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This paper analyzes corporate bond valuation and optimal call and default rules when 

interest rates and firm value are stochastic. It then uses the results to explain the dynamics 
of hedging. Bankruptcy rules are important determinants of corporate bond sensitivity to 

interest rates and firm value. Although endogenous and exogenous bankruptcy models 

can be calibrated to produce the same prices, they can have very different hedging 

implications. We show that empirical results on the relation between corporate spreads 
and Treasury rates provide evidence on duration, and we find that the endogenous model 

explains the empirical patterns better than do typical exogenous models. 

Corporate bonds are standard investment instruments, yet the embedded op- 
tions they contain are quite complex. Most corporate bonds are callable and 

call provisions interact with default risk. In any case, corporate bond investors 

face the problem of managing interest rate and credit risk simultaneously. 
This paper examines the valuation and risk management of callable default- 

able bonds when both interest rates and firm value are stochastic and when 

the issuer follows optimal call and default rules. To our knowledge, this is the 

first model of coupon-bearing corporate debt that incorporates both stochastic 

interest rates and endogenous bankruptcy. Existing models either treat interest 

rates as constant or impose exogenous default rules. These assumptions can 

significantly impact bond pricing and hedging. Yield spreads can be sensitive 

to interest rate levels, volatility, and correlation with firm value. Spreads are 

also sensitive to assumptions about the bankruptcy process. Some exogenous 

bankruptcy specifications produce negative spreads. Even when they guar- 
antee positive spreads, exogenous default models can have hedging implica- 
tions that are very different from those of endogenous default models. 

Working with a general Markov interest rate process, we develop analytical 
results about the existence and shape of optimal call and default boundaries. 
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Then we numerically study the dynamics of hedging, using the results on 

exercise boundaries to explain patterns in bond duration and sensitivity to 
firm value. Finally, we link duration to the slope coefficient in a regression 
of changes in yield spreads on changes in interest rates and find that the 

endogenous bankruptcy model seems to explain empirical patterns in the 

spread-rate relation better than typical exogenous bankruptcy models. 

To clarify the interaction between call provisions and default risk, we 

model the callable defaultable bond together with its pure callable and pure 
defaultable counterparts. We view each of the three bonds as a host bond 

minus a call option on that host bond. The call options differ only in their 

strike prices. The strike of the pure call is the provisional call price. The 

strike of pure default option is firm value. The strike of the option to call or 

default is the minimum of the two. 

Treating defaultables like callables illuminates their similarities and dif- 

ferences. For example, spreads on all bonds, not just callables, narrow with 

interest rates because all embedded option values decline with the value of 

the underlying host bond. On the other hand, credit spreads can increase or 

decrease with interest rate risk, depending on how interest rates correlate 

with firm value. 

The paper provides a number of analytical results. With regard to valuation, 
we prove that all three bond prices are increasing in the host bond price, but 

at rates less than one. The corporate bond prices are also increasing in firm 

value, at rates less than one. With regard to optimal call and default rules, 
we establish the existence and shape of optimal exercise boundaries. Like 

the optimal exercise policy for the pure callable, the optimal policies for 

corporate bonds are defined by a critical host bond price above which the 

bond issuer either calls or defaults and below which he continues to service 

the debt. In the case of the corporate bonds, this critical host bond price is a 

function of firm value, forming an upward-sloping boundary for noncallables 

and a hump-shaped boundary for callables. 

We also compare the different boundaries, showing how the call and 

default options embedded in the callable defaultable bond interact on its 

optimal exercise policy. The default region of the callable defaultable bond 

is smaller than that of the pure defaultable and its call region is smaller than 

that of the pure callable. When both options are present, the value of pre- 

serving one option can make it optimal for the issuer to continue servicing 
the debt when it would otherwise exercise the other option. 

We then numerically study the dynamics of hedging. Since duration is high 
when call and default are remote, the exercise boundaries explain a variety 
of patterns in duration. First, all bond durations are decreasing in the host 

bond price as increases in the host bond price bring the bonds closer to the 

exercise boundary. Second, as functions of firm value, bond durations inherit 

the shape of the boundaries, because the boundary quantifies how far away 
the bond is from call or default. Thus, the duration of the pure defaultable 
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bond is increasing in firm value, while the duration of the callable defaultable 

bond is hump-shaped. In addition, the call and default options interact on 

duration. A call provision by itself reduces duration, as does default risk by 
itself. However, a call provision can increase the duration of a defaultable 

bond and default risk can increase the duration of a callable bond because 

the presence of one option delays the exercise of the other. 

Next, we draw a link between duration and the slope coefficient in the 

regressions of changes in corporate yield spreads on changes in Treasury 
bond rates performed by Duffee (1998). The variation in this slope coefficient 

across bond rating gives evidence on the empirical relation between dura- 

tion and firm value. In Duffee's study, these slope coefficients are increasing 
in bond rating for noncallable bonds and hump-shaped in bond rating for 

callable bonds, like the duration-firm value functions implied by our model. 

By contrast, in a model with exogenous default rules, as typically specified 
in the literature, duration is a U-shaped function of firm value near default. 

Finally, we illustrate the dynamics of bond sensitivity to firm value. Sen- 

sitivity to firm value is high when default is near and low when call is near. 

This explains three effects. First, the pure defaultable bond's sensitivity to 

firm value is increasing in the host bond price, as increases in the host bond 

price bring the bond closer to default. Second, both the callable default- 

able and the pure defaultable bond sensitivity to firm value decrease in firm 

value as default becomes remote. Third, the sensitivity of the callable default- 

able bond is uniformly lower than that of the noncallable because default is 

always farther away. This last effect suggests that a call provision mitigates 
the underinvestment problem of levered equity described by Myers (1977). 

The paper proceeds as follows. Section 1 summarizes the related litera- 

ture. Section 2 describes the financial market and the bonds with embedded 

options and gives analytical results on valuation and numerical results on 

yield spreads. Section 3 contains analytical results on optimal call and default 

policies. Section 4 studies corporate bond risk management. Section 5 con- 

cludes. 

1. Related Literature 

Much of the existing theory of defaultable debt treats interest rates as con- 

stant in order to focus on the problems of optimal or strategic behavior of 

competing corporate claimants. Merton (1974) analyzes a risky zero-coupon 
bond and characterizes the optimal call policy for a callable coupon bond. 

Brennan and Schwartz (1977a) model callable convertible debt. Black and 

Cox (1976) and Geske (1977) value coupon-paying debt when asset sales are 

restricted and solve for the equity holders' optimal default policy. Fischer, 

Heinkel, and Zechner (1989a,b), Leland (1994), Leland and Toft (1996), 
Leland (1998), and Goldstein, Ju, and Leland (2000) embed the optimal 
default policy, and in some cases, the optimal call policy, in the problem of 
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optimal capital structure. Models such as Anderson and Sundaresan (1996), 

Huang (1997), Mella-Barral and Perraudin (1997), Acharya et al. (2002), and 

Fan and Sundaresan (2000) introduce costly liquidations and treat bankruptcy 
as a bargaining game. 

Other models allow for stochastic interest rates and take a different appro- 
ach to the treatment of bankruptcy. Some impose exogenous bankruptcy trig- 

gers in the form of critical asset values or payout levels. These include the 

models of Brennan and Schwartz (1980), Kim, Ramaswamy, and Sundaresan 

(1993), Nielsen, Saa-Requejo, and Santa-Clara (1993), Longstaff and Schwa- 

rtz (1995), Brys and de Varenne (1997), and Collin-Dufresne and Goldstein 

(2001). Cooper and Mello (1991) and Abken (1993) model defaultable swaps 

assuming that equity holders can sell assets to make swap or bond pay- 
ments. Shimko, Tejima, and Van Deventer (1993) model a zero-coupon bond. 

Other papers model default risk with a hazard rate or stochastic credit spread. 

See, for example, Ramaswamy and Sundaresan (1986), Jarrow, Lando, and 

Turnbull (1993), Madan and Unal (1993), Jarrow and Turnbull (1995), Duffie 

and Huang (1996), Duffie and Singleton (1999), Das and Sundaram (2000), 
and Acharya, Das, and Sundaram (2002). 

Another related literature analyzes callable bonds with stochastic interest 

rates in the absence of default risk. This includes Brennan and Schwartz 

(1977b) and Courtadon (1982). Related work on American options on nonde- 

faultable bonds includes Ho, Stapleton, and Subrahmanyam (1997), Jorgensen 

(1997), and Peterson, Stapleton, and Subrahmanyam (1998). Amin and Jarrow 

(1992) provide a general analysis of American options on risky assets in the 

presence of stochastic interest rates. 

2. Valuation 

This section first describes the financial market and corporate setting formally 
and develops a framework which treats all issuer options as call options on 

an underlying host bond. Then we present analytical results about bond and 

option values and illustrate some implications for yield spreads. 

2.1 Interest rate and firm value specifications 

Suppose investors can trade continuously in a complete, frictionless, arbitrage- 
free financial market. There exists an equivalent martingale measure 2? under 

which the expected rate of return on all assets at time t is equal to the interest 

rate r,. The interest rate is a nonnegative one-factor diffusion described by 
the equation 

drt = /,(rt, t) dt + a(r, t) dZt, (1) 
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where Z is a Brownian motion under 2 and ,u and o' are continuous and 

satisfy Lipschitz and linear growth conditions. That is, for some constant L, 

,t and o satisfy 

I\(x, t) -u(y, t)l + la(x, t) - (y, t)l < Llx- yl, (2) 

I/(x, t)j + o(x, t)l < L(1 + I xl) (3) 

for all x, y, t E +. 

Next, consider a firm with a single bond outstanding. The bond has a fixed 

continuous coupon c and maturity T. Without loss of generality, suppose the 

par value of the bond is one, and all other values are in multiples of this par 
value. The value of the firm is equal to the value of its assets, V, independent 
of its capital structure. Firm value evolves according to the equation 

d = (rt - t)dt + tdW, (4) 
V 

where W is a Brownian motion under P with d(W, Z)t = Pt dt and Yt > 0, 

(t > 0, and Pt E (-1, 1) are deterministic functions of time. Protective bond 

covenants prevent equity holders from altering the firm's payout rate y or 

volatility 4. 

2.2 Option and bond valuation 

We consider the case that the firm's bond is callable with a call price schedule 

kt. To clarify the interaction between the call provision and default risk, 
we also model the pure defaultable version and the pure callable version. 

The pure defaultable is the noncallable bond with same coupon, maturity, 
and issuer. The pure callable is the nondefaultable bond with same coupon, 

maturity, and call provision. 
The pure callable bond is equivalent to a noncallable, nondefaultable host 

bond with the same coupon and maturity minus a call option on that host 

bond with strike price equal to the provisional call price. Letting Pt denote 

the price of the host bond, the payoff of exercising the option at time t is 

P- kt. We assume that kt lies below the supremum of Pt for all t e [0, T), 
so that the option is always nontrivial. 

The pure defaultable bond can also be viewed as a host bond minus a 

call option on that host bond, but the strike price is equal to firm value Vt. 
The firm's owners are long the firm assets, short the host bond, and long an 

option to default. This option to default, or buy back the bond in exchange 
for the firm, is a kind of call on the host bond. Its exercise value is P - Vt. 

When the bond is both callable and defaultable, it is again equivalent to a 

host bond minus a call option on that host bond. In this case the strike price 
is equal to the minimum of the provisional call price and firm value, kt A Vt. 
The issuer is long the firm, short the host bond, and long the option to stop 
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servicing the debt, i.e., buy back the host bond, either by calling and paying 

kt or by giving up the firm worth V,. The exercise value of this option to 

stop servicing the debt is Pt - kt A Vt. 

If the bond indenture includes minimum net worth or net cash flow cove- 

nants, the corporate issuer may be forced to default when firm value V or 

asset cash flow yV fall too low. We suppose that no such covenants exist, 
so the optimal time to exercise the option to call or default is endogenous. 
Indeed, as Black and Cox (1976) and others have shown, when asset cash 

flow is insufficient to cover bond coupon payments, it may still be in equity 
holders' interest to meet coupon payments by raising new equity in order 

to retain ownership of the firm. Of course, if bond has zero coupon, it will 

never be optimal to default prior to maturity. 

Formally, an exercise policy for the option to call or default is a stopping 
time of the filtration {St} generated by the paths of the interest rate and firm 

value. An optimal exercise policy maximizes the current option value. The 

optimal option value at an arbitrary time t in the life of the option is 

5t sup E[t,,(P- K(VT, ))+I], (5) 
t'<T 

where E[.] denotes the expectation under the measure _S, the strike price 

K(v, t) = kt, v, or kt Av, (6) 

depending on the bond in question, and the discount factor 

f3, e- f rds' (7) 

Under the Markov interest rate specification in Equations (1)-(3), the host 

bond price 

T 

Pt = E c ft,sds + 1 pt, T I t (8) 

=PH(r, t) (9) 

for some function PH: R+ x [0, T] -S 9. Furthermore, PH(', t) is strictly 

decreasing and continuous, and therefore has a continuous inverse. These 

properties, and the specification of the firm value process in Equation (4), 
allow us to invoke Theorems 3.8 and 3.10 of Krylov (1980) to conclude that, 

given Pt = p, and Vt = v, 

= f(p, v, t) (10) 

for some continuous function f: R+ x a+ x [0, T] -+ R, satisfying 

f(p, v, t) > (p-K(v, t))+. (11) 
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Furthermore, the optimal stopping time is 

r = inf{t > 0: f(Pt, Vt, t) = (Pt - K(Vt, t))+}. (12) 

Theorem 1. The following properties hold for all three embedded options. 

1. p(1) > p(2) : f (p(1), v, t) > f(p(2), v, t). 
2. V(1) < V(2) = f(p, (1), t) > f(p, 

(2) 
t). 

3. p(l) p(2) f(P(2),v,t)-f(p('),'t) < 1. (Call delta inequality) 

4. V(1) ? V(2) = 
f(P,V(2)t)-(I'(l)',) ) 

> 1. (Put delta inequality) v(2) _?J)- 

Like ordinary calls, the option values are increasing in the underlying host 

bond price, but the rate of increase is bounded by one. Like ordinary puts, 
the defaultable bond options are decreasing in the underlying firm value, but 

the rate of decrease is bounded by minus one. The proofs, in Appendix A, 
are inspired by the analysis of Jacka (1991). 

The value of the bond with an embedded option is 

Px(P, v, t) = p- fx(, v, t), (13) 

where the subscript X is C for the pure callable bond, D for the pure default- 

able, and CD, for the callable defaultable. Theorem 1 implies that the bond 

prices are increasing functions of the host bond price and firm value, but the 

rates of increase are bounded by one. It follows that the effective duration of 

the bonds, the percent increase in bond price for a decrease in the host bond 

yield, is nonnegative. By contrast, in models with exogenous default rules, 
duration can become negative, as Longstaff and Schwartz (1995) observe. 

Proposition 1. The values of the different embedded options relate as fol- 
lows. 

fc(P, v, t) vfD(P, v, t) < fc(P v, t) < 
fc(P, v, t) + fD(, v, t). (14) 

The combined option to call or default is worth more than either of the simple 

options because it has a lower strike price. However, the combined option is 

worth less than the sum of simple options. This is because, with the combined 

option, calling destroys the default option, and defaulting destroys the call 

option. Kim, Ramaswamy, and Sundaresan (1993) call this the "interaction 

effect." In terms of yields to maturity, this means that the incremental spread 
created by a call provision will be less for a corporate bond than for a 

Treasury, as Kim, Ramaswamy, and Sundaresan (1993) observe. In addition, 
the interaction effect implies that the "option-adjusted" credit spread between 

a callable defaultable bond and its callable Treasury counterpart is less than 
the credit spread of the noncallable issue. More generally, an option-adjusted 

spread computed in this fashion will vary with the nature of the call provision 
and may therefore be an unreliable measure of the compensation a bond 
offers for its credit risk. 
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2.3 Yield spreads 
Practitioners typically quote corporate bond prices in terms of the spread 
of their yields over the yield of the comparable Treasury bond. In addition, 

empirical work on corporate bond pricing often focuses on yield spreads. In 

our model, the yield spread of a given bond over its host bond is a straight- 
forward transformation of the bond's embedded option value, f. Recognizing 
that 

f(p, v, t) = E[tt,T(PT 
- K(VT, r))+ I,] (15) 

and using intuition from option theory can explain many patterns in yield 

spreads. 

2.3.1 Yield spreads and the level of interest rates. Duffee (1998) finds 

empirically that spreads on all bonds, not just callables, narrow with interest 

rates. In particular, he reports significantly negative estimates for the coeffi- 

cient b, in regressions of the form 

ASPREADt = bo + bl AY1/4,t + b2ATERMt + t,, (16) 

where SPREAD is the mean spread of the yields of corporate bonds in a 

given sector over equivalent maturity Treasury bonds, Y1/4 is the 3-month 

Treasury yield, and TERM is the difference between the 30-year constant- 

maturity Treasury yield and the 3-month Treasury bill yield. With TERM 

included in the regression, the coefficient bl essentially measures the change 
in the bond spread with respect to a parallel yield curve shift. Duffee (1996) 

investigates the possibility that the negative spread-rate relation stems from 

a positive correlation between interest rates and firm values by including 
S&P 500 returns in the regression. He finds that this has little effect on the 

estimates of bl. Thus, it is reasonable to interpret estimates of b, as measures 

of the derivative of the spread with respect to the host bond yield, holding 
firm value constant. 

Our model explains this pure interest rate effect on spreads by viewing all 

embedded options as calls on the underlying host bond: as interest rates rise, 
the price of the underlying host bond falls, the call option value falls, and 

the spread narrows. To illustrate, Figure 1 plots the three embedded option 
values as functions of the underlying host bond and the associated yield 

spreads as functions of the host yield. The exact shape of the relation varies, 
but in each case, the spread-rate relation is like a mirror image of the call 

value-underlying bond value relation. These and other examples assume that 

interest rates follow a Cox, Ingersoll, and Ross (1985) process. Appendix B 

describes how we use a two-dimensional binomial lattice to approximate the 

interest rate and firm values processes, extending the method of Nelson and 

Ramaswamy (1990). 
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A. Option values vs. host bond price B. Yield spreads vs. host bond yield 
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Figure 1 

Option values and yield spreads 
Three 5-year, 6.25%-coupon bonds: The gray line represents the callable defaultable, the black line represents 
the pure defaultable, and the dotted line represents the pure callable. Callable bond is currently callable at 

par. The default payoff to bond holders is firm value. Call and default policies minimize bond values. The 

instantaneous interest rate follows dr = K(fL - r) dt + rfr/rdZ; K = 0.5, fL = 6.8%, ao = 0.10. Firm value 

follows dV/V = (r - y) dt + dW; y = 0.0, 4 = 0.20, V0 = 143. The instantaneous correlation between 

the interest rate and firm value processes is zero. Numerical approximations use a two-factor binomial lattice. 

Duffee (1998) documents three other empirical patterns. First, the nega- 
tive spread-rate relation is usually stronger for callables. Second, among non- 

callables, the relation is stronger for lower grade bonds. Third, for callables, 
the relation is stronger for higher priced bonds. We explain these patterns by 

linking the spread-rate slope to the call option delta, f . Letting s Yx - YH 

denote the spread between the yields of a given bond and its host and 

assuming f is differentiable, we have 

dsx = (1- dfx dp/dyH -1. (17) 
dyH dp dpx/dyx 

We emphasize that the derivative dy- is taken holding firm value constant. 

The terms -dp and dPx are derivatives of the same price-yield function, but 
dYH dyx 

evaluated at different points, so they differ only because of the convexity 
of the price-yield function. In particular, percentage changes in their ratio are 

small relative to percentage changes in 1 - df, so variation in the spread-rate 

slope is driven by variation in the call option delta. The embedded call option 
delta ddf tends to be larger when the option is deeper in the money. That is 

the case when either the strike price is lower, because of a call provision 
or because firm value is lower, or when the underlying host bond price is 

higher. This would explain the three empirical patterns listed above. 

The connection between the spread-rate slope and the option delta indi- 

cates that the spread-rate slope is related to bond hedging. We develop this 

point in section 4.1.1, where we draw a link between the spread-rate slope 
and duration. We also explain why the negative spread-rate relation is not 

uniformly stronger for callables. 
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In the model of Longstaff and Schwartz (1995), spreads also narrow with 

interest rates, but through a different mechanism. There, default occurs when 

firm value falls to an exogenous boundary, and in that event, bond holders 

receive a fraction of the value of the host bond. As interest rates rise, the 

drift of firm value under the risk-neutral measure increases, decreasing the 

probability of default, and this causes spreads to decline. This effect of a rate 

increase on V is at work in our model as well, but in addition, in our model, 
the rate increase narrows spreads by reducing P. By contrast, in the Longstaff 
and Schwartz model, the reduction in P by itself may actually serve to widen 

spreads because it reduces the expected default payoff to bond holders. 

2.3.2 Yield spreads and interest rate volatility and correlation. Existing 
models of corporate debt with endogenous default policies treat interest rates 

as constant. In the example of Brennan and Schwartz (1980), the assumption 
of constant interest rates has only a small effect on bond value. Similarly, 

Kim, Ramaswamy, and Sundaresan (1993) report that in their examples, 

spreads are fairly insensitive to the level of interest rate risk or correla- 

tion with firm value. However, such results do not generalize. Introducing 
stochastic interest rates can materially affect pricing. 

To understand the impact of an increase in interest rate volatility on corpo- 
rate spreads, it is again useful to view the spread as a transformation of the 

value of the issuer's option. From Equation (15), the corporate issuer's option 
value should increase in the volatility of P - V. The effect of an increase in 

interest rate volatility on the volatility of P- V depends on the correlation p 
between r and V. When p > 0, interest rate volatility increases the volatility 
of P- V and widens spreads. However, when p < 0, P hedges changes in 

V, and, if the volatility of P is low, an increase in the volatility of P can 

improve this hedge, decreasing the volatility of P - V. Consequently, for 

negative values of p, option values and corporate yield spreads can decline 

as interest rate volatility rises. Figure 2 illustrates both cases. 

Figure 3 illustrates the relation between yield spreads and the correlation 

between interest rates and firm value. The relation is positive. The higher the 

correlation between interest rates and firm value, the lower the covariance 

between P and V, the higher the volatility of P - V, the higher the option 

value, and thus, the higher the corporate yield spread. 

Shimko, Tejima, and Van Deventer (1993) and Longstaff and Schwartz 

(1995) also find that spreads widen with the correlation between firm value 

and interest rates. Shimko, Tejima, and Van Deventer (1993) analyze a zero- 

coupon bond. Longstaff and Schwartz (1995) model coupon-bearing bonds, 

as we do, but the mechanism for their correlation effect is different. When 

innovations in firm value correlate positively with interest rates, then they 
correlate positively with the drift of firm value under the risk-neutral mea- 

sure, which increases the total variance of firm value. This increases the 

probability of default and widens spreads. A comparison of their examples 
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A. Correlation = 0 B. Correlation = -0.5 
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Figure 2 

Yield spreads vs. interest rate volatility 
Two 10-year, 9%-coupon corporate bonds-one noncallable, represented by the black line, and one callable 

at par, represented by the gray line. Call and default policies minimize bond values. The instantaneous 

interest rate follows dr = K(C - r) dt + arfrdZ; K = 0.5, u = 9%, r0 = 9%. Firm value follows dV/V = 

(r - y) dt + d W; y = 0.05, - = 0.15, V0 = 93. p is the instantaneous correlation between the interest rate 

and firm value processes. Numerical approximations use a two-factor binomial lattice. 

with ours suggests that the magnitude of the correlation effect is smaller in 

their model. One reason for this may be the difference in assumptions about 

default payoffs. In the event of default, bond holders in the Longstaff and 

Schwartz model get a fraction of host bond value, not the value of the firm. 

This means that the higher the correlation between interest rates and firm 

value, the higher the expected default payoff, which should by itself narrow 

spreads. 

350 

275 

-0.5 0 0.5 

Figure 3 
Yield spreads vs. interest rate correlation with firm value 
Two 10-year, 9%-coupon corporate bonds-one noncallable, represented by the black line, and one callable 
at par, represented by the gray line. Call and default policies minimize bond values. The instantaneous 
interest rate follows dr = K((L - r) df + aordZ; K = 0.5, j, = 9%, r0 = 9%. Firm value follows dV/V = 

(r - y) dt + -dW; y = 0.05, 4- = 0.15, V0 = 93. p is the instantaneous correlation between the interest rate 
and firm value processes. Numerical approximations use a two-factor binomial lattice. 
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Figure 4 

Optimal call and default boundaries 
Critical host bond prices b(v, t) for three 5-year, 10.25%-coupon bonds. The gray line corresponds to the 
callable defaultable, the black line corresponds to the pure defaultable, and the dotted line corresponds to the 

pure callable. For host bond prices below b(v, t), it is optimal to continue, and for host bond prices above 
b(v, t), it is optimal to default or call. Callable bonds are currently callable at par. The default payoff to bond 
holders is firm value. Call and default policies minimize bond values. The instantaneous interest rate follows 
dr = K(IJ - r) dt + orfdZ; K = 0.5, it = 6.8%, ar = 0.10. Firm value follows dV/V = (r - y) dt + 4.dW; 
y = 0.0, 4 = 0.20. The instantaneous correlation between the interest rate and firm value processes is zero. 
Numerical approximations use a two-factor binomial lattice. 

3. Optimal Call and Default Policies 

This section proves that for each of the three bonds, pure callable, pure 
defaultable, and callable defaultable, a simple boundary separates the region 
of host bond and firm values where it is optimal for the bond issuer to 

continue servicing the debt from the region where it is optimal to call or 

default. The first theorem establishes the existence of a boundary of critical 

host bond prices. The second theorem describes the boundary in terms of 

critical firm values. The third theorem characterizes the shape and relation 

of the boundaries for the different types of bonds. Figure 4 illustrates the 

results. 

Theorem 2. Let t E [0, T) and v > O. If there is any bond price p such 

that it is optimal to exercise the embedded option at time t given P, = p and 

V, = v, then there exists a critical bond price b(v, t) > K(v, t) such that it is 

optimal to exercise the option if and only if p > b(v, t). 

We use the notation bc, bD, and bcD to distinguish the boundaries for the 

three bonds. In this orientation, an increase in the host bond price, or a 

decline in interest rates, triggers the option exercise. While it is natural to 

think of interest rate declines triggering bond calls, Theorem 2 implies that 

interest rate declines can also trigger defaults. 
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Models with constant interest rates describe the optimal call and default 

rules in terms of critical firm values, a lower critical firm value below which 

default is optimal and an upper critical firm value above which call is optimal 

[see, for example, Merton (1974), Black and Cox (1976), and Leland (1994, 

1998), and Goldstein, Ju, and Leland (2000)]. Our next result states that this 

characterization is also valid when interest rates are stochastic, only now the 

critical firm values are functions of interest rates. 

Theorem 3. Let t E [0, T) and p > 0. 

1. For the pure defaultable bond, there exists a criticalfirm value VD(p, t) < 

p such that, at time t, given Pt = p and Vt = v, it is optimal to default 

if and only if v < VD(P, t). 

2. For the callable defaultable bond, there exists a critical firm value 

VcD(P, t), satisfying VcD(p, t) < k and cD(p, t) < p, such that, at 

time t, given Pt = p and Vt = v, it is optimal to default if and only 

if v < VcD(p, t). In addition, if there exists any firm value v at which it 

is optimal to call, then there exists a critical firm value vcD(p, t) > kt 
such that it is optimal to call if and only if v > VCD(p, t). 

The next theorem describes the shape and relation of the different bound- 
aries. 

Theorem 4. For each t E [0, T), 

1. v1 < V12 
= bD(v, t)< bD(V2, t). 

2. p < P2 = VD(Pl, t) < VD(P2, t). 
3. v1 < V2 < kt, bcD(vl, t) < bD(2, t). 

4. kt < v, < v2 = bcD(v,, t) > bCD(V2,.t). 
5. v < k, = bCD(v, t) > b(v, t). 
6. v > kt = bcD(v, t) > bc(v, t). 

First, consider the default option embedded in the pure defaultable bond. 
Part 1 of Theorem 4 states that the critical bond price above which the 
firm should default, bD(v, t), is increasing in the firm value v. That is, the 

higher the firm value, the lower the interest rates must be to trigger a default. 

Conversely, Part 2 indicates that the critical firm value below which the equity 
holders should default is increasing in the host bond price p. In other words, 
in high interest rate environments, it takes lower firm values to make equity 
holders stop servicing the debt and give up the firm. 

Next, consider the option to call or default embedded in a callable default- 
able bond. For firm value below the call price, v < kt, exercising the option 
means defaulting. For firm value greater than the call price, v > kt, exercising 
means calling the bond. Part 3 of Theorem 4 indicates that the critical host 
bond price, bCD(v, t), above which it is optimal to default, is increasing in 

v, like bD(v, t). Part 4 indicates that the critical host bond price, bcD(v, t), 
above which it is optimal to call, is decreasing in v. At lower firm values, it 
takes lower interest rates to trigger a bond call. 
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Parts 5 and 6 of Theorem 4 describe the interaction of the call and default 

options on the optimal exercise policy. Part 5 states that the callable default- 

able has a smaller default region than the pure defaultable. Part 6 states 

that the callable defaultable has a smaller call region than the pure callable. 

When both options are present, the value of preserving one option can make 

it optimal for the issuer to continue servicing the debt in states in which it 

would otherwise exercise the other option. These results will be useful for 

understanding the patterns in the risk measures presented below. 

4. Hedging Interest Rate Risk and Credit Risk 

A corporate bond is subject to both bond market risk and firm risk. In prin- 

ciple, a portfolio containing Treasuries and shares of the issuer's equity could 

serve to hedge both risks. The number of units of these instruments in the 

hedge portfolio, the hedge ratios, explicitly spell out the trading strategy for 

hedging and quantify the exposure to risks that the corporate bond imparts. 
The market for the issuer's equity is generally much more active than the 

market for the firm's assets, so the hedge ratios in a hedge using host bonds 

and equity have more practical application than the hedge ratios in a hedge 

using host bonds and firm assets. However, the two pairs of hedge ratios 

are related through a simple transformation, and we find that their dynamics 
are qualitatively very similar. For ease of exposition, we work with the host 

bond-firm value hedge, because its dynamics can be understood through a 

more direct application of our model. 

We use a bond's hedge ratio with respect to firm value, d, to measure its 

firm risk. However, instead of using a bond's hedge ratio with respect to the 

host bond, dP, to measure its bond market risk, we use a similar but more 
dp 

widely recognized risk measure, 

duration 
dp x 

(18) 
dyH 

The measures dpx/px and dpx behave similarly because their dynamics 
dyH dp 

are both driven by the dynamics of the option delta dfx. More precisely, dp 

dpxpyH 
= dp 

dy-PL ) and the percentage changes in the factor (-d-p ) 
dyH dp dYH Pxp dYH Px 

associated with changes in firm value and interest rates are small relative 

to the percentage changes in dPx = 1 - dpL The duration defined in Equa- 
tion (18), sometimes called "effective duration," essentially measures price 

sensitivity to Treasury yields. By contrast, so-called "modified duration," 

_dpx/pxx measures a bond's price sensitivity to its own yield. Both mea- 
dyx 

' 

sures are used by practitioners, but effective duration is generally a more 

appropriate measure to use for risk management. 
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A. Duration vs. host bond price B. Duration vs. firm value 
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Figure 5 

Dynamics of duration 

Three 10-year, 11%-coupon bonds: the gray line represents the callable defaultable, the black line represents 
the pure defaultable, and the dotted line represents the pure callable. Duration is - dpX/Px where Px is the 

dyH 
price of the bond in question and YH is the yield of its host bond. Callable bonds are currently callable at 

par. The default payoff to bond holders is firm value. Call and default policies minimize bond values. The 

instantaneous riskless rate follows dr = K(,L - r) dt + orirdZ; K = 0.5, pI = 9%, a = 0.078. Firm value 

follows dV/V = (r - y) dt + <idW; y = 0.05, - = 0.15. The instantaneous correlation between the interest 

rate and firm value processes is p = -0.2. Numerical approximations use a two-factor binomial lattice. 

4.1 Duration 

The duration of a bond tends to decline as call or default becomes immi- 

nent. This observation, together with our results on optimal exercise bound- 

aries, explains how bond duration changes as interest rates and firm value 

change. Figure 5 illustrates the dynamics of duration for the pure callable, 

pure defaultable, and callable defaultable bonds. A number of properties are 

apparent. Figure 5A shows, for example, that all durations are decreasing 
in the host bond price. An increase in the host bond price is a move upward 
in the plot of the corresponding exercise boundaries shown in Figure 4, taking 
the bond closer to either call or default, and reducing its duration. 

The relation between duration and firm value, shown in Figure 5B, has a 

similar explanation. A change in firm value moves the current state to the 

left or the right in Figure 4. A move to the left brings the bond closer to 

default, while a move to the right may bring the bond closer to call. But the 

vertical distance from the current state to the boundary is a measure of how 

close the bond is to stopping for all three kinds of bonds. Thus, to the extent 

that duration is high when the boundary is far away, the duration-firm value 

function should inherit the shape of the boundary. Figure 5B shows that the 

properties of the duration-firm value relation do indeed correspond closely 
to the properties of the boundary b(v, t) listed in Theorem 4: 

* The duration of the pure defaultable bond is increasing in firm value. 

* The duration of the callable defaultable bond is increasing in firm value 

for low firm values and decreasing in firm value for high firm values. 

* The duration of the callable defaultable bond exceeds that of the pure 
defaultable for low firm values. 
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* The duration of the callable defaultable bond exceeds that of the pure 
callable for high firm values. 

These last two points describe an interaction effect on duration: a call pro- 
vision by itself reduces duration, as does default risk by itself, but a call 

provision can increase the duration of a defaultable bond and default risk 

can increase the duration of a callable bond because the presence of one 

option delays the exercise of the other. 

4.1.1 Duration and the slope of the spread-rate relation. The slope of 

the spread-rate relation studied empirically by Duffee (1998) and described 

in Section 2.3.1 is related to duration through the following equation. 

dPx/Px 

dsx - dypx _ - duration,. 
dH - 1. (19) 

dyH 
dpx/Px modified durationx 

dyx 

Figure 6A shows that, as a function of firm value, the shape of the spread-rate 

slope is the same as that of duration as a function of firm value in Figure 5B. 

To the extent that bond rating proxies for asset-debt ratio, the variation in 

Duffee's estimates for the spread-rate slope bl in Equation (16) across rating 
classes gives evidence on the empirical relation between duration and firm 

value. Now the duration-firm value relation shown in Figure 5B holds the 

A. dsx/dyH vs. firm value B. Duffee spread-rate slope estimates 
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Figure 6 
Theoretical and empirical slopes of the spread-rate relation 

The theoretical slope in 6A is dsx dyH, where sx is the yield spread of the bond in question and YH is the 

yield of its host bond. Callable bonds are currently callable at par. The default payoff to bond holders is firm 

value. Call and default policies minimize bond values. The instantaneous riskless rate follows dr = K(I - 

r) dt + ar'ddZ; K = 0.5, IL = 9%, a- = 0.078, r0 = 9%. Firm value follows dV/V = (r - y) dt + OdW; 

y = 0.05, - = 0.15. The instantaneous correlation between the interest rate and firm value processes is 

p = -0.2. Numerical approximations use a two-factor binomial lattice. The empirical slope in 6B is the 

estimate of bl in a regression of the form ASPREADt = bo + b AY1/4,t + b2ATERMt + Et, where SPREAD 

is the mean spread of the yields of corporate bonds in a given sector over equivalent maturity Treasury bonds, 

Y1/4 is the 3-month Treasury yield, and TERM is the difference between the 30-year constant-maturity 

Treasury yield and the 3-month Treasury bill yield, from Duffee (1998). Panel A: solid line, noncallable 

defaultable; light line, callable defaultable; broken line, callable. Panel B: thick solid line, noncallable-long; 
medium solid line, noncallable-medium; thin solid line, noncallable-short; thick light line, callable-long; 
medium light line, callable-intermediate. 
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bond coupon rate constant, while in the data, coupon rates decline as rating 
increases. However, examples suggest that if coupon rate varies to keep all 

bonds priced at par, then the noncallable bond duration remains upward- 

sloping in firm value, although the callable bond duration becomes flat at 

zero because the bonds are callable at par. The data most likely reflect a 

mixture of these cases. Coupon rates decline with rating, but not by so much 

that all bonds are at par. Lower rating classes contain more discount bonds 

and higher rating classes contain more premium bonds. 

Figure 6B plots Duffee's (1998) estimates for b1 for various bond rating 
classes within a given maturity sector. Like the duration-firm value graphs in 

Figure 5B, the curves for noncallable bonds are upward-sloping, while the 

curves for callable bonds are hump-shaped. Again, our model's explanation 
for these shapes lies in the shape of the endogenous default and call bound- 

aries analyzed in Theorem 4 and illustrated in Figure 4. As bonds move 

away from default, the sensitivity of spreads to rates moves toward zero, but 

as callable bonds approach call, this sensitivity becomes large again. 

4.1.2 Duration in models with exogenous default boundaries. In cor- 

porate bond models with exogenous default boundaries, default occurs when 

firm value falls to a pre-specified critical level [see, for example, Brennan and 

Schwartz (1980), Kim, Ramaswamy, and Sundaresan (1993), Longstaff and 

Schwartz (1995), and Brys and de Varenne (1997)]. If the model specifies 
a fixed payoff to bond holders in the event of default, then, in states when 

host bond prices are lower than this level, default can be a windfall to bond 

holders and bond spreads can become negative. Instead of specifying a fixed 

default payoff to bond holders, most exogenous default models set the bond 

default payoff equal to a fraction 8 of the host bond price, which guaran- 
tees that default is not a benefit to bond holders [see, for example, Kim, 

Ramaswamy, and Sundaresan (1993) and Longstaff and Schwartz (1995)]. 
This, however, makes duration a sort of U-shaped function of firm value 

near default. Duration increases not only as firm value rises and the bond 

becomes like a nondefaultable, but also as firm value falls to the default 

level, and the bond tracks the host bond. 

Figure 7 illustrates this effect with plots of duration vs. firm value for the 

exogenous model with 8 = 0.8 and 8 = 0.4. The range of firm values for 

these plots gives the noncallable bond in the case 8 = 0.8 approximately the 

same range of prices that it has in the plot of duration vs. firm value for 

the endogenous default model in Figure 5B. A comparison of these plots 
shows that although the two models can be calibrated to imply the same 

bond values, their implications for both the level and dynamics of duration 

can be very different. 

Setting the bond payoff in default equal to a fraction of the host bond price 
also does not guarantee nonnegative duration. In particular, when the default 

payoff is set very low, bond duration can become negative near default. This 
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A. Default payoff = 0.8 x host bond price B. Default payoff = 0.4 x host bond price 
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Figure 7 

Duration vs. firm value in exogenous default model 

Three 10-year, 11%-coupon bonds: the gray line represents the callable defaultable, the black line represents 
the pure defaultable, and the dotted line represents the pure callable. Duration is - dpX/p where Px is the 

price of the bond in question and YH is the yield of its host bond. Callable bonds are currently callable at par. 
Default occurs when firm value hits 220. The default payoff to bond holders is a fraction of the host bond 

price. Call policies minimize bond values. The instantaneous riskless rate follows dr = K(, - r) dt + oa,fdZ; 
K = 0.5, It = 9%, a = 0.078, ro = 9%. Firm value follows dV/V = (r - y) dt + 4dW; y = 0.05, = = 0.15. 

The instantaneous correlation between the interest rate and firm value processes is p = -0.2. Numerical 

approximations use a two-factor binomial lattice. 

is because increases in interest rates increase the drift of firm value, reducing 
the risk of default. Near default, the benefit of reducing the risk of default, 
which is catastrophic when the default payoff is very low, offsets the cost of 

the loss in the value of the bond's future promised payments. 

By contrast, part 3 of Theorem 1 implies that duration is always nonneg- 
ative in our model. Table 1 compares the durations of bonds under the two 

models. The two bonds have the same coupon, maturity, and price, but bond 

duration is positive under the endogenous bankruptcy model and negative 
under the exogenous bankruptcy model. Again, the two models can imply 
the same bond price and yet have very different implications about hedging. 
More generally, in the presence of stochastic interest rates, it seems difficult 

to devise an exogenous default specification that has both the same pricing 
and same hedging implications as the endogenous model. 

Table 1 

Duration under alternative bankruptcy assumptions 

Default Default Coupon Yield 

boundary payoff Maturity rate spread Duration V0 E{VIat default} 

Endogenous V 10 years 9% 720 bp 0.8 65 60 

Exogenous 0.2 x P 10 years 9% 720 bp -0.6 118 75 

Both bonds are noncallable. P is the price of the noncallable, nondefaultable host bond with the same coupon and maturity. 

Duration is dppX where Px is the price of the bond in question and YH is the yield of its host bond. The instantaneous riskless 

rate follows dr = K(/ - r) dt + ao/dZ; K = 0.5, u = 9%, o- = 0.078, ro = 9%. Firm value follows dV/V = (r - y) dt + 4dW; 

y = 0.12, ( = 0.15. The instantaneous correlation between the interest rate and firm value processes is p = -0.2. Numerical 

approximations use a two-factor binomial lattice. 
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A. Bond sensitivity to firm value 
vs. host bond price 
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Figure 8 

Dynamics of bond sensitivity to firm value 
Two 10-year, 11%-coupon corporate bonds. One bond is noncallable, represented by the black line, and one 

bond is callable at par, represented by the gray line. Bond sensitivity to firm value is x where Px is the price 
of the bond in question and v is firm value. The default payoff to bond holders is firm value. Call and default 

policies minimize bond values. The instantaneous riskless rate follows dr = Kc(I - r) dt + orf/rdZ; K = 0.5, 

It = 9%, ao = 0.078. Firm value follows dV/V = (r - y) dt + bdW; y = 0.05, 4 = 0.15. The instantaneous 
correlation between the interest rate and firm value processes is p = -0.2. Numerical approximations use a 
two-factor binomial lattice. 

4.2 Bond price sensitivity to firm value 

A bond's sensitivity to firm value is high when default is imminent and low 
when call is imminent. Therefore, we can again use the results on optimal call 
and default boundaries in Theorem 4 to explain the dynamics of hedging credit 
risk. Figure 8 plots corporate bond sensitivity to firm value as a function of the 
host bond price and as a function of firm value. Three effects are clear. 

* The sensitivity of the noncallable bond increases in the host bond price, 
because increases in the host bond price bring the bond closer to default. 

* The sensitivities of both the noncallable and callable bonds decrease in 
firm value, because as firm value rises, both bonds move away from the 
default boundary. 

* The callable bond's sensitivity to firm value is uniformly lower than 
that of the noncallable, 

because the callable bond is always farther from the default boundary. This 
last effect suggests that the presence of a call provision mitigates the under- 
investment problem of levered equity. As Myers (1977) shows, since levered 

equity holders share increases in firm value with bond holders, they may 
pass up positive net present value projects that require all-equity financing. 
By increasing equity sensitivity to firm value, the call provision makes the 
underinvestment problem less severe. 

5. Conclusion 

This paper analyzes corporate bonds in a model in which the interest rate 
is a one-factor diffusion process and the issuer follows optimal call and 
default rules. By incorporating both stochastic interest rates and endogenous 
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bankruptcy, the model bridges a gap in the corporate bond literature. The 

combination of these elements is of particular interest because bankruptcy 

assumptions significantly impact interest rate hedging. 
A single framework encompasses the callable defaultable bond and its pure 

callable and pure defaultable counterparts, viewing each bond as a riskless, 

noncallable host bond minus a call on that host bond. This perspective pro- 
vides intuition for the sensitivity of spreads to interest rate levels, volatility, 
and correlation with firm value. It also leads us to extend results for callable 

bonds to defaultable bonds. 

The paper develops analytical results on corporate bond valuation and 

optimal call and default boundaries. Previous corporate bond models that 

provide analytical results with stochastic interest rates either work with a 

zero-coupon bond or else treat bankruptcy as exogenous, and thus avoid the 

issue of optimal default rules. By characterizing the solution to the two- 

dimensional optimal stopping time problem analytically, this paper makes an 

incremental theoretical contribution. 

The optimal exercise boundaries explain the dynamics of hedging. For 

example, the critical host bond price above which it is optimal to exercise 

the embedded option is an increasing function of firm value for noncallable 

bonds. For callable bonds however, it is an increasing function at low firm 

values and a decreasing function at high firm values. This explains why non- 

callable bond duration is an increasing function of firm value while callable 

bond duration is a hump-shaped function of firm value. By contrast, under 

typical exogenous bankruptcy specifications, duration is a U-shaped function 

of firm value near default. 

We interpret recent evidence on the relation between corporate bond yield 

spreads and Treasury bond yields as information about hedging and find that 

the empirical patterns in the spread-rate slope mirror the duration patterns 

implied by endogenous bankruptcy. In particular, our results on boundaries 

and durations explain why the slope of the empirical spread-rate relation is 

increasing in bond rating for noncallables, but hump-shaped for callables. 

A formal empirical test of the model's hedging implications would be an 

interesting subject for future research. 

Much of the recent work in the corporate bond literature has focused on 

optimal or strategic behavior in the presence of frictions such as taxes or 

bankruptcy costs. In order to focus on optimal issuer behavior with stochastic 

interest rates, our paper uses a relatively simple contingent claims approach 
that abstracts from such frictions. One extension would be straightforward, 
however. For expositional purposes, the model presented here assumes that 

in the event of default, bond holders get the full value of the firm V and 

equity holders get nothing. Yet we could easily incorporate deviations from 

absolute priority of the following form: in the event of default, bond holders 
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get a V and equity holders get (1 - a)V, where a is a constant between zero 

and one. In that case, corporate bond values would become 

Px(P,, t)= - fx(p, av, t)= px(p, av, t). (20) 

Bond prices, yields, and durations would be invariant to a holding av con- 

stant and sensitivity to firm value would adjust in a straightforward fashion. 

All of our analytical results would continue to hold, as would the qualitative 
nature of our numerical results. 

This paper focuses on how changes in market conditions affect prices, 

spreads, durations, hedge ratios, and call and default decisions in the absence 

of frictions. However, many other issues surround the subject of corporate 
debt. One area of interest is term structure. Another is the dynamics of 

optimal capital structure with taxes, bankruptcy costs, and refinancing costs. 

The framework developed here could provide the foundation for research in 

a variety of different directions. 

Appendix A: Proofs 

The proof of Theorem 1 makes use of a number of so-called no-crossing properties. The first 

follows from Proposition 2.18 of Karatzas and Shreve (1987): 

Proposition 2. Consider two values of interest rates at time 0, ro') and r(2) such that r0') < r2), 
and denote the corresponding interest rate processes as rtI) and rt, respectively. Then 

[r(1) < r2, 0 < t < oo] =1. (21) 

This no-crossing property of r implies no-crossing properties for /3, P, 3P, and V. For ease of 

exposition, let 

/3 - P3o,, (22) 

Corollary 1. Let pj,) and 312) be the discount factor processes corresponding to initial interest 

rates r'l) and r2), respectively. Then 

rI) < ro2) ==0 PI' > p(2), 5-a.s. V 0 < t < oo. (23) 

Proof. From Proposition 2, we have rsl) < r(2), V 0 < s < t. The paths of r(') and r(2) are 

continuous, so there exists a neighborhood around t = 0 on which r() < r(2). Consequently, 

e-o rs1)ds e- sr(2)ds 

The monotonicity of the host bond price in level of the interest rate implies: 

Corollary 2. r) < P r (2) p(l) > 
p'(2), f-_ a.s. V O< t < T. 

Combining Corollaries 1 and 2 yields: 

Corollary 3. r 0) < r(2) = /3I)p(l) > /2)p(2), _ a.s. V 0 < t < T. 
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Under the firm value specification (4), 

V, = Vo. ef rudu-fo du- f o du+fo ju dWu (24) 

It follows that: 

Corollary 4. r) < (r2) = V,(') < Vt(2), -a.s. V 0 < t < T. 

The following lemma also serves in the proof of Theorem 1. 

Lemma 1. ro) < r E2) = E[pt2 )pt() ] > p(2)p _ p(l) V 0 t < T. 

Proof. Define the P-martingale f3P* by 

1P, ^ 
f 

C 
,Tds+l AT19] 

1 , 
? 

VO<t<T. (25) 

Note that 

1,P, =E [c f1ds + 1 T 
, (26) 

so 

PtP = ftPt + c fs ds. (27) 

Rearranging, 

/3P,-Po = tP,*-c j 3t dt- P (28) 
o 

E[13,P,]- Po = -E[c f , ds]. (29) 

Corollary 1 implies that 

[Icf (1)ds]> E[ c (2)dsJ (30) 

and the result follows. U 

Proof of Theorem 1. 1. Consider the stopping problem at time t < T. Let p(1) > p(2) be two 

possible values of the time t bond price. Note that, from the strict monotonicity of PH(-, t), 
there are corresponding values of the time t interest rate process, rM( and r(2), satisfying 

r() < r(2). Let r be the optimal stopping time given the state at time t is P, = p(2) and 

V, = v. Then its feasibility as a stopping time for the state Pt = p(l) and V, = v implies 
that 

f(p('), v , t) f( E>[,13 (P( - K(V( ), 7)) 

-^{PT 
- K t} (31) - 

p-( 
p(V2' 

- 
K(V(2), T))+ 

I] (3t1) 

> 0. (32) 

To establish the last inequality, note that if T = t, the expectation above is p(l) - p(2) > 0. 

If T > t, r(l) < r(2) = j,l) > 8(2), and p() > p .2). Furthermore, Corollary (4) implies that 

K(V,('), ) < K(V(2) ). It follows that (P() -K(V(1), ))+ > (P(2)- K(V(2, ))+. Now 

p(2) K(V2), r) > 0 with positive probability, so p,, T(P( 
- 

K(V,1), r))+ > P - 

K(VT2, r)) a.s. and ,(PT K(V ) T)) > t 2)(P 2)-K(VT2) , ))+ with positive 

probability. 
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2. Consider the cases K(V,, t) = V, and K(Vt, t) = k, A V, and let t < T. Let v(l < v(2) be two 

possible values of the time t firm value, V,. From Equation (24), V(l) < V(2), Vs e [t, T]. 
It follows that K(V(I), T) < K(V2), r), where r is the optimal stopping time given that the 

state at time t is P, = p and V,= v(2). The feasibility of T as a stopping time for the state 

P, = p and V, = v() implies that 

f(p, v), t) - f(p, v(2), t) > 
E[At,T(P, 

- 
K(V!), T))+ 

- ,,(P - K(V(2), 7)) +It] (33) 

> 0. (34) 

In the case of the pure default option, K(V,, t) = V,, the last inequality is strict. 

3. We let p(l) > p(2) and prove that f(p(2), v, t) 
- 

f(p(l), , t) > p(2) _ p(l). Let r() < r(2) 

denote the time t interest rates corresponding to the two possible values for the time t 

bond price, p(l) and p(2), respectively. Let r be the optimal stopping time for p('). Then r 

is a feasible stopping time for p(2) as well. 

f(p(2)v, ,t)-f(p(l), v, t) 

> E[t 
2) (p(2) K(V(2), 7))+ - 

)(P,) K(VTI', ))+ t] (35) 

( (2) 
(PT(2) (V2) _ ()(P(l - K l) )) t,(P -K(VT , )) -(V1), T))] 

1 (P()>K(v(1) )) ) (36) 

> E 
[(2, (p(2 - K(V(2), T)) - (() K(V(', ))] 

+L t, ) - r t), r)] ()( )) (38) 

1 (P( i K ( ),)( i) T)) 
I }t (39) 

- 

pR(2)_ p(2) P4() 
1 

= 
() 

(1, (1( 41) 

K(V , ) < K(V2, ) (Corollary 4) which in turn imply that P) < K( ), r) = P(2) 

K(V2) T). Inequality (39) follows from the fact that r((l < r)> ( () (V,), t) 

,B(2K(V4r2),) (Corollary 1 and Equation 24). Inequality (40) follows from the fact that 

r(1) < r(2) ?. /3(,4P4) > f3,)P4() (Corollary 3). Finally, Inequality (41) follows from Lemma 1. 

4. We let > and prove that f(p, ) (2) - ), ) Let be the optimal 

stopping time for ). Then r is a feasible stopping time for v(3. 

= E [[t, r 
- 

K(V (1)) 
- 

1,(PV T K) ))] 

> (K((2) v)()) pT 
1 | (43) 

- 
t, T 7 rt, T1 (40) 

)P(2)- (1)~ (41) 

Equation (36) follows from the fact that r(l) < r(2) =:i p(l) > pT(2) (Corollary 2), and 

K(VT(,), 
' 

) < 
, 

K 
) (Corollary 4) which in turn imply that PT(') _ V~(') r) = P?)_ 

K(V?), 
T 

). Inequality (39) follows from the fact that r(l)< r(2 = KV,--, T).. 
/3(2)K( V, T) (Corollary 1 and Equation 24). Inequality (40) follows from the fact that 

r(l) < r(2) =:=,t,8(1)p) >?2)p(2) (Corollary 3). Finally, Inequality (41) follows from Lemma 1. t,T T -t , 
, 

'r 

4. We let v(2) > v(0) and prove that f(p, v(2), t) -f(p, v(1), t) > v(l) - V(2). Let r be the optimal 

stopping time for v(0. Then T is a feasible stopping time for v(2). 

f(p, v(2', t)- f(p, v(1), t) >/~[/,~(P1- K(V?2), r))+ 

-~t([B,.1(P1--K(V(2), r))+ _t - K(VK(V ) T))] 

.' (PT > K (VT('), T)) 
I Yt 

1 (43) 
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l(P,>K(V(l),))I1tl 
(44) 

-I[,,,(K (VT(", 'r) - K (VT('), r))] I (PT>K(V,1),T)) ty' (45) 

> f[PIc(K(VTI'), r) - K(VT2), r)) IJ] (46) 

( 
E 

') 
_V1) V(2))1~ (47) 

= e ft yu du 
(V(I) - v(2) (48) 

> VM - v(2) (49) 

Inequalities (43) and (46) follow from the fact that v12 > V(I) =j K(VT2), r) > 
K(V('),T r). U 

Proof of Proposition 1. The first inequality is obvious. We establish the second inequality as 

follows. 

fCD(P, v,It) = sup E[,t,T(PT - kTA VT)+IYt] (50) 
t<Tr<T 

= sup E{ft T((PI - k) V (PI - VX))IJt] (51) 
t<r<T 

< sap K[Pt,,((PT- k,)+ + (P, - VT)+)IYJ] (52) 
t<T<T 

< sup 'E[01,JPT l ] + sup E[I3T(PT VT) + 1] (53) 
t<T<T t(<r<T 

- fM(P, v, t) +fD(p, v, t). (54) 

For the proofs of Theorems 2-4, note that the continuation region for each option is the open 

set 

U {(p, v, t) E R+ x R1 x [0, T]: f(p, v, t) > (p - K(V, t))+I. (55) 

In addition, note that for all t e [0, T), f(p, v, t) > 0. 

Proof of Theorem 2. Suppose it is optimal to continue at p, and p, > P2- We show that it is 

then optimal to continue at P2- Using the call delta inequality, we have 

f (P2, VI t) >- f (PI IVI t) + P2 - PI > (PI - K(V, tW) + P2 - PI >- P2 - K(V, t). (56) 

In addition, f(p2, v, t) > 0, SO 

f (P21 VI t) > (P2 - K(V, t) (57) 

Let b(v, t) be the supremum of p such that (p, v, t) E U. The point (b(v, t), v, t) cannot 

lie in U because U is open, so f(b(v, t), v, t) = b(v, t) - K(V, t) > 0, which implies b(v, t) > 

K(V, t). U 

Proof of Theorem 3. 1. Note that it must be optimal to default at v = 0. Suppose it is 

optimal to continue at v1 and v, < v2. We show that it is then optimal to continue at v2. 

Using the put delta inequality, 

f (PI V21 t) >- f (p, VII t) + VI - V2 > (P - VX ) + VI - V2 >- P - V21 (58) 
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and thus f(p, V2, t) > (p- v2)+. Let VD(p, t) be the infimum of v such that (p, v, t) E U. 

Since f(p, VD(p, t), t) > 0, VD(p, t) < p. 

2. First, suppose it is optimal not to default at v, and v1 < v2. We show that it is then also 

optimal not to default at v2. From the put delta inequality, 

f(p,2, t) f (P, V,'+ t) v_- > (p- v kt)++v -2- 

> P- 2, (59) 

and thus f(p, v2, t) > (p- v2)+ 

Note that it must be optimal to default at v = 0. Therefore, there exists a critical value 

VCD(P, t) such that it is optimal to default Vv, v < vcD(p, t). Further, CDo(p, t) < p must 

hold. Otherwise f(p, Vco(p, t), t) = 0, a contradiction. In addition, VCD(p, t) < k, must 

hold. Otherwise, there would exist a firm value greater than k, at which it is optimal to 

default, which is impossible. 

Next, suppose it is optimal to call at v,, and v, < v2. We show that then it is then optimal 
to call at v2. Note that k, < v, must hold. Now, on one hand, f(p, v2, t) > p - k, v2 = 

p -k,. On the other hand, from part 2 of Theorem 1, f(p, v2, t) < f(p, vl, t) = p- k,. 
Let VCD(p, t) > kt be the minumum of v such that it is optimal to call at (p, v, t). ? 

Proof of Theorem 4. 1. Suppose 0 < p < bD(v,, t). Then p < bD(v2, t) as well: 

f(p, v2, t)> f(p, v,t) + v v2 > p-v + v -v2 = p-v2. (60) 

2. Suppose v > vD(p2, t). Then v > vD(pl, t) as well: 

f(Pl,v,t) > f(p2,v,t)+pI P2- >P2-V +Pl -P2 > P -v. (61) 

3. The proof is essentially the same as that in part 1. 

4. Suppose 0 < p < bc(v2, t). Then p < bc(vl, t) as well: 

f(p, V,, t) > f(p, v2, t) > g(p, v2, t) = (p - kt)+ = g(p, vl,, t). (62) 

5. If p <bD(v,t), then fco(p, v,t) > f(p, v, t)> p-v=p-vAk,, so p < bc(v, t). 
6. If p<bc(v,t), then fco(p,v,t)> fc(p,t) >p-k,=p- vAk,, so p<bcD(v,t). ? 

Appendix B: Numerical Implementation 

Nelson and Ramaswamy (1990) show how to use binomial processes to approximate a general 
class of single-factor diffusions. To extend their analysis to multi-factor diffusion models, we 

first transform the state variables into new diffusion processes that are uncorrelated and have 

constant volatility. Then we construct a recombining, two-dimensional binomial lattice for the 

resulting orthogonalized diffusions. Finally, we transform the lattice for the orthogonalized state 

variables into a lattice for the original variables and price the callable and defaultable bonds using 
backward induction. This appendix describes the construction of the two-dimensional binomial 

lattice. Other papers illustrating the implementation of bivariate diffusions are Boyle, Evnine, 
and Gibbs (1989), Hilliard, Schwartz, and Tucker (1996), who consider lognormal processes, 
and Hull and White (1994a,b, 1996), Ho, Stapleton, and Subrahmanyam (1995), and Peterson, 

Stapleton, and Subrahmanyam (1998), who consider two-factor term structure models. 
As a special case of our model, we consider the Cox, Ingersoll, and Ross (1985) interest rate 

process r,, where 

dr, = K(, 
- r,) dt + ova,tdZ,. (63) 
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Firm value V, follows the log-normal process 

dV t 
= (r - y,) dt + ,d W, (64) 

V, 

The instantaneous correlation between Zt and W, is denoted as Pt. Note that y, > 0, 4, > 0, and 

Pt E (-1, 1) are deterministic functions of time. 
To orthogonalize these interest rate and firm value processes, let G, - nt) and H, - 2rit 

Then, by Ito's Lemma, 

dG,=,atdt+dW,, , t = rt y , and 

2t (65) 
r2 

dH, = v,dt + dZ,, vt = K 
.Kr 

Second, let X, = G, and Yt = - (-ptG, + Ht). Then X and Y are diffusions with unit 

instantaneous variance and zero cross-variation. The drift of X is /,+ = /,t and the drift of Y is 

'ut,- l (-PtA,t + vt)' 

The inverse transformation to obtain r, and V, from X, and Y, are 

Vt = e'iX, rt= [ .( 1 -p2 +tX)1 . (66) 

To get a lattice for r and V, we apply this inverse transformation at each node of the lattice for 

X and Y. 

To construct a recombining, two-dimensional binomial lattice for the variables X and Y, we 

divide the time-interval [0, T] into N equal intervals of length At. From a node (X,, Y,) at time 

t, the lattice evolves to four nodes, (X+, Y+), (X+, Yt-), (X,, Yt+), and (X-, Yt-), where 

X+ = X, + (2k, + 1)V/A, X = X, + (2kl - 1)V/. t t _(67) 
Y= Y, + (2k2 + 1)V/A, Y,- = Y, + (2k2 - 1)V, 

and k and k2 are integers such that 

(2k,- 1)vt </ L+At < (2k, + l)V/t, (68) 

(2k2- 1) < /;-At < (2k2 + 1)V . (69) 

The four nodes have associated risk-neutral probabilities pq, p(l - q), (1- p)q, and (1- 

p)( - q), respectively. The probabilities, p, of an up-jump in X, process, and q, of an up-jump 
in Y, process, are picked to ensure the right first moments at the node (Xt, Yt): 

P= +t -k,, q + -k2. (70) 
2 2 2 2 

Equations (68) and (69) ensure that the probabilities are between 0 and 1. While the first 

moment of the process (X, Y) is matched exactly by the scheme above, the second moment 

is approximated with an error that is O(At). The two-factor binomial process converges in 

distribution to the original continuous-time process as At - 0. 

To make the lattice for each state variable recombine, the variable can only move an integral 
number of increments /At, as Equation (67) indicates. When the drift terms A+ and /it are 

large in magnitude, for instance, at low interest rates when the speed of mean reversion is high, 

multiple jumps, that is, nonzero k, or k2, occur. However, the lattice for each variable has only 
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n + 1 nodes at each time nAt, so an up or down move from any node at time (n - l)At must 

lead to one of the n + 1 nodes at time nAt. Therefore, the moves described in Equations (68) and 

(69) require that At be sufficiently small. The numerical examples employ 35 to 40 time steps 

per year. We check the convergence by matching the price of a zero-coupon bond maturing at 

T, which can be calculated analytically, and by matching the price of a European default option 
on the zero-coupon bond with an expiration at T, under the two-factor specification, which can 

be calculated using Monte Carlo simulation. 
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