̂
1

, r̂
2

) = 0, we can see that if r̂
1

6= r̂
2

6= z⇤,
then r̂

1

and r̂
2

lie on di↵erent sides with respect to z⇤. Formally, if r̂
1

6= r̂
2

6= z⇤, then either
r̂
1

< z⇤ < r̂
2

or r̂
2

< z⇤ < r̂
1

. We prove that the former is always true. Observe that the point
(z⇤, z⇤) is in the feasible region of problem (A4). Since the objective function r is unimodal with
unconstrained maximizer r̄

1

, it is enough to check r0(z⇤) < 0, to show that r̄
1

< z⇤.
The derivative of r(·) is given by

r0(x) =
�2�e�xx2 + �(1 + e�x(1 +�x))

[� + (e�x � 1)x]2

It is indeed enough to show that the numerator �2�e�xx2 + � + �e�x +�x�e�x evaluated at z⇤

is negative. So, we evaluate:

�2�e�z

⇤

(z⇤)2 + � + �e�z

⇤

+�z⇤�e�z

⇤

= �2�e�z

⇤

(z⇤)2 + z⇤[1� e��z

⇤

] + z⇤[1� e��z

⇤

]e�z

⇤

+�(z⇤)2[1� e��z

⇤

]e�z

⇤

(by replacing � using (A8))

= �2�(z⇤)2e�z

⇤

+ (�(z⇤)2 + z⇤)e�z

⇤

[1� e��z

⇤

] + z⇤[1� e��z

⇤

]

= z⇤(1 + e�z

⇤

)[1��z⇤ � e��z

⇤

]

= z⇤(1 + e�z

⇤

)[1��z⇤ � [1��z⇤ +
(�z⇤)2

2!
� (�z⇤)3

3!
· · · ]]

= z⇤(1 + e�z

⇤

)[�(�z⇤)2

2!
+

(�z⇤)3

3!
· · · ] < 0

We can also check that � < z⇤. To see this, define h(x) = x(1�e��x), where from (A8), h(z⇤) = �.
It can be verified that h(x) is increasing, and since h(�) < �, we can assert that � < z⇤. To

conclude, r̂
1

M
= max{r̄

1

,�} < z⇤, so that r̂
1

< r̂
2

, and the two cycle policy (r̂
1

, r̂
2

) is feasible and
optimal for the original problem (OPT-3).

Proof of Proposition 2
In this proof, we show that the firm’s expected utility is unimodal in z⇤, which implies the desired
result given that the price p is increasing in z⇤ (see Eq. (8)). We begin from Eq. (9) and perform
a change of variable, introducing x = e��z

⇤

for x 2 (0, 1), and rewriting the firm’s utility as

E[Uf (x, x)] =

✓
�v log x(1� x)

��
� c�K

◆
x

1� x

=
�v

��
x log x� (c+K)

x

1� x
.

The above function is of the form g(x) = x
h
�a log x� b

1�x

i
where a and b are positive constants.

The above function is unimodal as follows. Taking the derivative with respect to x, we get

g0(x) =


�a log x� b

1� x

�
+ x


�a

x
� b

(1� x)2

�
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We have lim
x!0

+ g0(x) = 1 and lim
x!1

� g0(x) = �1. Also, it is easy to see g0(x) is strictly
decreasing function; hence there is a unique point that satisfies the first order condition that is a
maximum of g(·) function.

Proof of Theorem 3
Let r

1

be the unique launch technology level (or the optimal short cycle), and r
2

be the correspond-
ing optimal long cycle derived in Theorem 2 for a given price p. First, we will argue that the joint
launching and pricing optimization problem, which is in principle a two-dimensional search on p
and r

1

, reduces to a single dimensional search (recall that r
2

is uniquely determined by r
1

through
Eq. (A7)). In fact, the relation between p and r

1

is given by the following expression:

r
1

(p) =

⇢
determined by (A5) if p/v < �/(��),
p�/v otherwise,

(A9)

where � in Eq. (A5) is given by � = �p/v. Recall that r
1

: R
+

! R
+

is continuous in p (c.f.,
Lemma A1 and thereafter in the proof of Theorem 2). It is also strictly increasing in p, for p > 0;
which implies that there is one-to-one correspondence between p and r

1

. In addition, from (A5),
lim

p!0

r
1

(p) = 0 (see Figure 4(right) for an illustration)1.
Recall that � is the unique solution to the equation

2�e�

1 + e�(1 + �)
= 1, or equivalently , 1 + e� = �e�, (A10)

giving � ⇡ 1.27846. Let us also define the function L(x), to be extensively used in the following
analysis:

L(x) =
2xex

1 + ex(1 + x)
, with L(�) = 1. (A11)

Thus, using equation (A9), we can define p(r
1

), i.e., the inverse function of r
1

(p), as follows:

p(r
1

) =

(
2v�(r1)

2
e

�r1

�(1+e

�r1
(1+�r1))

if 0  r
1

 �/�,

r
1

v/� otherwise,

or equivalently, by using the L function in (A11),

p(r
1

) =

⇢
r1vL(�r1)

�

if 0  r
1

 �/�,
r1v

�

otherwise.
(A12)

Note that p(r
1

) is well defined in the domain R
+

and strictly increasing. Hence, in order to prove
that the firm’s utility is unimodal in p conditionally on the firm using the optimal launch policy r

1

(p)
in (A9), it is su�cient to prove that the firm’s utility is unimodal in r

1

.
In fact, the firm’s expected utility as a function of r

1

, when using the optimal price p(r
1

) in (A12),
is given by:

E[Uf

p

(r
1

)] = (p(r
1

)� c�K)


r
1

e��r1 + r
1

r
1

� e��r1(r
1

� p(r
1

)�/v)
� 1

�

= (p(r
1

)� c�K)


r
1

e��r1 + r
1

r
1

� e��r1(r
1

� p(r
1

)�/v)
� 1

�
.

1For sake of the argument in this analysis, we are extending the range of p. Recall that by assumption, p > c+K.
However, in order to simplify notation and w.l.o.g., we assume in this proof that p > 0, even though it could lead to
a firm’s negative utility.
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Let K
1

M
= c+K be the e↵ective cost per launch. The firm’s expected utility function becomes

E[Uf

p

(r
1

)] = (p(r
1

)�K
1

)


r
1

e��r1 + r
1

r
1

� e��r1(r
1

� p(r
1

)�/v)
� 1

�
.

Substituting p(r
1

) by its expression in (A12), we get:

E[Uf

p

(r
1

)] =

( ⇣
r1vL(�r1)

�

�K
1

⌘ h
e

�r1
+1

e

�r1
�1+L(�r1)

� 1
i
, if 0  r

1

 �/�,
�
r1v

�

�K
1

�
e��r1 , otherwise.

Note that, E[Uf

p

(r
1

)] is continuous; it is clearly piecewise continuous and at r
1

= �/�, E[Uf

p

(�/�)] =�
�v

��

�K
1

�
e�� for both parts, as we know from (A11) that L(�) = 1.

Define separate functions for each part in the definition of E[Uf

p

(r
1

)]:

M(r
1

) =

✓
r
1

vL(�r
1

)

�
�K

1

◆
e�r1 + 1

e�r1 � 1 + L(�r
1

)
� 1

�
, (A13)

and
S(r

1

) =
⇣r

1

v

�
�K

1

⌘
e��r1 , (A14)

so that

E[Uf

p

(r
1

)] =

⇢
M(r

1

) if 0  r
1

 �/�,
S(r

1

) otherwise.

Next, we show that E[Uf

p

(r
1

)] is unimodal in r
1

in three steps (see Figure A1):

1. Show that S(r
1

) is a unimodal function of r
1

.

2. Show that M(r
1

) is a unimodal function of r
1

.

3. Show that the derivatives of S(r
1

) and M(r
1

) at the split value r
1

= �/� have the same sign.
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Figure A1: Unimodality of Uf

p

(r1). Each part of the function Uf

p

(r1) is unimodal, and they cross either when

they are both increasing or decreasing, which warrants the global unimodality. Left: Parameters are � = 0.9,K =
1500, v = 2000, c = 0, µ = 1,� = 0. Right: Parameters are � = 0.2,K = 500, v = 2000, c = 0, µ = 1,� = 0.
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Step 1: From (A14), we have

S0(r
1

) =
e��r1(��K

1

��vr
1

+ v)

�
. (A15)

Observe that S0(0) > 0 and that lim
r1!1

S0(r
1

) = �1. Also, S0(r
1

) has only one root at r
1

=
�K

1

/v+1/�. So, S(r
1

) is increasing over 0  r
1

 �K
1

/v+1/�, and decreasing over �K
1

/v+1/� 
r
1

< 1. Hence, S(r
1

) is unimodal function.

Step 2: From (A13), we have
M 0(r

1

) = Q
1

(r
1

)Q
2

(r
1

), (A16)

where

Q
1

(r
1

)
M
=

2(r
1

)2e3�r1(�r
1

+ 2)

(e�r1(�r
1

+ 1)� 1)2 (e�r1(�r
1

+ 1) + 1)2

and

Q
2

(r
1

)
M
= �3K

1

+
2�2K

1

�
e��r1 + 1

�

r
1

+
�K

1

�
e��r1 + 1

�
2

(r
1

)2
+

2v�
�
1� e�2�r1

�

�r
1

� 2�3vr
1

�

It can be easily verified that Q
1

(r
1

) is positive in (0,1). It can also be checked that Q
2

(r
1

) is
strictly decreasing with:

lim
r1!0

Q
2

(r
1

) = 1 and lim
r1!1

Q
2

(r
1

) = �1.

Thus, Q
2

(r
1

) has a single root that we denote ↵. Given the definition in (A16), M(r
1

) turns out
to be strictly increasing in 0 < r

1

 ↵ and strictly decreasing in ↵ < r
1

< 1. Hence, it is unimodal
in r

1

.

Before going over Step 3, we need the following auxiliary result:

Claim 1. L0(�) = �/2
Proof: From (A11), we have

L0(�r
1

) =
2�e�r1(�r

1

+ e�r1 + 1)

(e�r1(�r
1

+ 1) + 1)2
.

Hence,

L0(�) =
2�e�(�+ e� + 1)

(e�(�+ 1) + 1)2
. (A17)

Using Eq. (A10) and substituting into the numerator of (A17), we get

L0(�) =
2�e�(�+ �e�)

(e�(�+ 1) + 1)2
. (A18)

Substituting again Eq. (A10), now into the numerator of (A18), we have

L0(�) =
�

2


2�e�

e�(�+ 1) + 1

�
2

=
�

2
⇥ 1 =

�

2
,

A10



and the claim is proved

Step 3: We want to prove that both S0(�/�) and M 0(�/�) have the same sign.
From (A15), we have:

S0(�/�) =
e��(K

1

��� �v + v)

�
. (A19)

From (A13), we can write the derivative of M(r
1

) as:

M 0(r
1

) =
v

�

�
L(�r

1

) + r
1

L0(�r
1

)
�  e�r1 + 1

e�r1 � 1 + L(�r
1

)
� 1

�
+

✓
r
1

vL(�r
1

)

�
�K

1

◆
�e�r1(e�r1 � 1 + L(�r

1

))� (e�r1 + 1)(�e�r1 + L0(�r
1

))

(e�r1 � 1 + L(�r
1

))2

�
.

So,

M 0(�/�) =
v

�

�
L(�) + �L0(�)/�

�  e� + 1

e� � 1 + L(�)
� 1

�
+

✓
�vL(�)

��
�K

1

◆
�e�(e� � 1 + L(�))� (e� + 1)(�e� + L0(�))

(e� � 1 + L(�))2

�
.

Substituting L(�) = 1 and L0(�) = �/2 in the equation above, we get:

M 0(�/�) =
v

�


1 +

�

2

�
e�� +

✓
�v

��
�K

1

◆"
�e2� � (e� + 1)(�e� + �

2

)

e2�

#

=
v

�


1 +

�

2

�
e�� +

✓
�v �K

1

��

�

◆h
1� (1 + e��)(1 + e��/2)

i

=


2v + �v

2�

�
e�� �


�v �K

1

��

2�

�
e��(3 + e��)

From Eq. (A10), using that 1 + e�� = �, and substituting above, we get:

M 0(�/�) =


2v + �v

2�

�
e�� �


�v �K

1

��

2�

�
e��(2 + �)

=

✓
e��

2�

◆
[2v + 2K

1

��� �v + �(K
1

��� �v)]

=

✓
e��

2�

◆
(�+ 2) [K

1

��� �v + v] (A20)

We can see from (A19) and (A20) that both S0(�/�) and M 0(�/�) have the same sign as K
1

���
�v + v. This completes the proof of Step 3, and of Theorem 3.
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