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B Appendix - Omitted Proofs

Proof of Proposition 1 Consider a network consisting of two agents solving a one-dimensional
minimization problem. The first agent’s objective function is f1(x) = −x, while the second
agent’s objective function is f2(x) = 2x. Both agents’ feasible sets are equal to X1 = X2 =
[0,∞). Let x1(0) ≥ x2(0) ≥ 0. The elements of the communication matrix are given by

a1,2(k) = a2,1(k) =





γ, with probability min

�
δ,

1
|x1(k)−x2(k)|C

�
;

0, with probability 1−min
�
δ,

1
|x1(k)−x2(k)|C

�
,

for some γ ∈ (0, 1/2] and δ ∈ [1/2, 1).
The optimal solution set of this multi-agent optimization problem is the singleton X

∗ =
{0} and the optimal solution is f∗ = 0. We now prove that limk→∞ x1(k) = ∞ with probability
1 implying that limk→∞ |f(x1(k))− f

∗| = ∞.
From the iteration in Eq. (2), we have that for any k,

x1(k + 1) = a1,1(k)x1(k) + a1,2(k)x2(k) + α (37)

x2(k + 1) = max{0, a2,1(k)x1(k) + a2,2(k)x2(k)− 2α}. (38)

We do not need to project x1(k + 1) onto X1 = [0,∞) because x1(k + 1) is non-negative
if x1(k) and x2(k) are both non-negative. Note that since γ ≤ 1/2, this iteration preserves
x1(k) ≥ x2(k) ≥ 0 for all k ∈ N.

We now show that for any k ∈ N and any x1(k) ≥ x2(k) ≥ 0, there is probability at least
� > 0 that the two agents will never communicate again, i.e.,

P (a1,2(k
�) = a2,1(k

�) = 0 for all k� ≥ k|x(k)) ≥ � > 0. (39)

If the agents do not communicate on periods k, k + 1, ..., k + j − 1 for some j ≥ 1, then

x1(k + j)− x2(k + j) = (x1(k + j)− x1(k)) + (x1(k)− x2(k)) + (x2(k)− x2(k + j))

≥ αj + 0 + 0,

from Eqs. (37) and (38) and the fact that x1(k) ≥ x2(k). Therefore, the communication
probability at period k + j can be bounded by

P (a1,2(k + j) = 0|x(k), a1,2(k�) = 0 for all k� ∈ {k, ..., k + j − 1}) ≥ 1−min{δ, (αj)−C}.

Applying this bound recursively for all j ≥ k, we obtain

P (a1,2(k
�) = 0 for all k� ≥ k|x(k))

=
∞�

j=0

P (a1,2(k + j) = 0|x(k), a1,2(k�) = 0 for all k� ∈ {k, ..., k + j − 1})

≥
∞�

j=0

�
1−min{δ, (αj)−C}

�

for all k and all x1(k) ≥ x2(k). We now show that
�∞

j=0

�
1−min{δ, (αj)−C}

�
> 0 if C > 1.

Define the constant K =

�
2

1
C

α

�
. Since δ ≥ 1/2, we have that (αj)−C ≤ δ for j ≥ K. Hence,

we can separate the infinite product into two components:

∞�

j=0

�
1−min{δ, (αj)−C}

�
≥




�

j<K

�
1−min{δ, (αj)−C}

�







�

j≥K

�
1− (αj)−C

�


 .
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Note that the term in the first brackets in the equation above is a product of a finite number of
strictly positive numbers and, therefore, is a strictly positive number. We, thus, have to show
only that

�
j≥K

�
1− (αj)−C

�
> 0. We can bound this product by

�

j≥K

�
1− (αj)−C

�
= exp



log




�

j≥K

�
1− (αj)−C

�








= exp




�

j≥K

log
�
1− (αj)−C

�


 ≥ exp




�

j≥K

−(αj)−C log(4)



 ,

where the inequality follows from log(x) ≥ (x− 1) log(4) for all x ∈ [1/2, 1]. Since C > 1, the
sum

�
j≥K(αj)−C is finite and

�∞
j=0

�
1−min{δ, (αj)−C}

�
> 0, yielding Eq. (39).

Let K∗ be the (random) set of periods when agents communicate, i.e., a1,2(k) = a2,1(k) =
γ if and only if k ∈ K

∗. For any value k ∈ K
∗ and any x1(k) ≥ x2(k), there is probability

at least � that the agents do not communicate after k. Conditionally on the state, this is an
event independent of the history of the algorithm by the Markov property. If K∗ has infinitely
many elements, then by the Borel-Cantelli Lemma we obtain that, with probability 1, for
infinitely many k’s in K

∗ there is no more communication between the agents after period
k. This contradicts the infinite cardinality of K

∗. Hence, the two agents only communicate
finitely many times and limk→∞ x1(k) = ∞ with probability 1. ��
Proof of Lemma 1 Letting s = 0 in Eq. (7) yields,

xi(k) =
m�

j=1

[Φ(k − 1, 0)]ijxj(0)

−
k−1�

r=1

m�

j=1

[Φ(k − 1, r)]ijα(r − 1)dj(r − 1)− α(k − 1)di(k − 1)

+
k−1�

r=1

m�

j=1

[Φ(k − 1, r)]ijej(r − 1) + ei(k − 1).

Since the matrices A(k) are doubly stochastic with probability one for all k (cf. Assumption 3),
it follows that the transition matrices Φ(k, s) are doubly stochastic for all k ≥ s ≥ 0, implying
that every entry [Φ(k, s)]ij belongs to [0, 1] with probability one. Thus, for all k we have,

�xi(k)� ≤
m�

j=1

�xj(0)� +
k−1�

r=1

m�

j=1

α(r − 1)�dj(r − 1)�+ α(k − 1)�di(k − 1)�

+
k−1�

r=1

m�

j=1

�ej(r − 1)�+ �ei(k − 1)�.

Using the bound L on the subgradients, this implies

�xi(k)� ≤
m�

j=1

�xj(0)�+
k−1�

r=0

mLα(r) +
k−1�

r=0

m�

j=1

�ej(r)�.

Finally, the fact that �xi(k)− xh(k)� ≤ �xi(k)�+ �xh(k)� for every i, h ∈ M, establishes the
desired result. ��
Proof of Lemma 2 (a) The proof is based on the fact that the communication matrices A(k)
are Markovian on the state x(k), for all time k ≥ 0. First, note that

P (G(k)|x(s) = x) = P

�
m−1�

l=1

�
Bl(k) ∩Dl(k)

������x(s) = x

�

= P

�
m−1�

l=1

Bl(k)

�����x(s) = x

�
P

�
m−1�

l=1

Dl(k)

�����

m−1�

l=1

Bl(k), x(s) = x

�
. (40)
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To simplify notation, let W = 2m(L+M). We show that for all k ≥ s,

inf
x∈RM (s)

P

�
m−1�

l=1

Bl(k)

�����x(s) = x

�
≥ min

�
δ,

K

(∆+W
�k+2m−3

r=1 α(r))C

�(m−1)

. (41)

We skip the proof of the equivalent bound for the second term in Eq. (40) to avoid repetition.
By conditioning on x(k) we obtain for all k ≥ s,

inf
x∈RM (s)

P

�
m−1�

l=1

Bl(k)

�����x(s) = x

�
=

inf
x∈RM (s)

�

x�∈Rm×n
P

�
m−1�

l=1

Bl(k)

�����x(k) = x
�
, x(s) = x

�
dP (x(k) = x

�|x(s) = x).

Using the Markov Property, we see that conditional on x(s) can be removed from the right-
hand side probability above, since x(k) already contains all relevant information with respect
to ∩m−1

l=1 Bl(k). By the definition of RM (·) [see Eq. (9)], if x(s) ∈ RM (s), then x(k) ∈ RM (k)
for all k ≥ s with probability 1. Therefore,

inf
x∈RM (s)

P

�
m−1�

l=1

Bl(k)

�����x(s) = x

�
≥ inf

x∈RM (k)
P

�
m−1�

l=1

Bl(k)

�����x(k) = x
�
�

. (42)

By the definition of B1(k),

inf
x∈RM (k)

P

�
m−1�

l=1

Bl(k)

�����x(k) = x

�
= (43)

inf
x∈RM (k)

P (ae1 (k) ≥ γ|x(s) = x)P

�
m−1�

l=2

Bl(k)

�����ae1 (k) ≥ γ, x(k) = x

�
.

Define

Q(k) = min





δ,

K
�
∆+W

�k
r=1 α(r)

�C





,

and note that, in view of the assumption imposed on the norm of the projection errors and
based on Lemma 1, we get

max
i,h∈M

�xi(k)− xh(k)� ≤ ∆+W

k−1�

r=0

α(r).

Hence, from Eq. (6) we have

P (aij(k) ≥ γ|x(k) = x) ≥ Q(k). (44)

Thus, combining Eqs. (43) and (44) we obtain,

inf
x∈RM (k)

P

�
m−1�

l=1

Bl(k)

�����x(k) = x

�
≥ Q(k) inf

x∈RM (k)
P

�
m−1�

l=2

Bl(k)

�����ae1 (k) ≥ γ, x(k) = x

�
.

(45)
By conditioning on the state x(k + 1), and repeating the use of the Markov property and the
definition of RM (k + 1), we can bound the right-hand side of the equation above,

inf
x∈RM (k)

P

�
m−1�

l=2

Bl(k)

�����ae1 (k) ≥ γ, x(k) = x

�

= inf
x∈RM (k)

�

x�
P

�
m−1�

l=2

Bl(k)

�����x(k + 1) = x
�
�

dP (x(k + 1) = x
�|ae1 (k) ≥ γ, x(k) = x)

≥ inf
x�∈RM (k+1)

P

�
m−1�

l=2

Bl(k)

�����x(k + 1) = x
�
�

. (46)
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Combining Eqs. (43), (45) and (46), we obtain

inf
x∈RM (k)

P

�
m−1�

l=1

Bl(k)

�����x(k) = x

�
≥ Q(k) inf

x∈RM (k+1)
P

�
m−1�

l=2

Bl(k)

�����x(k + 1) = x
�
�

.

Repeating this process for all l = 1, ...,m− 1, this yields

inf
x∈RM (k)

P

�
m−1�

l=1

Bl(k)

�����x(k) = x

�
≥

m−1�

l=1

Q(k + l − 1).

Since Q is a decreasing function,
�m−1

l=1 Q(k + l − 1) ≥ Q(k + 2m − 3)m−1. Combining with
Eq. (42), we have that for all k ≥ s

inf
x∈RM (s)

P

�
m−1�

l=1

Bl(k)

�����x(s) = x

�
≥ Q(k + 2m− 3)m−1

,

producing the desired Eq. (41).

(b) Let G
c(k) represent the complement of G(k). Note that

P

�
u−1�

l=0

G(k + 2(m− 1)l)

�����x(k) = x

�
= 1− P

�
u−1�

l=0

G
c(k + 2(m− 1)l)

�����x(k) = x

�
.

By conditioning on G
c(k), we obtain

P

�
u−1�

l=0

G
c(k + 2(m− 1)l)

�����x(k) = x

�
=

P (Gc(k)|x(k) = x)P

�
u−1�

l=1

G
c(k + 2(m− 1)l)

�����G
c(k), x(k) = x

�
.

We bound the term P (Gc(k)|x(k) = x) using the result from part (a). We bound the second
term in the right-hand side of the equation above using the Markov property and the definition
of RM (·), which is the same technique from part (a),

sup
x∈RM (k)

P

�
u−1�

l=1

G
c(k + 2(m− 1)l)

�����G
c(k), x(k) = x

�

= sup
x∈RM (k)

�

x�
P

�
u−1�

l=1

G
c(k + 2(m− 1)l)

�����x(k + 2(m− 1)) = x
�
�

×

dP (x(k + 2(m− 1)) = x
�|Gc(k), x(k) = x)

≤ sup
x∈RM (k+2(m−1))

P

�
u−1�

l=1

G
c(k + 2(m− 1)l)

�����x(k + 2(m− 1)) = x
�
�

.

The result follows by repeating the bound above u times. ��
Proof of Lemma 4 From Assumption 5, with p = 0, we obtain that there exists some K ∈ N
such that α(k) ≤ 1/k for all k ≥ K. Therefore,

∞�

k=0

α
2(k) ≤

K−1�

k=0

α
2(k) +

∞�

k=K

1

k2
≤ K max

k∈{0,...,K−1}
α
2(k) +

π
2

6
< ∞.

Hence, {α(k)}k∈N is square summable. Now, let α(k) = 1
(k+2) log(k+2) for all k ∈ N. This

sequence of stepsizes satisfies Assumption 5 and is not summable since for all K� ∈ N

K��

k=0

α(k) ≥ log(log(K� + 2))
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and limK�→∞ log(log(K� + 2)) = ∞. ��
Proof of Proposition 3 From Assumption 2, we have that there exists a set of edges E of the
strongly connected graph (M, E) such that for all (j, i) ∈ E, all k ≥ 0 and all x ∈ Rm×n,

P (aij(k) ≥ γ|x(k) = x) ≥ min

�
δ,

K

�xi − xj�C

�
.

The function min
�
δ,

K
�xi−xj�C

�
is continuous and, therefore, it attains its optimum when

minimized over the compact set
�

i∈M Xi, i.e.,

inf
x∈

�
i∈M Xi

min

�
δ,

K

�xi − xj�C

�
= min

x∈
�

i∈M Xi

min

�
δ,

K

�xi − xj�C

�
.

Since the function min
�
δ,

K
�xi−xj�C

�
is strictly positive for any x ∈ Rm×n, we obtain that

there exists some positive � such that

� = inf
x∈

�
i∈M Xi

min

�
δ,

K

�xi − xj�C

�
> 0.

Hence, for all (j, i) ∈ E, all k ≥ 0 and all x ∈
�

i∈M Xi,

P (aij(k) ≥ γ|x(k) = x) ≥ �. (47)

Since there is a uniform bound on the probability of communication for any given edge in
E that is independent of the state x(k), we can use an extended version of Lemma 7 from
[14]. In particular, Lemma 7 as stated in [14] requires the communication probability along
edges to be independent of x(k) which does not apply here, however, it can be extended with
straightforward modifications to hold if the independence assumption were to be replaced by
the condition specified in Eq. (47), implying the desired result. ��
Proof of Lemma 5 (a) Since xi(k + 1) = PXi [vi(k) − α(k)di(k)], it follows from the property
of the projection error ei(k) in Eq. (36) that for any z ∈ X,

�xi(k + 1)− z�2 ≤ �vi(k)− α(k)di(k)− z�2 − �ei(k)�2.

By expanding the term �vi(k)− α(k)di(k)− z�2, we obtain

�vi(k)− α(k)di(k)− z�2 = �vi(k)− z�2 + α
2(k)�di(k)�2 − 2α(k)di(k)

�(vi(k)− z).

Since vi(k) =
�m

j=1 aij(k)xj(k), using the convexity of the norm square function and the

stochasticity of the weights aij(k), j = 1, . . . ,m, it follows that

�vi(k)− z�2 ≤
m�

j=1

aij(k)�xj(k)− z�2.

Combining the preceding relations, we obtain

�xi(k + 1)− z�2 ≤
m�

j=1

aij(k)�xj(k)− z�2 + α
2(k)�di(k)�2

−2α(k)di(k)
�(vi(k)− z)− �ei(k)�2.

By summing the preceding relation over i = 1, . . . ,m, and using the doubly stochasticity of
the weights, i.e.,

m�

i=1

m�

j=1

aij(k)�xj(k)− z�2 =
m�

j=1

�
m�

i=1

aij(k)

�
�xj(k)− z�2 =

m�

j=1

�xj(k)− z�2,

we obtain the desired result.
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(b) Since di(k) is a subgradient of fi(x) at x = vi(k), we have

di(k)
�(vi(k)− z) ≥ fi(vi(k))− fi(z).

Combining this with the inequality in part (a), using subgradient boundedness and dropping
the nonpositive projection error term on the right handside, we obtain

m�

i=1

�xi(k + 1)− z�2 ≤
m�

i=1

�xi(k)− z�2 + α
2(k)mL

2 − 2α(k)
m�

i=1

(fi(vi(k))− fi(z)),

proving the first claim. This relation implies that

m�

j=1

�xj(k + 1)− z�2 ≤
m�

j=1

�xj(k)− z�2 + α
2(k)mL

2 − 2α(k)
m�

i=1

(fi(vi(k))− fi(y(k)))

−2α(k) (f(y(k))− f(z)) . (48)

In view of the subgradient boundedness and the stochasticity of the weights, it follows

|fi(vi(k))− fi(y(k))| ≤ L�vi(k)− y(k)� ≤ L

m�

j=1

aij(k)�xj(k)− y(k)�,

implying, by the doubly stochasticity of the weights, that

m�

i=1

|fi(vi(k))− fi(y(k))| ≤ L

m�

j=1

�
m�

i=1

aij(k)

�
�xj(k)− y(k)� = L

m�

j=1

�xj(k)− y(k)�.

By using this in relation (48), we see that for any z ∈ X, and all i and k,

m�

j=1

�xj(k + 1)− z�2 ≤
m�

j=1

�xj(k)− z�2 + α
2(k)mL

2 + 2α(k)L
m�

j=1

�xj(k)− y(k)�

−2α(k) (f(y(k))− f(z)) .

��
Proof of Lemma 6 From Eq. (7), we have for all i and k ≥ s,

xi(k + 1) =
m�

j=1

[Φ(k, s)]ijxj(s) −
k−1�

r=s

m�

j=1

[Φ(k, r + 1)]ijα(r)dj(r)− α(k)di(k)

+
k−1�

r=s

m�

j=1

[Φ(k, r + 1)]ijej(r) + ei(k).

Similarly, using relation (28), we can write for y(k + 1) and for all k and s with k ≥ s,

y(k + 1) = y(s)−
1

m

k−1�

r=s

m�

j=1

α(r)dj(r)−
α(k)

m

m�

i=1

di(k) +
1

m

k−1�

r=s

m�

j=1

ej(r) +
1

m

m�

j=1

ej(k).

Therefore, since y(s) = 1
m

�m
j=1 xj(s), we have for s = 0,

�xi(k)− y(k)� ≤
m�

j=1

����[Φ(k − 1, 0)]ij −
1

m

���� �xj(0)�

+
k−2�

r=0

m�

j=1

����[Φ(k − 1, r + 1)]ij −
1

m

���� α(r)�dj(r)�

+α(k − 1)�di(k − 1)�+
α(k − 1)

m

m�

j=1

�dj(k − 1)�
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+
k−2�

r=0

m�

j=1

����[Φ(k − 1, r + 1)]ij −
1

m

���� �ej(r)�

+�ei(k − 1)�+
1

m

m�

j=1

�ej(k − 1)�.

Using the metric ρ(k, s) = maxi,j∈M
��[Φ(k, s)]ij − 1

m

�� for k ≥ s ≥ 0 [cf. Eq. (8)], and the
subgradient boundedness, we obtain for all i and k ≥ 2,

�xi(k)− y(k)� ≤ mρ(k − 1, 0)
m�

j=1

�xj(0)�+mL

k−2�

r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2�

r=0

ρ(k − 1, r + 1)
m�

j=1

�ej(r)�+ �ei(k − 1)�+
1

m

m�

j=1

�ej(k − 1)�,

completing the proof. ��
Proof of Lemma 7 Let � > 0 be arbitrary. Since γk → 0, there is an index K such that γk ≤ �

for all k ≥ K. For all k ≥ K + 1, we have

k�

�=0

βk−�γ� =
K�

�=0

βk−�γ� +
k�

�=K+1

βk−�γ� ≤ max
0≤t≤K

γt

K�

�=0

βk−� + �

k�

�=K+1

βk−�.

Since
�∞

l=0 βl < ∞, there exists B > 0 such that
�k

�=K+1 βk−� =
�k−K−1

�=0 β� ≤ B for

all k ≥ K + 1. Moreover, since
�K

�=0 βk−� =
�k

�=k−K β�, it follows that for all k ≥ K + 1,

k�

�=0

βk−�γ� ≤ max
0≤t≤K

γt

k�

�=k−K

β� + �B.

Therefore, using
�∞

l=0 βl < ∞, we obtain

lim sup
k→∞

k�

�=0

βk−�γ� ≤ �B.

Since � is arbitrary, we conclude that lim supk→∞
�k

�=0 βk−�γ� = 0, implying

lim
k→∞

k�

�=0

βk−�γ� = 0.

Suppose now
�

k γk < ∞. Then, for any integer M ≥ 1, we have

M�

k=0

�
k�

�=0

βk−�γ�

�
=

M�

�=0

γ�

M−��

t=0

βt ≤
M�

�=0

γ�B,

implying that
∞�

k=0

�
k�

�=0

βk−�γ�

�
≤ B

∞�

�=0

γ� < ∞.

��
Proof of Lemma 8 Using the definition of projection error in Eq. (5), we have

ei(k) = xi(k + 1)− vi(k) + α(k)di(k).

Taking the norms of both sides and using subgradient boundedness, we obtain

�ei(k)� ≤ �xi(k + 1)− vi(k)�+ α(k)L.
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Since vi(k) =
�m

j=1 aij(k)xj(k), the weight vector ai(k) is stochastic, and xj(k) ∈ Xj = X

(cf. Assumption 6), it follows that vi(k) ∈ X for all i. Using the nonexpansive property of
projection operation [cf. Eq. (35)] in the preceding relation, we obtain

�ei(k)� ≤ �vi(k)− α(k)di(k)− vi(k)�+ α(k)L ≤ 2α(k)L,

completing the proof. ��
Proof of Proposition 4 From Lemma 6, we have the following for all i and k ≥ 2,

�xi(k)− y(k)� ≤ mρ(k − 1, 0)
m�

j=1

�xj(0)�+mL

k−2�

r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2�

r=0

ρ(k − 1, r + 1)
m�

j=1

�ej(r)�+ �ei(k − 1)�+
1

m

m�

j=1

�ej(k − 1)�.

Using the upper bound on the projection error from Lemma 8, �ei(k)� ≤ 2α(k)L for all i and
k, this can be rewritten as

�xi(k)− y(k)� ≤ mρ(k − 1, 0)
m�

j=1

�xj(0)� + 3mL

k−2�

r=0

ρ(k − 1, r + 1)α(r)

+ 6α(k − 1)L. (49)

Under Assumption 5 on the stepsize sequence, Proposition 2 implies the following bound for

the disagreement metric ρ(k, s): for all k ≥ s ≥ 0, E[ρ(k, s)] ≤ β(s)e−µ
√
k−s

, where µ is a
positive scalar and β(s) is an increasing sequence such that

β(s) ≤ s
q for all q > 0 and all s ≥ S(q), (50)

for some integer S(q), i.e., for all q > 0, β(s) is bounded by a polynomial sq for sufficiently
large s (where the threshold on s, S(q), depends on q). Taking the expectation in Eq. (49) and
using the preceding estimate on ρ(k, s), we obtain

E[�xi(k)− y(k)�] ≤ mβ(0)e−µ
√

k−1
m�

j=1

�xj(0)� + 3mL

k−2�

r=0

β(r + 1)e−µ
√
k−r−2

α(r)

+ 6α(k − 1)L.

We can bound β(0) by β(0) ≤ S(1) by using Eq. (50) with q = 1 and the fact that β is an
increasing sequence. Therefore, by taking the limit superior in the preceding relation and using
α(k) → 0 as k → ∞, we have for all i,

lim sup
k→∞

E[�xi(k)− y(k)�] ≤ 3mL

k−2�

r=0

β(r + 1)e−µ
√
k−r−2

α(r).

Finally, note that limk→∞ β(k+1)α(k) ≤ limk→∞(k+1)α(k) = 0, where the inequality holds
by using Eq. (50) with q = 1 and the equality holds by Assumption 5 on the stepsize. Since

we also have
�∞

k=0 e
−µ

√
k
< ∞, Lemma 7 applies implying that

lim
k→∞

k−2�

r=0

β(r + 1)e−µ
√
k−r−2

α(r) = 0.

Combining the preceding relations, we have limk→∞ E[�xi(k) − y(k)�] = 0. Using Fatou’s
Lemma (which applies since the random variables �y(k)− xi(k)� are nonnegative for all i and
k), we obtain

0 ≤ E

�
lim inf
k→∞

�y(k)− xi(k)�
�
≤ lim inf

k→∞
E[�y(k)− xi(k)�] ≤ 0.
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Thus, the nonnegative random variable lim infk→∞ �y(k) − xi(k)� has expectation 0, which
implies that lim infk→∞ �y(k)− xi(k)� = 0 with probability one. ��
Proof of Proposition 51 From Lemma 6, we have

�xi(k)− y(k)� ≤ mρ(k − 1, 0)
m�

j=1

�xj(0)�+mL

k−2�

r=0

ρ(k − 1, r + 1)α(r) + 2α(k − 1)L

+
k−2�

r=0

ρ(k − 1, r + 1)
m�

j=1

�ej(r)�+ �ei(k − 1)�+
1

m

m�

j=1

�ej(k − 1)�.

Taking the expectation of both sides and using the estimate for the disagreement metric ρ(k, s)
from Proposition 3, i.e., for all k ≥ s ≥ 0, E[ρ(k, s)] ≤ κe

−µ(k−s), for some scalars κ, µ > 0,
we obtain

E[�xi(k)− y(k)�] ≤ mκe
−µ(k−1)

m�

j=1

�xj(0)�+mLκ

k−2�

r=0

e
−µ(k−r−2)

α(r) + 2α(k − 1)L

+κ

k−2�

r=0

e
−µ(k−r−2)

m�

j=1

�ej(r)�+ �ei(k − 1)�+
1

m

m�

j=1

�ej(k − 1)�.

By taking the limit superior in the preceding relation and using the facts that α(k) → 0, and
�ei(k)� → 0 for all i as k → ∞ (cf. Lemma 10(b)), we have for all i,

lim sup
k→∞

E[�xi(k)− y(k)�] ≤ mLκ

k−2�

r=0

e
−µ(k−r−2)

α(r) + κ

k−2�

r=0

e
−µ(k−r−2)

m�

j=1

�ej(r)�.

Finally, since
�∞

k=0 e
−µk

< ∞ and both α(k) → 0 and �ei(k)� → 0 for all i, by Lemma 7, we
have

lim
k→∞

k−2�

r=0

e
−µ(k−r−2)

α(r) = 0 and lim
k→∞

k−2�

r=0

e
−µ(k−r−2)

m�

j=1

�ej(r)� = 0.

Combining the preceding two relations, we have limk→∞ E[�xi(k) − y(k)�] = 0. The second
part of proposition follows using Fatou’s Lemma and a similar argument used in the proof of
Proposition 4. ��
Proof of Proposition 6 This proof uses the result that

lim inf
k→∞

�xi(k)− y(k)� = 0 with probability one, (51)

which is derived using the same steps as in Proposition 4, but replacing the bound on the
disagreement metric ρ(k, s) from Proposition 2 with the one from Proposition 3.

Using the iterations (4) and (28), we obtain for all k ≥ 1 and i,

y(k + 1)− xi(k + 1) =
�
y(k)−

m�

j=1

aij(k)xj(k)
�

− α(k)
� 1

m

m�

j=1

dj(k)− di(k)
�

+
� 1

m

m�

j=1

ej(k)− ei(k)
�
.

Using the doubly stochasticity of the weights aij(k) and the subgradient boundedness (which
holds by Assumption 7), this implies that

m�

i=1

�y(k + 1)− xi(k + 1)� ≤
m�

i=1

�y(k)− xi(k)�+ 2Lmα(k) + 2
m�

i=1

�ei(k)�. (52)
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Since α(k) → 0, it follows from Lemma 10(b) that �ei(k)� → 0 for all i. Eq. (52) then yields

lim sup
k→∞

m�

i=1

�y(k + 1)− xi(k + 1)� ≤ lim inf
k→∞

m�

i=1

�y(k)− xi(k)�

+ lim
k→∞

�
2Lmα(k) + 2

m�

i=1

�ei(k)�
�

= lim inf
k→∞

m�

i=1

�y(k)− xi(k)�.

Using xi(k) ∈ Xi for all i and k, it follows from Assumption 7 that the sequence {xi(k)}
is bounded for all i. Therefore, the sequence {y(k)} [defined by y(k) = 1

m

�m
i=1 xi(k), see

Eq. (27)], and also the sequences �y(k) − xi(k)� are bounded. Combined with the preceding
relation, this implies that the scalar sequence

�m
i=1 �y(k)− xi(k)� is convergent.

By Eq. (51), we have lim infk→∞ �xi(k)−y(k)� = 0 with probability one. Since
�m

i=1 �y(k)−
xi(k)� converges, this implies that for all i, limk→∞ �xi(k)− y(k)� = 0 with probability one,
completing the proof. ��

C Appendix - Simulation Analysis

In this section, we show via simulation that the choice of stepsizes plays a big role in the
performance of the proposed algorithm. We also use simulation to understand the sensitivity
of the algorithm’s performance to the fading constant C from Eq. (6), which determines how
fast communication failures increase as the agents’ estimates move away from each other.

The results below concern a two-dimensional optimization problem, solved by five agents.
Agent 1’s objective function is x

2 + y
2, agent two’s is −x, agent three’s is x, agent four’s is

y and agent five’s is −y. The joint objective is, therefore, x2 + y
2 and the optimal solution is

(x, y) = (0, 0). The agents start from uniformly random locations in [−5, 5]2. We assume that
at every period at most one pair of agents communicates and the maximum communication
probability is δ = 0.1 and the fading constant C = 2 (see Eq. (6)) .

We consider two choices of stepsizes: α(k) = 1
k log(k) for all k ≥ 2 and α(k) = 200

k log(k) for

all k for all k ≥ 200. In both cases, we use 0.1 for small k. Figures 2 and 3 show examples of
sample paths using the two choices of stepsizes.

The second stepsize performed significantly better than the first. The algorithm converged
to within 0.01 of the optimal value in 10000 iterations in 52% of the runs using the first
stepsize, while it converged to within 10000 iterations in 98% of the runs using the second
stepsize. The sample path graphs highlight that the dynamics of the agents’ estimates is quite
different using the two choices of stepsizes: in the first case, the agents first converged on a
location and then slowly moved towards the optimum approximately together; in the second
case, the agents quickly approached the region near the optimal solution but they took much
longer to coalesce together. The dynamics with the second stepsize choice are explained by the
fact that the stepsize is constant for the first 200 iterations, a period during which the agents
can quickly move towards the region around the optimal solution.

We also performed a sensitivity analysis with respect to the constant C from Eq. (6).
The objective is to understand how the environment, as measured by the fading constant
C, impacts the performance of this multi-agent distributed algorithm. We consider the same
simulation as above, using the first stepsize, but vary C. As C changes from 1 to 3, the percent
of simulation runs that ended with convergence within 10000 iterations falls from 76% to 40%
(see Figure 4). This suggests the decline in performance of the algorithm as C grows is not as
sharp as one might expect, in particular, if the agents’ initial position is not too far from the
optimal solution.



11

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

X Coordinate

Y
 C

o
o
rd

in
a
te

Sample Paths with Stepsize Choice 1

Fig. 2 Example of a sample path with stepsize choice of α(k) = 1
k log(k) .
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Fig. 3 Example of a sample path with stepsize choice of α(k) = 200
k log(k) , for k ≥ 200 and

α(k) = 0.1 for k < 200.



12

0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fading Constant C

F
ra

ct
io

n
 o

f 
S

im
u
la

tio
n
 R

u
n
s 

C
o
n
ve

rg
in

g
 w

ith
in

 1
0
,0

0
0
 I
te

ra
tio

n
s

Convergence within ε = 0.01 of optimum

Fig. 4 Impact of fading constant C on probability of convergence within 10,000 iterations.


