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ABSTRACT

This paper solves the dynamic investment problem of a risk averse manager com-
pensated with a call option on the assets he controls. Under the manager’s optimal
policy, the option ends up either deep in or deep out of the money. As the asset
value goes to zero, volatility goes to infinity. However, the option compensation
does not strictly lead to greater risk seeking. Sometimes, the manager’s optimal
volatility is less with the option than it would be if he were trading his own ac-
count. Furthermore, giving the manager more options causes him to reduce volatility.

MANAGERS WITH CONVEX COMPENSATION SCHEMES play an important role in fi-
nancial markets. This paper solves for the optimal dynamic investment pol-
icy for a risk averse manager paid with a call option on the assets he controls.
The paper focuses on how the option compensation impacts the manager’s
appetite for risk when he cannot hedge the option position.

On one hand, the convexity of the option makes the manager shun payoffs
that are likely to be near the money. Under the optimal policy, the manager
either significantly outperforms his benchmark or else incurs severe losses.
Furthermore, in examples of optimal trading strategies, asset volatility goes
to infinity as asset value goes to zero.

Yet option compensation does not strictly lead to greater risk seeking. As
asset value grows large, or if the evaluation date is far away, the manager
moderates asset risk. For example, if the manager has constant relative risk
aversion ~CRRA!, asset volatility converges to the Merton constant as asset
value goes to infinity. In some situations, the manager actually chooses a
lower asset volatility than he would if he were investing on his own, because
the leverage inherent in his option magnifies his exposure to the asset
volatility.

In addition, with all constant or decreasing absolute risk averse utility
functions from the hyperbolic absolute risk averse ~HARA! class, giving the
manager more options causes him to reduce asset volatility. In the CRRA
case, for example, the manager targets a fixed volatility for his personal
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portfolio of options and outside wealth. Giving the manager more options
increases the volatility of his personal portfolio. To offset this, he reduces the
volatility of the underlying asset portfolio.

An explicit example of the investment problem solved here is that of a
portfolio manager paid with a share of the positive profits of the fund, net of
a benchmark, like the incentive fee of a hedge fund. However, the essence of
the problem solved here appears in many other contexts. For instance, a
corporate manager who controls firm leverage or asset volatility and holds
executive stock options that he cannot hedge faces a similar investment prob-
lem. The investment problem of shareholders of a levered firm resembles the
problem solved here if the firm is privately held. Although the complete,
continuous-time market modeled here is less appropriate for a corporate
manager than for a fund manager, corporate managers do have the ability to
manage firm risk dynamically by using forward contracts, swaps, and other
derivatives.

In some situations, an explicit option contract does not exist but compen-
sation is still convex in performance. For example, one might argue that the
compensation of a trader at a securities firm is a convex function of his
profits because he has limited liability. Another possible example is that of
mutual fund managers. They typically receive a simple percentage of initial
asset value, but the asymmetry in the relation between performance and
subsequent new money f lows found empirically by Sirri and Tufano ~1998!
and Chevalier and Ellison ~1997! may produce a convex compensation function.

Several lines of research consider the impact of options on the owner’s risk
preferences in a static framework. Much of this literature assumes that the
manager is risk neutral or that the manager can hedge the option, so that
his objective is to maximize its value. This will generally lead the manager
to increase asset risk as much as possible. For example, Jensen and Meck-
ling ~1976! and the corporate finance literature that followed show that value-
maximizing levered equity holders will prefer more asset volatility, even at
the expense of firm value. Grinblatt and Titman ~1989! show that a fund
manager who can hedge his incentive fee will try to maximize the value of
the fee by increasing fund leverage as much as possible. Other papers ad-
dressing this issue examine the risk incentives of a utility-maximizing man-
ager paid with an option he cannot hedge. Smith and Stulz ~1985! show that
a risk averse corporate manager with a convex compensation function will
want to hedge some, though not all, of firm risk. Starks ~1987! models the
utility-maximizing market beta for a fund manager with an incentive fee
when the manager can choose only once.

This paper is the first to solve the dynamic portfolio choice problem of a
manager paid with an option he cannot hedge. Under general assumptions
about the continuous-time financial market, the benchmark payoff, and the
manager’s preferences, the optimal random terminal portfolio value exceeds
the benchmark by some margin when both the state price and the bench-
mark value are low and is zero otherwise. For cases in which security prices
are geometric Brownian motions and the manager has decreasing absolute
risk aversion, the paper provides explicit expressions for the manager’s op-
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timal trading strategy. Because he is risk averse the manager does not strictly
prefer to increase asset volatility. Rather, he dynamically adjusts volatility
in response to changes in asset value. When the manager is close to the
evaluation date and near the money, small changes in market conditions
lead to large shifts in portfolio holdings as the manager attempts to get in
the money while remaining solvent.

The extreme nature of the manager’s optimal payoff with the option may seem
somewhat unrealistic. In the frictionless, continuous-time, complete market
modeled here, the manager has the ability to implement payoffs that have zero
probability of being near the money. The markets in which real managers op-
erate are not so f lexible. Incomplete markets, short-selling and borrowing con-
straints, transaction costs, and the discreteness of trading all hamper the
manager’s ability to customize his random payoff. For this reason, the distri-
butions of asset returns we see in practice are likely to be less extreme.

In addition, the model illustrates the risk incentives created by a specific
contract with a single evaluation period. In practice, managers face multiple
evaluation periods, and compensation contracts can be complex. For exam-
ple, multiperiod hedge fund contracts typically contain a high-water-mark
provision that sets the strike price of each period’s incentive fee equal to the
all time high of fund value. Corporate compensation schemes can contain a
variety of incentive components, including options, restricted stock, and per-
formance bonuses. The behavior of the manager clearly depends on the whole
compensation package. Nevertheless, the model provides a useful example of
the kind of payoff the manager seeks in the presence of an option and the
nature of the trading strategy that implements that payoff.1

A number of features of the manager’s optimal investment policy are con-
sistent with empirical findings. For example, the potential for severe losses
or bankruptcies may help explain the high attrition rates for hedge fund
managers documented by Brown, Goetzmann, and Ibbotson ~1999!. The large
and rapid adjustments to portfolio holdings that the manager makes in re-
sponse to market moves when he is near the money are consistent with the
evidence of Fung and Hsieh ~1997! that the portfolio weights of hedge funds
f luctuate in a wide range and change quickly. The tendency for the manager
to increase volatility if the fund is doing poorly is like the pattern of risk
shifting found for mutual fund managers in Brown, Harlow, and Starks ~1996!
and Chevalier and Ellison ~1997!. Although these empirical findings could
be consistent with many models, the presence of convex compensation func-
tions provides at least one explanation.

The paper proceeds as follows. Section I describes the manager’s prefer-
ences and opportunity set, and Section II states the manager’s investment
problem. Section III reviews the standard investment problem. Section IV

1In a multiperiod model available from the author, a CRRA manager receives in each period
a fraction of asset value plus an at-the-money option. Prior to the final period, the manager
does not risk bankruptcy, but the payoff he seeks still either significantly outperforms or sig-
nificantly underperforms the benchmark. Thus, career concerns reduce the manager’s incentive
to take all-or-nothing gambles, but the option still makes him shun near-the-money payoffs.
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solves for the manager’s optimal random payoff. Section V gives examples of
the solution with specific benchmarks, and Section VI gives examples of
optimal trading strategies. Section VII concludes. Proofs of the main results
are in the Appendix.

I. Assumptions

The manager controls assets with initial value X0. His wealth at time T is
the payoff of a call option on the assets plus a constant, K . 0, that includes
fixed compensation and personal wealth. Letting XT represent the value of
the assets at time T, a . 0 represent the number of options or the percent-
age of positive profits, and BT represent the option strike price or bench-
mark payoff, the manager’s terminal wealth is

a~XT 2 BT !1 1 K. ~1!

A. Manager Preferences

The manager chooses an investment policy to maximize his expected util-
ity of terminal wealth. His utility function U is strictly increasing, strictly
concave, at least twice continuously differentiable, and defined on a domain
containing @K,`!. U '' is nondecreasing, and U '~W ! approaches zero as W
approaches infinity. Consequently, the inverse marginal utility function
I [ U '21 is a well-defined, strictly decreasing, convex, continuously differ-
entiable function from ~0,`! onto a range containing @K,`!. For example, the
HARA utility functions with constant or decreasing absolute risk aversion
~CARA or DARA!,

U~W ! 5
1 2 g

g
S A~W 2 w!

1 2 g
Dg

, ~2!

with g , 1, w , K, and A . 0, satisfy these hypotheses.

B. Asset Prices

The manager operates in a complete, arbitrage-free, continuous-time fi-
nancial market consisting of a riskless asset with instantaneous interest
rate r and n risky assets. The risky asset prices, Pi , i 5 1, . . . , n, are stochastic
processes driven by a standard n-dimensional Brownian motion, W, which is
defined on a complete probability space ~V,F,P !. The risky asset prices are
governed by the equations

dPi, t

Pi, t
5 ~rt 1 mi, t ! dt 1 si, t

' dWt, ~3!
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where the interest rate r, the excess appreciation rates mi , and the vola-
tility vectors si

' are stochastic processes that satisfy standard regularity
conditions ~see, e.g., Karatzas and Shreve ~1991!!. In particular, the inter-
est rate process r, the vector process m 5 ~m1, . . . , mn!, and the volatility
matrix process s, whose ith row is si

' , are bounded and progressively mea-
surable with respect to $Ft % , the P-augmentation of the filtration generated
by the Brownian motion. In addition, the covariance matrix S 5 ss ' is
strongly nondegenerate.

C. Trading Strategies

A trading strategy for the manager is an n-dimensional process $pt : 0 #
t # T % whose ith component, pi, t , is the value of the holdings of risky asset
i in the asset portfolio at time t. An admissible trading strategy, p, must be
progressively measurable with respect to $Ft % , must prevent portfolio value
from falling below zero, and must satisfy *0

T7pt7
2 dt , `, a.s. Under an

admissible trading strategy p, the value of the asset portfolio evolves ac-
cording to

dXt 5 ~rt Xt 1 pt
'mt ! dt 1 pt

'st dWt . ~4!

D. Benchmark

The option strike price or benchmark payoff, BT , can be either fixed or
stochastic. In general, BT is a strictly positive, FT -measurable random vari-
able that satisfies

E@zT BT # , `, ~5!

where zt is the “state price density” or “stochastic discount factor” defined by

zt [ e
2E

0

t

~ru17uu7
202! du2E

0

t

uu
' dWu

, ~6!

and

ut [ st
21 mt . ~7!

The most typical benchmark for hedge fund managers is a constant, such as
BT 5 X0e yT, where y is zero or a Treasury yield ~see Brown et al. ~1999!!.
Other possible benchmarks might be the payoffs of index portfolios.

II. The Manager’s Investment Problem

The manager’s dynamic problem is to choose an admissible trading strat-
egy p to maximize his expected utility of terminal wealth:

max
p

E@U~a~XT 2 BT !1 1 K !#
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subject to

dXt 5 ~rt Xt 1 pt
'mt ! dt 1 pt

'st dWt

and

Xt $ 0 ∀t [ @0,T # . ~8!

The manager cannot synthetically sell the option through trading in his per-
sonal account. If he could, he would invest the sale proceeds in his optimal
portfolio. His objective would then be to maximize the value of the option by
maximizing volatility, and the problem would have no solution.

The result of the martingale pricing theory is that the set of random ter-
minal payoffs that can be generated by feasible trading strategies corre-
sponds to the set of nonnegative FT -measurable random payoffs XT that
satisfy the budget constraint EzT XT # X0. Therefore, the dynamic problem
~equation ~8!! of choosing an optimal trading strategy p is equivalent to the
static problem of choosing an optimal payoff XT :2

max
XT

E@U~a~XT 2 BT !1 1 K !#

subject to

E@zT XT # # X0 ~9!

and

XT $ 0.

In the solution to the static problem above, the random variable zT in the
budget constraint plays an important role. The random variable zT ~v! has
an economic interpretation as the price of one unit of payoff to be received in
state v at time T, relative to its probability of occurrence. The variable zT is
also the reciprocal of the terminal value of the mean-variance efficient ~MVE!
portfolio process

Mt [ 10zt ~10!

that is generated by the trading strategy pt 5 Mt St
21 mt , starting from an

initial value of one.

2 See, for example, Cox and Ross ~1976!, Harrison and Kreps ~1979!, Karatzas, Lehoczky, and
Shreve ~1987!, and Cox and Huang ~1989! for the development of these methods and their
application to optimal portfolio choice.
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III. Review of the Standard Investment Problem

The optimal policy for the standard investment problem of maximizing
expected utility of terminal wealth is characterized by Merton ~1969, 1971!
using dynamic programming and by Karatzas et al. ~1987! and Cox and
Huang ~1989! using martingale methods. In the standard problem, the in-
vestor solves

max
XT

E@U~XT !#

subject to

E@zT XT # # X0 ~11!

and

XT $ 0.

The first-order conditions require that the assignment of different payoffs to
different states makes the manager’s marginal utility proportional to the
level of the state price zT whenever that leads to a nonnegative payoff, and
further that the budget constraint is satisfied with equality. These condi-
tions uniquely determine the optimal random terminal payoff:

XT
* 5 I ~l*zT !1, ~12!

where I 5 U '21 and l* solves E@zT I ~lzT !1# 5 X0. For example, if U~W ! 5
log W, then I ~ y! 5 10y, and XT

* 5 X00zT 5 X0 MT .
The investor’s optimal wealth or portfolio value is the stochastic process

Xt
* 5 E@~zT 0zt !XT

* 6Ft # . ~13!

The optimal trading strategy, which generates the wealth process X * and
leads to the terminal payoff XT

* , exists, but in general we do not obtain an
explicit expression for it.

In some special cases, the martingale method does deliver an explicit ex-
pression for the trading strategy. One case is that in which the investor has
log utility. Then Xt

* 5 X00zt 5 X0 Mt . A comparison of the stochastic differ-
ential equation for X0 Mt resulting from Itô’s lemma with the wealth evolu-
tion equation ~equation ~4!! shows that the optimal portfolio weights at each
time t are pt

*0Xt
* 5 St

21 mt .
Another special case is that in which the security prices are geometric

Brownian motions; that is, the market coefficients r, m, and s are constant.
If we specify a particular functional form for the utility function U, then we
may be able to compute intermediate portfolio value Xt

* explicitly from equa-
tion ~13!. In that case, Xt

* is equal to x *~t, zt ! for some real-valued function
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x *, because z is a Markov process. If the function x * is sufficiently smooth,
then Itô’s lemma yields a diffusion coefficient for dx * that we can identify
with pt

's in the wealth evolution equation ~equation ~4!! to obtain the fol-
lowing equation for the optimal trading strategy:

pt
* 5 2zt xz

*~t, zt !S21m, ~14!

where xz
* is the partial derivative of x * with respect to its second argument.

IV. The Optimal Payoff with the Option

With the option in the investment problem ~equation ~9!!, the manager’s
objective function U~a~XT 2 BT !1 1 K ! is not concave in the variable XT .
First-order conditions dictate that when XT . BT , the manager’s marginal
utility should be proportional to the state price zT and otherwise XT 5 0. In
addition, the budget constraint should hold with equality. However, these
conditions do not uniquely determine the optimal policy. In particular, they
do not specify the states at time T in which the option should be in the
money.

To identify the states in which the option should be in the money and thus
solve problem ~9!, I concavify the objective function. The concavification of a
function u, if it exists, is the smallest concave function that dominates u ~see
Aumann and Perles ~1965! for a formal definition!. I solve problem ~9! with
the concavified objective function using standard methods. In the process I
verify that the policy that is optimal for the concavified objective function is
also optimal for the true objective function because it never takes on values
where the two functions disagree.

Define u :R 3 ~0,`! r R by

u~x, b! 5 H U~a~x 2 b!1 1 K ! for x $ 0,

2` otherwise.
~15!

In terms of u, the manager’s problem is

max
XT

E@u~XT , BT !# subject to E@zT XT # # X0. ~16!

The dotted line in Figure 1 plots u as a function of x. The objective func-
tion u is not concave in the choice variable x. However, for each b, u~{, b!
has a concavification Iu~{, b!, illustrated by the dashed line in Figure 1. The
concavified objective function replaces part of the original function with a
chord between x 5 0 and another point, x 5 [x . b, at which the slope of
the chord equals the slope of u at [x, so that the resulting function is
concave. Lemma 1 establishes that for each value of b . 0, such a point
[x~b! exists.
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LEMMA 1: Let u '~x, b! 5 ?u~x, b!0?x, for x . b. For every b . 0, there exists a
unique point [x~b! . b such that

u~ [x~b!, b! 2 u~0, b!

[x~b!
5 u '~ [x~b!, b!. ~17!

It follows that Iu :R 3 ~0,`! r R defined by

Iu~x, b! 5 5
2` for x , 0,

u~0! 1 u '~ [x~b!, b!x for 0 # x # [x~b!,

u~x, b! for x . [x~b!

~18!

is concave in x. Furthermore, Iu~x, b! $ u~x, b! for all ~x, b! [ R 3 ~0,`!, and
Iu~x, b! 5 u~x, b! for x 5 0 and for all x $ [x~b!.

It turns out that the optimal random payoff XT for the manager’s problem
never takes on values between zero and [x~BT ! where the true and the con-
cavified objective functions differ. That the manager would never want XT [
~0, BT # with positive probability is fairly clear given his budget constraint
and objective function in problem ~9!. Such an event would use up part of the
manager’s budget without adding utility. Less obvious is that the manager
would never want XT [ ~0, [x~BT !! with positive probability. To gain intuition
for this, note that because the chord between these points lies above the
manager’s true objective function, the average utility of the endpoint pay-

Figure 1. Manager’s original and concavified objective functions. The dotted line rep-
resents the manager’s objective function u~x! 5 U~a~x 2 b!1 1 K !, where U is the manager’s
concave utility function and a, BT , and K are positive constants. The dashed line represents the
concavification of u~x!, Iu~x!.
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offs, zero and [x~BT !, exceeds the utility of the average of those endpoints.
Thus, a payoff that takes on values in between those endpoints on a set of
states with positive probability could be dominated by a payoff that instead
takes on the value zero on part of that set and [x~BT ! on the other part.

Solving the problem with the concave objective function Iu is similar to
solving the standard investment problem, with Iu ' appropriately defined. The
solution to the concavified problem is also optimal for the original problem
~equation ~9!!. The theorem below states this solution formally.

THEOREM 1: Let

h~ y, b! 5 ~I ~ y0a! 2 K !0a 1 b for all y . 0, b . 0. ~19!

Assume that

X ~l! [ E@zT h~lzT , BT !1$h~lzT , BT !. [x~BT !% # , ` for all l . 0. ~20!

Then there exists a unique l* . 0 such that X ~l* ! 5 X0 and the unique
optimal payoff for the manager with the option is

XT
* 5 h~l*zT , BT !1$h~l*zT , BT !. [x~BT !% , ~21!

where 1A 5 1 whenever A occurs and 1A 5 0 otherwise.

The optimal payoff has an all-or-nothing quality. Either the option is as far
out of the money as possible, or it is in the money by at least [x~BT ! 2 BT . It
does not pay for the manager to be just marginally in the money, because he
must expend substantial resources to bring asset value into the money at all.

When the option is in the money, the asset value sets the manager’s mar-
ginal utility proportional to the state price zT . The states in which the op-
tion is in the money are $v [ V : zT ~v! , u '~ [x~BT !, BT !0l* % . It is not hard to
show that u '~ [x~BT !, BT ! is decreasing in BT . Thus, the in-the-money states
correspond to those in which the values of both the state price and the bench-
mark are low. In other words, the manager is in the money when payoffs are
cheap and the benchmark is easy to beat.

V. Special Benchmarks

To provide some concrete examples, this section illustrates the optimal
payoff for the manager’s problem with two specific benchmark payoffs. These
two benchmark payoffs serve in the examples of optimal trading strategies
in the next section.
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First, if the manager is measured against a constant or riskless bench-
mark, the manager’s optimal terminal fund value is

XT
R 5 @~I ~lR zT 0a! 2 K !0a 1 BT #1$zT,zR% , ~22!

where lR solves EzT i ~lzT , BT ! 5 X0 and zR 5 aU '~a~ [x~BT ! 2 BT ! 1 K !0lR.
In particular, the set of states in which the manager’s option is in the money
is simply the set of states in which the relative state price falls below a
certain critical value. A plot of the optimal terminal wealth XT

R as a function
of the state price density zT appears in Figure 2. Optimal terminal wealth
XT

R is greater than [x and decreasing in zT until zT hits zR. Then XT
R jumps

from [x down to zero.
Another benchmark payoff of potential interest is BT 5 B0 MT , where B0 is

a constant and MT 5 10zT , the terminal value of the MVE portfolio described
in equation ~10!. With this benchmark, the manager’s optimal terminal fund
value is still a simple function of the state price zT . In particular, the in-
the-money states for the manager again correspond to the set of states in
which the state price falls below a critical value, zM . The corollary below
states this formally.

COROLLARY 1: The optimal asset payoff with benchmark BT [ B00zT is

XT
M 5 @~I ~lM zT 0a! 2 K !0a 1 B0 0zT #1$zT,zM % , ~23!

Figure 2. Optimal random payoff. The random variable XT
R maximizes E@U~a~XT 2 BT !1 1

K !# subject to the constraints that E @zT XT # # X0, XT $ 0, and XT is measurable with respect
to the filtration generated by asset prices up to time T. U is the manager’s concave utility
function, a, BT , and K are positive constants, and zT is the state price.
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where lM solves E@zT h~lzT , B0 0zT !1$h~l*zT , B0 0zT !. [x~B0 0zT !% # 5 X0 and zM is the
unique zero of

g~zT ! 5 u '~ [x~B0 0zT !, B0 0zT ! 2 lM zT . ~24!

VI. Optimal Trading Strategies

This section presents the manager’s optimal dynamic trading strategy in
the special case that the coefficients of the price processes r, m, and s are
constant, the benchmark payoff is either a constant or else equal to the
payoff of the MVE portfolio in equation ~10!, and the manager has a DARA
utility function as defined in equation ~2!. The derivation of the optimal
trading strategy uses the standard procedure described in equations ~13!
and ~14! of Section III. Note that the optimal solution to the manager’s prob-
lem with a DARA utility function and outside wealth K is the same as the
solution with a CRRA utility function and outside wealth equal to k 5 K 2 w.

A. Riskless Benchmark

For this section, assume that BT 5 B0erT, where B0 is a constant. Then
the portfolio value is the process

Xt
R 5 e2r~T2t!F [xN~d1, t ! 1 ~ [x 2 BT 1 k0a!SN~d2, t !

N '~d1, t !

N '~d2, t !
2 N~d1, t !DG,

~25!

and the manager’s optimal trading strategy is

pt
R 5 H Xt

R

1 2 g
1 e2r~T2t!F [xN '~d1, t !

7u7!T 2 t
2

BT 2 k0a

1 2 g
N~d1, t !GJS21m, ~26!

where [x 5 [x~BT !, d1, t 5 @ ln~zR0zt ! 1 ~r 2 7u7202!~T 2 t!#07u7!T 2 t, d2, t 5
d1, t 1 7u7!T 2 t0~1 2 g!, and N is the standard cumulative normal distri-
bution function. These formulas lead to a number of results.

PROPOSITION 1: With the riskless benchmark and DARA utility,

~i! as zt r 0,

Xt
R r 1 ` and

pt
R

Xt
R r

S21m

1 2 g
,
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~ii! as zt r 1 `,

Xt
R r 0, pt

R r 0, and ** pt
R

Xt
R ** r `,

~iii! as t r T,

pt
R

Xt
R r

XT
R 2 BT 1 k0a

XT
R

S21m

1 2 g
, if zT , zR ,

pt
R r 0 and ** pt

R

Xt
R ** r `, if zT . zR .

~27!

Merton ~1969, 1971! shows that in the standard investment problem ~equa-
tion ~11!!, when security prices are geometric Brownian motions, the CRRA
investor holds risky assets in the constant proportions pt

*0Xt
* 5 S21m0

~1 2 g!, which implies that his portfolio has constant volatility. Part ~i! of
Proposition 1 says that when underlying asset value is high, the manager
with the option follows the same constant volatility trading strategy he would
follow if he were solving the standard problem, or if he were paid a linear
share of profits. By contrast, part ~ii! of the proposition indicates that when
the asset portfolio is performing poorly, the value of the risky asset holdings
goes to zero to meet the solvency constraint, but that value goes to zero more
slowly than the total portfolio value, so that the proportional risky asset
holdings, and thus portfolio volatility, converge to infinity as bankruptcy
approaches. To illustrate, Figure 3 plots the optimal proportional holdings of
risky assets as a function of total asset value for a CRRA manager with a
riskless benchmark.

Part ~iii! of Proposition 1 examines the trading strategy as the eval-
uation date draws near. In states in which the manager finishes in the
money, zT , zR, the proportional risky asset holdings converge to @~XT

R 2
BT 1 k0a!0XT

R# @S21m0~1 2 g!# . The intuition for this is as follows. The
CRRA investor seeks proportional holdings S21m0~1 2 g!. When the option
is very likely to be in the money, the manager’s personal share of the value
of the risky assets that the managed portfolio holds is effectively apR. The
manager’s wealth is effectively a~XT

R 2 BT ! 1 k. Thus, his personal risky
asset holdings, in proportion to his wealth, are effectively apR0@a~XT

R 2
BT ! 1 k# 5 S21m0~1 2 g!, the standard CRRA proportions.

Although the optimal trading strategy has the potential for unboundedly
high volatility, equation ~27! in part ~iii! of Proposition 1 implies that in
some states the volatility of the managed assets can actually be less than
the Merton constant volatility that a CRRA investor solving the standard
investment problem would choose. In particular, this will be the case if
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2BT 1 k0a , 0, t is near T and the option is in the money. This is visible in
Figure 3. The reason is that the leverage inherent in the option magnifies
the manager’s exposure to the asset volatility. If the option is a large com-
ponent of his compensation, he reduces asset volatility to offset the option’s
leverage effect.

In states in which the manager finishes out of the money, zT . zR, asset
value goes to zero. Just as in the bankruptcy states examined in part ~ii! of
Proposition 1, although the value of risky asset holdings goes to zero to meet
the solvency constraint, portfolio volatility goes to infinity. Finally, note that
when the manager is near the money ~zt near zR! as the evaluation date
approaches, small changes in the value of the mean-variance efficient port-
folio lead to large trades as the manager alternates between the desire to get
in the money and the need to remain solvent.

PROPOSITION 2: With the riskless benchmark, CRRA utility, and outside wealth
K 5 KT [ K0erT,

lim
Tr`

p0
R

X0
R 5

S21m

1 2 g
. ~28!

Figure 3. Optimal trading strategy for a CRRA manager. Optimal proportion of portfolio
value invested in the risky asset as a function of portfolio value, Xt

R , one year prior to the
evaluation date T. Terminal portfolio value XT

R maximizes E@U~a~XT 2 BT !1 1 K !# subject to
the constraints that E @zT XT # # X0, XT $ 0, and XT is measurable with respect to the filtration
generated by asset prices up to time T. a 5 0.15, BT 5 1, K 5 0.03, and the utility function U
is CRRA with coefficient 1 2 g 5 2. Intermediate fund value is Xt

R 5 Et $~zT 0zt !XT
R% where the

state price density process is zt 5 e2rt2uWt2u2t02 with r 5 0, u 5 0.4, and Wt Brownian motion at
time t. The Sharpe ratio u on the risky asset is m0s where the risky asset’s excess expected
return is m 5 0.08 and its volatility is s 5 0.2. The Merton constant is m0s2~1 2 g!, the optimal
proportion for a CRRA investor solving the standard terminal wealth problem.
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Under the assumptions of the proposition, the solution is essentially invari-
ant to the interest rate. In particular, e2rtXt

R and e2rtpt
R are invariant to r.

It follows that increasing the evaluation period T is essentially equivalent to
increasing the Sharpe ratio 7u7 and thus improving the manager’s opportu-
nity set. The result suggests that improving the manager’s opportunity set
has the same effect as putting him deeper in the money—he begins to act as
if he is trading for his own account.

Finally, I close this section with a result that holds for all HARA utility
functions described in equation ~2!.

PROPOSITION 3: With the riskless benchmark and DARA or CARA utility, in-
creasing the number of options, a, holding asset value constant, causes the
manager to reduce asset volatility.

Lemma 2 in the Appendix shows that as a increases, the minimal nonzero
payoff, [x, decreases, making the optimal payoff smoother. As for the impact
of an increase in a on the manager’s choice of asset volatility, the intuition
is as follows. The manager’s personal portfolio is the package of options and
cash with payoff a~XT 2 BT !1 1 K. In the CRRA case, the manager is trying
to keep the volatility of his personal portfolio fixed at the Merton constant.
The volatility of his personal portfolio is, by Itô’s lemma, equal to ~the pro-
portion of his personal portfolio value in the option! 3 ~the option elastic-
ity! 3 ~the volatility of the underlying assets!. Increasing a increases the
first factor, causing the manager to decrease the third factor. Finally, con-
sider a CARA manager. He essentially targets a certain risky asset value in
his personal portfolio. Increasing a increases his exposure to the managed
portfolio’s risky assets. He offsets this by decreasing the managed portfolio’s
volatility.3

B. MVE Portfolio as Benchmark

Now set Bt [ B00zt . Let Zb 5 B00zM and let [x 5 [x~ Zb!. Let pB 5 Bt S21m, the
trading strategy that generates the benchmark portfolio. Then the optimal
portfolio process is

Xt
M 5 Bt N~d5, t ! 1 e2r~T2t!F~ [x 2 Zb 1 k0a!N~d4, t !

N '~d3, t !

N '~d4, t !
2 ~k0a!N~d3, t !G,

~29!

3 In a study of hedge fund performance, Ackermann, McEnally, and Ravenscraft ~1998! re-
gress fund volatility on a variety of fund characteristics and find no relation between fund
volatility and the incentive fee percentage. However, their regression does not control for cross-
sectional variation in other variables that would affect the volatility choice, such as the size of
the fund and the extent to which the incentive fee is in the money.
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and the manager’s optimal trading strategy is

pt
M 5 pt

B N~d5, t ! 1 e2r~T2t!F [xN '~d3, t !

7u7!T 2 t
1

~ [x 2 Zb 1 k0a!

1 2 g
N~d4, t !

N '~d3, t !

N '~d4, t !
GS21m,

~30!

where d3, t 5 @ ln~zM 0zt ! 1 ~r 2 7u7202!~T 2 t!#07u7!T 2 t, d4, t 5 d3, t 1 7u7
!T 2 t0~1 2 g!, and d5, t 5 d3, t 1 7u7!T 2 t. Note that d3 and d4 are just d1
and d2 with the critical state price zR replaced by zM . For the purpose of
comparing the trading strategies with the riskless and MVE benchmarks, I
rewrite the riskless benchmark trading strategy in equation ~26! as

pt
R 5 e2r~T2t!F [xN '~d1, t !

7u7!T 2 t
1

~ [x 2 BT 1 k0a!

1 2 g
N~d2, t !

N '~d1, t !

N '~d2, t !
GS21m. ~31!

Comparing the two trading strategies in equations ~30! and ~31! shows
that the trading strategy with the MVE benchmark consists of a component
that tracks the benchmark, weighted by the factor N~d5, t !, and a compo-
nent that behaves like the riskless benchmark trading strategy. As the port-
folio looks more and more likely to finish in the money, N~d5, t ! approaches
one, so the manager essentially undoes the effect of the benchmark and then
invests in the optimal portfolio for a riskless benchmark, a result similar to
that of Admati and Pf leiderer ~1997!.

In terms of the proportional holdings of the risky assets, the component
that dominates depends on whether the manager’s personal volatility target
exceeds the volatility of the benchmark portfolio. Roughly speaking, if the
utility function is more risk averse than log utility, the component tracking
the MVE benchmark dominates. Otherwise, the component that behaves like
the riskless benchmark strategy dominates. Part ~i! of the proposition below
states this idea precisely.

PROPOSITION 4: With the MVE benchmark and DARA utility,

~i! as zt r 0,

Xt
M r 1 `

and

pt
M

Xt
M r

S21m

1 2 g
, if 1 2 g # 1,

pt
M

Xt
M r S21m, if 1 2 g . 1,
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~ii! as zt r 1 `,

Xt
M r 0, pt

M r 0, and ** pt
M

Xt
M ** r `,

~iii! as t r T,

pt
M

Xt
M r S BT

XT
1

XT
M 2 BT 1 k0a

XT
M~1 2 g! D S21m, if zT , zM ,

pt
M r 0 and ** pt

M

Xt
M ** r `, if zT . zM .

~32!

To understand the limiting portfolio holdings as t r T when the manager is
in the money in equation ~32! above, think of the manager’s personal risky
asset holdings as those that are necessary to generate his personal payoff,
a~X M 2 B!. The trading strategy that generates that payoff is a~pM 2 pB !. In
addition, the manager’s personal wealth is effectively a~X M 2 B! 1 k. Thus,
his proportional holdings are effectively @a~pM 2 B!0~a~X M 2 B! 1 k!#S21m 5
S21m0~1 2 g!, the standard CRRA proportions.

VII. Conclusion

This paper provides a rigorous description of the optimal dynamic invest-
ment policy for a risk averse fund manager compensated with a call option
on the assets he controls. The setting is sufficiently general that the solution
for the optimal payoff could serve in an equilibrium model in which option-
compensated managers control some of the assets in the economy. The solu-
tion technique, concavifying the objective function, applies to other problems
in which option payoffs appear in the objective function.

In general, the effects of option compensation on the manager’s appetite
for risk are more complex than simple intuition about option pricing might
suggest. The convexity of the option makes the manager seek payoffs that
are likely to be “away from the money” and can lead to dramatic increases in
volatility. Yet examples of the optimal trading strategy for DARA utility show
that the option does not simply cause the manager to increase asset volatil-
ity. Explicit expressions show how the manager dynamically adjusts volatil-
ity as asset value changes. As asset value grows large, the manager moderates
portfolio risk.

Somewhat surprisingly, the manager with the option can in some situa-
tions set the volatility of the asset portfolio below the level he would choose
if he were trading his own account. Furthermore, giving the manager more
options makes him seek less risk. However, options that are deep out of the
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money seem to provide incentives for excessive risk taking. This may be one
reason why firms sometimes reset the strike prices of compensatory options
after poor stock price performance has put them out of the money.

Appendix

Proof of Theorem 1: First, although the concavification Iu is not differen-
tiable at x 5 0, we can define a set-valued function Iu ' on @0,`! 3 ~0,`! by

Iu '~x, b! 5 5
@u '~ [x~b!, b!,`! for x 5 0,

$u '~ [x~b!, b!% for 0 , x # [x~b!,

$u '~x, b!% for x . [x~b!.

~A1!

The function Iu '~x, b! is essentially the derivative of Iu with respect to x.4 In
particular, for every y [ R and x $ 0, and for every m [ Iu '~x, b!,

Iu~ y, b! 2 Iu~x, b! # m~ y 2 x!. ~A2!

Furthermore, strict inequality holds whenever x . [x~b! and y Þ x.
Second, we can define an inverse function for Iu '~{, b!, i : ~0,`! 3 ~0,`! r

@0,`!, by

i ~ y, b! 5 @~I ~ y0a! 2 K !0a 1 b#1$ y,u '~ [x~b!, b!% . ~A3!

The function i is the inverse of Iu in the sense that

y [ Iu '~i ~ y, b!, b! for all b . 0. ~A4!

Third, under assumption ~20! in the statement of the theorem, the function
X ~l! 5 E@zT i ~lzT , BT !# , for l . 0, is continuous and strictly decreasing.
Furthermore, X ~l! r ` as l r 0, and X ~l! r 0 as l r `. Therefore, there
exists a unique l* . 0 such that X ~l* ! 5 X0.

Finally, note that XT
* 5 i ~l*zT , BT !. Let Y be any other feasible payoff that

is not almost surely equal to XT
* . Then Y provides lower expected utility

than XT
* :

E$u~Y, BT ! 2 u~XT
* , BT !% 5 E$u~Y, BT ! 2 Iu~XT

* , BT !% ~A5!

# E$ Iu~Y, BT ! 2 Iu~XT
* , BT !% ~A6!

, E$l*zT ~Y 2 XT
* !% ~A7!

# l*~E@zT Y # 2 X0! # 0. ~A8!

4 Formally, for each b, Iu '~{, b! is the subdifferential of Iu~{, b!. See Rockafellar ~1970!.
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Equation ~A5! follows from the fact that XT
* never takes on values where u

and Iu disagree. Equation ~A7! follows from equations ~A2! and ~A4!. Q.E.D.

LEMMA 2: For the HARA utility functions defined in equation (2), the critical
point [x in the concavified objective function Iu decreases as a increases.

Proof: By the definition in equation ~17!, [x satisfies

U~a~ [x 2 b! 1 K ! 2 U~K ! 5 a [xU '~a~ [x 2 b! 1 K !, ~A9!

and

d [x

da
5

bU '~a~ [x 2 b! 1 K !

2 a2 [xU ''~a~ [x 2 b! 1 K !
2
[x 2 b

a
, ~A10!

for each value of the benchmark b. By concavity,

U~a~ [x 2 b! 1 K ! 2 U~K ! , U '~K !a~ [x 2 b!. ~A11!

Equations ~A9! and ~A11! imply

U '~K !

U '~a~ [x 2 b! 1 K !
.

[x

[x 2 b
. ~A12!

It suffices to demonstrate the result for just the CRRA and CARA utility
functions. I give the proof for the CRRA case only. Equation ~A10! yields

d [x

da
5

bK 2 a~ [x 2 b!~~1 2 g! [x 2 b!

a2~1 2 g! [x
, ~A13!

and equation ~A9! yields

a~~1 2 g! [x 2 b! 1 K

K
5

U '~K !

U '~a~ [x 2 b! 1 K !
. ~A14!

Equations ~A12! and ~A14! together imply that the numerator on the right-
hand side of equation ~A13! is less than zero. Q.E.D.

LEMMA 3: Let G ~x! 5 N ~x!0N ' ~x! , where N is the cumulative normal
distribution.

~i! G '~x! 5 1 1 xG~x! . 0,
~ii! G '' ~x! . 0,

~iii! ~x2 2 x1!G~x2!G~x1! 2 G~x2! 1 G~x1! . 0 for x2 . x1,
~iv! G~x!2 2 G '~x! # 0.
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Proof of Proposition 3: It suffices to show that d7p0
R70da , 0 for both the

CRRA and CARA utility functions. In each case, pt
R 5 r~t, zt !S21m, for a

real-valued function r. It suffices to show that r0 [ r~0,1! is decreasing in a.
I give the proof for the CRRA case only. Write the initial wealth and portfolio
holdings as

X0 5 e2rTN '~d1!@ [xG~d1! 1 ~ [x 2 BT 1 K0a!~G~d2! 2 G~d1!!# , ~A15!

r0 5
e2rTN '~d1!

7u7!T
@ [x 1 ~ [x 2 BT 1 K0a!~d2 2 d1!G~d2!# , ~A16!

where d2 5 d1 1 7u7!T 0~1 2 g! and [x 5 [x~a! but the dependence is sup-
pressed for brevity. Equation ~A15! implicitly defines d1 as a function of a.

d~d1!

da
5

2
d [x

da
G~d2! 1

K

a2 ~G~d2! 2 G~d1!!

[x 1 ~ [x 2 BT 1 K0a!~d2 2 d1!G~d2!.
~A17!

It follows that

dr0

da
5

e2rTN '~d1!

7u7!T @ [x 1 ~ [x 2 BT 1 K0a!~d2 2 d1!G~d2!#

3 H [xF d [x

da
G '~d2! 2

K

a2 ~G '~d2! 2 G '~d1!!G
2 ~ [x 2 BT 1 K0a!

K

a2 ~d2 2 d1!

3 @~d2 2 d1!G~d2!G~d1! 2 G~d2! 1 G~d1!#J , 0,

~A18!

where the last inequality follows from Lemmas 2 and 3. Q.E.D.
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