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1. Introduction
Referrals have emerged as a primary way through
which companies in the social networking era acquire
new customers. Instead of spending money on tra-
ditional advertising, many companies now rely on
social-media-based referral programs to bring in new
customers. Referral programs are used throughout the
economy, but their use is particularly common among
start-ups, where they are seen as both an affordable
and an effective way to grow.

Referral programs come in many forms. Some com-
panies pay customers for every new referral. Others
pay customers only if they bring in sufficiently many
referrals. We propose a framework to analyze different
referral program designs and determine good payment
rules. There are two main parts to our analysis. First,
we identify the optimal payment function; for each
possible number of successful referrals that a consumer
makes, we find the optimal reward the firm should pay.
Second, we examine simple and easy-to-implement pay-
ment functions—linear, threshold, and a combination
of the two—to assess how well they can approximate
the profits of the optimal policy.

Two companies that exemplify the success of referrals
as a customer acquisition strategy are Living Social
and Dropbox. Living Social is a daily deal website
that offers discounted prices for a variety of goods

and services. Living Social was launched in 2007 and
achieved a multibillion dollar valuation only four years
later. At the heart of Living Social’s rapid growth was
its viral marketing strategy. Whenever someone buys a
deal from them, Living Social encourages the customer
to post the transaction on social media. If at least
three friends subsequently purchase based on this post,
Living Social provides the customer with a full refund
of the purchase price.

Dropbox, a cloud-based file hosting service that was
founded in 2008, also achieved extraordinarily fast
growth through referrals. Dropbox offers every user
2 GB of free storage, and it increases this amount by
500 MB for every friend the user refers (or 1 GB if
a friend signs up for a professional account), up to
a maximum of 16 GB for free. The CEO of Dropbox
attributes much of the company’s early success, going
from a hundred thousand to four million users in just
15 months, to its referral program (Houston 2010).
Many other technology companies have grown through
referral programs, including the electronic payments
company PayPal in the early 2000s, the Living Social
competitor Groupon, and the car service companies
Uber and Lyft.

What is the best way to structure referral payments?
Linear payments, whereby every successful referral
generates the same payment, are the simplest and
probably the most common model. Dropbox uses linear
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payments capped at 28 referrals, and Uber offers twenty
dollars per successfully referred friend. In contrast,
Living Social uses a threshold model in which two
referrals yield no benefit, but three lead to a full refund.
In principle, the optimal referral payments could follow
a linear function, a threshold function, or any other
nonlinear payment function.

We consider a firm that designs its referral incentive
program with two objectives: extract immediate rev-
enue and advertise to potential customers. We focus on
the interaction between this firm and a focal consumer
currently deciding whether to make a purchase. If the
consumer buys the product, she can refer as many of
her friends as she wants. The firm wishes to maximize
a linear combination of the revenue obtained from the
focal consumer and the value obtained from her refer-
rals. The consumer plays an equilibrium of a network
game in which she balances the costs and rewards
associated with making referrals, taking account of
the referral program’s value to her friends. When a
referred friend purchases the firm’s product, we say
that a conversion occurs.
An important assumption is that the firm values

referrals, both those that convert and those that do not,
but only pays consumers for conversions. We make this
assumption because the advertising value of a referral
program goes beyond immediate sales, including prod-
uct and brand awareness, as well as future sales. Even
though the firm values referrals, we assume that the
firm chooses to pay consumers only for conversions.
One reason is that measuring referrals is more difficult
than measuring purchases. More significantly, paying
for referrals directly creates opportunities to cheat.
Customers could send referrals to fake email accounts,
earning rewards without creating any value for the
firm. Requiring a purchase for the referral to count
helps to avoid this problem. We consider the case in
which conversions and nonconversions are valued
differently in Section 6.1.

Our first main result characterizes the optimal referral
policy when there are no restrictions on the payment
function the firm can use. A key part of our analysis is
a decomposition of the expected referral payment into
two parts: one that compensates consumers for the cost
of making referrals and the remainder, which is the true
reward or discount that the consumer receives. Since
high-degree consumers can bring in more referrals,
they optimally receive larger rewards, making them
more likely to purchase. Although the optimal expected
reward is increasing in the consumer’s degree, the
optimal payment function might be nonmonotonic
in the number of conversions. This nonmonotonicity
occurs because the firm values referrals but pays for
conversions. The number of conversions is a stochastic
function of the number of referrals, so the expected
reward a consumer receives is a smoothed version

of the payment function, and precise control of the
expected reward may require a complex payment rule.
This implies that the optimal policy is, at least in some
instances, quite complicated and potentially impractical
to implement. Few if any firms would ever offer a deal
like “bring three friends and earn $20, or bring four
friends and earn $15” as consumers would likely find
such programs confusing and would have difficulty
responding optimally.
The nonmonotonicity of optimal payments moti-

vates our study of simpler, more realistic payment
functions. We measure performance by benchmarking
these payment functions against the returns from using
optimal payments. Linear payment functions provide
an obvious starting point. To evaluate how good of
an approximation we can achieve with a linear pol-
icy, we perform a worst-case analysis with respect to
the degree distribution of the network. We show that
worst-case losses from using the best linear incentive
functions scale according to the square root of the
average degree of the social network. Another natural
approximation is a threshold payment function, though
these generally fare much worse than linear policies.
With a threshold payment function, the worst-case
losses relative to the optimum scale linearly with the
average degree in the network.
The different scaling rates for linear and threshold

policies give an incomplete comparison because losses
in each case come from very different sources. When the
degree distribution has a heavy tail, linear policies are
prone to overpaying high-degree consumers. Threshold
policies provide a cap on payments, but they have
difficulty properly compensating consumers for the
costs of making referrals. To render these insights
more concretely, we present a numerical analysis of a
few special cases. Comparing the performance of a
linear payment function across Poisson, geometric, and
power-law degree distributions, we can clearly see how
tail thickness negatively impacts profits. In social-media
settings, in which degree distributions typically follow a
power law and the marginal cost of making a referral is
low, threshold payments perform relatively well. In fact,
if the marginal cost of making a referral is zero, we can
show that the losses from using a threshold payment
are bounded by a constant across all possible degree
distributions.
Since these two types of policies have complemen-

tary strengths, combining them may offer a signif-
icant improvement over either one alone. Making
linear payments, with an added threshold bonus,
captures the best features of both policies. The lin-
ear part compensates consumers for the social costs
of making referrals, and the threshold bonus can
provide the desired discount for high-degree con-
sumers without overpaying. This combination attains
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a constant bound on the approximation loss, regard-
less of the degree distribution or the cost of making
referrals.
Our results offer a useful approach to referral pro-

gram design when there is limited information about
consumer preferences and the social network structure.
Our main results assume that the firm knows only the
valuation and degree distributions and that consumer
knowledge, beyond a consumer’s own type, is similarly
limited. In practice, firms and consumers may have
additional information. Our broader contribution is an
adaptable framework on which to build extensions. In
Section 6, we consider several potential directions to
explore, including the problem of designing incentives
when consumers know whether their neighbors have
low or high degrees. We show that even though the
optimal design problem is harder to solve to optimality,
under some conditions we can guarantee higher firm
profits relative to the case in which consumers have no
information about their neighbors’ degrees.

1.1. Related Literature
Personal referrals have a powerful effect on consumers.
Marketing researchers, using the term “word of mouth,”
have studied the impact of referrals for decades. This
work credits interpersonal communication with far
greater influence over consumer attitudes and behavior
than either conventional advertising or neutral print
sources (Buttle 1998), and the value of personal referrals
can constitute a significant portion of a customer’s
value (Kumar et al. 2007). With the growth of online
platforms, and social media in particular, we can now
measure these effects more precisely than ever before.
For instance, Godes and Mayzlin (2004) are able to
measure word-of-mouth effects using conversations
from an online discussion forum. Studies in both the
computer science literature and the information systems
literature draw on data from online social networks to
assess just how much people influence one another in
different settings (Leskovec et al. 2007, Aral and Walker
2011). There is also work in experimental economics
showing that social learning effects on demand are
at least as big as traditional advertising channels (see
Mobius et al. 2011).

Parallel work asks questions about design. Algorith-
mic and simulation-based approaches allow researchers
to study the relative importance of weak and strong
ties (Goldenberg et al. 2001), optimal seeding strategies
(Kempe et al. 2003), and how to use viral product
features to maximize the spread of adoption in a net-
work (Aral et al. 2013). Many papers in the economics
literature explore word-of-mouth communication as a
signaling game in which consumers learn about prod-
uct quality through friends, and the firm manipulates
the information consumers receive, either through hired
“trendsetters” (Chatterjee and Dutta 2014) or launch

strategies (Campbell 2015). Campbell (2013) studies
pricing in the presence of word-of-mouth learning.
Our firm more directly manipulates word-of-mouth
information transmission through its referral program.
Our equilibrium analysis draws on the recent eco-

nomics literature on games with local network exter-
nalities (Ballester et al. 2006, Sundararajan 2007, Gale-
otti et al. 2010). A referral program provides a way
to artificially create network externalities, inducing
complementarities in friends’ purchase decisions; an
equilibrium of our consumer game is mathematically
equivalent to an equilibrium of a network game with
strategic complements. Candogan et al. (2012), Bloch
and Quérou (2013), and Cohen and Harsha (2015)
build on these results to create a theory of optimal
pricing for a monopolist selling goods to networks
of consumers. Our paper brings a new perspective to
this growing literature, taking a mechanism design
approach that provides insight on how to structure the
network externality in order to generate the desired
information transmission.

A few other papers take up the problem of referral
payment design. Biyalogorsky et al. (2001) consider
how the firm can jointly optimize pricing and referral
incentives over the lifetime of a consumer. We introduce
two important innovations on this approach. First, our
consumers strategically anticipate the value that their
friends will derive from the referral program. Second,
we address the role of the social network structure.
Libai et al. (2003) study the somewhat different setting
of affiliate marketing, allowing a richer information
set and individualized referral contracts. As typical
customer referral programs cannot implement indi-
vidualized referral contracts or keep track of leads
separately from conversions, we restrict our attention
to pay-per-conversion systems.

Our approach necessarily abstracts away from many
details of referral programs that are nevertheless impor-
tant. The medium through which customers communi-
cate with each other has implications both for the cost
of making referrals and the value the firm derives from
referrals. Chu and Kim (2011) note that the influence
people exert through online interactions is different
than that through offline interactions, and Burke and
Kraut (2014) present evidence from Facebook suggest-
ing that one-on-one communication is fundamentally
different than multicast communication. Although we
do not explicitly address what medium is best for a
referral program, we provide a framework to think
about this question. The type of interactions a firm
relies upon to generate referrals will determine the cost,
payoff, and network parameters that are primitives in
our model, allowing a comparison between optimal
policies using different modes of communication.
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2. The Referral Game
A firm produces a product at zero marginal cost and
sells it at a fixed price p > 0.1 We consider a countable
population of potential consumers, which we represent
as a rooted graph. We refer to the root of this graph as
the focal consumer. The focal consumer is deciding
whether to purchase at the current moment. The firm
uses a referral incentive program to expand its customer
base and increase profits. When the focal consumer
makes a purchase, the firm offers her a code or a link
to share with friends. When a friend uses that code or
link to make a purchase, the original consumer may
receive a reward from the firm.

There are two distinct parts to our model. First, the
firm offers a referral program to the focal consumer and
derives a payoff based on whether the focal consumer
purchases and how many referrals get sent. The second
part is a game played among consumers: the focal
consumer must predict how many of her friends will
respond to a referral, and to do this she must account
for the referral program’s value to her friends.

A referral program is a payment function w2 �!✓
specifying a monetary payoff for each possible number
of successfully referred friends. Aside from the restric-
tion w405= 0, we allow the firm to choose any payment
function. The payment is a function of the number of
friends who purchase in response to a referral, not the
number of referrals sent. We write W for the space of
possible referral payment functions. After observing
the firm’s referral program, the focal consumer decides
whether to buy, and if so, how many friends to refer.
The focal consumer has some valuation v 2 60117 for
the product and has d friends she could potentially
refer. She chooses a pair s= 4b1 r5, where b 2 80119
indicates whether the consumer purchases the product
(b= 0 represents no purchase), and r 2 8011121 0 0 0 1d9
represents the number of friends who are referred.
The focal consumer incurs a cost Ñ � 0 for making
each referral, and the firm earns y > Ñ for each referral
that gets sent. We interpret y as the expected value
of a referral made to a random consumer. The value
y É Ñ> 0 is the expected surplus generated from a
referral.
To decide whether to buy and how many referrals

to make, the focal consumer must form expectations
about how her friends will respond to a referral. Each
consumer has a valuation v 2 60117 for the product
drawn independently from a continuous distribution F ,
which has density f . The focal consumer has degree d

drawn according to the distribution G, and we use
g

d

to denote the probability of having d friends. The
friends of the focal consumer have degrees drawn

1 For now, we take the price as exogenous, but we address the issue
of optimal pricing in Section 6.2.

independently according to the size-biased distribution
G

0 with
⇣4G0 = d5= d⇣4G= d5

⇧6G7

1 (1)

but if we suppose that these friends can only refer
new potential consumers, the effective degree d of a
friend is distributed according to G

00 with ⇣4G00 = d5=
⇣4G0 = d + 15.2 The distributions F , G, and G

00 are
common knowledge. A consumer’s information set
comprises her valuation and degree pair 4v1d5; con-
sumers do not observe the valuations or the degrees
of their neighbors. A friend of the focal consumer
(and a friend of a friend, and so on) faces the same
decision problem as the focal consumer—that is, the
same payment function w, the same referral cost Ñ, and
the same beliefs about friends’ valuations and degrees.

Each consumer who becomes aware of the product
through a referral chooses a pair 4b1 r5 just as the focal
consumer does; the strategy space for a consumer with
d friends is A

d

= 8401059[8411 r5 ó r = 0111 0 0 0 1d9. A pure
strategy for a consumer is a function ë4v1d1w52 60117⇥
�⇥W !A

d

specifying an action for each possible
valuation, degree, and payment function. We use b

ë

and r

ë

, respectively, to denote the two components of ë ,
and we use Ë to denote the space of pure strategies.
The firm’s payoff depends on the actions of the

focal consumer.3 Let the random variable N

ë

4r5 denote
the number of neighbors who respond to a referral
when the focal consumer refers r neighbors and other
consumers use the strategy ë . If the focal consumer
chooses 4b1 r5, the firm earns

è

4b1 r5

= b4pÉ ⇧6w4N

ë

4r557+ ry50

If the consumer buys the product, the firm earns the
purchase price p, less the expected referral payment,
plus an additional payoff that is proportional to the
number of referrals.
We consider equilibria of the consumer game in

pure symmetric strategies, using ë

0 to denote a unilat-
eral deviation when all other consumers play ë . The
strategy ë induces expectations over the distribution
of N

ë

4r5. Playing ë

0 in response to others playing ë

yields an expected payoff

u

ë

0
1ë

4v1d1w5= b

ë

04vÉ pÉ Ñr

ë

0 + ⇧
ë

6w4N

ë

4r

ë

055750 (2)

2 This size-biased distribution is a standard correction that generates
the degree distribution conditional on being a person’s neighbor
(see, for instance, Jackson and Yariv 2007). This implicitly assumes
that players’ degrees are uncorrelated. We slightly abuse notation in
Equation (1) by using G to also represent a random variable with
distribution G.
3 Alternatively, we could view this payoff in terms of the behavior of
an average or representative consumer who becomes aware of the
product.
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A purchasing consumer earns her valuation for the
product v, less the purchase price and the cost of
making referrals, plus the expected referral payment.
A strategy profile4 ë 2Ë is a pure strategy Bayesian
equilibrium of the consumer game if

u

ë1ë

4v1d1w5�u

ë

0
1ë

4v1d1w5 for all 4v1d1w52 60117
⇥�⇥W and all ë 0 2Ë. (3)

The firm first chooses a payment function w. The
focal consumer then observes this choice and plays
a symmetric equilibrium for the consumer game in
response. Our goal is to understand optimal or near-
optimal payment functions in terms of the referral
surplus value y, the consumer’s cost of a referral Ñ, and
the distributions F and G of consumer valuations and
degrees. Formally, we study the firm’s optimization
problem:

sup
w2W 1ë2Ë

⇧
v1d

6b

ë

4pÉw4N

ë

4r

ë

55+ r

ë

y57

s.t. u

ë1ë

4v1d1w5� u

ë

0
1ë

4v1d1w5

for all ë 0 2Ë1 v 2 601171 d 2�0

(4)

We can interpret this model as a mechanism design
problem, with the firm maximizing an objective subject
to incentive compatibility and individual rationality
constraints. We note that this mechanism design prob-
lem is two-dimensional, because every consumer has
two pieces of private information: her own valuation
and her degree.

2.1. Remarks on the Model
Our modeling choices reflect a difference in perspective
between the consumers and the firm. For a consumer
deciding whether to buy, the decision problem is fun-
damentally static: she is making a single decision in a
given moment. The potential for future purchases or
future interactions with the firm do not enter the con-
sumer’s thought process. Our focal consumer assumes
that any friend she refers will face the same basic
decision problem, including the referral program, so
she accounts for the value of the referral program to
her neighbors when she evaluates the value of the
program to her. Even though friends make purchase
decisions in the future, formally our consumers play
a symmetric Bayes-Nash equilibrium of a one-shot
simultaneous move game.

In contrast to the consumer, the firm takes a broader
view of the problem: the firm is interested in growing
its business. Beyond immediate purchases and referrals,
the firm is interested in future referrals to friends of

4 Note the slight abuse of notation: we use the same representation Ë

to represent symmetric pure strategy profiles that we use to represent
a consumer’s space of pure strategies.

friends, repeat purchases, the possibility of changing
the referral program over time, and building brand
awareness and loyalty. To abstract away from this
complexity, we focus on a single interaction between
the firm and a focal consumer, and we incorporate all
of these elements into the expected referral value y.
We think of y as the expected value of all future conse-
quences of a referral. In principle, this could emerge
as a continuation value in a dynamic game in which
the firm updates its referral program as the customer
base grows. However, adding this additional layer to
the model would not change our structural results for
optimal and approximately optimal payment functions
at a particular instant. Alternatively, we can view the
referral program as a substitute for traditional advertis-
ing. Under this interpretation, the referral value y is
an outside option representing the cost of achieving
equivalent reach through standard advertising chan-
nels. Taking either view, we can understand important
trade-offs that firms face in referral program design.
We summarize the network structure through the

degree distribution G. The consumers effectively treat
the network as an infinite tree in which every neighbor
has a distinct and independent collection of neighbors
in turn. To generate such beliefs, we could take the
large network limit of a configuration model: for a fixed
population size N , generate the network uniformly
at random from all possible networks with a given
degree sequence, and select the root node uniformly at
random. As N approaches infinity, beliefs in such a
model converge to those of our consumers.

Although real networks do not follow this structure,
our representation admits at least two interpretations.
One focuses on consumers’ cognitive limitations: they
adopt the infinite tree model as a subjective represen-
tation of the network because it simplifies decision
making. Taking full account of the network before
making a purchase presents a very complex decision
problem. Our assumptions about consumer behavior
retain the fundamental trade-offs in the consumer
problem while reducing the computational burden.
The “infinite tree model” can also present a decent
approximation to actual diffusion paths in a large
network. These paths are trees, trees that emerge if we
prune cycles and ignore redundant referrals. In a large
network, the proportion of people who have already
purchased changes little moving from a consumer
to her immediate neighbors, so the choice problems
should be quite similar.

Many of the assumptions that simplify our exposition
are not crucial to the main results. People typically find
out about a product through multiple channels, and
they may not bother to read every referral offer they
receive. In the context of our model, we could assume
that some friends who receive referrals have already
purchased the product, or they may simply ignore the
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offer, with some independent probability; this would
have no impact on our qualitative findings. Looking at
the expression for consumer utility in Equation (2), this
change would appear in the random variable N

ë

4r

ë

05.
This random variable follows a binomial distribution
with r

ë

0 trials and a success probability that is a function
of the strategy profile ë . We can discount this success
probability by some factor Å< 1 without changing the
form of either the consumer optimization (3) or the
firm optimization (4).
If we wish to incorporate clustering, reflecting that

friends tend to have friends in common, we could
add a dampening factor to the model and assume
that our neighbors’ neighbors have a proportionally
lower chance of responding than our neighbors do.
The problems (3) and (4) again would not change,
but we would expand the consumer’s information
set to include the probability Å that a neighbor is at
all receptive to a referral. A strategy profile ë would
become a function of the variables 4v1d1w1Å5, and a
consumer who believes neighbors are receptive with
probability Å would believe that neighbors of neighbors
are receptive at some lower probability ÇÅ, with 0<
Ç< 1. Though imperfect, adjustments like these can
give a reasonable first-order approximation for what
happens in more realistic networks.
We can also relax the linear structure of referral

benefits and costs. From the firm’s perspective, it would
make sense to model declining marginal returns from
referrals, especially with clustering in the consumer
network. Versions of all our results continue to hold
under mild conditions.5 Our results are robust to
adding a fixed cost for making any referrals on top of
the cost Ñ per referral.

3. Consumer Behavior
We first study the consumer equilibria for a fixed refer-
ral payment function w 2W . Throughout this section,
we take w as given, and we suppress dependence
on w in our expressions to simplify notation. Suppose
the focal consumer believes that each neighbor will
purchase in response to a referral independently with
some probability P . The true likelihood that a neighbor
will purchase is determined in equilibrium—it is an
expectation over behavior as a function of valuations
and degrees—but for now take this P as given. This
neighbor purchase probability, together with the num-
ber of neighbors the consumer has, determines the

5 Without further assumptions, we can still decouple the firm’s
optimization problem as in Theorem 2 and achieve perfect price
discrimination across consumer degrees. The nonmonotonicity result
in Proposition 3 will hold as long as some consumers with many
friends should receive the product at an effective price of zero under
the optimal policy. The asymptotic results of Section 5 continue to
hold as long as the marginal value of a referral is bounded above Ñ.

referral incentive’s value for the consumer. Let B
P

4r5

denote a binomial random variable with r trials and
success probability P . If a consumer has d neighbors,
each of whom purchases in response to a referral with
probability P , the value of the referral program is

I

P

4d5= max
r2801110001d9

⇧6w4B

P

4r55É rÑ70 (5)

Combining Equations (2) and (5), we see that a focal
consumer with d neighbors will purchase if and only if
her valuation v is at least pÉ I

P

4d5. The threshold

v

P

4d5= pÉ I

P

4d5 (6)

is the lowest valuation at which a consumer with
degree d will buy, given that a neighbor will purchase
with probability P . If other players’ strategies result in
a neighbor purchase probability P , then the thresholds
v

P

4d5 define a best reply strategy. This best reply
depends on the other players’ strategies solely through
the neighbor purchase probability P .

A random neighbor with degree d who best responds
to the purchase probability P will in turn purchase
with probability 1É F 4v

P

4d55. Taking an expectation
over all possible degrees gives the neighbor purchase
probability that results from neighbors playing a best
reply to P :

î4P 5=
X

d2�
g

00
d

41É F 4v

P

4d5550 (7)

The function î allows us to give an alternative char-
acterization of equilibrium strategy profiles. Instead
of working directly with utility functions as in Equa-
tion (3), we can work with neighbor purchase probabil-
ities. There is a correspondence between equilibrium
strategy profiles and fixed points of the map î.
Given an equilibrium strategy profile ë , neighbors

purchase independently with some probability P

ë

,
and we must have î4P

ë

5 = P

ë

. If P
ë

is not a fixed
point, then a random consumer best responding to P

ë

would purchase with a different probability, which is
inconsistent with P

ë

being an equilibrium. Conversely,
for any P

⇤ that is a fixed point of î, the thresholds
v

P

⇤4d5 define an equilibrium strategy uniquely up to a
measure zero set of valuations who are indifferent about
purchasing. The correspondence between equilibria
and fixed points of î yields a simple existence proof.

Proposition 1. A symmetric pure strategy Bayesian
equilibrium of the consumer game exists.

Proof. This amounts to showing that a fixed point
exists for the function î defined in Equation (7). Since
I

P

4d5 is a continuous function of P , and F is a con-
tinuous distribution, the map î is continuous. The
existence of a fixed point is an immediate consequence
of the intermediate value theorem. É

D
ow

nl
oa

de
d 

fro
m

 in
fo

rm
s.o

rg
 b

y 
[2

16
.1

65
.9

5.
68

] o
n 

15
 S

ep
te

m
be

r 2
01

6,
 a

t 1
5:

03
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



Lobel, Sadler, and Varshney: Customer Referral Incentives and Social Media
Management Science, Articles in Advance, pp. 1–16, © 2016 INFORMS 7

This result establishes existence but not uniqueness
of the equilibrium. Some parameter values and pay-
ment functions support multiple neighbor purchase
probabilities in equilibrium. For instance, suppose that
p > 1, that g00

0 = 0, and that w4d5> p for each d > 0.
In this case, both P

ë

= 0 and P

ë

= 1 are equilibrium
purchase probabilities. The former is an equilibrium
in which no consumer purchases because the good is
too expensive and the referral payment contributes
no value since others never respond to referrals. The
latter resembles a pyramid scheme in which all con-
sumers buy the good only because they expect referral
payments to entirely cover the cost.

However, as long as the referral payments are not too
generous, pyramid scheme equilibria will not arise, and
we should expect a unique equilibrium. A sufficient
condition for uniqueness is that î4P 5ÉP is a decreasing
function of P . Equivalently, the equilibrium is unique
if óî4P15Éî4P25ó< óP1 ÉP2ó for all P1, P2 2 60117. The
following result provides a sufficient condition for
uniqueness.

Proposition 2. Let w̄= sup
d

4w4d5Éw4dÉ 155, and
let f̄ = sup

v260117 f 4v5. If we have f̄ · w̄ ⇧
D⇠G

6D7< 1, then
the pure strategy Bayesian equilibrium of the consumer
game is unique.

Proof. We compute

óî4P15Éî4P25ó 
X

d2�
g

d

óF 4v
P2
4d55É F 4v

P1
4d55ó

 f̄

X

d2�
g

d

óv
P2
4d5É v

P1
4d5ó

= f̄

X

d2�
g

d

óI
P1
4d5É I

P2
4d5ó

 f̄

X

d2�
g

d

dw̄óP1 É P2ó

= f̄ · w̄ ⇧
D⇠G

6D7óP1 É P2ó0
The last inequality is the critical step. A consumer
with d neighbors can gain no more than w̄óP1 É P2ó
per neighbor when the neighbor purchase probability
changes. The conclusion follows. É
The condition in Proposition 2 gives us a bound

w̄ on the incremental benefit from making one more
successful referral. To get an intuitive sense of how to
apply the condition, suppose F is uniform so that f̄ = 1.
In this case, the condition is satisfied if a consumer with
an average number of neighbors can never obtain a
total referral payment of 1, the highest amount that any
consumer would be willing to pay for the product. Of
course, the uniform distribution is a best-case scenario
with respect to all distributions with support in 60117.

4. Optimal Incentives
We now turn to the firm’s problem of selecting the
optimal payment function w, and we reintroduce the

dependence on w in our expressions. We can decom-
pose the firm’s referral payments into two components:
part of the payment compensates consumers for mak-
ing referrals, and the rest provides a reward (or an
indirect discount) on the purchase price. If a consumer
with d neighbors makes r

ë

4d5 referrals in equilibrium ë ,
we can rewrite Equation (5) as

⇧
ë

6w4B

P

ë1w
4r

ë

4d5557= I

P

ë1w
4d5+ r

ë1w4d5Ñ0 (8)

The value of the incentive I

P

ë1w
4d5� 0 to a consumer is

equivalent to a reduction in the effective price, and
r

ë1w4d5Ñ is the amount the firm must pay in expectation
to compensate the consumer for making referrals.
There are at least two reasons to use a referral

incentive to discount the product beyond compensating
for referrals. First, the referral incentive offers a way
to price discriminate between consumers of different
degrees. Since the surplus from referrals yÉÑ is positive,
consumers with more neighbors can generate more
surplus if they make purchases. Intuitively, an optimal
incentive should offer these consumers a lower effective
price so that more of them buy. Second, if the good is
subject to a Veblen effect, a referral incentive could
provide a way to retain the demand associated with a
high list price while discounting the good to an optimal
effective price.
Decomposing referral payments in this way allows

for a simpler representation of the firm’s decision
problem. The firm can fully describe consumer behav-
ior using a sequence of referral and discount pairs
84r

d

1 I

d

59

d2�. For a consumer with d neighbors, the
value r

d

specifies how many referrals she makes condi-
tional on a purchase, and I

d

is the discount in equilib-
rium she obtains, which determines how likely the
consumer is to make a purchase. The firm’s problem is
then to choose a sequence 84r

d

1 I

d

59 that will maximize
profits. The firm is constrained to choose a sequence it
can implement in some equilibrium of the consumer
game. We can restate the firm’s problem (4) as

max
84r

d

1 I

d

59

X

d2�
g

d

41É F 4pÉ I

d

554pÉ I

d

+ r

d

4yÉ Ñ55

s.t. 84r

d

1 I

d

59 implementable.
(9)

Implementability necessitates that the sequence of
referral and discount pairs satisfies individual rational-
ity and incentive compatibility constraints. Feasibility
requires that r

d

2 80111 0 0 0 1d9 and individual rationality
mandates that I

d

� 0 for each d. Since a consumer
with many neighbors can always mimic one with
fewer neighbors, incentive compatibility implies the
following:
(a) The r

d

are nondecreasing in d, and whenever
r

d

6= r

dÉ1 we have r

d

= d.
(b) The I

d

are nondecreasing in d, and I

d

> 0 only if
r

d

> 0.
(c) Whenever r

d

0 = r

d

, we have I

d

0 = I

d

.
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It turns out that satisfying the individual rationality and
incentive compatibility constraints is sufficient to ensure
that a sequence is implementable: for any sequence
satisfying the above properties, there is a corresponding
payment function w and an equilibrium ë of the
consumer game producing the given sequence.

Theorem 1. A sequence of referral and discount pairs
84r

d

1 I

d

59

d2� is implementable if and only if the individual
rationality and incentive compatibility constraints (a), (b),
and (c) are satisfied.

Proof. Given a sequence of referral and discount
pairs, an equilibrium neighbor purchase probability is
uniquely determined as

P

ë1w =
X

d2�
g

00
d

41É F 4pÉ I

d

550

Assuming this neighbor purchase probability, we
can inductively construct a payment function w that
implements the corresponding referral and discount
pairs. Note that the discount to customers of degree d

can only depend on the values of w4k5 for k d.
For the case d= 1, if r1 = 0 take w415= 0, otherwise

set w415= 4I1 + Ñ5/P

ë1w. Suppose we have constructed
a w that implements a given sequence up to customers
of degree d, and consider two cases. First, if r

d+1 6=
d+ 1, we have r

d+1 = r

d

and I

d+1 = I

d

. Setting w4d+ 15
sufficiently low will make the value of referring the
4d+ 15th neighbor negative, so these consumers will
mimic those of degree d as desired. Alternatively, we
have r

d+1 = d + 1 and I

d+1 � I

d

. We wish to define
w4d+ 15 so that

I

d+1 + 4d+ 15Ñ=
d+1X

j=0

✓
d+ 1
j

◆
4P

ë1w5
j

41É P

ë1w5
d+1Éjw4j50

Since we have already defined w up through d, we
can set

w4d+ 15 = 1
4P

ë1w5
d+1

·

I

d+1 + 4d+ 15ÑÉ
dX

j=0

✓
d+ 1
j

◆

· 4P
ë1w5

j

41É P

ë1w5
d+1Éjw4j5

�
1

completing the proof. É
The proof of Theorem 1 does not rely on any par-

ticular referral cost structure. The constraints (a), (b),
and (c) are necessary under any cost structure as long
as high-degree players have the ability to mimic low-
degree players. The construction of w to implement a
sequence 84r

d

1 I

d

59 works without modification for any
monotonic cost function.

Even with this relatively straightforward characteri-
zation of implementable sequences, the firm’s problem
as given by (9) is potentially difficult because the con-
straints are coupled through the consumer equilibrium.

Rather than solving this problem directly, we consider
first a relaxed problem in which we only impose the
feasibility and individual rationality constraints. This
allows us to decouple each element of the sum, finding
separately for each degree d the pair 4r

d

1 I

d

5 that solves

max
r

d

1 I

d

41É F 4pÉ I

d

554pÉ I

d

+ r

d

4yÉ Ñ55 (10)

s.t. I

d

� 0

r

d

2 80111 0 0 0 1d90

We can usefully view the firm’s choice as a two-
dimensional mechanism design problem. Similar to a
classical adverse selection problem, the firm would
like to discriminate between consumers across both
valuations and degrees. The relaxation above is equiv-
alent to ignoring incentive constraints with regards
to the focal consumer’s degree, and simply solving a
collection of standard pricing problems, one for each
possible degree. The following theorem shows that
the solution of the relaxed problem (10) satisfies our
incentive compatibility constraints, and thus produces
a solution for the original problem. In essence, we show
that the two-dimensional problem decomposes into a
collection of one-dimensional problems. We can do this
because of the natural ordering of the action sets as
a function of degree: the firm wishes to offer larger
discounts to high-degree consumers, and low-degree
consumers cannot mimic high-degree ones.

Theorem 2. There is a solution to problem (10) in which
r

d

= d for all d, and the I
d

are nondecreasing in d. Con-
sequently, this solution also optimizes problem (9). If we
further have that

4pÉ I5É 1É F 4pÉ I5

f 4pÉ I5

is decreasing in I , (11)

then the optimal sequence 84r
d

1 I

d

59

d2� is unique.6

Proof. Since yÉ Ñ> 0, the firm should clearly pay
for all available referrals, so we take r

k

= k for each k.
The optimal I

k

solves

max
I

d

41É F 4pÉ I

d

554pÉ I

d

+ d4yÉ Ñ551

subject to 0 I

d

 p. The first derivative of the objec-
tive is

f 4pÉ I

d

54pÉ I

d

+ d4yÉ Ñ55É 41É F 4pÉ I

d

550

Observe that for fixed I

d

this derivative is increasing
in d, so the value of I

d

that attains the maximum
is nondecreasing in d. If this derivative is positive

6 Note that Equation (11) is the classical regularity of the vir-
tual valuations from Myerson’s seminal paper on auction design
(Myerson 1981).
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(negative) for all I
d

2 601p7, the unique solution is I

d

= p

(I
d

= 0). If Equation (11) holds, and we have an interior
optimum, the solution is the unique value

I

d

= sup
⇢
x2

1É F 4pÉ x5

f 4pÉ x5

É 4pÉ x5 d4yÉ Ñ5

�
0 É

(12)

Theorem 2 demonstrates that implementability does
not meaningfully restrict the referral and discount pairs
we can offer to consumers. We can achieve perfect price
discrimination along consumer degrees and decouple
the optimization for each part of the sum. As in Theo-
rem 1, this result is robust to many alternative cost
specifications. As long as a consumer’s incremental cost
of making one more referral is always less than y, the
argument goes through without modification: the firm
wishes to pay for all possible referrals and provides
discounts that are increasing in degree. If consumers
face a fixed cost for making any positive number of
referrals on top of the linear cost Ñ per referral, it
may no longer be optimal to pay for referrals from
low-degree consumers. We can describe the solution to
the corresponding relaxed optimization problem using
a threshold degree d: the firm pays for no referrals from
consumers with degree less than d and pays for all
referrals from consumers with degree at least d, offer-
ing discounts that increase in degree. Such a policy is
implementable using the same argument in Theorem 1.
We can better understand the optimal policy if we

consider the effective price pÉ I

d

consumers of degree
d face. Take d= 0 in (12), and note that

pÉ I0 É
1É F 4pÉ I05

f 4pÉ I05
= 0

corresponds to the standard monopoly price solution
(i.e., virtual valuation is equal to zero). For every
additional neighbor a consumer has, the value of I

d

increases, indicating a lower effective price.7 The more
neighbors a consumer has, the greater the incentive
to trade off immediate profits for additional referrals.
Moreover, Equation (12) tells us how to divide the
added surplus y between the consumer and the firm:
the consumer pockets the direct change in I

d

, and
the firm earns the corresponding change in the ratio
41É F 4pÉ I

d

55/f 4pÉ I

d

5.
The practicality of optimal referral payments depends

on the ease with which we can specify them and the
ease with which consumers can respond to them. In
general, the optimal payment function faces challenges
on both counts because it will be nonmonotonic in the

7 Note that these optimal effective prices are subject to boundary
constraints. If p is below the monopoly price, then low-degree
consumers may receive no discount at all; sufficiently high-degree
consumers will always receive a full discount, facing an effective
price of zero.

Figure 1 (Color online) Optimal Expected Discount I as a Function of
Degree, and the Corresponding Nonmonotone Payment
Function w

I

number of successful referrals. Perhaps surprisingly, we
might want to offer a consumer $20 for three referrals,
but only $15 for four.

To understand why this happens, consider a simple
example in which F is uniform, all consumers have at
most three neighbors, the cost of making referrals Ñ is
zero, and the firm’s price and value for advertising are
p= y = 1

2 . Figure 1 shows the optimal discounts of I0 = 0,
I1 = 1

4 , and I2 = I3 = 1
2 . Suppose the degree distribution

is such that the corresponding neighbor purchase
probability is P

ë1w = 3
4 . We compute the corresponding

payment function w as w415= 1
3 , w425= 2

3 , and w435=
11/27 <

2
3 . Because of the randomness in neighbor

purchase decisions, the discount a consumer receives
is a weighted average over values of the payment
function w. A consumer with three neighbors has
a higher chance of two successes than a consumer
with only two neighbors. To equate I2 and I3, we must
reduce the benefit from the third successful referral to
balance out this effect.

Nonmonotonic payments are a generic feature of the
optimal policy whenever the cost Ñ of making referrals
is small. Since neighbors respond stochastically to
referrals, the optimal expected payment to a consumer
of degree d is a smoothed version of the payment
function w. For sufficiently high d, the optimal dis-
count I

d

flattens out, and this creates a kink in the
optimal expected payment I

d

+ dÑ as a function of d.
For a smoothed version of w to exhibit this kink, the
payment function w must exhibit a much sharper
change. If Ñ is sufficiently small, this entails a decrease
in the payment.

Proposition 3. Suppose the optimal sequence of referral
and discount pairs is such that 0< P

ë

< 1. Holding the
net referral value yÉÑ fixed, there exists Ñ̄� Ñ> 0 such
that whenever Ñ< Ñ, the optimal payment function w is
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nonmonotonic, and whenever Ñ> Ñ̄, the optimal payment
function w is monotonic.

Proof. See the online appendix (available as sup-
plemental material at http://dx.doi.org/10.1287/mnsc
.2016.2476). É
If Ñ is very small, there is a point at which the

optimal expected payment to consumers flattens out.
This always occurs when the optimal effective price
reaches the point at which all consumers would buy.8
To achieve this with a smoothed version of w requires
a decrease in w.
In practice, firms do not employ nonmonotonic

payments. Not only are these payment functions diffi-
cult to compute, but real consumers are unlikely to
respond optimally. To address this shortcoming, we
study approximations based on empirically common
referral payment structures. We consider how well lin-
ear and threshold payment functions can approximate
the optimal scheme, and we look at how the structure
of the network and the cost of making referrals affects
which type of referral program performs better.

5. Approximate Incentives
A linear payment function w

L

is one that gives the
consumer a fixed payment for each successful referral,
i.e., w

L

4N 5= aN for some a� 0. Using a linear w
L

, we
can implement any sequence of pairs 84r

d

1 I

d

59 with
r

d

= d and I

d

= dI for some I � 0. A threshold pay-
ment function w

T

makes a fixed payment b once some
threshold number of successful referrals is met. We
have w

T

4N 5= b if and only if N � í , and w
T

4N 5= 0
otherwise, for some b � 0 and í � 0. The set of imple-
mentable pairs is less straightforward to describe for
threshold payments because it depends on changes in
the probability of crossing a given threshold. In either
case, the restriction on the set of pairs 84r

d

1 I

d

59 means
we lose the ability to decouple the summands in our
optimization problem (9): the degree distribution now
matters.
Our analysis focuses on worst-case degree distri-

butions. Clearly, some degree distributions entail no
approximation loss—for instance, if all consumers have
the same number of neighbors. A worst-case analysis
helps us understand how robust different types of
referral programs are. The optimal profit, and hence the
potential approximation loss, scales with the average
degree in the network å⌘ ⇧

D⇠G

6D7, holding y fixed. To
make meaningful comparisons, we consider worst-case
performance over distributions with a given average
degree. We look at how the worst-case approximation
loss scales with the average degree in the network.

8 We assume here that all consumers would buy at a price of zero,
but the same nonmonotonicity result would obtain as long as there
is some (possibly negative) price at which all consumers buy.

Given a degree distribution G, let è⇤
4G5 denote the

firm’s profit using the optimal referral payments, let
è

L

4G5 denote the firm’s profit using the best linear
payment function, and let è

T

4G5 denote the firm’s
profit using the best threshold payment function. We
define the worst-case loss from linear payments in a
network with average degree å as

L

L

4å5= sup
G2 ⇧

D⇠G

6D7=å

è

⇤
4G5Éè

L

4G51

and we define the worst-case loss from threshold
payments in a network with average degree å as

L

T

4å5= sup
G2 ⇧

D⇠G

6D7=å

è

⇤
4G5Éè

T

4G50

The optimal profit scales linearly in å as the value of
referrals becomes the main benefit the firm obtains.
Approximation losses from using linear payments grow
much more slowly, scaling with p

å, while those from
using threshold incentives grow linearly. This indicates
that linear referral payments are typically preferable
when å is large.

Theorem 3. Approximation losses from using linear
payments L

L

4å5 scale according to
p
å. That is, there are

constants a, ā, and a

0 such that

a

p
å L

L

4å5 ā

p
å for all å� a

0.

If Ñ> 0, approximation losses from using threshold payments
L

T

4å5 scale linearly with å. That is, there are constants b,
b̄, and b

0 such that

bå L

T

4å5 b̄å for all å� b

0.

Proof. Consider the linear approximation first. To
establish the upper bound, note that for sufficiently
large average degree å the optimal policy for all con-
sumers with degree d higher than p

å is to offer I
d

= p,
yielding profit of dy per consumer. For consumers of
degree less than p

å, the optimal profit is no more thanp
å4yÉ Ñ5 per consumer since profits per consumer are

increasing in degree.
Suppose we choose a linear discount policy I

0
d

= dI

0

with I

0 = p/

p
å for all d. For the consumers with

degree above p
å, the loss due to overpayment is at

most p/på per referral. We can bound the loss from
overpayments by

⇧6I 0
d

7= p⇧
D⇠G

6D7p
å

= p

p
å0

Likewise, since the total profit from consumers with
degree lower than p

å is bounded by p
å4yÉ Ñ5, this

is a bound on the loss as well because profits from a
consumer are never negative. This proves the upper
bound.
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For the lower bound, consider the degree distri-
bution G

å

that assigns degree èpåê with probabil-
ity å/42å É èpåê and degree 2å with probability
4åÉèpåê5/42åÉèpåê5. This distribution has expecta-
tion å, and for sufficiently large å, the optimal policy
sets Ièpåê = I2å = p.

Let I 0
d

= dI

0 denote a linear policy, and consider two
cases. Suppose first that I 0  p/42èpåê5. Then low-
degree consumers receive a discount of no more than
p/2, and lost sales coupled with lost referrals lead to
approximation losses of at least F 4p/25èpåê4yÉÑ5 from
each low-degree consumer. At least half of consumers
have low degrees, so half of this is a lower bound
on the approximation loss. Alternatively, suppose
I

0
> p/42èpåê5. For large å, essentially all referrals

come from high-degree consumers, and essentially
all of this discount is overpayment. For large å, the
overpayment losses converge to 4åÉèpåê5p/42èpåê5.
In both cases, the worst-case loss is at least a constant
times p

å, proving the claim.
Now consider the threshold approximation. The

upper bound is trivial since optimal profits scale lin-
early with å. For the lower bound, consider for each å

the degree distribution that places probability 1
2 on å/2

and probability 1
2 on 3å/2.

Suppose that for some large å, the threshold í is
larger than å/2. None of the low-degree consumers
make any referrals, which leads to losses of 4å/454yÉÑ5.
Alternatively, suppose that í å/2. To avoid similar
losses, we must incentivize the high-degree consumers
to refer at least å of their neighbors. From Hoeffding’s
inequality, for large å, the probability of not hitting
the threshold number of successes í after å referrals
is on the order of eÉå/2. If adding one more referral
is to increase the probability of hitting í enough to
compensate for the cost Ñ, the threshold payment must
be very large, growing exponentially in å. This implies
overpayments to high-degree consumers that grow
exponentially in å. Hence, for large å the optimal
threshold payment scheme will choose a high thresh-
old í , yielding linear losses because the low-degree
consumers do not refer any neighbors. É
The proof of Theorem 3 sheds light on why linear

and threshold payments perform well or poorly. Linear
payments suffer when the degree distribution is heavy
tailed. The discount that a consumer receives is propor-
tional to how many neighbors she has. When most
consumers have low degrees, but most referrals come
from those with high degrees, linear payments face a
difficult trade-off. Providing the appropriate discount
to low-degree consumers entails large overpayments to
high-degree ones, while giving an appropriate discount
to high-degree consumers entails fewer purchases from
low-degree ones. The overpayment problem arises
regardless of the model parameters, as long as there is

a limit to how much the firm should optimally pay a
consumer to take the product.
This asymptotic result is robust to many modifica-

tions we might make to the model or the payment
function. In the previous section, we discussed alterna-
tive specifications for consumer referral costs. What
matters for the asymptotic performance of these poli-
cies, and the proof provided, is the marginal referral
cost when making a large number of referrals. For
instance, we can apply exactly the same argument
in the case with a fixed cost for making any positive
number of referrals in addition to the linear cost Ñ per
referral. Perhaps surprisingly, adding a payout cap
to a linear referral policy yields no improvement in
our asymptotic performance bounds. Although the
firm can use a cap to prevent overpayment to very
high-degree consumers, these consumers will respond
by not referring all of their neighbors. Using an argu-
ment similar to that for the threshold payment function
result, we find the losses from foregone referrals are
comparable to those from overpayment.

If we can constrain the tail of the degree distribution,
the losses from using linear payments scale more slowly.
Given a constant C > 0 and an exponent Å 2 60115,
consider the collection of all distributions S Å

C

4å5 with
average degree å such that the tail above the mean
satisfies X

d�å

4dÉå5g

d

Cå

Å

0

The exponent Å is the crucial part of this constraint;
with larger Å, the permitted length of the tail scales
more rapidly with the average degree. We can interpret
this as a restriction on how large the mean is conditional
on an above-average degree. The case Å= 0 implies the
conditional mean is no larger than å plus a constant,
while an Å> 0 allows the difference between å and
the conditional mean to grow. We define the 4C1Å5

worst-case loss from using linear payments as

L

Å

C

4å5= sup
G2SÅ

C

4å5

è

⇤
4G5Éè

L

4G50

Proposition 4. Fixing C and Å, the 4C1Å5 worst-case
loss from using linear payments scales no faster than å

Å/2.
That is, there exist constants ā and a

0 such that

L

Å

C

4å5 āå

Å/2 for all å� a

0.

Proof. See the online appendix. É
Though threshold payments have worse asymptotic

properties than linear payments, the conditions that
hamper their performance are distinct. Having just
one payment limits the flexibility of these schemes to
compensate the marginal cost of making referrals. If
these costs are significant, then a threshold payment
can only target consumers within a narrow range of
degrees. Those with lower degrees cannot benefit from
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Table 1 Percentage of Optimal Profit

Poisson (%) Geometric (%) Power law (%)

Linear payment 100 9901 9008
Threshold payment 9904 9709 9805

the threshold payment since they will never hit the
threshold. Those with higher degrees still receive an
appropriate discount, but they refrain from referring
all of their neighbors because the marginal impact on
the probability of hitting the threshold is too small to
compensate for the additional cost.
In networks with relatively low average degrees,

these different strengths and weaknesses can make
either linear or threshold payments preferable. To see
this, consider an example comparing the performance
of linear and threshold payments across different net-
works. For these calculations, we assume consumer
valuations are uniform, the price of the product is
p= 005, the cost of making referrals is zero, and the
value of referrals to the firm is y = 0008. We compute
optimal linear and threshold payments for three dif-
ferent degree distributions: a Poisson distribution, a
geometric distribution, and a power-law distribution
with exponent 2.1. In each case, the average degree in
the network is approximately 306. Table 1 reports the
percentage of the optimal profit we obtain in each case.

Performance is quite good across the board; having
a referral program, even a very simple one, is far better
than having none. We can see a clear decline in the
performance of linear payments as the tail of the degree
distribution becomes fatter. Moving from a Poisson
to a geometric distribution costs 1% of profits, and
moving to the much fatter-tailed power-law distribution
costs an additional 8%. Threshold payments are more
consistent across the distributions. For the Poisson
and the geometric distribution, threshold payments
perform slightly but noticeably worse than linear ones.
For the power-law distribution, threshold payments
offer a significant improvement. Note the absence
of referral costs is important to this comparison. If
we increase Ñ while holding the net referral value y

fixed, the performance of linear payments will remain
unchanged, but threshold payments will suffer.

Linear and threshold payments have complementary
strengths. Linear payments can effectively compensate
the cost of making referrals, while threshold payments
can provide a discount to high-degree consumers that
remains bounded. A combination of these two can
lead to much better performance. Consider the class of
linear payment functions with a “bonus” for crossing
some threshold. These are payment functions w

B

we
can express as

w
B

4N 5=w
L

4N 5+w
T

4N 51

where w
L

is linear and w
T

is a threshold payment
function. Let L

B

4å5 denote the worst-case loss using
such payment functions when the average degree in
the network is å. With this slight increase in complexity,
we can achieve a constant bound on losses.

Theorem 4. The worst-case loss using linear payments
with a bonus is bounded by a constant. There exists C > 0
such that

L

B

4å5C for all å.

Proof. We prove a stronger result, showing that a
large class of policies achieves constant loss. Choose
the linear component w

L

to exactly compensate the
social cost Ñ per referral. This reduces our problem to
showing that a threshold payment achieves constant
loss when the social cost of referrals is zero.

In the specification of the threshold payment function
w

T

, choose any c > p and any finite K. Since P

ë1w �
1É F 4p5> 0, there is some threshold degree d̄ such that
for any purchasing consumer with d � d̄, the probability
that at least K neighbors purchase in response to a
referral is at least p/c. These consumers receive a
full discount and overpayment bounded by c É p.
Losses from consumers with a degree lower than d̄,
or for whom the optimal policy does not offer a full
discount, are bounded by a constant because there are
finitely many such degrees. Losses from higher degree
consumers are bounded by cÉ p. É
To avoid significant losses from the highest degree

consumers, we need to offer a full discount and we
need to compensate for each referral. Choosing a linear
component that exactly compensates for the social cost
Ñ ensures that any purchasing consumer makes all
possible referrals, and we can adjust the threshold
payment to provide a sufficiently large discount for
the high-degree consumers. The size of the threshold
payment gives us a fixed bound on any over payments,
yielding the constant loss bound in Theorem 4.

An implication of Theorem 4 is that, in the absence
of any cost for making referrals, threshold payments
alone can achieve constant loss.

Corollary 1. If Ñ= 0, approximation losses from using
threshold payments L

T

4å5 are bounded by a constant.

Together with our earlier findings, this suggests that
threshold payments can outperform linear ones in
some settings. Whenever we have the following:
(a) the degree distribution has a fat tail, so linear

payments perform relatively poorly, and
(b) the marginal cost of referrals is low, so threshold

payments perform relatively well,
threshold payments may be the best option among
the simplest payment schemes. Notably, conditions (a)
and (b) are characteristic of many social-media settings:
the degree distribution in many social networks follows
a power law (e.g., Ugander et al. 2012), and referrals
can often be made en masse using a single post.
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6. Extensions
6.1. Differentiating Conversions from

Nonconversions
Although there is certainly value to a company from
referrals beyond any immediate conversions, it makes
sense that a firm would place a higher value on referrals
that convert than referrals that do not. We can extend
our model to account for this, supposing that the
firm values unconverted referrals at y and converted
referrals at ȳ with ȳ > y > Ñ. The expected referral
value is then endogneously determined in equilibrium
as y = P

ë1wȳ+ 41É P

ë1w5 y.
Although this adds an extra dimension to the

firm’s optimization problem, the essence of our results
remains unchanged. The firm’s problem in Equation (9)
no longer decouples along player degrees since y

depends on the strategies of all players, but we can
still solve a relaxed version of the problem that only
imposes individual rationality constraints. The solution
of the relaxed problem will still be incentive compati-
ble, so we can find a payment function to implement
the optimal sequence of pairs 84r

d

1 I

d

59. Knowing that
Ñ< y  y  ȳ is enough to reproduce the asymptotic
bounds of Section 5 using the same arguments.

6.2. Optimal Pricing
If the firm jointly optimizes the product price and
the referral program, how should the price be set? If
there are no Veblen effects and we can use the optimal
payment function, then the answer is obvious: choose
the standard monopoly price. For consumers with no
friends to refer, the monopoly price maximizes profits,
and the optimal payment function allows us to give the
best possible sequence of discounts from that reference
point. If all consumers have at least one neighbor, then
the optimal price is nonunique: anything higher than
the monopoly price is optimal. This is because we can
implement an arbitrary nondecreasing sequence of
discounts, so the effective prices we charge consumers
will not change with the price p as long as it is above
the monopoly price.

If we are using an approximate payment function, the
optimal price is less clear. Since the payment function
depends on fine details of the degree distribution, the
optimal price will as well. At least in the case of linear
incentives, we can make a general claim about the
optimal price: the standard monopoly price serves as
an upper bound.

Proposition 5. Suppose virtual valuations v É
41É F 4v55/f 4v5 are increasing and (weakly) convex. Then if
we are using a linear payment function w, the optimal price
is no larger than the standard monopoly price.

Proof. First, suppose the valuation distribution is
uniform. Figure 2 shows the optimal discount as a

Figure 2 (Color online) If p is Above the Monopoly Price, Reducing p
Results in a Better Approximation
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function of degree as well as a linear approximation.
Decreasing the price p shifts the optimal discount curve
downward, and the curve hits the point 40105 precisely
when p is the standard monopoly price. Note that
for p equal or greater than the monopoly price, any
linear approximation intersects the curve at exactly one
point. If we shift the curve downward we can always
obtain a strictly better approximation by flattening
the line to maintain the same point of intersection:
the resulting line is closer to the optimal incentive at
every point. This same graphical argument applies
whenever the optimal discount curve is weakly concave.
Since we have assumed virtual valuations are convex,
Equation (12) implies that the optimal discount curve
is concave, yielding the result. É

6.3. Two-Way Incentives
Many referral programs make use of two-sided incen-
tives: in addition to giving the referring customer a
reward, the referred friend receives a discount. Why
should the firm offer such incentives? In our frame-
work, there is little reason to include this feature since
we already have as much flexibility as we could want
to adjust the expected referral reward. The only effect
would be to reduce revenues from referred individuals,
which would imply the firm should not offer this type
of incentive. However, given the prevalence of such
programs, this answer is unsatisfying.

One possible explanation is that the additional incen-
tive may reduce social costs. Part of the cost of making
referrals is psychological, stemming from a desire not
to annoy one’s friends or appear self-serving. If mak-
ing a referral confers a benefit to the friend receiving
it, these psychological costs may shrink. We could
extend our model to make the social cost Ñ a function
of the discount provided to the friend receiving the
referral. The firm would then jointly optimize the
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referral reward function and the net referral value by
manipulating the social cost. Once the social cost is
fixed by choosing the discount for referred friends, the
problem reduces to the one we study, so our principal
findings remain unchanged.

6.4. Additional Network Information
Individuals often have some information about how
well connected their friends are. In this subsection, we
explore the implications of consumers having signals
about which of their friends are well connected. Sup-
pose a consumer receives a binary signal about each
neighbor, indicating whether the neighbor has degree
greater than some threshold í . The consumer knows
that her neighbors receive similar information about
their neighbors, and that neighbors of neighbors have
degrees drawn independently according to distribution
G

00 as before. The firm will naturally place a higher
value on referrals sent to higher degree neighbors—we
write y

+ for the expected value of a referral to a con-
sumer with d > í , and y

É for the value of a referral to
a consumer with d í . We assume y

+
>y

É � Ñ. We
consider first how the consumer equilibrium changes
before looking at the effects of this information on the
firm’s design problem.
We now characterize a consumer using her valu-

ation v, her degree d, and the number of high sig-
nals h she receives. Fixing the payment function w,
a symmetric strategy profile ë maps triples 4v1d1h5
into actions that specify whether the consumer buys
b 2 80119, the number of low-degree referrals to send
r

É 2 80111 0 0 0 1dÉh9, and the number of high-degree
referrals to send r

+ 2 80111 0 0 0 1h9. A consumer’s best
reply then depends on a pair of neighbor purchase
probabilities P= 4P

É
1P

+
5 for the corresponding types

of neighbors. We can define a pair of best reply neigh-
bor purchase probabilities 4î

É
4P51î+

4P55 analogously
to Equation (7). Given a strategy profile ë , write P

É
ë

and P

+
ë

for the corresponding probabilities that a low-
degree and a high-degree neighbor following ë will
purchase in response to a referral.

Proposition 6. A symmetric pure strategy Bayesian
equilibrium of the consumer game exists. In any such
equilibrium ë , we must have P+

ë

� P

É
ë

.

Proof. See the online appendix. É
Although the consumer problem is very similar to

the one we considered in Section 3, with additional
network information, the firm can no longer decouple
its optimization for each possible consumer degree. To
understand why, consider the following simple example.
Let v be uniform on 60117, let p= 1

2 , and suppose G takes
the value 1 with probability 2

3 and 2 with probability 1
3 ,

so that G00 is equally likely to take the values 0 and 1. We
suppose that the signal allows a consumer to identify
whether a neighbor has degree 0 or 1.

Consider first the problem of designing a policy
that maximizes profits obtained from a focal consumer
with degree 1. This focal consumer can have either a
low-degree or a high-degree neighbor (d= 0 or 1). We
can describe this consumer’s behavior using a referral
and discount pair for each case: write 4I

É
1 1 r

É
1 5 for the

pair corresponding to a consumer with a low-degree
neighbor and 4I

+
1 1 r

+
1 5 for that corresponding to a con-

sumer with a high-degree neighbor. Any pairs that are
implemented in equilibrium must satisfy the follow-
ing individual rationality and incentive compatibility
constraints:
• I

É
1 > 0 if and only if rÉ1 = 1; I+1 > 0 if and only if

r

+
1 = 1;
• r

+
1 � r

É
1 and I

+
1 � I

É
1 ;

• I

É
1 + Ñ� 41/41+ I

É
1 + I

+
1 554I

+
1 + Ñ5.

The first two constraints are immediate from the prob-
lem definition and that high-degree neighbors are more
likely to purchase than low-degree ones (Proposition 6).
The last constraint arises because a consumer with a
low-degree neighbor could mimic one with a high-
degree neighbor. The payment w415 for a successful
referral is the same in both cases, so the difference
in the expected payment to each type is limited by
the probability of a successful referral: a low-degree
neighbor will buy with probability 1

2 , and a high-degree
neighbor will buy with probability 1

2 + 4I

É
1 + I

+
1 5/2.

Because of this last constraint, we cannot decouple
the optimization for each type of consumer. Depending
on the problem parameters, we might forego referrals to
low-degree neighbors to avoid giving too much surplus
to consumers with high-degree neighbors, or we might
allow those with high-degree neighbors to get extra
surplus in order to obtain all possible referrals. For
a consumer with more neighbors, we face additional
nontrivial incentive compatibility constraints. Therefore,
the technique we proposed in Section 4, which involved
solving a two-dimensional mechanism design problem
by solving a family of one-dimensional relaxations,
does not apply to the three-dimensional mechanism
design problem that emerges when customers have
additional network information.

Given this challenge, we can ask, how robust is our
solution to the original problem? Put differently, if the
firm ignores that consumers have information about
one another, how does the corresponding referral policy
perform? The second claim in Proposition 6 shows that
consumer incentives for making referrals are largely
aligned with the firm’s interests: high-degree neighbors
are more valuable to the firm, and these are precisely
the neighbors most likely to respond to a referral and
generate payments for the consumer. Consequently, we
might expect this information to benefit the firm.
We can prove for a class of problem instances that

this is indeed the case. For simplicity, we make the
following assumptions.
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Assumption 1. The valuation distribution v is uniform
on the interval 60117, the price is the standard monopoly price
p= 1

2 , and no consumer has degree higher than 1/4y+ ÉÑ5.9

Let y = 4y

É + y

+
5/2 denote the expected value of a referral

to a random neighbor when no information is observed,
and assume that y � 3Ñ. The threshold í is such that a
random neighbor generates low and high signals with equal
probability.

If consumers receive no information about their
neighbors, the firm’s optimal policy is a linear payment
function that provides an effective discount of 4yÉÑ5/2
per neighbor. Given the degree distribution, these
effective discounts correspond to a particular neighbor
purchase probability P

⇤, and the optimal payment
function is

w4N 5= 4y+ Ñ5N

2P ⇤ 0 (13)

We now consider what happens if the firm applies
this policy when consumers do observe signals about
their neighbors.

Proposition 7. Suppose Assumption 1 holds. Suppose
also the firm employs the optimal policy under the assump-
tion of no consumer information about their neighbors, as
described in Equation (13). Then, the firm will earn higher
profit if consumers receive signals about their neighbors’
degrees than if they do not.

Proof. See the online appendix. É
Proposition 7 suggests that the firm will often benefit

more from referrals when consumers have additional
information about one another. Moreover, the firm
can employ the optimal policy for the simpler model
without this information, and the estimated optimal
profit serves as a lower bound on the profit obtained.
Interestingly, the increase in profit is not the result of a
focal consumer becoming more likely to purchase. The
key driver of this result is that consumers are carry-
ing out better referral targeting on the firm’s behalf:
consumers preferentially refer high-degree neighbors.

7. Final Remarks
Start-up companies increasingly rely on referrals to
launch their businesses, and many of the great suc-
cess stories in recent memory have been driven by
customer referral programs. The rise of social media
makes it easier for companies to track referrals and
provide associated payments, greatly reducing the
costs of implementing these programs relative to tradi-
tional advertising. Social media also makes it easier
for consumers to refer their friends; emailing a link or
making a Facebook post requires far less effort than

9 This last condition ensures it is never optimal to fully discount the
product, thus avoiding issues that arise because of nonmonotone
optimal payments.

bringing up a product in conversation. These features
will ensure a continuing role for referral programs in
firms’ advertising mix.
Our decomposition of referral payments highlights

two distinct considerations when we design a referral
program: we need to compensate consumers for making
referrals, and we need to discount the product for
those who can bring in many referrals. Since there
is a limit to the discount we wish to offer, the latter
piece introduces a kink in the optimal discount as a
function of how many neighbors a consumer has. With
no restrictions on our referral payment function, this
kink can lead to unwieldy optimal payments that are
nonmonotonic in the number of successful referrals.
The same decomposition can guide our thinking

when we design simple payment schemes to approxi-
mate the optimal one. In our model, linear payments
can effectively compensate consumers for making refer-
rals, and threshold payments can provide a discount
to high-degree consumers while limiting over pay-
ments. As a result, each type of referral program has
different strengths and weaknesses depending on the
structure of the social network and the significance
of referral costs. Linear payments are more flexible
in general and will typically outperform threshold
payments. However, the combination of a fat-tailed
degree distribution with low marginal referral costs,
which is characteristic of many social-media settings,
favors threshold payments.
If we can implement a slightly more complex pay-

ment scheme, linear payments with a bonus may offer
a substantially better option. These functions combine
features of both linear and threshold payments. We
have two degrees of freedom, one that we can tailor to
compensate consumers for making referrals and one
that we can use to appropriately discount the product
for high-degree consumers. Regardless of the degree
distribution or the cost of referrals, this type of referral
program can offer a good approximation to the optimal
profit.
There are important limitations to our analysis that

present opportunities for future research. Although we
have included several extensions looking at the robust-
ness of our results, we have certainly not exhausted
all possibilities. One important phenomenon not yet
discussed is homophily, the tendency for individuals to
link to similar others. This suggests that friends should
not have independent valuations for a product; they
likely hold similar valuations. Although addressing
the effects of homophily on referral program design is
beyond the scope of our work, our model provides a
useful baseline from which to explore this and related
extensions.

The firm in our model has limited information about
the network of consumers, knowing only the degree
distribution. With access to social-media data, it is often
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possible to learn more about the network position of a
consumer, and it is possible to target offers to specific
individuals. With this additional information, a firm
will wish to discriminate between consumers using
more sophisticated measures of centrality. Studying
how optimal referral payments change when the firm
has access to this information offers another set of
extensions to explore.

Supplemental Material
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