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Distributed Subgradient Methods for Convex
Optimization Over Random Networks

Ilan Lobel and Asuman Ozdaglar, Member, IEEE

Abstract—We consider the problem of cooperatively minimizing
the sum of convex functions, where the functions represent local ob-
jective functions of the agents. We assume that each agent has infor-
mation about his local function, and communicate with the other
agents over a time-varying network topology. For this problem,
we propose a distributed subgradient method that uses averaging
algorithms for locally sharing information among the agents. In
contrast to previous works on multi-agent optimization that make
worst-case assumptions about the connectivity of the agents (such
as bounded communication intervals between nodes), we assume
that links fail according to a given stochastic process. Under the
assumption that the link failures are independent and identically
distributed over time (possibly correlated across links), we provide
almost sure convergence results for our subgradient algorithm.

I. INTRODUCTION

T HERE has been considerable interest in cooperative con-
trol problems in large-scale networks. Objectives range

from detecting and computing some information using a net-
work of sensors to allocating resources in large communication
networks. A common feature of these problems is the need for
a solution method that is completely decentralized and is not
computationally heavy, so that simple sensors or busy network
servers are not overburdened by it. We shall call these sensors
(or servers or routers) our agents, or alternatively, the nodes of
the network.

Such large networks are also often ad hoc in nature: the avail-
ability of a communication link between a given pair of agents
is usually random. In the case of sensor networks, the nodes rou-
tinely shut down their antennas in order to conserve energy and,
even when both sensors are trying to communicate with each
other, there are sometimes physical obstructions that block the
wireless channel.

These considerations necessitate designing methods that
solve optimization problems in a decentralized way using local
information and taking into consideration the fact that communi-
cation link between agents in the network is not always available.
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In this paper, we develop distributed subgradient methods for
cooperatively optimizing a global objective function, which is
a function of the individual agent objective functions. These
methods operate over a network with randomly varying connec-
tivity. Our approach builds on the seminal work by Tsitsiklis [22]
(see also Tsitsiklis et al. [23], Bertsekas and Tsitsiklis [2]), which
developed a general framework for parallel and distributed
computation among different processors, and on the recent work
by Nedić and Ozdaglar [14], which studied a distributed method
for cooperative optimization in multi-agent environments. Both
of these works make worst-case assumptions about communi-
cation link availability, such as bounded intercommunication
intervals between any two neighboring nodes in the network.
In contrast, in this paper, we assume that the communication
link availability is represented by a stochastic process. As such,
the presence of a communication link between any two nodes
at a given time period is a random event, which is possibly
correlated with the availability of other communication links in
the same interval. Our work is also related to the literature on
randomized consensus algorithms where the randomness may
be due to the choice of the randomized communication protocol
(as in the gossip algorithms studied in Boyd et al. [5]), or due
to the unpredictability in the environment that the information
exchange takes place (see Hatano and Mesbahi [9], Wu [25],
Tahbaz-Salehi and Jadbabaie [21] and Fagnani and Zampieri
[7]). Our paper uses a random graph model which is similar
to [21], and presents distributed subgradient methods that can
optimize general convex (not necessarily smooth) local objective
functions.

More specifically, our model involves a set of agents whose
goal is to cooperatively minimize a convex objective function

, where is the number of agents and the function
is the local objective of agent , known only by this

agent. Such problems arise in congestion control problems in
wireline networks, where heterogeneous users adjust their flow
rates to maximize their utility minus latency they experience
along their routes (see Kelly et al. [11]). Another application
area is distributed sensor networks where spatially distributed
sensors use their local measurements to estimate certain quan-
tities. The objective function of sensor can be represented as

, where is some random process ob-
served locally by agent and the function captures
the quality of agent ’s estimates (see [19]).

Our algorithm works as follows: each agent maintains a pair
of estimates and of the optimal solution of the opti-
mization problem at each point in time . Agent updates
the estimate by averaging the value of with the esti-
mates of neighboring nodes in the network and by taking a step
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in the direction given by the negative of the subgradient of func-
tion at value . The estimate is a long-run (time)
average of the values of .

Using a diminishing stepsize, we prove that agent estimates
converge to the same point in the optimal solution set with
probability one. For a constant stepsize, we show that, with
probability 1, the limit superior of the objective function values
of agents’ (averaged) estimates lies in a neighborhood of the
optimal value of the problem. We also characterize explic-
itly the error neighborhood in terms of the parameters of the
problem.

Our work is related to the literature on reaching consensus
on a particular scalar value or computing exact averages of the
initial values of the agents, which has attracted much recent at-
tention as natural models of cooperative behavior in networked-
systems (see Vicsek et al. [24], Jadbabaie et al. [10], Olfati-
Saber and Murray [16], Cao et al. [6], Olshevsky and Tsitsiklis
[17], [18], and Nedić et al. [13]). Our work is also related to the
utility maximization framework for resource allocation in net-
works (see Kelly et al. [11], Low and Lapsley [12], Srikant [20],
and Chiang et al. [8]). In contrast to this literature, we consider
a model with general (convex) agent performance measures.

The remainder of this paper is organized as follows: In
Section II, we formally introduce the model. Sections III–V
build the tools that we use to analyze our model: Section III de-
velops some results on the communication networks, Section IV
establishes some preliminary results about products of random
matrices and Section V studies the convergence properties of
the iterates of the subgradient method. Section VI concludes
the paper.

1) Basic Notation and Notions: A vector is viewed as a
column vector, unless clearly stated otherwise. We denote by

or the -th component of a vector . When for
all components of a vector , we write . For a matrix ,
we write or to denote the matrix entry in the -th row
and -th column. For an ordered pair , we also use the
notation to denote the entry of matrix . We write
to denote the -th row of the matrix , and to denote the
-th column of .

We denote the nonnegative orthant by , i.e.,
. We write to denote the transpose of a vector

. The scalar product of two vectors , is denoted
by . We use to denote the standard Euclidean norm,

. We write to denote the max norm,
.

A vector is said to be a stochastic vector when its
components , , are nonnegative and their sum is
equal to 1, i.e., . A square matrix is said to
be a stochastic matrix when each row of is a stochastic vector.
A square matrix is said to be a doubly stochastic matrix
when both and are stochastic matrices.

For a function , we denote the domain
of by , where

We use the notion of a subgradient of a convex function at
a given vector . We say that is a sub-

gradient of the function at when the following
relation holds:

for all (1)

The set of all subgradients of at is denoted by
(see [1]).

II. THE MODEL

We consider a network with a set of nodes (or agents)
. The goal of agents is to collectively minimize

a common additive cost. Each agent has information only about
one cost component, and minimizes that component while
exchanging information with other agents. In particular, the
agents want to solve the following unconstrained optimization
problem:

(2)

where each is a convex function. We denote
the optimal value of this problem by , which we assume to
be finite. We also denote the optimal solution set by , i.e.,

. Throughout the paper,
we assume that the optimal solution set is nonempty.

Each agent starts with some initial estimate (or information)
about the optimal solution of problem (2), which we denote by

. Agents communicate with neighboring agents and
update their estimates at discrete instances . We dis-
cretize time according to these instances and denote the estimate
of agent at time as .

At each time , we assume that agent receives informa-
tion from neigboring agents and updates his estimate.
We represent this update rule as

(3)

where the vector is a vector of weights for
agent and the sequence establishes the stepsizes. The
vector is a subgradient of agent objective function
at his current estimate . This update rule represents
a combination of new information from other agents in the net-
work and an optimization step along the subgradient of the local
objective function of agent . We note that the widely studied
linear averaging algorithms for consensus (or agreement) prob-
lems are special cases of the optimization update rule (3) when
the functions are identically equal to zero; see Jadbabaie et
al. [10] and Blondel et al. [4].

Let denote the vector comprised of the th components
of all agent estimates at time , i.e.,
for all . The update rule in (3) implies that the
component vectors of agent estimates evolve according to

where the vector is a vector
of the th component of the subgradient vector of each
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agent, and the matrix is a matrix with components
.

We adopt a probabilistic approach to model the availability of
communication links between different agents. In particular, we
assume that the matrix is a random matrix that describes
the time-varying connectivity of the network. The Section III
describes our assumptions on the random weight matrices .

A. Model of Communication

Assumption 1: (Weights) Let be a probability
space such that is the set of all stochastic matrices, is
the Borel -algebra on and is a probability measure on .

(a) There exists a scalar with such that
for all with probability 1.

(b) For all , the matrix is drawn independently
from probability space .

The assumption that is drawn from the set of
stochastic matrices implies that each agent takes a convex
combination of the information he receives from his neighbors
in the update rule (3). Assumption 1(a) ensures that each agent
gives significant weight to his own estimate at each
time . Assumption 1(b) states that the induced graph, i.e., the
graph where , is a
random graph that is independent and identically distributed
over time . Note that this assumption allows the edges of
the graph at any time to be correlated [see
also Hatano and Mesbahi [9] for a more specialized random
graph model, where each edge is realized randomly and in-
dependently of all other edges in the graph (i.e.,
according to an Erdös-Rényi random graph model), and Wu
[25] and Tahbaz-Salehi and Jadbabaie [21] for similar random
graph models]. Formally, we define a product probability space

. Assumption 1(b) implies
that the entire sequence is drawn from this product
probability space. We denote a realization in this probability
space by .

We next describe our connectivity assumption among the
agents. To state this assumption, we consider the expected
value of the random matrices , which in view of the
independence assumption over , can be represented as

for all (4)

We consider the edge set induced by the positive elements of the
matrix , i.e.,

and the corresponding graph , which we refer to as the
mean connectivity graph.

Assumption 2: (Connectivity) The mean connectivity graph
is strongly connected.

This assumption imposes a mild connectivity condition
among the agents and ensures that in expectation, the infor-
mation of an agent reaches every other agent directly or
indirectly through a directed path.

Finally, we assume without loss of generality that the scalar
of part (a) of the Weights Assumption [cf. Assumption

1(a)] provides a uniform lower bound on the positive elements
of the matrix , i.e.,

(5)

III. NETWORK COMMUNICATION PRELIMINARIES

This section constructs random communication events that
have the following property: if one such event occurs, then in-
formation has propagated from each agent to every other agent.
We establish bounds on the probability of such an event occur-
ring and the ’amount’ of information that propagates when it
happens. These events are used in forthcoming sections to ana-
lyze the convergence of the distributed subgradient method.

We introduce the transition matrices for any and
with as

(6)

for all and with , where for all
. Using the transition matrices, we can relate the generated

estimates of (3) as follows: for any , and any and
with

(7)

(see [14] for more details). As seen from the preceding rela-
tion, we need to understand the convergence properties of the
transition matrices to study the asymptotic behavior of
the estimates . These properties are established in the fol-
lowing two lemmas. Deterministic variations of these lemmas
have been proven in [14].

The first lemma provides positive lower bounds on each
entry of the transition matrix . Such bounds are
obtained under the condition that the matrix entry
satisfies , for some time with , or
equivalently information is exchanged on link at time .
We say that link is activated at time when
and use the edge set to identify such edges, i.e., for any

, the set denotes the set of edges induced by the
sufficiently positive elements of the matrix

(8)

Lemma 1: Let Weights Assumption hold [cf. Assumption 1].
The following statements hold with probability one:

(a) for all , and and with
.

(b) for all and with and
all for some .

(c) Let for some and for
some . Then, for all .

Proof: For parts (a) and (b), we let be arbitrary and prove
the relations by induction on .
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(a) By the definition of the transition matrices (6) and As-
sumption 1(a), we have . Thus,
the relation holds for .
Now, assume that for some with we have

, and consider . By
the definition of the matrix , we have

where the inequality follows from the nonnegativity of the
entries of . By using the inductive hypothesis and
the relation [cf. Assumption 1(a)], we
obtain

establishing the relation.
(b) Let . Then, by the definition of the set

and the transition matrices (i.e., ), it fol-
lows that the relation holds for

and any . Assume now that for
some and all with ,
we have . Consider , and let

for some . There are two
possibilities: or .
Suppose first that . Then by the induction
hypothesis, we have . Therefore

where the second inequality follows from the fact that
[cf. Assumption 1(a)].

Suppose now that , i.e., . By
the definition of , we have .
Moreover, since by part (a) of the
lemma, we obtain

completing the induction.
(c) Let for some and for

some . We have

By the definition of the edge set , we have
. By part (b), since and , we have

Fig. 1. Strongly connected mean connectivity graph and the two directed span-
ning trees rooted at node on this graph. The figure illustrates the labeling of
the edges on the in-tree and the out-tree according to the proce-
dure described in the text. Note that the edges on all directed paths are labeled
in nondecreasing order.

Combining these relations, we obtain

We next construct a probabilistic event in which the edges of
the graphs are activated over time in such a way that
information propagates from every agent to every other agent in
the network.

To define this event, we fix a node and consider two
directed spanning trees in the mean connectivity graph :
an in-tree rooted at , denoted by (i.e., there exists a di-
rected path from every node to on the tree), and an
out-tree rooted at , denoted by (i.e., there exists a di-
rected path from to every node on the tree). Under the
assumption that the mean connectivity graph is strongly
connected (cf. Assumption 2), these spanning trees exist and
each contain edges (see [3]).

We consider a specific ordering of the edges of these span-
ning trees. In particular, for the in-tree , we pick an arbi-
trary leaf node and label the adjacent edge as ; then we pick
another leaf node and label the adjacent edge as ; we repeat
this until all leaves are picked. We then delete the leaf nodes and
the adjacent edges from the spanning tree , and repeat the
same process for the new tree. This edge labeling ensures that
on any directed path from a node to node , edges are
labeled in nondecreasing order.

Similarly, for the out-tree , we pick a directed path from
node to an arbitrary leaf and sequentially label the edges on
the directed path; we then consider a directed path from node

to another leaf and label the unlabeled edges on the path se-
quentially from the root node to the leaf;1 we continue until all
directed paths to all the leaves are exhausted. We represent the
edges of the two spanning trees with the order described above
as

(9)

(see Fig. 1).
We define the probabilistic event that ensures information ex-

change across the network as follows. Recall that for any edge
, the notation denotes the entry of the matrix

1Note that this edge labeling ensures that all edges are labeled in a nonde-
creasing order on this path; otherwise there would exist an “out-of-order” edge
on this path, implying that it was labeled before the edges that precede it on the
path, i.e., it belongs to another directed path that originates from root node on
the tree , but it can be seen that this creates a cycle on the tree —a
contradiction.
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. Given any time , we define the following events for all

(10)

(11)

as well as

(12)

for . For all , the event denotes the
event that edge is activated at time , and the
event denotes the event that edge is activated
at time . Hence, for any , the event

denotes the event in which each edge in the spanning trees
and are activated sequentially following time in

the order given in (9).
Lemma 2: Let Weights and Connectivity Assumptions hold

[cf. Assumptions 1 and 2]. For any , let ,
where the event is defined in (12). Then, we have

for all and

Proof: Let , be arbitrary. If , then by Lemma 1(a),
we have

Suppose now that . By Connectivity assumption (cf. As-
sumption 2), there exists a path

from with edges on the in-tree , i.e.,
for each edge , , there exists some

such that [cf. (9)]. More-
over, in view of the ordering of the edges on the in-tree ,
it follows that the sequence is nondecreasing.
Since by assumption , it follows from the definition
of the event [cf. (12)] that

for all

and for some nondecreasing sequence that belongs to the
set . By the definition of the edge set , i.e.,

[cf. (8)], this implies that

for all (13)

for some nondecreasing sequence .
Similarly, by the connectivity assumption (cf. Assumption 2),

there exists a path
from with edges on the out-tree , i.e., for each
edge , , there exists some

such that [cf. (9)]. The ordering
of the edges on the out-tree implies that the sequence

is nondecreasing. Using again the assumption

and the definition of the event [cf. (12)], we
have

for

from which we obtain

for all (14)

for some nondecreasing sequence .
Combining (13)–(14) with Lemma 1(c), it follows that, for all

for all

establishing the desired relation.
The previous lemma states that for any , if the event

occurs, then every entry of the transition matrix is
uniformly bounded away from 0 for sufficiently large . In the
next lemma, we show that the event occurs with positive
probability and provide a positive uniform lower bound on the
probability over all .

Lemma 3: Let Weights and Connectivity Assumptions hold
[cf. Assumptions 1 and 2]. For any , the following hold:

(a) For all , The events and are
mutually independent and

and

(b) .
Proof:

(a) Given any , each event and , for
, is associated with a distinct time, i.e., each

such event belongs to the -algebra generated by .
By Assumption 1(b), it follows that the events and

for all are mutually independent.
We next establish the lower bound on . By the
definition of the event [cf. (10)], we have for any

and

The Markov inequality states that for any nonnegative
random variable with a finite mean , the proba-
bility that the outcome of the random variable exceeds
any given scalar satisfies

By applying the Markov inequality to the random variable
(which is nonnegative and has finite ex-

pectation in view of the assumption that the matrix
is a stochastic matrix for all ), we obtain
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Combining the preceding two relations, we have

By the independence of the matrices and the defini-
tion of the mean matrix [cf. (4)], we have

where the inequality follows from the bound in (5). Using
this bound in the preceding relation, we obtain

where the last inequality follows from the fact that
[cf. Assumption 1(a)].

(b) By the definition of the event in (12), and the inde-
pendence of the events and , we immediately
have

where the second inequality follows from part (a) of this
lemma.
Thus, we have constructed an event for each
such that and, if it occurs, it implies
that information is exchanged between all agents, i.e.,

IV. RANDOM MATRICES

In this section, we analyze some properties of products of
random matrices that are essential to our analysis. We start by
analyzing sequences of deterministic matrices and then proceed
to use large deviations theory to analyze sequences of random
matrices.

The following lemma is based on a similar result from Nedic
and Ozdaglar [14] and relates to a seminal result from Tsitsiklis
[22]. We skip the proof because it is very similar to the proof of
Lemma 3 in [14].

Lemma 4: Let be a sequence of stochastic matrices
(with rows and columns) and let be a scalar. As-
sume that for any and any element ,

. Then
(a) The limit exists.
(b) The matrix is stochastic and its rows are identical.
(c) The convergence of to is geometric:

for all .
To obtain convergence of the subgradient method, we need

the matrices to be doubly stochastic.

Assumption 3: (Doubly Stochastic Weights) Let the weight
matrices , satisfy Weights Rule [cf. Assump-
tion 1]. Assume further that the matrices are doubly sto-
chastic with probability 1.

One sufficient condition for a stochastic matrix to be doubly
stochastic is symmetry. If every pair of agents coordinate their
weights when they communicate so that they use the same co-
efficients, i.e., for each , for all

with probability 1, then doubly stochasticity is sat-
isfied.2

Lemma 5: be a sequence of doubly stochastic matrices
(with rows and columns) such that the product con-
verges to . Then, any element of sat-
isfies . Furthermore, if for all , all elements of
are greater than or equal to some , i.e., for all
, , then for all

Proof: Since the matrix is doubly stochastic for all ,
the limit matrix is also doubly stochastic. In view of Lemma
4(b), the limit matrix has identical rows, i.e., there exists a
vector such that . Therefore, we have ,
implying that . The second claim of the lemma
follows immediately from for all , and
Lemma 4(c).

Lemma 5 suggests a way to measure how distant a product
of doubly matrices is from its limit. Let us then introduce the
metric

(15)
The following lemma states that if independent events of

the form , for , occur between times and
with , then decays geometrically in .

This is a lemma about deterministic matrices, because the result
is conditional on the occurrence of the random events ,

.
Lemma 6: Let Connectivity and Doubly Stochastic Weights

Assumptions hold [cf. Assumptions 2 and 3]. Let be a positive
integer and consider scalars

. Further assume that for each
and . For a fixed realization , let

be defined as in (15) and assume that events occur for
each . Then

(16)

Proof: For the fixed realization , define the following
matrices:

2This will be achieved when agents exchange information about their esti-
mates and “planned” weights simultaneously and set their actual weights as the
minimum of the planned weights; see [14] where such a coordination scheme is
described in detail.
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for

and

where is replaced by an identity matrix wherever the first
parameter of is smaller than the second. Note that

For each from 1 to , is a product of two or three matrices.
Because we assume that the event occurs for each , the
second matrix of each , , has all elements
greater than or equal to by Lemma 2, i.e.,

This minimum element property remains when we multiply a
matrix by any doubly stochastic matrix. Since is assumed
to always be doubly stochastic, it follows that

for all

Hence, the product of matrices satisfies all the condi-
tions of Lemma 5, with . Therefore

Since , the left-hand side of the equation
above is equal to the definition of . Thus, we obtain (16).

We use the preceding result to show that the expected value
of the metric decays geometrically in , which is
formalized in the next lemma.

Lemma 7: (Geometric Decay) Let Connectivity and Doubly
Stochastic Weights Assumptions hold [cf. Assumptions 2 and
3]. Then

for all (17)

where and are given by

(18)

(19)

Proof: To obtain this result, we first divide the interval
into a number of intervals of length . We then

proceed to use the independence of the events during these sep-
arate intervals to get (17).

Let the number of desired intervals of be given by

(20)

Let for be a sequence of independent Bernoulli
random variables with success probability . For each ,
let the random variable be correlated with the realization
in the following way: if , then the event

occurs. Note that the events for
different ’s are independent, and, therefore, this construction is
valid.

We condition the random variable on to
bound it’s expected value

Since all the terms in the right-hand side of the equation above
are smaller than 1, the following bound holds:

(21)

To complete this lemma, we separately bound the two terms on
the right-hand side of the equation above. By Lemma 6, we get
that if more than events of the form

occur then

where the last inequality follows from for
all . By integrating over all possible events that satisfy

(22)

From large deviation theory, we can use Hoeffding’s inequality
to bound . From Hoeffding’s in-
equality, we get that for any

By letting we obtain
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which combined with (21) and (22), produces

(23)

From (20), we can construct the following bound on :

(24)

By using the bound of (24) for the value of in (23), we obtain

which completes the lemma.
The preceding lemma establishes that for all ,

decays exponentially in . Combined with the results of
Section V, this will enable us to analyze the iterates of the dis-
tributed subgradient method.

V. ANALYSIS OF THE SUBGRADIENT METHOD

In this section, we study the convergence behavior of the it-
erates of the distributed subgradient method given in (3).
We start by analyzing the asymptotic disagreement in the iter-
ates (or agent estimates). We provide uniform upper bounds on
the “disagreement in agent estimates” that hold at each iteration
and for any stepsize sequence. We also establish almost sure
agreement in the limit under some assumptions on the stepsize
sequence. We then analyze the convergence of agent estimates
to the optimal solution of problem (2).

A. Disagreement in Agent Estimates

We first study the asymptotic disagreement in agent esti-
mates. Using the linearity of the update rule given in (3) and
the definition of the transition matrices [cf. (6)], we have shown
that the iterates generated by this method satisfy the following
relation: for any , and any and with

(25)

[cf. (7)].
To analyze the disagreement in the iterates for all

, we find it useful to introduce a related sequence ,
with for all , defined as follows: Let the initial
iterate be given by

(26)

At time , the iterate is obtained by

(27)

Equivalently, for all , is given by

(28)

The iterate represents a centralized combination of all the
information that has become available in the system by time .
Since the vector denotes a subgradient of the agent ob-
jective function at , iteration (27) can be viewed
as an approximate subgradient method, in which a subgradient
at is used instead of a subgradient at . Our
goal is to provide bounds on the norm of the difference between

and , and use these bounds and the behavior of the
approximate subgradient method to analyze the convergence of
the estimates .

We adopt the following standard assumption in our analysis.
Assumption 4: (Bounded Subgradients) Assume there exists

a scalar such that for any , any , all subgradients
satisfy .

This assumption is satisfied, for example, when each is
polyhedral (i.e., is the pointwise maximum of a finite number
of affine functions). We also assume in the remainder of the
paper

(29)

where denotes the initial vector (estimate) of agent . This
assumption is for notational convenience and can be relaxed at
the expense of additional terms in the estimates which do not
change the asymptotic results.

The following proposition provides a uniform bound on the
norm of the difference between and that holds for
all and all . We also consider the (weighted)
averaged-vectors and defined for all as

and (30)

(31)

and provide a bound on the norm of the difference between
and .

Proposition 1: Let Bounded Subgradients assumption hold
[cf. Assumption 4]. Let the sequence be generated by it-
eration (27), and the sequences for be generated
by iteration (3).

(a) For all and , an upper bound on
is given by

where we define for convenience.
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(b) For all and , an upper bound on
is given by

where we let for convenience.
Proof:

(a) Substituting in (25), we obtain

Subtracting the preceding relation from (28) and taking
the norm, we obtain for all and

Therefore, for all and

Using the assumption that , the
Bounded Subgradients assumption [cf. Assumption 4],
and the definition

[cf. (15)], it follows from the preceding relation that for
all and

where we used . This establishes part (a).

(b) Using the definition of the averaged-vectors in (30), (31),
we obtain for all and

(32)

Since is the average of for all and
, [cf. (26) and (29)]

Using this bound in (32)

Using the estimate in part (a) for and the
convention that for , we obtain

which completes the proof.
We next study the almost sure convergence properties of the

sequences under some additional assump-
tions on the stepsize sequence . We rely on the following
standard convergence result for sequences of random variables,
which is an immediate consequence of the supermartingale con-
vergence theorem (see Bertsekas and Tsitsiklis [2]).

Lemma 8: Consider a probability space and let
be an increasing sequence of -fields contained in .

Let and be sequences of nonnegative random
variables (with finite expectation) adapted to that sat-
isfy

Then, converges with probability one, as .
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The following lemma on the infinite sum of products of the
components of two sequences will also be used in establishing
our convergence results (see Lemma 7 in [15] for the proof).

Lemma 9: Let and let be a positive scalar
sequence. Assume that Then

In addition, if then

The next proposition shows that under some assumptions on
the stepsize, the sequences converge to zero
with probability one, thus establishing almost sure agreement
among agent estimates in the limit.

Proposition 2: Let Connectivity, Doubly Stochastic Weights,
and Bounded Subgradients assumptions hold [cf. Assumptions
2, 3, and 4]. Let the sequence be generated by itera-
tion (27), and the sequences for be gener-
ated by iteration (3). Assume that the stepsize sequence satisfies

. Then, for all , we have
(a) with probability 1.
(b) with probability 1.

Proof:
(a) By multiplying the relation in Proposition 1(a) with ,

we obtain

Taking the expectation and using the estimate from
Lemma 7, i.e.,

for all

where and are given by (18), (19), we
have

Using the relations
and for any and
, this implies that

Summing over and grouping some of the terms, we
obtain

In this relation, the first term is summable since
and the second term is summable

by Lemma 9, showing that

By the monotone convergence theorem, this implies that

and therefore

with probability

(b) Using the iterations (3) and (27), we obtain for all
and

Therefore, using the stochasticity of the weights
and the subgradient boundedness, we obtain

Taking the square of both sides and using the convexity of
the squared-norm function , this yields

Summing over all and using the doubly stochasticity of
the weights (i.e., for all ), we
have for all
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By part (a) of this lemma, we have
with probability 1. Since, we also have

, Lemma 8 applies and implies that
converges with probability 1, as

.
We next show that the sequence converges

to zero with probability 1 for all . Taking the expectation
in the relation in Proposition 1(a) and using the estimate from
Lemma 7, we obtain

Since as , Lemma 9 implies that
. Therefore, taking the

limit inferior in the preceding relation and using Fatou’s Lemma
(which applies since the random variables are
nonnegative for all and ), we obtain

Thus, the nonnegative random variable
has expectation 0, which implies that

with probability

Since converges with probability 1, as
, this implies that for all

with probability

completing the proof.

B. Convergence of Agent Estimates

This section studies the convergence of the agent estimates to
the optimal solution of problem (2). We first establish a relation
for the squared-distance of the iterates to the optimal so-
lution set , which will be key in the convergence analysis of
the distributed subgradient method. This relation was proven in
[14], and, therefore, the proof is omitted. In the following lemma
and thereafter, we use the notation .

Lemma 10: Let the sequence be generated by itera-
tion (27), and the sequences for be generated
by iteration (3). Let be a sequence of subgradients such
that for all and . We then have
for all and any

The next proposition establishes upper bounds on the dif-
ference of the objective function value of the averaged iterates
[ and ] from the optimal value . It relies on com-
bining the bounds on the difference between the iterates given
in Proposition 1 with the preceding lemma.

Proposition 3: Let Bounded Subgradients assumption hold
[cf. Assumption 4]. Let the sequence be generated by it-
eration (27), and the sequences for be generated
by iteration (3).

(a) Let be the averaged vector defined in (31). An upper
bound on the objective function is given by

(b) Let be the averaged vector defined in (30). An upper
bound on the objective value for each is given
by

Proof:
(a) By using Lemma 10 and the Bounded Subgradients as-

sumption [cf. Assumption 4], we have for all

Summing the preceding relation for , we
obtain for

Since , this yields
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Using the estimate from part (a) of Proposition 1, we
obtain

Multiplying this relation by , we obtain

(33)

By the convexity of the function , we have

where . Com-
bining this relation with (33) yields the desired result.

(b) We next prove the estimate for . Using the
subgradient definition for the averaged-vectors , we
have for all and all

where is a subgradient of the objective function
at . Since by assumption for all ,

, and , it follows that

Using the estimate in part (a) and part (b) of Proposition
1, we obtain for all and

which yields the desired result.

We use the previous two lemmas to study the convergence
of the iterates of the distributed subgradient method under
two stepsize rules: a diminishing stepsize rule, whereby the

stepsize sequence satisfies and
, and a constant stepsize rule, whereby the

the stepsize sequence is such that for some
constant and all .

The next theorem contains our main convergence result for
the diminishing stepsize rule.

Theorem 1: Let Connectivity, Doubly Stochastic Weights,
and Bounded Subgradients assumptions hold [cf. Assumptions
2, 3, and 4]. Let the sequences for be generated
by iteration (3) with the stepsize satisfying
and . Then, there exists an optimal point

such that for all

with probability

Proof: From Lemma 10 and using the subgradient bound-
edness, we have for all and any

(34)

Summing the preceding relation over , we obtain

Using with probability
1 (cf. Proposition 2) and the assumption , it
follows that

with probability

Together with and the assumption
, this implies that

with probability (35)

We next show that each sequence converges to
the same optimal point. By dropping the nonnegative term

in (34), we obtain

We have with probability
1 from Proposition 2(a) and by assumption.
Therefore, it follows from Lemma 8 that the sequence

converges with probability 1 for every . Since
is bounded, it must have a limit point, and in view of (35)

and the continuity of (due to convexity of over ), one
of the limit points of must belong to ; denote this
limit point by . Since the sequence is conver-
gent, it follows that can have a unique limit point, i.e.,
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with probability 1. Together with Propo-
sition 2(b), i.e., with probability 1
for all , this implies that every sequence converges
to the same with probability 1.

Our final result concerns the convergence properties of the
averaged iterates under a constant stepsize rule.

Theorem 2: Let Connectivity, Doubly Stochastic Weights and
Bounded Subgradients assumptions hold [cf. Assumptions 2, 3
and 4]. Assume also that for some constant , for all

. Then, for all and all

(36)

with probability 1.
Proof: Proposition 3(b) provides the following bound for

all and all

(37)

once we replace with a constant . We can simplify the
double sum in the equation above since is defined to
be equal to 0 [cf. Prop. 1(b)]

Taking the limit superior of both sides of (37) as goes to in-
finity, we obtain

Since for any

To complete this proof, we need to show that

with probability (38)

To construct the bound of (38), we decompose the double sum
above into averages of independent, identically distributed
random variables. Note that is identically distributed to

if . Therefore, we rewrite

(39)

where all the terms with the same index have the same dis-
tribution. From the construction of , we have that if

, then is independent of . To exploit
this independence, we rephrase the terms of (39) for any given

and

(40)

where the operator determines the remainder of a division.
In the double sum of (40), all the terms with the same and
are independent and identically distributed. In particular, for any
given , and , the sum

includes at most terms, all independent and
distributed according to . Therefore, we can construct a
family of random variables such that

(41)

and is the sum of exactly independent
terms distributed according to . The variable takes
value in and satisfies from Lemma 7.
Using Hoeffding’s inequality, we obtain that for any positive
constant

Using a union bound, we obtain that for any , and any

Scaling the sum above by , we obtain

(42)

Note that
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and, therefore, (42) can be simplified to

We now select the family of terms in order to balance both
sides of the equation above. By restricting ourselves to
for all and , we obtain

Let . Then

Consider the case where . In this case,
and, therefore

Using a union bound for all from 0 to , we
obtain

which can be relaxed to

yielding

This combined with (41) produces

(43)

We next consider the case . By the monotone
convergence theorem, we have that for any

where the inequality follows from Lemma 7. We can relax the
inequality above to obtain

which yields

From Markov’s inequality, we know that for any non-negative
random variable , . Applying it
on the equation above, we obtain

(44)

Using a union bound, we combine (43) and (44) to get for any

(45)
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Using the Borel-Cantelli Lemma on (45), we get that

(46)

occurs only for finitely many ’s if

The two terms in the summation above can be upper bounded
by integrals. The first term is finite since

and the second one is finite as well for any given
since

Therefore, we obtain that with probability 1, (46) holds only for
finitely many ’s. Thus

proving (38).
Our last result thus shows that with a constant stepsize rule,

we can bound (with probability 1) the difference of the objective
function value of the iterate from the optimal value of
problem (2).

VI. CONCLUSION

In this paper, we present a distributed subgradient method
for minimizing a sum of convex functions, where each of the
component function represents a cost function for an individual
agent, known by that agent only. The method involves the agents
maintaining estimates of the solution of the global optimization
problem and updating them by averaging with neighbors in the
network and by taking a subgradient step using their local ob-
jective function. Under the assumption that the availability of
communication links is represented by a stochastic process, we
provide a convergence analysis for this method.

In particular, we consider related estimates —the
long-run average of the local estimate —for each agent .

With diminishing stepsizes, we show that the objective function
value (or cost) of the estimates converges with probability 1
to the optimal cost. With a constant stepsize, the objective
function value (or cost) of the averaged estimates converges
with probability 1 to a neighborhood of the optimal cost.

This paper contributes to a large and growing literature on
multi-agent control and optimization. There are many direc-
tions in which this research can be extended meaningfully: ana-
lyzing this problem with a stochastic process that is not indepen-
dent and identically distributed over time could allow our sub-
gradient method to be used, for example, in a scenario where
the sensors are mobile; relaxing the doubly stochasticity as-
sumption would permit nonsymmetric communication between
agents; introducing random message delays would add an im-
portant real-world phenomenon to this model; and considering
constrained optimization would also add to the applicability of
this model.

REFERENCES
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[13] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On dis-
tributed averaging algorithms and quantization effects,” IEEE Trans.
Autom. Control, vol. 54, no. 1, pp. 2506–2517, Nov. 2009.
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