Mutual Fund Survivorship

Mark M. Carhart
Goldman Sachs Asset Management

Jennifer N. Carpenter
New York University

Anthony W. Lynch
New York University

David K. Musto
University of Pennsylvania

This article provides a comprehensive study of survivorship issues using the mutual fund data of Carhart (1997). We demonstrate theoretically that when survival depends on multi-period performance, the survivorship bias in average performance typically increases with the sample length. This is empirically relevant because evidence suggests a multi-year survival rule for U.S. mutual funds. In the data we find the annual bias increases from 0.07% for 1-year samples to 1% for samples longer than 15 years. We find that survivor conditioning weakens evidence of performance persistence. Finally, we explain how survivor conditioning affects the relation between performance and fund characteristics.

Fund disappearance, or attrition, affects almost every study of mutual funds, hedge funds, or pension funds. Many commercial datasets include only funds currently in operation. Test methodologies often require funds to survive a minimum time period to be included in the analysis. These forms of survivor-only conditioning can bias test results. This article offers a theoretical and empirical analysis of the biases introduced by conditioning on survival. We study the effect of survivor conditioning on (1) estimates of average performance, (2) tests of performance persistence, and (3) cross-sectional estimates of the relation between performance and fund attributes. In each case, the empirical results are consistent with our theoretical predictions.

Part of this research was conducted while Carhart was assistant professor at the Marshall School of Business, University of Southern California, and senior fellow, the Wharton Financial Institutions Center. We have benefited from helpful comments from Stephen Brown, John Cochrane, Kent Daniel, Ned Elton, Gene Fama, Wayne Ferson, Will Goetzmann, Marty Gruber, Larry Harris, Bob Krail, Ananth Madhavan, Kevin J. Murphy, Russ Wermers, an anonymous referee, and the participants in seminars at the Western Finance Association annual meetings, Institutional Investor Institute Quantitative Round Table, University of California—Riverside, and the Institute for Quantitative Research in Finance. We also express appreciation to Bill Crawford and Lisa Simms at Micropal for assistance with their database. Carhart is grateful to Gene Fama, the Oscar Mayer Fellowship, and the Dimensional Fund Advisors Fellowship for financial support. This paper was previously entitled “Survivor Bias and Mutual Fund Performance.” Address correspondence and reprint requests to Jennifer N. Carpenter, New York University, 44 West Fourth St., Suite 9-190, New York, NY 10012, or e-mail: jcarpen0@stern.nyu.edu.
Our database is virtually identical to the Center for Research in Security Prices (CRSP) mutual fund database, covering all known diversified equity mutual funds monthly from January 1962 to December 1995. The mutual fund context has been fruitful for much of the recent research on survival biases. However, survivor conditioning is relevant for many datasets and tests. The analysis in this article therefore has potential applications in other areas of financial economics. For example, many areas of finance run cross-sectional regressions with performance as the independent variable. The use of a survivor-only sample may seriously bias such regressions. For instance, researchers often relate cross-country differences in equity market performance to cross-country differences in equity market characteristics. Our analysis suggests that data unavailability for failed equity markets can have important ramifications for such comparisons, particularly if the characteristics in question are related to survival. Similarly, many finance studies sort stocks on firm characteristics. When survival criteria are related to these characteristics, survivor conditioning can bias the return on the spread portfolios.

To fix terminology, a single-period survival rule means that a fund with current-period performance less than some threshold disappears at the end of the period, while a multiperiod survival rule means that a fund disappears if its past n-period performance is less than some threshold. Some of the important theoretical insights about survivor biases pertain to a single-period rule [see, e.g., Brown et al. (1992)]. However, our theoretical work and that of others indicates that the effects of survivor conditioning depend critically on the nature of the survival rule [see, e.g., Brown et al. (1992) and Carpenter and Lynch (1999)]. Evidence that lagged performance predicts survival, even in the presence of the most recent year’s performance, suggests a multiperiod survival rule for U.S. mutual funds [see Brown and Goetzmann (1995)].

Our article contains several new results. We begin with the effects of survivor conditioning on estimates of average performance. We show that a multiperiod survival criterion typically causes survivor bias to increase in the sample length, though at an ever-decreasing rate. Empirically we find that the bias in annual performance is increasing in the sample length and is approximately 1% for subsets of our data longer than 15 years. Theoretically we explain why the bias in average performance need not always increase in the sample length, even with a multiperiod survival rule.

We explain how survivor conditioning can affect the cross-sectional relations obtained between fund performance and fund characteristics. For a cross-sectional relation to be biased in a survivor-only sample, the fund characteristic in question must be related to the survivor bias in performance. We estimate the slope coefficient biases for commonly used fund characteristics, find that the magnitude of these biases can be large, and show that their directions are consistent with intuition. We estimate the Heckman (1976, 1979)
two-step correction for incidental truncation and find that model misspecification may be a serious concern when attempting to use this procedure to control for survivor biases.

We examine empirically the impact of survivor conditioning on persistence tests and find that the conditioning attenuates performance persistence relative to the full sample. This empirical evidence supports the theoretical predictions in Brown et al. (1992), Grinblatt and Titman (1992), and Carpenter and Lynch (1999) for mutual funds. Myers (2001) finds that survivor conditioning empirically reduces performance persistence for pension funds as well.

Section 1 describes the methodology and the data. Section 2 considers the effects on average performance measures of requiring the sample funds to survive to the end of the sample period. Section 3 studies the effects of survivor conditioning on persistence measures. Section 4 examines the impact of survivor conditioning on cross-sectional regressions. Section 5 concludes.

1. Methodology and Data

1.1 Aggregation method

Since a mutual fund sample is a panel dataset, a method of aggregation across funds and time must be chosen. One approach calculates statistics on the individual funds, then averages cross-sectionally. Another approach calculates statistics cross-sectionally for each time period and then averages these estimates through time. We find that these methods produce similar estimates of survivor bias in average performance. However, the second approach more easily allows us to compute standard errors that account for cross-correlation in contemporaneous fund performance.

1.2 Performance measurement

We employ two measures of performance. The first measure, group-adjusted performance, is the fund return minus the equal-weight average return on all funds with the same objective in that period. We partition the sample into...
three primary investment objectives using Wiesenberger and International Center for Disability Information (ICDI) classifications: aggressive growth, growth and income, and long-term growth. When funds change objectives, they move to a new group. The second performance measure is the time-series regression intercept, or alpha, from the four-factor model of Carhart (1997). The four-factor model uses Fama and French’s (1993) three factors plus an additional factor capturing Jegadeesh and Titman’s (1993) one-year momentum anomaly. The model is

$$r_i(t) = \alpha_i + b_iRMRF(t) + s_iSMB(t) + h_iHML(t) + p_iPR1YR(t) + e_i(t), \quad (1)$$

where r_i is the return of asset i in excess of the 1-month Treasury bill return, $RMRF$ is the excess return on a value-weighted aggregate market proxy, and SMB, HML, and $PR1YR$ are returns on value-weighted, zero-investment, spread portfolios for size, book-to-market equity, and one-year momentum in stock returns. We use the four-factor model in an effort to adjust fund performance for well-known regularities in stock returns. It would also be interesting to assess performance using a conditional model like Ferson and Schadt (1996), but we leave this to future work.

1.3 Survivor conditioning

It is important to recognize that the survival criteria actually in effect in the population interacts with the survivor conditioning imposed in a sample to generate survivor biases in test statistics. In empirical work, the researcher is stuck with the population birth and death process, but may have considerable control over the survivor conditioning imposed on the sample. Two forms of survivor conditioning are particularly important for mutual fund research.

End-of-sample conditioning includes only the funds extant at the end of the sample period. Look-ahead conditioning requires funds to survive some minimum length of time after a reference date, known as the look-ahead period. This type of conditioning is found in many other research contexts.

An example of end-of-sample conditioning is Morningstar’s OnDisc, which reports performance since January 1976, but only for funds still existing at the end of the sample period. An example of look-ahead conditioning is common in performance persistence tests that regress future n-period performance on a measure of past performance: the test conditions on survival for n periods beyond the evaluation date. In fact, some degree of look-ahead conditioning is inherent in any test of performance persistence. Since the imposition of a minimum survival period is often unavoidable, an important issue is how the resulting bias varies with the nature of the survival rule in the population.

1. Brown and Goetzmann (1997) document that some funds game their stated objectives to improve their relative performance, so we reconstruct the annual series of stated objectives to remove short-term objective “flips.”

2. End-of-sample conditioning can be thought of as look-ahead conditioning with longer look-ahead periods for earlier reference dates.
1.4 Database
Our database covers all known diversified equity mutual funds monthly from January 1962 to December 1995, excluding sector funds, international funds, and balanced funds. We obtain data on surviving and nonsurviving funds from a variety of sources [see Carhart (1997) for details]. The sample includes a total of 2071 diversified equity funds, 1346 of them still operating as of December 31, 1995.

The dataset includes monthly returns and annual attributes. The return series do not include final partial-month returns on merged funds as in Elton, Gruber, and Blake (1996). Of the 725 nonsurviving funds, we obtain the date of merger, liquidation, or reorganization for 475. The return series end within one week of the termination date for 330 of the funds with known termination dates. Of the remaining 145 funds, 32 do not include the final partial- or full-month return, 20 do not include the final 2- to 3-month return, 81 do not include the final 4- to 12-month return, and 12 funds are missing more than 1 year’s returns. Of the 250 nonsurviving funds without exact termination dates, we do not observe any returns on 53 funds, often because they are too small to appear in any published sources.\(^3\)

1.5 Summary statistics
The average annual fund attrition rate from 1962 to 1995 is 3.6%, with a standard deviation of 2.4%. On average, 2.2% per year disappear due to merger and 1.0% disappear because of liquidation. A further 0.1% vanish through other self-selected means, usually at the fund manager’s request for removal, and the remainder depart for unknown reasons or are dropped from the sample by the database manager, not the fund itself.\(^4\) Aggressive growth funds perish at an annual rate of 4.5%, which is statistically significantly larger than the 2.9% for long-term growth funds and 3.3% for growth and income funds.

Table 1 compares the performance of surviving and nonsurviving funds. The performance estimates are the cross-sectional averages of the group-adjusted returns and four-factor alphas of individual funds, estimated from the complete time series of their returns. Not surprisingly, nonsurviving funds...

\(^3\) Since mergers and liquidations need shareholder approval, these reorganizations require at least several months to complete. Thus missing final returns probably do not differ substantially from the prior observed returns on these funds. The evidence from Elton, Gruber, and Blake’s (1996) sample supports this conclusion: Marty Gruber, in a personal communication, indicates that the final partial-month return on merged funds does not significantly differ from the average nonsurvivor’s return. Of greater concern is the 250 funds without exact termination dates, particularly the 53 without any return data. Since these 53 are likely nonsurvivors, the lack of any return data imparts a survivorship bias to the measures obtained for the full sample. As a consequence, comparisons of the full sample to the survivor-only sample are likely to understate the effects of survivor-only conditioning.

\(^4\) By contrast, Elton, Gruber, and Blake (1996) find an attrition rate of only 2.3% in their sample. However, they study only a single cohort of funds, so each year’s sample requires funds to have survived some time in the past.
Table 1
Performance of surviving and nonsurviving mutual funds

<table>
<thead>
<tr>
<th>Number of funds</th>
<th>Group adjusted</th>
<th>Four-factor alpha</th>
<th>Cross-sectional average monthly performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Alpha</td>
</tr>
<tr>
<td>All funds 2071</td>
<td>−0.3%</td>
<td>−0.14%</td>
<td>−0.15%</td>
</tr>
<tr>
<td>Survivors 1346</td>
<td>0.10%</td>
<td>−0.03%</td>
<td>−0.07%</td>
</tr>
<tr>
<td>Nonsurvivors 725</td>
<td>−0.26%</td>
<td>−0.34%</td>
<td>−0.33%</td>
</tr>
<tr>
<td>Survivors—all funds</td>
<td>0.13%</td>
<td>0.11%</td>
<td>0.08%</td>
</tr>
<tr>
<td>Merged with another fund 417</td>
<td>−0.19%</td>
<td>−0.29%</td>
<td>(−4.17)</td>
</tr>
<tr>
<td>Liquidated 258</td>
<td>−0.45%</td>
<td>−0.54%</td>
<td>(−2.34)</td>
</tr>
<tr>
<td>Other, self-selected 14</td>
<td>−0.18%</td>
<td>−0.28%</td>
<td>(−7.42)</td>
</tr>
<tr>
<td>Other, not self-selected 36</td>
<td>0.03%</td>
<td>NA</td>
<td>(6.52)</td>
</tr>
</tbody>
</table>

Survivors are those funds still operating on December 31, 1995, and nonsurvivors are funds disappearing before this date. Cross-sectional average monthly performance is the cross-sectional average of the performance estimates of individual funds based on the complete time series of their returns. Group-adjusted performance is the difference between a fund’s return and the average return on all other funds with the same declared fund objective. Four-factor alpha is the intercept from a time-series regression of a fund’s excess returns on the four-factor model factor-mimicking portfolios over the fund’s complete history. The four factors are RMRF, SMB, and HML, Fama and French’s (1993) market proxy and factor-mimicking portfolios for size and book-to-market equity, and PR1YR, a factor-mimicking portfolio for one-year return momentum. The right-hand panel contains four-factor model estimates for portfolios of funds, with t-statistics in parentheses.
exhibit considerably poorer performance than surviving funds. By these measures, nonsurviving funds underperform survivors by about 4% per year. Liquidated funds exhibit the worst relative performance.

Table 1 also gives four-factor model estimates for equal-weighted portfolios of funds. Nonsurviving funds remain in the equal-weighted average until they disappear. The alphas for the portfolios are close to the average of the individual alphas of the funds in the portfolios, suggesting that the results are not sensitive to the method of aggregation. The performances of the portfolios of survivors and nonsurvivors are considerably different. Survivors achieve abnormal performance of -0.07% per month while nonsurvivors earn -0.33%. The difference between estimates of performance using survivors only and estimates using the complete sample is 0.08% per month. From the four-factor loadings, we infer that relative to nonsurvivors, surviving funds tend to follow larger-capitalization, more value-based investment styles. This will influence the specification of the probit model of survival that we use to examine the Heckman correction for survivor bias in cross-sectional regressions.

2. Survivor Bias Effects on Estimates of Average Performance

2.1 Theory

For convenience, we call the periods years, though they could be any length of time. An m-year survival rule causes funds at least m years old to disappear through liquidation or merger if the sum of their returns over the preceding m years falls below a threshold b. Returns could be any measure of performance. For simplicity, we assume that fund returns are cross-sectionally and intertemporally independent and identically distributed with mean μ. Let $g \geq 0$ be the annual net growth rate of the number of funds in the mutual fund industry. Let k be the length of the sample period of interest and let T be its ending date. By assumption, b, g, μ, and the variance of fund return are all independent of k. Consider the sample of all funds that have returns in the sample period and that are still in existence at time T, including new funds over the period. By construction, this sample imposes end-of-sample

1 We obtain only annual returns on many nonsurvivors. Excluding these funds from our monthly portfolio returns upwardly biases performance estimates. To mitigate this potential bias, we compare the average annual return on all funds to those with only monthly returns. If they differ for any year, we add one-twelfth of this difference equally to all months of that year (using continuously compounded returns). The difference in mean annual return is typically less than 0.20%.

2 The “group-adjusted” measure employed above exhibits cross-correlations by construction. However, if the sizes of the groups are large enough, these cross-correlations are likely to be small.

3 The analysis in this section continues to hold for negative growth rates. A negative growth rate means new funds arrive more slowly than existing funds disappear. At the extreme, no new funds enter the industry, and the industry growth rate is at a minimum determined by the attrition rates. To avoid violating this lower bound, we assume the growth rate here is nonnegative.
conditioning and includes funds with fewer than \(k \) years of performance. The estimate of average performance for an equal-weighted portfolio \(\tilde{\mu}_T^k \) is the time-series average of the yearly equal-weighted cross-sectional mean returns of these funds. We are interested in characterizing the behavior of \(\tilde{\mu}_T^k \) as a function of \(k \).

Proposition 1. If a single-year survival rule causes fund disappearance (i.e., \(m = 1 \)), the annual end-of-sample bias in the average performance estimate is independent of the length of the sample period, \(k \).

Proof. In any year of any sample period, the bias in the estimate of average performance of surviving funds is

\[
E[R | R > b] - \mu
\]

which is independent of \(k \). \(\square \)

Now suppose a multiyear survival rule determines fund survival (i.e., \(m > 1 \)). Each of the funds that survive through time \(T \) survives performance cuts from the time it is \(m \) years old until time \(T \). Let \(C_t \) be the conditioning statement associated with the time \(t \) performance cut,

\[
C_t \equiv \left[\left(\sum_{r=t-m+1}^{t} R_r \right) > b \right].
\]

and let \(x_i \) denote the survival probability after year \(t \) conditional on survival in previous years,

\[
x_i \equiv \Pr\{ C_t \mid C_{t-1}, \ldots, C_i \}, \quad i > 0
\]

\[
\equiv \Pr\{ C_t \}, \quad i = 0
\]

\[
\equiv 1, \quad i < 0.
\]

Let \(\mu_{i,j} \) be the expected one-year return conditioned on having survived a set of \(j + 1 \) consecutive performance cuts with the last cut occurring \(i - 1 \) years after the return:

\[
\mu_{i,j} \equiv E[R_{t+1-i} | C_{t-j}, \ldots, C_i].
\]

We define a cut whose return window includes the given return as a *direct* cut; otherwise, we have an *indirect* cut. If \(\mu_{i,j} \) only involves indirect cuts, it must be equal to \(\mu \). With an \(m \)-year survival rule, there are \(m \) direct cuts for \(R_t \) which occur at times \(t \) through \((t + m - 1) \): \(C_t, \ldots, C_{t+m-1} \). All other cuts are indirect with respect to \(R_t \). For example, the time-\((t + m - 1)\) cut is direct with respect to \(R_t \), because it is applied to the sum of \(R_t \) through \(R_{t+m-1} \), which is a return window that overlaps with \(R_t \). In contrast, the time-\((t + m)\)
cut is indirect with respect to \(R_t \), because it is applied to the sum of \(R_{t+1} \)
through \(R_{t+m} \), which is a return window that does not overlap with \(R_t \).

It might seem that indirect cuts should not affect a conditional mean return, but
this is not the case. For example, even though \(R_t \) and \(C_{t-1} \) are independent,
\(E[R_t | C_{t-1}, C_t] \) is not equal to \(E[R_t | C_t] \) because of the dependence
between \(C_t \) and \(C_{t-1} \). Nevertheless, imposing an additional direct cut tends
to have a much greater effect on the conditional mean than imposing an additional cut that is indirect. Intuition suggests that the conditional mean of \(R_t \)
is increasing in the number of direct cuts. This intuition implies a survivor-biased
\(k \)-year sample mean \(\bar{\mu}_k \) that is increasing in \(k \) when the survival rule
uses more than one year of returns.

To illustrate why, let’s consider a two-year survival rule. With \(m = 2 \), the
conditioning statement associated with the time \(t \) performance cut becomes
\(C_t \equiv [R_{t-1} + R_t > b] \). For simplicity, suppose that the expected one-year
return conditioned on having survived a set of performance cuts depends
only on the number of direct cuts. Let \(\mu_1 \) and \(\mu_2 \) be the expected one-year
return conditional on one and two direct cuts, respectively. Since intuition
indicates that the conditional mean one-year return is increasing in the number
of direct cuts, we assume that \(\mu < \mu_1 < \mu_2 \).

With end-of-sample conditioning, the mean year \(T \) return of one-year-old funds is always the unconditional mean of \(\mu \), since those funds are too young
at the end of the sample to be subject to any cut. In earlier years, the mean
return of the one-year-old funds is the conditional mean return with one
direct cut, \(\mu_1 \), since a fund’s first return can only be subjected to one cut.
Similarly the mean year \(T \) return of all older funds is also \(\mu_1 \), since a fund’s
last return in the sample can be subjected to at most one cut. In years prior
to \(T \), the returns of funds older than one year at the time are subjected
to two direct cuts, and so their mean return is \(\mu_2 \).

Let \(\mu_T^j \) be the cross-sectional mean year \(t \) return of funds that survive
through time \(T \). The cross-sectional mean year \(T \) return of funds that survive
through time \(T \) is a weighted average of the mean year \(T \) return for one-year-old funds, \(\mu_1 \),
and the mean year \(T \) return for older funds, \(\mu_2 \):

\[
\mu_T^j = \tilde{w}_{1,t}^T \mu_1 + (1 - \tilde{w}_{1,t}^T) \mu_2 \tag{6}
\]

where \(\tilde{w}_{1,t}^T \) is the fraction of funds that are \(j \) years old at time \(t \) in the set
of time \(T \) survivors (after the time \(T \) cut) that have a year \(t \) return. For year \(t < T \),
the cross-sectional mean fund return of funds that survive through time \(T \) is a weighted average of the mean return for one-year-old funds, \(\mu_1 \),
and the mean return for older funds, \(\mu_2 \):

\[
\mu_T^j = \tilde{w}_{1,t}^T \mu_1 + (1 - \tilde{w}_{1,t}^T) \mu_2. \tag{7}
\]

Since the conditional one-year mean return is increasing in the number of
direct cuts (\(\mu < \mu_1 < \mu_2 \)), the cross-sectional mean fund return with end-of-
sample conditioning is lower for the last year (\(T \)) than for the next to last
year. Moreover, if the fraction of one-year-olds is constant over time (i.e., \(\hat{w}_{1,t} = \hat{w}_1 \) for all \(t \)), the cross-sectional mean fund return with end-of-sample conditioning is the same for all years but the last. Consequently the survivor-biased estimate of average performance across the \(k \)-year sample ending at \(T \), \(\hat{\mu}_T^T \), is increasing in \(k \). The impact of the lower time \(T \) cross-sectional mean on the time-series average becomes smaller as \(k \) increases.

The fraction of one-year-olds in the sample of time \(T \) survivors will be the same in all years if the probability of surviving a cut is the same irrespective of the number of cuts already survived (i.e., \(x_i = x \) for all \(i \geq 0 \)) and if the population is in steady-state growth. Letting \(w_{j,t} \) be the fraction of funds with a time \(t \) return that are age \(j \) at time \(t \), we say that the population is in steady-state growth, given its growth rate \(g \), if the age distribution is the same each year: that is, \(w_{j,t} = w_{j,T} \) for all \(j \) and any \(t \) and \(T \). To see why the assumptions of a steady state and a constant survival probability imply a constant fraction of one-year-olds in the sample of time \(T \) survivors, first note that in a steady state, the time \(t \) age distribution conditional on survival through \(t \) is the same for all \(t \). Second, note that with the probability of surviving a cut always the same, the time \(t \) distribution of one-year-olds and older funds is the same conditional on survival through \(t \) or through any later date (i.e., \(\hat{w}_{1,t} = \hat{w}_{1,T} \) for all \(\tau \geq t \)). The reason is that both groups leave the sample at the exact same rate per year, \((1 - x) \), from time- \((t + 1) \) onward. Together, these results imply that the time \(t \) age distribution conditional on survival through \(T \) must be the same for all \(t \), as required.

The following proposition shows that this intuition generalizes to \(m \)-year survival rules with arbitrary \(m \geq 2 \).

Proposition 2. If an \(m \)-year survival rule causes fund disappearance, \(m > 1 \), and

(i) the conditional mean \(\mu_{i,j} \) only depends on and is strictly increasing in its number of direct cuts: for all \((i, j) \) pairs, \(\mu_{i,j} = \mu_{\tau} \), where \(\tau \in \{1, 2, \ldots, m\} \) is the number of direct cuts involved in \(\mu_{i,j} \); and,

\[\mu < \mu_1 < \mu_2 < \cdots < \mu_m; \]

(ii) the probability of surviving a cut is the same irrespective of the number of cuts already survived: \(x_i = x \) for any \(i \geq 0 \);

(iii) the population is in a steady state, \(w_{j,t} = w_{j,T} \), for all \(j \) and any \(t \) and \(T \);

then the end-of-sample bias in the average performance estimate \(\hat{\mu}_T^T \) is increasing in the length of the sample period, \(k \).

Proof. See Appendix A.

Moving back in time from \(T \), the cross-sectional mean increases for the first \(m \) years, at which point it reaches a steady-state value. The \(m \) means at the end of the sample can be expected to be lower since these returns
are subjected to fewer direct cuts. As k increases, the greater weight on the steady-state means increases the sample average.

We consider the scenario depicted in Proposition 2 as typically relevant to mutual fund studies. However, since none of the three assumptions holds in general, it is possible to construct examples in which the sample mean is not increasing in the sample length.\(^8\) Direct cuts are generally expected to increase the conditional mean of R_t, but indirect cuts can have the opposite effect. Roughly speaking, when direct cuts to R_t have already been applied, the lower part of the distribution of R_t has already been eliminated. Imposing incremental indirect cuts to R_t can then eliminate return paths that involve mainly good realizations of R_t, reducing its conditional mean.

Another complication is that funds of different ages may disappear at different rates, causing the weights of the different-aged cohorts to change over time. Recalling that $x_i = \Pr(C_t \mid C_{t-1}, \ldots, C_{t-i})$, it makes sense that x_i is changing as i goes from 0 to $m - 1$, since each additional cut overlaps with C_t. However, x_i also varies as a function of i for $i > m - 1$, because of the interaction of the cuts C_{t-i}, \ldots, C_{t-m} with the cuts $C_{t-m+1}, \ldots, C_{t-1}$.

Finally, if the assumption of a steady state is relaxed, the cross-sectional mean may start declining in k for k sufficiently large, if the earliest years have only young funds whose early year returns have few direct cuts. Thus μ_1 may be hump-shaped as a function of k, rather than increasing.

More generally, the nature of the bias depends on the distribution of funds at the start of the sample. The construction of the sample is also important. Here we focus on the effects of end-of-sample conditioning for a sample that adds new funds as returns become available. Alternatively, the sample may follow a set of funds in existence at a point in time, as in Elton, Gruber, and Blake (1996), and impose end-of-sample conditioning. The end-of-sample biases will be different in each case because the cross-sectional distribution of funds will differ. For example, with fewer young funds, average fund volatility might be lower, leading to smaller survivor biases.

2.2 Calibration

The previous subsection suggests that end-of-sample conditioning creates a bias in average performance that is typically increasing in the sample length. To illustrate the various effects in a more realistic setting, we generate a mutual fund history designed to match U.S. mutual fund data.

For each $m \in \{1, 2, 3, 4, 5, 10\}$ we simulate values for the conditional means $\mu_{i,j}$ and the survival rates x_j, assuming that returns R_t are normally distributed with mean zero and standard deviation 5%. We set the growth rate in the industry equal to 5.5% to match the growth rate in the data. The choice of the critical return value b determines the average attrition rate for

\(^8\) An appendix is available from the authors that constructs examples in which the sample mean is not increasing in the sample length.
the sample. We choose this critical level in one of two ways. Panel A of Table 2 allows b to vary across m in such a way as to maintain a sample average attrition rate of 3.5%, the average annual attrition rate in the data. Panels B and C fix b/\sqrt{m} at −9.06%, which makes the sample average attrition rate for the case $m = 1$ equal to 3.5%. For larger values of m, this choice of b leads to lower sample average attrition rates.

We make two assumptions about the starting composition of the sample. Panels A and B assume that all funds are m years old at time 1. Panel C assumes that all funds are one year old at time 1. We present both cases to show that patterns in survivor bias depend on the maturity of the industry from which the sample is drawn.

For a given subperiod length of k in the 34-year history, we compute average performance measures for survivor-only samples using the simulated conditional mean returns and attrition rates. In particular, when m is greater than 1, we do not impose conditions (i) or (ii) of Proposition 2, but rather let the simulations determine the conditional means and survival probabilities. Finally, for each k we average the performance estimates across all possible subperiods of length k. Table 2 reports this average (in percent) for $k = 1, 2, 3, 4, 5, 10$, and 30, and the change in this average (in basis points) for k going from 30 to 31, 31 to 32, 32 to 33, and 33 to 34.

Consistent with Proposition 1, all three panels show that the survivorship bias in the average performance is constant across k for $m = 1$. Turning to the cases with $m > 1$, the first two panels of Table 2, which have only m-year-olds at time 1, show that the bias uniformly increases in sample period length k for $m > 1$. In contrast, panel C only has one-year-olds at time 1, and the intuition described earlier causes the sample average as a function of k to start declining for k close to 34. However, even in this extreme case in which the sample starts with all one-year-olds, the largest decline for a one-year increase in k is only 0.04 basis points. Thus we conclude that the bias-reducing effects of increasing the sample period length mentioned in the previous subsection are not likely to play an important role in realistic settings like the U.S. mutual fund industry.

2.3 Evidence

We now examine the relationship between average performance bias and sample period length in the data. Brown and Goetzmann (1995) find that past annual performance out to at least three lags affects fund survival, though in a more complicated fashion than the multiperiod rule described in Section 2.1 above. We would like to assess whether our calibration results from the previous subsection still apply qualitatively to the U.S. mutual fund industry, despite the additional complexity of the empirical survival rule. We would also like to measure the magnitude of the bias in average performance as a function of the sample length.
Table 2
Survivor bias in average performance as a function of the sample period length: calibration to the U.S. mutual fund industry

<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>10</th>
<th>30</th>
<th>30-31</th>
<th>31-32</th>
<th>32-33</th>
<th>33-34</th>
<th>33-34</th>
<th>h/√m</th>
<th>Death rate (in percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>−9.06</td>
</tr>
<tr>
<td>Panel A: Mutual fund industry consists entirely of m-year-olds at time 1. Scaled cutoff h/√m varies with m to maintain a sample attrition rate of 3.5%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.39</td>
<td>0.42</td>
<td>0.45</td>
<td>0.47</td>
<td>0.48</td>
<td>0.50</td>
<td>0.51</td>
<td>0.03</td>
<td>0.03</td>
<td>0.04</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>−8.45</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>0.35</td>
<td>0.45</td>
<td>0.49</td>
<td>0.51</td>
<td>0.55</td>
<td>0.58</td>
<td>0.06</td>
<td>0.05</td>
<td>0.06</td>
<td>0.09</td>
<td>0.19</td>
<td>0.19</td>
<td>−7.80</td>
</tr>
<tr>
<td>4</td>
<td>0.22</td>
<td>0.30</td>
<td>0.39</td>
<td>0.48</td>
<td>0.51</td>
<td>0.58</td>
<td>0.63</td>
<td>0.09</td>
<td>0.10</td>
<td>0.15</td>
<td>0.29</td>
<td>0.34</td>
<td>0.34</td>
<td>−7.18</td>
</tr>
<tr>
<td>5</td>
<td>0.20</td>
<td>0.27</td>
<td>0.34</td>
<td>0.41</td>
<td>0.50</td>
<td>0.60</td>
<td>0.66</td>
<td>0.12</td>
<td>0.14</td>
<td>0.21</td>
<td>0.39</td>
<td>0.62</td>
<td>0.62</td>
<td>−6.93</td>
</tr>
<tr>
<td>10</td>
<td>0.14</td>
<td>0.18</td>
<td>0.21</td>
<td>0.25</td>
<td>0.29</td>
<td>0.33</td>
<td>0.73</td>
<td>0.35</td>
<td>0.40</td>
<td>0.52</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>−4.03</td>
</tr>
<tr>
<td>Panel B: Mutual fund industry consists entirely of m-year-olds at time 1. Scaled cutoff h/√m is fixed and sets the attrition rate for m = 1 to 3.5%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>−9.06</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>0.34</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.41</td>
<td>0.42</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>−9.06</td>
</tr>
<tr>
<td>3</td>
<td>0.16</td>
<td>0.23</td>
<td>0.31</td>
<td>0.33</td>
<td>0.35</td>
<td>0.38</td>
<td>0.40</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>−9.06</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.17</td>
<td>0.22</td>
<td>0.28</td>
<td>0.30</td>
<td>0.34</td>
<td>0.37</td>
<td>0.06</td>
<td>0.06</td>
<td>0.09</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>−9.06</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.14</td>
<td>0.17</td>
<td>0.21</td>
<td>0.25</td>
<td>0.31</td>
<td>0.34</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>−9.06</td>
</tr>
<tr>
<td>10</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.10</td>
<td>0.18</td>
<td>0.25</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>−9.06</td>
</tr>
<tr>
<td>Panel C: Mutual fund industry consists entirely of 1-year-olds at time 1. Scaled cutoff h/√m is fixed and sets the attrition rate for m = 1 to 3.5%</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>−9.06</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>0.34</td>
<td>0.37</td>
<td>0.38</td>
<td>0.39</td>
<td>0.41</td>
<td>0.42</td>
<td>0.01</td>
<td>0.00</td>
<td>−0.02</td>
<td>−0.04</td>
<td>−0.04</td>
<td>−0.04</td>
<td>−9.06</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.23</td>
<td>0.30</td>
<td>0.33</td>
<td>0.34</td>
<td>0.38</td>
<td>0.40</td>
<td>0.02</td>
<td>0.01</td>
<td>−0.01</td>
<td>−0.03</td>
<td>−0.03</td>
<td>−0.03</td>
<td>−9.06</td>
</tr>
<tr>
<td>4</td>
<td>0.12</td>
<td>0.17</td>
<td>0.22</td>
<td>0.28</td>
<td>0.30</td>
<td>0.34</td>
<td>0.37</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>−0.02</td>
<td>−0.02</td>
<td>−0.02</td>
<td>−9.06</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.12</td>
<td>0.16</td>
<td>0.20</td>
<td>0.25</td>
<td>0.30</td>
<td>0.34</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>−0.00</td>
<td>−0.00</td>
<td>−0.00</td>
<td>−9.06</td>
</tr>
<tr>
<td>10</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.09</td>
<td>0.17</td>
<td>0.24</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>−9.06</td>
</tr>
</tbody>
</table>

For each m-year attrition rule, m ∈ {1, 2, 3, 4, 5, 10}, and each subperiod of length k years in the 34-year history, we compute average performance measures for survivor-only samples using simulated conditional mean returns and attrition rates. We assume that annual fund returns are normally distributed with mean zero and standard deviation 5%. We set the growth rate in the industry equal to 5.5% to match the growth rate in the data. Then, for each given sample period length k, we average the performance estimates across all possible subperiods of length k. This average is reported for k = 1, 2, 3, 4, 5, 10, and 30, while the change in this average is reported for k going from 30 to 31, from 31 to 32, from 32 to 33, and from 33 to 34.
Table 3
Estimates of survivor bias in average performance as a function of the mutual fund sample period length

<table>
<thead>
<tr>
<th>Sample period length (years)</th>
<th>Number of samples</th>
<th>Survivors</th>
<th>Unbiased</th>
<th>Survivor bias</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>0.31%</td>
<td>0.24%</td>
<td>0.07%</td>
<td>0.02%</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>0.59%</td>
<td>0.21%</td>
<td>0.37%</td>
<td>0.06%</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>0.78%</td>
<td>0.12%</td>
<td>0.66%</td>
<td>0.09%</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>0.93%</td>
<td>0.08%</td>
<td>0.85%</td>
<td>0.12%</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>1.02%</td>
<td>0.08%</td>
<td>0.94%</td>
<td>0.14%</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>1.19%</td>
<td>0.12%</td>
<td>0.99%</td>
<td>0.14%</td>
</tr>
<tr>
<td>30</td>
<td>5</td>
<td>1.25%</td>
<td>0.21%</td>
<td>1.04%</td>
<td>0.13%</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1.30%</td>
<td>0.24%</td>
<td>1.06%</td>
<td>0.12%</td>
</tr>
</tbody>
</table>

Mean annual group-adjusted return estimates from a survivor-biased sample and from a complete sample and the implied survivor bias. The table averages all possible biased and unbiased samples of a given sample period length that might be assembled from our database over the 1962–1995 period. Survivor bias is the difference between the mean annual group-adjusted return estimates in the two samples. A fund’s group-adjusted return for a month is its total return that month minus the equal-weighted average return of funds with the same objective. The table also reports correlation-adjusted standard errors in the estimate of survivor bias, assuming independent and identically distributed annual returns.

We consider all the possible samples with end-of-sample conditioning that might be assembled from our database over the 1962 to 1995 period. For example, a researcher might assemble a 5-year sample in 1972 or a 10-year sample in 1985. For each sample period length \(k \), we consider all the possible (usually overlapping) annual return samples, and estimate the bias in average annual group-adjusted return induced by including only survivors. We report the average end-of-sample bias across all possible \(k \)-year samples. We also calculate correlation-adjusted standard errors assuming that the survivor bias in annual sample equal-weighted return is independent and identically distributed.\(^9\)

Table 3 shows that the survivor bias increases in the sample length. For a survivor-biased sample of only one year, the bias in average return is only 0.07%, whereas the bias is 0.37% per year for survivor-biased samples of five years. For samples of more than 15 years, the hypothesis that survivor bias is 1% per year is not rejected. So consistent with the calibration results in the previous subsection, the bias is an increasing concave function of sample length that is virtually flat at sufficiently long sample lengths. Figure 1 plots the survivor bias as a function of the sample length. For time periods of 15 years or longer, 1% is probably a good approximation of the bias in mean annual performance estimates introduced by end-of-sample conditioning.

\(^9\) We assume the database is compiled one year after the last year of the database, which simplifies the categorization of survivors and nonsurvivors. The standard error of the survivor bias for a sample period of length \(k \) is calculated as \((\frac{1}{\sum_{i=1}^{n} \left(\frac{1}{n} \right)^2 + T - 2(n - 1))^2 \cdot \text{std}(R)}\), where \(T \) is the number of years in the database, \(n = k \) if \(k \leq \frac{T}{2} \), \(n = T + 1 - k \) if \(k > \frac{T}{2} \), and \(\text{std}(R) \) is the standard deviation of the survivor bias in annual sample equal-weighted return.
Mutual Fund Survivorship

Figure 1
Survivor bias as a function of the sample period length
The figure plots the bias in average annual return estimates, introduced by conditioning on fund survival to the end of the sample period, as a function of the length of the sample period. The bias is the average overall possible sample periods of a given length that might be assembled from our database over the 1962–1995 period. The dotted lines represent two-standard error boundaries in the average bias.

3. Survivor and Look-Ahead Bias Effects on Estimates of Persistence in Performance

3.1 Theory
Persistence is defined as a positive relation between performance in an initial ranking period and a subsequent evaluation period. Brown et al. (1992) show that if mutual fund returns are independently distributed with the same mean but differing variances, and if a single-period survival rule causes fund disappearance, then tests on surviving samples show spurious persistence. Conditional on making the cut, higher volatility funds have higher means, so conditioning on survival over both the ranking and evaluation period creates persistent differences in average performance. Brown et al. (1992) also demonstrate a spurious reversal effect. In the absence of cross-sectional dispersion in volatility and in the presence of a multiperiod survival rule, survivorship bias causes spurious reversals instead of persistence in performance. A multiperiod survival rule removes loser-losers in greater proportion than winner-losers, loser-winners, or winner-winners, leaving the sample more heavily weighted toward reversers. Grinblatt and Titman (1992) make a similar argument. Carpenter and Lynch (1999) study these effects when both cross-sectional dispersion in fund volatility and a multiperiod survival rule are present. They find that although the spurious persistence effect stemming from cross-sectional dispersion in volatility is always at work, the reversal effect tends to dominate when the multiperiod survival rule is in force.
Which of the various effects dominates in the data depends on the nature of real survival rules and the degree of cross-sectional dispersion in volatility.

3.2 Evidence

This section studies the effect of end-of-period and look-ahead bias on the persistence tests of Hendricks, Patel, and Zeckhauser (1993) and Carhart (1997) in our sample of U.S. mutual funds. Annually we form 10 equal-weighted portfolios of mutual funds sorted on either lagged return or lagged four-factor alpha. We hold the portfolios for one year, then re-form them. This yields a time series of monthly returns on each portfolio from 1962 to 1995 less the initial performance estimation period. The performance measures are one-year return, five-year return, and three-year estimates of alpha from the four-factor model. Funds disappearing during the ranking period are not used to determine the performance deciles, but if a fund disappears during the evaluation period, its returns are included in the decile performance averages right up until the time the fund disappears. At that point, its decile portfolio is reweighted equally across the remaining funds.

Panel A of Table 4 reports tests of persistence in fund returns and four-factor alphas for three different samples. The “full” sample includes all returns on disappearing funds in our database. Consistent with Carhart (1997), the full sample portfolios demonstrate strong persistence in mean return, most of which is explained by the four-factor model. The end-of-sample-biased portfolios show less persistence. Spreads in mean return and four-factor model performance shrink considerably relative to the full sample, and the statistical significance diminishes as well.10 The look-ahead-biased sample requires that funds survive a look-ahead period after portfolio formation that is equal in length to the ranking period. That is, the lagged one-year results include only funds surviving a full year after sorting on the previous year’s return, and the lagged five-year sample requires survival for an additional five years after sorting.11 Using the look-ahead-biased sample changes the inference relative to the full sample only for the five-year returns-sorted portfolios, the longest look-ahead period.

We consider Hendricks, Patel, and Zeckhauser’s (1997; hereafter HPZ) test for spurious persistence due to survivorship. The HPZ J-shaped \(t \)-statistic is the \(t \)-statistic on the linear term of a quadratic regression of the evaluation period portfolio rank on the ranking period portfolio rank. Under the hypothesis that performance persists spuriously due to survivorship, the HPZ J-shaped \(t \)-statistic should be reliably negative. However, Carpenter and Lynch (1999) present simulation evidence that the HPZ J-shaped \(t \)-statistic is rarely reliably positive unless performance is truly persistent. We find that the HPZ J-shaped \(t \)-statistics are all positive and often significant in our

10 Myers (2001) finds this in pension funds, too.
11 This is the bias simulated by Brown et al. (1992).
Table 4
The effects of survivorship on persistence tests

<table>
<thead>
<tr>
<th>Portfolio sorting variable</th>
<th>Decile 1–10 spread</th>
<th>Monthly four-factor model alphas</th>
<th>HPZ J-shape</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean monthly return</td>
<td>Decile 1</td>
<td>Decile 10</td>
</tr>
<tr>
<td>Panel A: Returns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.63%</td>
<td>4.52</td>
<td>–0.13%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.23%</td>
<td>2.09</td>
<td>–0.10%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.36%</td>
<td>5.04</td>
<td>–0.01%</td>
</tr>
<tr>
<td>End-of-sample conditioned sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.52%</td>
<td>3.93</td>
<td>–0.05%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.18%</td>
<td>1.85</td>
<td>–0.07%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.19%</td>
<td>2.66</td>
<td>0.01%</td>
</tr>
<tr>
<td>Look-ahead conditioned sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.62%</td>
<td>4.44</td>
<td>–0.14%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.20%</td>
<td>1.84</td>
<td>–0.11%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.34%</td>
<td>4.73</td>
<td>0.00%</td>
</tr>
<tr>
<td>Panel B: Group-adjusted returns</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.66%</td>
<td>6.27</td>
<td>0.07%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.29%</td>
<td>3.95</td>
<td>0.07%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.31%</td>
<td>5.23</td>
<td>0.17%</td>
</tr>
<tr>
<td>End-of-sample conditioned sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.48%</td>
<td>5.00</td>
<td>0.14%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.21%</td>
<td>3.34</td>
<td>0.12%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.20%</td>
<td>3.09</td>
<td>0.20%</td>
</tr>
<tr>
<td>Look-ahead conditioned sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-year returns</td>
<td>0.60%</td>
<td>5.09</td>
<td>0.07%</td>
</tr>
<tr>
<td>5-year returns</td>
<td>0.22%</td>
<td>2.81</td>
<td>0.10%</td>
</tr>
<tr>
<td>3-year four-factor alpha</td>
<td>0.28%</td>
<td>4.39</td>
<td>0.19%</td>
</tr>
</tbody>
</table>

Persistence measures for full, end-of-sample conditioned, and look-ahead conditioned samples. Mutual funds are sorted on January 1 each year into decile portfolios based on a lagged performance measure. The performance measures are 1-year return, 5-year return, and four-factor alpha measured over the prior 3 years. The portfolios are equal-weighted monthly so the weights are readjusted whenever a fund disappears. Funds with the highest lagged performance measure comprise decile 1 and funds with the lowest comprise decile 10. The Spearman nonparametric test measures the correlation in rank ordering of postformation portfolio performance measures. Here the null hypothesis is that the performance measures are randomly ordered. The HPZ J-shape t-statistic is the t-statistic for the linear term in a quadratic regression of postformation rank on preformation rank. A reliably negative t-statistic is consistent with spurious performance persistence due to survivorship. In panel A, holding-period returns are total returns. In panel B, holding-period returns are group-adjusted: from each fund return we subtract the average return of its type (e.g., aggressive growth) that month.
survivor-biased samples. This represents additional evidence that mutual fund performance persistence is real.

Myers (2001) finds that persistence in pension fund performance is attributable to differences in fund returns across fund styles rather than within a style. To investigate this possibility for mutual funds, panel B of Table 4 repeats the tests of panel A using group-adjusted returns instead of raw returns to measure evaluation-period performance. We include four-factor alphas for group-adjusted returns to capture some of the elements of fund style that grouping by fund objective might miss.12 In general, the evaluation period’s decile spreads for both the group-adjusted returns and their four-factor alphas are of magnitudes similar to those for the raw returns and their four-factor alphas, respectively. This suggests that the persistence in raw returns and their four-factor alphas reflects more than just differences in fund style.

To summarize, both the end-of-sample and look-ahead conditioning reduce the degree of persistence regardless of whether the performance measure is group adjusted or not. The downward bias in the persistence measures induced by survivor conditioning is consistent with the theory, given the multiperiod nature of the survival rule documented by Brown and Goetzmann (1995). Since fund performance exhibits persistence in all three samples, our results provide further evidence that the unconditional performance of U.S. mutual funds is truly persistent.13

4. Effects of Survivor Bias on Cross-Section Tests

4.1 Theory and evidence

Survivor-only conditioning can affect estimates of the cross-sectional relations between fund performance and fund characteristics, but only when the fund characteristics in question are related to the survivor bias in performance. If the survivor bias in performance is positively related to the fund characteristic, the characteristic’s slope coefficient in the cross-sectional regression also possesses positive bias in the survivor-only sample. Conversely, if the performance bias is negatively related to the characteristic, the slope coefficient is downward biased. The biases in cross-sectional regressions introduced by survivor conditioning are an example of sample selection, or incidental truncation, which has been the subject of an enormous recent literature, both theoretical and applied.14 Here we explore the biases in our mutual fund data.

12 A group-adjusted return can be regarded as the return on a zero-investment portfolio that is long the fund and short the group.

13 Christopherson, Ferson, and Glassman (1998) find that conditional and unconditional performance measures provide different inferences about persistence for pension funds. As we can only draw inferences about persistence in the unconditional measures we study, the issue of persistence in conditional performance measures for mutual funds remains an open question.

14 A good summary of recent theoretical work addressing incidental truncation can be found in Greene (2000). An important finance application is the event study literature, since many firm events are discretionary [see, e.g., Prabhala (1997)].
We run pooled time-series, cross-sectional regressions of annual group-adjusted returns (as defined in Section 1) on five explanatory variables: net expense ratio, relative turnover, lagged relative total net assets (TNA), lagged maximum load fees, and lagged annual group-adjusted returns. The fund’s relative TNA at the end of \(t \) is the fund’s TNA divided by the average TNA of all other funds on that date. The fund’s relative turnover is its modified turnover over the average modified turnover of all funds that year.\(^{15}\) The fund’s maximum load fee in year \(t \) is the sum of maximum front-end, back-end, and deferred sales charges in that year.

We run simple regressions with one explanatory variable and multiple regressions using the five explanatory variables. In each case, we compare two regressions. The first regression uses the “full” sample and is a seemingly unrelated regressions (SUR) model. The full sample uses all available returns prior to a fund’s disappearance. A fund’s year-\(y+1 \) return is deemed available if we observe its TNA, expense ratio, and sales loads in year \(y \). Since a fund does not typically have a full-year return in its year of disappearance, the SUR model consists of 12 (or fewer) regressions with the separate monthly returns in fund-year \(y+1 \) as the dependent variables. We sum the coefficients across the 12 regressions to get a full sample slope coefficient for the annual return.

The second regression uses the “five-year look-ahead” sample and uses the fund’s annual \(y+1 \) group-adjusted return as the dependent variable. The five-year look-ahead sample includes only the available year-\(y+1 \) returns of funds that did not disappear in years \(y+1 \) through \(y+5 \). The second regression is ordinary least squares (OLS).

The slope coefficients from the simple regressions on each explanatory variable are in the first two columns of Table 5, while the slope coefficients from the multiple regression are in the fifth and sixth columns. \(T \)-statistics for significant differences from zero are below the coefficients.\(^{16}\) The full sample results indicate a coefficient on the contemporaneous expense ratio which is insignificantly different from \(-1\) in both the simple and multiple regressions. This result indicates a 1:1 trade-off between performance and expenses (i.e., more expensive funds do not perform better before expenses, they are just more expensive). Consistent with the persistence results in the previous section, the coefficient on lagged group-adjusted return is significantly positive. Most of the other coefficients are either insignificant or not robust across the two specifications.

\(^{15}\) Turnover is the minimum of purchases and sales divided by average TNA, while our modified turnover measure adds one-half of the absolute value of our flow variable to turnover. Our flow variable is similar to Sirri and Tufano’s (1998) flow measure except that it adjusts the numerator for TNA changes due to merger, and it uses average monthly assets instead of beginning assets in the denominator. We use average monthly assets in the denominator so that small, rapidly growing funds are not outliers.

\(^{16}\) For the SUR model, the \(t \)-statistic is derived from the Wald statistic for the hypothesis that the summed-up coefficient equals zero. By taking into account cross-regression correlation, the SUR is accounting for autocorrelations in monthly fund return within the year when calculating the Wald statistic.
Table 5
The effects of survivorship on cross-section regressions

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Full (SUR)</th>
<th>5-year look-ahead (OLS)</th>
<th>Heckit A</th>
<th>Heckit λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net expense ratio (y + 1)</td>
<td>–1.142</td>
<td>–0.850</td>
<td>–0.715</td>
<td>–0.012</td>
</tr>
<tr>
<td>Relative turnover (y + 1)/100</td>
<td>0.036</td>
<td>0.436</td>
<td>0.469</td>
<td>–0.013</td>
</tr>
<tr>
<td>Relative TNA (y)/100</td>
<td>0.046</td>
<td>–0.003</td>
<td>–0.129</td>
<td>–0.035</td>
</tr>
<tr>
<td>Maximum load (y)/100</td>
<td>1.92</td>
<td>–0.07</td>
<td>–3.42</td>
<td>–5.88</td>
</tr>
<tr>
<td>Group-adjusted return (y)</td>
<td>0.169</td>
<td>0.170</td>
<td>0.170</td>
<td>0.001</td>
</tr>
<tr>
<td>Multiple regression Heckit λ</td>
<td>0.029</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple regressions: For each of five explanatory variables we ran three pooled, time-series regressions in which the dependent variable is a fund’s group-adjusted return in year y + 1, with y + 1 ranging from 1966 through 1991. Group-adjusted return is return minus the average return of funds with the same objective. The first regression uses the “full” sample and is a seemingly unrelated regression (SUR). The “full” sample includes any nonmissing return for which we also observe the value of the indicated explanatory variable together with the fund’s total net assets (TNA), expense ratio, and sales loads, if any, in year y. The independent variable is listed in the first column, and the dependent variables are the 12 separate monthly group-adjusted returns in year y + 1, excluding months with missing returns. The values reported are the sums of the 12 slope coefficients, and the t-statistic derived from the Wald test that the slopes sum to zero is reported below. The second and third regressions use the “5-year look-ahead” sample and use the fund’s annual y + 1 return as the dependent variable. The “5-year look-ahead” sample includes a fund’s year-y + 1 return if the fund did not disappear in years y + 1 through y + 5 and if its TNA, expense ratio, and sales loads in year y are available. The second regression is OLS. The third regression is the same as the second except we include the A-function from the two-stage Heckman-correction procedure, Heckit, using the second probit model of Table 5. This probit model predicts disappearance in years y + 1 through y + 5 using group-adjusted return and relative flow in years y + 4 through y, multiple regression coefficients on the four factors of Carhart (1997), and expense ratio, sales loads, and relative TNA in y. In years when lagged return, lagged flow, or Carhart factor coefficients are unavailable, these variables are set to zero and a dummy variable indicates the data are missing. The coefficient on λ is reported in the subsequent column. The three regressions use the following explanatory variables: the expense ratio in year y + 1, the relative turnover in year y + 1, the relative TNA at the end of year y, the maximum load in year y, and the group-adjusted return in year y. Turnover is the minimum of purchases and sales divided by average TNA and relative turnover is a fund’s modified turnover over the average modified turnover of all funds that year. Relative TNA is the fund’s TNA divided by the average TNA of all funds that year. The maximum load is the sum of maximum front-end, back-end and deferred sales charges. The t-statistics are below the coefficient estimates.

Multiple regressions: Each of three sets of simple regressions described above is arranged into a multiple regression, with the five explanatory variables entering independently. The selected Heckit regression also includes the A-function from the probit; its coefficient is at the bottom. The t-statistics are below the coefficient estimates.

Table 5 shows that the regression coefficients from the five-year look-ahead sample are very different. For example, the simple regression slope on relative TNA goes from being positive and significant in the full sample to negative and insignificant in the five-year look-ahead sample. The multiple regression slope on expense ratio declines from –1.150 to –0.440. While this slope is significantly different from 0 but not –1 in the full sample, the converse is true in the survivor-only sample.

For a given fund characteristic, the direction and magnitude of the bias in the slope coefficient is determined by the correlation of the characteristic with the survivor bias in performance. The results of a probit analysis described in Appendix B can be used to infer the correlation. From Table 6 we see that the probability of disappearance during years y + 1 through y + 5 is negatively related to fund size at the end of y, holding the other fund characteristics
fixed. This suggests that the survivor bias in performance is likely to be decreasing in fund size. This implies a negative survivor bias in the slope coefficient on fund size, which is exactly what Table 5 shows. A similar argument explains the positive survivor bias in the coefficient on net expense ratio.

4.2 Heckit correction

Heckman (1976, 1979) develops a correction for incidental truncation that has been used in a variety of applications. It has become a standard technique to adjust for sample selection. We would like to assess its ability to correct for the effects of survivor conditioning in the cross-sectional regressions. To this end we run a third regression with the “five-year look-ahead” sample. This regression implements the two-stage “Heckit” procedure by adding, as an additional regressor, the inverse Mills ratio, \(\lambda \). The inverse Mills ratio

\[
\text{Inverse Mills Ratio} = \frac{1}{\Phi(b)}
\]

where \(\Phi(b) \) is the cumulative normal distribution.

Table 6

Probit model of fund survival: survival through the next five years

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.113</td>
<td><0.0001</td>
</tr>
<tr>
<td>Relative TNA (y)</td>
<td>0.440</td>
<td><0.0001</td>
</tr>
<tr>
<td>Group-adjusted return (y)</td>
<td>1.800</td>
<td><0.0001</td>
</tr>
<tr>
<td>Group-adjusted return (y - 1)</td>
<td>1.271</td>
<td><0.0001</td>
</tr>
<tr>
<td>Group-adjusted return (y - 2)</td>
<td>1.044</td>
<td><0.0001</td>
</tr>
<tr>
<td>Group-adjusted return (y - 3)</td>
<td>0.713</td>
<td>0.0007</td>
</tr>
<tr>
<td>Group-adjusted return (y - 4)</td>
<td>0.697</td>
<td>0.0017</td>
</tr>
<tr>
<td>Relative net flow (y)</td>
<td>0.389</td>
<td><0.0001</td>
</tr>
<tr>
<td>Relative net flow (y - 1)</td>
<td>0.293</td>
<td>0.0048</td>
</tr>
<tr>
<td>Relative net flow (y - 2)</td>
<td>0.212</td>
<td>0.0015</td>
</tr>
<tr>
<td>Relative net flow (y - 3)</td>
<td>-0.005</td>
<td>0.8094</td>
</tr>
<tr>
<td>Relative net flow (y - 4)</td>
<td>0.032</td>
<td>0.6212</td>
</tr>
<tr>
<td>MISS (y)</td>
<td>-0.359</td>
<td><0.0001</td>
</tr>
<tr>
<td>MISS (y - 1)</td>
<td>-0.103</td>
<td>0.0749</td>
</tr>
<tr>
<td>MISS (y - 2)</td>
<td>-0.212</td>
<td><0.0001</td>
</tr>
<tr>
<td>MISS (y - 3)</td>
<td>-0.351</td>
<td><0.0001</td>
</tr>
<tr>
<td>MISS (y - 4)</td>
<td>-0.074</td>
<td>0.1590</td>
</tr>
<tr>
<td>Net expense ratio (y)</td>
<td>-4.819</td>
<td>0.0009</td>
</tr>
<tr>
<td>Maximum load (y)</td>
<td>-0.029</td>
<td><0.0001</td>
</tr>
<tr>
<td>Coefficient on SMB: h(y - 1)</td>
<td>0.243</td>
<td>0.0089</td>
</tr>
<tr>
<td>Coefficient on HML: h(y - 1)</td>
<td>-0.103</td>
<td>0.0686</td>
</tr>
<tr>
<td>Coefficient on PR1YR: p(y - 1)</td>
<td>0.182</td>
<td>0.0021</td>
</tr>
<tr>
<td>CMISS (y - 1)</td>
<td>-0.269</td>
<td>0.0024</td>
</tr>
</tbody>
</table>

Estimates of a probit model that predicts survival in years \(y + 1 \) through \(y + 5 \), for \(y \) from 1965 to 1990. A positive coefficient on a variable indicates that the probability of survival goes up as that variable goes up. The probit employs the following predictive variables: relative total net assets (TNA) at the end of year \(y \); group-adjusted returns in years \(y \) through \(y - 4 \); relative net flow in years \(y \) through \(y - 4 \); net expense ratio in year \(y \); maximum load in year \(y \); the coefficients from regressing fund returns on the four factors of Carhart (1997) over the five years ending with \(y - 1 \); and the dummy variables MISS (y), \ldots, MISS (y - 4), and CMISS (y - 1). A fund’s relative TNA at the end of \(y \) is its TNA divided by the average TNA of all other funds on that date. Its group-adjusted return in year \(y \) is its year-\(y \) return minus the return of other funds with the same stated objective. Its relative net flow in year \(y \) is net new investment in the fund minus the average net new investment in other funds that year, while its maximum load is the sum of the maximum front-end, back-end, and deferred sales charges in \(y \). If there is insufficient data in year \(t \) to calculate either group-adjusted return or relative net flow, then both variables are set to zero and CMISS (\(y - 4 \)) is set to one. Otherwise, MISS (\(t \)) is zero. We require 30 observations for the Carhart four-factor regression, and if there are not enough observations the coefficients are set to zero and CMISS (y - 1), which is otherwise zero, is set to one. The number of observations in the probit is 10,704. The only requirements for a fund’s year \(y \) to be included in the probit are that relative total net assets at the end of \(y \), net expense ratio in year \(y \) and maximum load in year \(y \) be available for that fund. P-values for significant difference from zero are to the right.
is obtained from a probit model that predicts disappearance in years $y+1$ through $y+5$ using variables available at the end of year y. Details of the probit are contained in Appendix B. Since we have the full sample, we can assess the ability of the Heckit estimator to correct for survivor biases in the sample with 5-year look-ahead conditioning.

The cross-sectional regression results using the Heckit procedure are also reported in Table 5. The Heckit procedure generally moves both the point estimates and significance levels toward those for the full sample in the multiple regression, but not in the simple regressions. An explanation for this finding requires an examination of the loadings on λ. Conditioning on fund characteristics available at the end of year y, we expect a fund’s return in year $y+1$ to be positively correlated with the fund’s probability of survival in years $y+1$ to $y+5$; thus theory tells us that the coefficient on λ should be positive. The loading on λ is positive and significant in the multiple regression, but it is negative in all but one of the simple regressions, the exception being the one with lagged group-adjusted return as the independent variable.

Now the Heckit λ is negatively related to the probit’s predicted survival probability. Since the probit results in Table 6 indicate that lagged group-adjusted return is an important predictor of five-year survival, it follows that Heckit λ is negatively related to lagged performance. From Table 4, lagged performance is positively related to current performance. Consequently the negative relation between lagged performance and λ may cause cross-sectional regressions that omit lagged performance to load negatively on λ. Thus the simple regressions that do not include lagged performance suffer from an omitted variable problem. We conclude that such misspecification may be a serious concern when attempting to use the Heckit procedure to control for survivor biases in cross-sectional regressions.

5. Conclusion

Evidence suggests that funds disappear following poor multiyear performance. Using Carhart’s (1997) sample of U.S. mutual funds, we demonstrate both analytically and empirically that this survival rule typically causes the bias in estimates of average annual performance to increase in the sample length, at a declining rate. At the same time, our results provide a warning that the nature of the biases imparted can be much more complicated. In our sample, we estimate the average bias to be economically small at 0.07% for one-year samples, but a significantly larger 1% for samples longer than 15 years.

In tests of mutual fund performance persistence, we show empirically that conditioning on survival weakens the evidence of persistence. At the same time, we confirm previous evidence of persistence in unconditional measures
of performance documented for survivor-only samples. This leads us to conclude that mutual fund performance is truly persistent.

We explain how the relationship between performance and fund characteristics can be affected by the use of a survivor-only sample and show that the magnitudes of the biases in the slope coefficients are large for fund size, expenses, turnover, and load fees in our sample. In the full sample, fund performance is significantly negatively related to expenses and marginally negatively related to load fees, but unrelated to fund size and turnover.

Researchers forced to use survivor-only samples need to consider carefully the likely impact of using such samples on the test statistics of interest. It would seem that finance researchers are often in this position. For example, Goetzmann and Jorion (1999) document how equity market disappearance is conditioned upon a downward drift in performance over time, which suggests that survivor biases are likely to be a problem for empirical studies using international data. Our work suggests that both the nature of the survival rule and the sample period length are likely to be important when attempting to characterize survivorship biases.

Appendix A

Proof of Proposition 2

First, notice that only funds that are at least \(\tau \) years old at \(T \) have a return at time \(T + 1 - \tau \). Therefore

\[
\mu_{T+1-\tau}^{\bar{\tau}} = \frac{\sum_{j=\min(j_{\tau-1},J)}^{J-1} \tilde{w}_{j,T}^{\bar{\tau} i} \mu_{T+1-j,\tau-n}}{\sum_{j=\min(j_{\tau-1},J)}^{J-1} \tilde{w}_{j,T}^{\bar{\tau}}},
\]

where \(J \) is the age of the oldest funds alive at \(T \). As \(\tau \) increases, increasingly younger cohorts are omitted from the summation.

Start with a \(k \)-period sample ending at time \(T \). Its survivor-biased mean is \(\mu_{T}^{\bar{\tau}_k} \). To see the effect of lengthening the sample period, we could either add a year to the end of the sample period and compare \(\mu_{T}^{\bar{\tau}_k} \) to \(\mu_{T+1}^{\bar{\tau}_k} \), or else add a year to the beginning of the sample period and compare \(\mu_{T}^{\bar{\tau}_k} \) to \(\mu_{T+1}^{\bar{\tau}_k} \). With the population in a steady state these are equivalent, and so for expositional convenience, we consider the case of adding a year to the beginning of the sample period.

Equations (2) and (3) allow us to write \(\tilde{w}_{j,T}^{\bar{\tau} i} \) in the following way:

\[
\tilde{w}_{j,T}^{\bar{\tau} i} = \tilde{w}_{j,T} \left(\frac{1}{1+g} \right)^{j-1}, \quad j = 1, 2, \ldots, m - 1,
\]

\[
= \tilde{w}_{j,T} \left(\frac{x}{1+g} \right)^{i-1}, \quad j, i \geq m.
\]

Substituting this expression into Equation (8) and exploiting Equation (1) gives the following expressions for the cross-sectional survivorship-biased mean for time \(T + 1 - \tau \):

\[
\mu_{T+1-\tau}^{\bar{\tau}} = \frac{\tilde{w}_{j,T}^{\bar{\tau} i} \left(\sum_{j=\min(j_{\tau-1},J)}^{J-1} \frac{1}{(1+g)^{j-1}} \mu + \sum_{j=\min(j_{\tau-1},J)}^{J-1} \mu_{j,\tau-n} + \sum_{j=\min(j_{\tau-1},J)}^{J-1} \frac{1}{(1+g)^{j-1}} \mu_{j,\tau-n} \right)}{\tilde{w}_{j,T} \left(\sum_{j=\min(j_{\tau-1},J)}^{J-1} \frac{1}{(1+g)^{j-1}} + \sum_{j=\min(j_{\tau-1},J)}^{J-1} \frac{1}{(1+g)^{j-1}} + \sum_{j=\min(j_{\tau-1},J)}^{J-1} \frac{1}{(1+g)^{j-1}} \right)}
\]

(10)
for $\tau = 1, 2, \ldots, m - 1$, and

$$\mu_{\tau+1-T} = \frac{\hat{w}_{\tau+1-T} \left(\sum_{i<j} \mu_i \right) + \sum_{i<j} \mu_i \left(\sum_{j<k} \mu_k \right)}{\hat{w}_{\tau+1-T} \left(\sum_{i<j} \mu_i \right)},$$

(11)

for $\tau > m - 1$. Under the assumption that the μ_i are increasing in i, it follows from Equation (10) that $\mu_{\tau+1-T}$ is increasing in τ for $\tau = 1, 2, \ldots, m$. Moreover, Equation (11) shows that $\mu_{\tau+1-T}$ is constant for $\tau \geq m$. Thus $\bar{\mu}_k^j$ must be increasing in k for all k. ■

Appendix B

Details of the Heckit probit

For each year y, we collect all funds alive at the end of that year and set $SURV$ equal to zero if the fund disappears in years $y+1$ through $y+5$. Otherwise $SURV$ is set equal to one. To predict the value of $SURV$, we use variables that describe relative fund size, management pricing, past performance, new money flow, and factor loadings. We include the relative TNA of the fund at the end of y, since the fixed costs of running a fund suggest a smaller probability of survival as the relative TNA of the fund declines. We also include the fund’s group-adjusted return for years $y-4$ to y to capture the effects of past performance and the same lags of the fund’s relative net flow to capture the effects of relative net new investment. The fund’s relative net flow in year t is the fund’s net flow minus the average net flow for other funds that year. To avoid throwing out funds that disappear within five years of inception, we set both of these to zero for lag L if one of them does not exist for this lag, and set the indicator variable $MISS (y-L)$ to one. Otherwise we set $MISS (y-L)$ to zero. Management pricing is represented by the fund’s net expense ratio in year y and the fund’s maximum load fee. Coefficients from the four-factor regression of Equation (1) are also included as predictive variables, since Table 1 suggests that four-factor loadings differ across survivors and nonsurvivors, at least on the SMB and HML factors. The regression is run over the five years ending with the end of $y-1$ and requires at least 30 observations. If there are not 30 observations, the coefficients are set to zero and the variable $CMISS (y-1)$, which is otherwise zero, is set to one. The probit results are reported in Table 6.

References

Mutual Fund Survivorship

Copyright of Review of Financial Studies is the property of Society for Financial Studies and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.