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Abstract

We propose a new methodology to build hedge portfolios for climate risks. Our
quantity-based approach exploits information on mutual funds’ trading responses to
idiosyncratic changes in fund managers’ climate beliefs. We identify these belief shocks
based on (i) managers experiencing local extreme heat events that shift climate beliefs
and (ii) changes in the way funds’ shareholder disclosures discuss climate risks. We
show that a portfolio that is long industries that investors tend to buy after experienc-
ing negative idiosyncratic climate belief shocks, and short industries that investors tend
to sell, appreciates in value in periods with negative aggregate climate news shocks.
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Climate change presents a major global challenge. In addition to a wide range of social

implications, both the physical effects of climate change and the regulatory efforts to slow

carbon emissions have the potential to substantially disrupt economic activity. As investor

awareness of the economic and financial risks from climate change has increased, there has

been a rising demand by retail and institutional investors for financial instruments that

hedge these risks (see Krueger et al. 2020, Giglio, Kelly & Stroebel 2021, Stroebel & Wurgler

2021, Acharya et al. 2023, Giglio, Maggiori, Stroebel, Tan, Utkus & Xu 2023). At present,

only a small number of instruments are designed to directly hedge various climate risks,

most prominently the relatively illiquid catastrophe bonds. However, investors interested in

hedging climate risks can still build hedge portfolios using other assets, such as stocks or

bonds, that are exposed to climate risks. To do so, investors need to identify which assets

would benefit and which would lose from climate risk realizations. A long-short portfolio that

buys the former and sells the latter would increase in value when climate risks materialize,

and thus provide a valuable climate risk hedge (see the discussion in Engle et al. 2020).

The finance literature has proposed various approaches to building hedge portfolios for

macro risks, the most prominent of which is the mimicking portfolio approach of Lamont

(2001). These approaches typically rely on the availability of a long time series, since the

risk exposures of different assets—and thus the choice of which assets to buy and sell in the

hedge portfolio—are inferred based on the historical comovement between asset prices and

realizations of the hedge target. As a result, existing approaches are poorly suited in settings

when the targeted risks are new or materialize infrequently, as in the case of climate risk.

In this paper, we propose a new methodology to build portfolios to hedge newly emerging

risks such as those from climate change. Our quantity-based approach uses cross-sectional

information on investors’ trading activity to identify which stocks to hold in a hedge port-

folio. The approach first identifies “idiosyncratic climate belief shocks,” shocks that shift

the climate risk beliefs of a small set of investors. While such shocks do not move asset

prices—they are, after all, idiosyncratic—they can still influence the affected investors’ trad-

ing activity. Based on this insight, the quantity-based approach explores how investors trade

in response to these idiosyncratic climate belief shocks to learn how their demand for each

asset is shifted by changes in perceived aggregate climate risks. Concretely, our approach

identifies which stocks investors tend to buy and sell after becoming more concerned about

climate risks; the hedge portfolio is then built by going long the former and short the latter.

This portfolio is expected to rise in price when aggregate climate risks materialize. The

reason is that, while idiosyncratic shocks only move quantities and not prices, the occur-

rence of an aggregate climate shock affects many investors. As long as investor demand for

different assets responds to aggregate climate risk shocks in similar ways to how it responds

to idiosyncratic shocks, the correlated shift in demand of many investors will move prices.

We operationalize this quantity-based approach by building portfolios of U.S. stocks to

hedge climate risks. To identify the positions in the hedge portfolio, we study mutual funds,

an important group of investors that publicly report their portfolio holdings each quarter.

We propose two ways to identify idiosyncratic shocks to the climate risk beliefs of mutual

fund managers. The first exploits geographically localized extreme heat events that have been
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shown in prior work to affect beliefs about aggregate climate risk (see, e.g., Egan & Mullin

2012, Deryugina 2013, Joireman et al. 2010, Li et al. 2011, Fownes & Allred 2019, Sisco et al.

2017, Constantino et al. 2022, Sisco & Weber 2022). Our baseline measure of local extreme

heat shocks is based on the presence of fatalities and injuries due to extreme heat in a county.

We confirm that the occurrence of this shock, which only affects a small number of investors,

leads to local increases in Google searches for the term “climate change,” consistent with

the prior literature’s finding that such local heat shocks induce updates in climate beliefs.

The second approach to identifying idiosyncratic shocks to mutual fund managers’ cli-

mate risk beliefs is based on changes in the discussion of climate risks in the mutual funds’

shareholder reports. This approach directly identifies a change in beliefs about climate risks

at the individual fund level, without focusing on why these beliefs have changed.

We then study how U.S. active non-sector mutual funds change their portfolio allocations

across industries when their managers experience one of these idiosyncratic climate belief

shocks.1 The two belief shocks are essentially uncorrelated with each other, suggesting that

mutual funds’ disclosures are updated in response to many events other than heat shocks

that also affect managers’ climate beliefs in idiosyncratic ways. Despite this finding, and

despite the presence of sizable estimation error in measuring funds’ trading responses, we

observe a significant correlation in the industries that funds buy and sell in response to our

two idiosyncratic climate belief shocks: fund managers that experience extreme heat events

generally buy and sell similar industries as managers that report increased climate risk

concerns in their investor disclosures. This finding suggests that the portfolio adjustments

contain useful and consistent signals about different industries’ climate risk exposures.

Several interesting patterns emerge by studying which industries are bought or sold in

response to climate belief shocks. For example, by the end of 2019, the auto industry had one

of the strongest positive quantity responses; that is, mutual funds tended to buy auto stocks

after increasing concerns about climate risks. While this finding may appear surprising at

first glance—automobiles are, after all, an important source of current carbon emissions—the

managers’ reaction may reflect their beliefs that the transition to electric vehicles provides

substantial opportunities for incumbent auto makers to sell more vehicles over the coming

years. We also find that investors tended to buy firms in the semiconductor sector, many of

which build products, such as solar panels and chips for the management of smart grids, that

are important for decarbonizing the economy. On the flip side, after become more concerned

about climate risks, investors generally sold equities in the real estate sector, whose assets

are tied to particular locations that might be exposed to climate risks.

Of course, we cannot know with certainty what factors determine fund managers’ assess-

ments of the various industries’ climate risk exposures. Indeed, if we had a good understand-

ing of different industries’ exposures ex-ante, the construction of hedge portfolios would not

require elaborate approaches. The key benefit of our approach is that it can be effective even

1We do not focus on trading in individual stocks, because the large number of stocks and the relatively
sparse holding matrix induce significant estimation error in each stock’s climate risk exposure. However,
from a conceptual perspective, our approach expands to considering individual stocks as well as other asset
classes, as long as holdings changes can be systematically observed.

4



without a full understanding of the economic determinants of each industry’s climate risk

exposure. Instead, to build hedge portfolios based on observed quantities, we rely on the

consistency of fund managers’ asset demand response to idiosyncratic and aggregate shocks.

We validate this assumption in several ways, for example by showing that the trading

activity in response to idiosyncratic shocks is similar across investors and belief shocks. Most

importantly, we show that the cross-sectional quantity information is useful for predicting

industry price responses to aggregate climate risk shocks. To do this, we use the trading

of mutual funds in response to managers’ idiosyncratic belief shocks to build long-short in-

dustry portfolios and study their out-of-sample hedging performance with respect to various

measures of aggregate climate risk. We build separate hedge portfolios using our two idiosyn-

cratic belief shocks (based on heat events and investor disclosures) as well as a hedge portfolio

based on combining these shocks. We then evaluate their performance against alternative

approaches for constructing hedge portfolios that have been proposed in the literature.

The first alternative approach—which we call the “narrative” approach—chooses long

and short positions based on economic reasoning. For example, such an approach might

suggest buying clean energy companies, selling coal companies, or buying companies with

high ESG scores as in Engle et al. (2020), Pástor et al. (2021), and Hoepner et al. (2018).

This approach will hedge climate risk if the underlying economic intuition is aligned with

that of the average investor determining how prices move when aggregate risk materializes.

Similar to the quantity-based approach, the narrative approach has the advantage that it

does not require long time series to be implemented. Instead, it requires having correct

priors about investors’ perceptions of each industry’s exposure to climate risk.

The second alternative approach is the “mimicking portfolio” approach of Lamont (2001),

which projects a climate risk series onto a set of base asset returns using time-series informa-

tion. The mimicking portfolio approach relies on the availability of substantial time-series

data, frequent risk realizations, and a substantial time-series stability of risk exposures: since

it does not take an a priori view on which assets gain or lose when climate shocks occur, it

needs to learn this from asset returns during prior climate risk realizations.

We assess the hedging performance of our quantity-based portfolios and the various

alternatives by computing the out-of-sample correlations between monthly hedge portfolio

returns and measures of aggregate climate shocks between 2015 and 2019. For the mimicking

portfolio approach and the quantity-based approach, we construct the hedge portfolios using

rolling five-year windows of price and quantity data, respectively.2 To evaluate the hedging

performance with respect to aggregate climate risks, we explore a range of measures of

aggregate climate shocks as hedge targets, drawing on a rapidly expanding literature that

follows Engle et al. (2020) to construct time series of news about physical and regulatory

climate risks. Rather than choosing a preferred climate risk series, we evaluate how the

portfolios perform in hedging various series constructed by Engle et al. (2020), Faccini et al.

(2021), and Ardia et al. (2020) as well as national temperature shocks and attention to

2Prior to 2010, climate risks were unlikely to be incorporated into market prices and unlikely to affect
investor behavior, making all approaches difficult to implement. Consistent with this assessment, we show
that none of the approaches can meaningfully hedge climate news between 2000 and 2010.
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climate risk as measured through Google searches.

We document several patterns. First, at a broad level, hedging climate risks is difficult,

and few approaches manage to achieve more than a 20% out-of-sample correlation with

the climate shock series, confirming and extending this finding from Engle et al. (2020).

Second, both the mimicking portfolio approach and the narrative approach provide mixed

results at best: they appear to provide decent hedges for some measures of aggregate climate

risks, and bad hedges (often with negative out-of-sample correlations) for other measures.

Third, our quantity-based portfolios have significantly better average out-of-sample hedging

performances compared to the alternatives. For example, our quantity-based portfolio based

on the heat shock yields positive out-of-sample correlations with all of our aggregate climate

shock series, with average correlation of about 17%. The disclosure-based portfolio does

almost as well, while the quantity portfolio built using the pooled shock has the highest

average correlation with the various climate risk series. This validates the idea that the cross-

sectional information on which the quantity portfolios are based is useful for constructing

hedges of aggregate climate news shocks.3

In addition to documenting the strengths of our quantity-based methodology, our empiri-

cal results highlight some important downsides of the traditional approaches. The mimicking

portfolio approach is very sensitive to the availability of time-series data, and suffers when

the time series is short. As an illustration, consider a mimicking portfolio that only uses the

S&P 500. While this portfolio is composed of only one asset, historical data is still required

to establish whether to take a long or short position: will the broader stock market increase

or decrease upon the realization of climate risks? This relationship turns out to be unstable

over time: during 2010-2014, the S&P 500 comoved positively with climate risk realizations,

while during 2015-2019, it comoved negatively, highlighting the challenges of the mimicking

portfolio approach for constructing successful climate hedges. Adding more base assets in

the construction of the mimicking portfolio can help to better target the hedge, but requires

estimating more parameters, again a problem in short samples.

Narrative-based portfolios are immune to such short-sample issues, since historical data

is not used to determine the positions of different assets. However, deciding on positions in

an a priori way is challenging: as an example, for many industries, the different co-authors

of this paper would have picked different holdings for their hedge portfolios. In the data, we

find that various seemingly plausible narrative portfolios have very different out-of-sample

hedging properties. For example, buying clean energy stocks appears to provide a solid hedge

against negative climate news, but shorting traditional oil and gas firms does not.

The primary focus of our paper is to use our new quantity-based approach to construct

portfolios that hedge realizations of climate risk. This is a natural application of our method-

3Given data constraints, we cannot evaluate the long-run hedging performance of these portfolios for
actual realizations of climate risks. For any of these approaches to work in the long run, the investor needs
to ultimately identify the different assets’ climate risk exposures correctly. The narrative approach requires
a particular investor’s economic reasoning to be correct, whereas the mimicking portfolio and quantity
approach rely on the average investor being correct. That said, the latter approaches can still provide good
hedging of negative climate news in the short run if investors are wrong in their assessments of assets’ climate
risk exposures but consistently so over time. We devote Section 4 to an in-depth discussion of this issue.
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ology, since climate risks have only recently attracted investors’ attention. As a result, there

is not enough time-series data to allow researchers to precisely estimate the climate risk

exposures of different assets based on price data alone. However, our approach can, in prin-

ciple, be applied to hedging any macro risk series for which similar idiosyncratic shocks (e.g.,

stemming from local events or measurable through investor disclosures) affect investors’ be-

liefs about aggregate risks. For example, in recent work, Kuchler & Zafar (2019) show that

locally experienced house price movements affect expectations about future U.S.-wide house

price changes; they also show that personally experienced unemployment affects beliefs about

future national unemployment rates. Consistent with our results on hedging climate risks,

we show that the trading responses of mutual fund investors to local house price and unem-

ployment shocks—or discussions of these topics in investor disclosures—allow us to construct

portfolios that perform well at hedging innovations in the corresponding national series.

Our work contributes to a growing literature that studies the interaction between climate

change and asset markets (see Giglio, Kelly & Stroebel 2021, for a recent review). In equity

markets, Bolton & Kacperczyk (2021a) and Hsu et al. (2022) document that high-pollution

firms are valued at a discount, and Giglio, Maggiori, Stroebel, Tan, Utkus & Xu (2023) find

that retail investors expect high-ESG firms to underperform the market. Engle et al. (2020)

find that stocks of firms with lower exposure to regulatory climate risk experience higher

returns when there is negative news about climate change, and Barnett (2020) shows that

increases in the likelihood of future climate policy action lead to decreased equity prices for

firms with high exposure to climate policy risk. Choi et al. (2020) document that the stocks

of carbon-intensive firms underperform during periods of abnormally warm weather, where

investors’ attention to climate risks is likely heightened. Climate risk has also been shown to

affect prices in other asset classes such as real estate markets (Baldauf et al. 2020, Bakkensen

& Barrage 2022, Bernstein et al. 2019, Giglio, Maggiori, Rao, Stroebel & Weber 2021, Murfin

& Spiegel 2020) and municipal bond markets (Painter 2020, Goldsmith-Pinkham et al. 2021,

Acharya, Johnson, Sundaresan & Tomunen 2022).

Our quantity-based approach to forming hedge portfolios builds on prior work that studies

how individuals form beliefs based on their personal experiences (e.g., D’Acunto et al. 2022,

Kuchler & Zafar 2019, Malmendier & Nagel 2011, Alok et al. 2020, Busse et al. 2015, Chang

et al. 2018) and how such beliefs translate into actions (Armona et al. 2019, Armantier

et al. 2015, Bachmann et al. 2015, Bailey et al. 2018, 2019, 2020, Gennaioli et al. 2016,

Giglio, Maggiori, Stroebel & Utkus 2021a,b, Roth & Wohlfart 2020). Our approach also

relates to a recent literature using quantity and holdings data in asset pricing (e.g., Berk &

van Binsbergen 2016, Koijen & Yogo 2019). We contribute to this literature by providing

evidence that quantity information can also be useful for predicting price movements in

response to aggregate shocks.

1 Quantity-Based Portfolios: A Simple Model
In this section, we describe a simple model that motivates our quantity-based approach to

forming hedge portfolios.
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Setup. Consider a continuum of investors i ∈ [0, 1] who choose a portfolio of securities A

and B. There are no other assets and no consumption available to investors at the time of this

asset allocation decision. Investor i’s demand for security A is given by qA
(
pA, ϵA(i), ϵB(i)

)
,

where pA is the price of security A relative to that of security B, ϵA(i) gives investor i’s

beliefs about the future payoffs of security A, and ϵB(i) gives investor i’s beliefs about the

future payoffs of security B (all expressed in units of security B’s price). For simplicity,

assume that qA
(
pA, ϵA(i), ϵB(i)

)
= f(pA)+ g

(
ϵA(i)

)
+h

(
ϵB(i)

)
, with f , g and h continuously

differentiable, and ∂f
∂pA

< 0. The market-clearing condition is:∫ i=1

i=0

qA
(
pA, ϵA(i), ϵB(i)

)
di = Ā,

where Ā is the supply of security A. The equilibrium is characterized by price p∗A and asset

allocations q∗A(i). We focus on the equilibrium in market A; market B clears by Walras’ law.

An individual investor’s beliefs about stock A’s future payoff can be decomposed into a

common component νA and an investor-specific idiosyncratic component ωA(i), such that

ϵA(i) = νA + ωA(i). The common belief νA is driven by shocks or news that are observed

by all investors, and that correspond to the types of news that investors might want to

hedge (e.g., well-publicized news about accelerating global warming that shifts all investors’

beliefs about physical climate risks). The idiosyncratic belief component ωA(i) can instead

be affected by “local” events that are only observed or experienced by investor i (e.g., a

localized heat wave in the location of investor i that impacts her views on climate risks). We

do not impose assumptions on the origins of the common and idiosyncratic components of

beliefs. There is no learning from prices about the beliefs or information of other investors;

investors simply “agree to disagree.”

Idiosyncratic Belief Shocks. We first study changes in equilibrium prices and quantities

in response to an idiosyncratic shock ωA(i), for example because investor i—having expe-

rienced a localized heat wave—now believes that stricter regulations on carbon emissions

will reduce the future profitability of stock A (formally, we also assume that the shock to

beliefs about stock A does not change beliefs about stock B). By the chain rule we have

that ∂q
∂ωA(i)

= ∂q
∂ϵA(i)

. Since each investor is “small” relative to the market,

∂

∂ωA(i)

∫ i=1

i=0

qA
(
pA, ϵA(i), ϵB(i)

)
di = 0.

Thus,
∂p∗A

∂ωA(i)
= 0. However, since investor i’s demand changes, ∂q∗

∂ωA(i)
̸= 0. In words,

if investor i experiences an idiosyncratic change in her beliefs, her equilibrium allocation

changes. However, since the shock only affects one (atomistic) investor, it does not move

equilibrium prices. Thus, investor i’s change to her equilibrium allocation q∗ is directly

informative about her demand sensitivity to changes in beliefs, ∂q
∂ϵA(i)

.

From Quantities to Prices. Suppose now there is news about stock A that affects all

investors’ beliefs: a change in νA. For example, an announcement by a senior politician might

8



cause all investors to believe that climate change regulation has become more likely, reducing

the expected profitability of heavily-emitting firm A. By the implicit function theorem and

the chain rule, equilibrium price responses are given by:

∂p∗A
∂νA

= −
∫ i=1

i=0
∂qA

∂ϵA(i)
di

∂qA
∂pA

.

In words, the sensitivity of prices to national news is directly proportional to average quantity

sensitivities,
∫ i=1

i=0
∂qA

∂ϵA(i)
di.4 Together with the earlier result, this shows how idiosyncratic

quantity responses can help predict national price responses. Intuitively, by studying how

investors react to local shocks that have no effect on the equilibrium price, we can predict

how their demand shifts in response to news that affects all investors. Aggregate news then

moves the demand functions of many investors simultaneously, leading to price movements

in response to aggregate shocks. Therefore, a hedging portfolio built using idiosyncratic

quantity data can hedge aggregate climate shocks.

2 Idiosyncratic Belief Shocks & Portfolio Changes
Our quantity-based approach to constructing climate risk hedge portfolios requires identify-

ing idiosyncratic belief shocks that satisfy three criteria. First, the shocks should shift asset

demands of affected investors by influencing their beliefs about climate risks or their atten-

tion to these risks. Second, the shocks should only affect a few investors, so that they can

influence those investors’ portfolios without inducing a large price response. Third, changes

in asset demand following the idiosyncratic belief shocks should be similar to changes in asset

demand following aggregate news about climate risk, the events we are trying to hedge.

We developed two approaches to identifying such idiosyncratic belief shocks, one built

on the presence of extreme heat events in the locations of the investors, and one based

on investor disclosures. We next provide details on the construction of these two types of

idiosyncratic belief shocks, before exploring investor trading responses to them.

2.1 Idiosyncratic Belief Shocks: Extreme Heat

Our first idiosyncratic climate belief shock is motivated by an extensive literature that iden-

tifies local extreme heat events as important drivers of climate change attention and beliefs

in affected populations (e.g., Egan & Mullin 2012, Deryugina 2013, Joireman et al. 2010, Li

et al. 2011, Fownes & Allred 2019, Sisco et al. 2017, Herrnstadt & Muehlegger 2014, Con-

stantino et al. 2022, Sisco & Weber 2022, Zaval et al. 2014). Following this work, we aim to

identify instances of geographically concentrated extreme heat events, based on the premise

(which we validate below) that investors experiencing these events will, on average, update

their beliefs or attention related to climate change.

4The constant of proportionality can vary across securities. For example, the same quantity response may
induce a larger price effect for stocks with smaller market capitalizations. To incorporate such effects in our
empirical application, we estimate quantity responses relative to market capitalization; for a more structural
approach, see Koijen et al. (2020).
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The observed tendency of individuals to adjust their climate change beliefs or attention

based on locally experienced extreme heat events is unlikely to be fully rational—after all,

if such events were truly informative about aggregate climate risk, the relevant information

could be easily obtained and incorporated by all investors, not just by those experiencing

the extreme heat event. Nevertheless, the importance of such ‘local experience effects’ is

highly consistent with a large literature that has documented how the beliefs and behaviors

of sophisticated investors, including mutual fund managers and equity analysts, are affected

by local and personal experiences.5 Most directly relevant is recent work by Reggiani (2022),

who shows that equity analysts experiencing warmer temperatures tend to issue more pes-

simistic forecasts for firms exposed to regulatory and physical climate risks.

It is also useful to note that the construction of climate hedge portfolios using investor

trading responses to extreme heat does not require that climate beliefs are the only factor

through which extreme heat events influence investors’ trading. Instead, all we require is

that there is some signal in the trading in response to local heat shock that is informative

about trading in response to aggregate climate risk realizations, leading to successful hedging

of these climate risk realizations out of sample.

Measuring Extreme Heat Events. There are several plausible ways to define extreme

heat events as potential shifters of climate change attention and beliefs of the affected pop-

ulations. Our baseline measure identifies events that involve fatalities or injuries due to

extreme heat. In the Appendix, we show that our results are robust to considering sev-

eral other definitions of extreme heat events, such as those built on temperature anomalies

relative to local historical averages.

We construct our baseline measure of extreme heat events using monthly information

from NOAA’s National Center for Environmental Information, as collected in the Spatial

Hazard Events and Losses Database for the United States (SHELDUS) database. We use the

reported per-capita injuries and per-capita fatalities attributed to extreme heat to construct

local heat shocks. For our baseline shock, we define a county-month as experiencing a heat

shock if there were positive numbers reported for either per-capita injuries or for per-capita

fatalities (or both).6 Appendix Figure A.1 shows the spatial distribution of the resulting

heat shock. Panel A of Table 1 shows the frequency of the occurrence of the shock in our

data, highlighting that about 0.1% of all county-months in the U.S. between 2010 and 2019

had reported fatalities or injuries due to extreme heat.

5Personal experiences have been shown to affect the beliefs and behaviors of sophisticated agents across a
wide range of other settings. For example, Malmendier et al. (2021) show that personal lifetime experiences
of inflation impact the inflation forecasts and voting patterns of FOMC members. Alok et al. (2020) show
that fund managers located in a major disaster region tend to invest less in stocks from the disaster-stricken
area compared to managers who are situated further away. Chang (2022) shows that mutual fund managers
extrapolate from local industry conditions in their investment strategies. More generally, professional in-
vestors’ decisions have been shown to deviate from rationality in a range of other settings (e.g. Kuchler et al.
2022, Hirshleifer et al. 2021, Kaustia et al. 2008, Haigh & List 2005, and many others).

6In the baseline SHELDUS data, the threshold for reporting a non-zero value for fatalities or injuries per
capita requires at least 1 fatality or injury per 200k residents, respectively; we examine robustness to this
threshold in Section 3.5.
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Table 1: Summary Statistics on Idiosyncratic Climate Belief Shocks

Panel A: Local Shocks: Summary
Frequency

Climate Shock Event Description Monthly Sample

Heat Shock Injuries or fatalities 0.10% 1.32%
Disclosure Shock Change in fund disclosures about transition risk - 0.15%
Pooled Shock Pool of heat and disclosure shock - 1.76%

Panel B: Local Shocks: Sample Jaccard Correlations across Fund-Quarters

Heat Shock Disclosure Shock

Heat Shock 1.00
Disclosure Shock 0.00 1.00

Note: Panel A provides an overview of the idiosyncratic belief shock measures. The “monthly” frequency
shows the share of county-month observations in the U.S. from 2010 to 2019 that experience an extreme
heat event. The “sample” frequency shows the share of observations in our final sample that are assigned
a climate belief shock, with the unit of observation being a pair of consecutive (3 months apart) filings of
a given mutual funds’ holdings (see Section 2.3). Panel B shows the Jaccard correlations among the shock
measures across all fund-quarters in our sample. Jaccard correlations quantify the intersection’s size relative
to the union of two sets. We applied Jaccard correlation to address the inherent binary nature of data.

Heat Shocks and Climate Change Attention and Beliefs. We next explore whether

this measure of local heat shocks affects local climate change attention or beliefs, as measured

by Google searches related to climate change (see Stephens-Davidowitz 2014, Choi et al. 2020,

for similar approaches). Since Google Trends data is not available at the county level and is

often missing at the MSA level, we conduct this analysis at the state-month level.

The Google search series measures relative interest in a topic, such as the fraction of all

Google searches in a region for “climate change.” For each geographic unit, Google scales

the relative search interest for a topic to be between 1 and 100. This means that, for each

state, the month with the most relative searches for a given term receives a score of 100. All

other months’ scores represent their relative searches as a fraction of the relative searches of

the highest-ranked month. For example, if for California, July 2008 is the month with the

most relative searches for “climate change” and February 2009 has half as many relative such

searches, then California’s score in February 2009 would be 50. Given this multiplicative

scaling factor, we explore how local climate shocks affect the logarithm of the Google search

index using the following specification:7

log(G̃t,s) = βSSt,s + δs + γt + ϵt,s, (1)

where G̃t,s is the observed (scaled) Google search interest for climate change in state s at

time t, and St,s is the indicator for a local extreme heat event, set equal to one if at least

7Let Gt,s be the unscaled Google search interest in climate change for month t and state s. We observe

only G̃t,s = Gt,s/δs, where δs is the unobserved scaling factor for state s. By regressing log(G̃t,s) =
βSSt,s + δs + γt + ϵt,s, we ensure that the state fixed effect captures the scaling factor.
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one county within the state experienced a heat shock during the month.8 State and time

fixed effects are given by δs and γt. Consistent with the work cited above, Table 2 shows

that extreme heat shocks are associated with more attention paid to climate risks, though

the aggregation to the state level leads to only marginally statistically significant results.

Table 2: Heat Shocks and Climate Attention

Log(Google Search Volume)

Heat Shock 0.016∗

(0.008)

R2 0.75
State & Month FE Y
N 5,823

Note: This table shows results from regression 1. Standard errors in parentheses are clustered at the
month and state level, and observations are weighted by each state’s population size. Significance levels:
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

2.2 Idiosyncratic Belief Shocks: Investor Disclosures

Our second idiosyncratic climate belief shock is based on changes in the discussion of climate

risks in mutual funds’ semi-annual shareholder reports. In contrast to the local heat shock,

which captures idiosyncratic drivers of changes in climate risk beliefs, this disclosure-based

approach directly measures changes in the stated climate beliefs of different investors, without

identifying why a particular investor may have changed her beliefs.

To construct this belief shock, we work with the semi-annual shareholder reports of

actively managed mutual funds, which are filed as N-CSR reports with the Securities and

Exchange Commission. We first extract sentences from these N-CSR reports that use the

following terms related to climate change: climate change, carbon emission(s), greenhouse

gas(es), or global warming. These terms were selected based on their cosine similarity to

“climate change” in Google’s word2vec implementation. We augment this list with the

following terms referring directly to transition and physical risks: carbon tax, carbon pricing,

extreme weather, extreme temperature, extreme precipitation, flooding, drought, or sea level

rise. We further extract one sentence before and after each selected sentence to construct

a more complete passage with context. We then feed the extracted passages into GPT4 to

classify whether each passage refers to physical and/or transitional climate risk (we provide

example classifications in Appendix Table A.1, and our GPT prompt in Appendix A.1).

Overall, we identify 133 reports (corresponding to 348 fund-quarters, as a report can

cover multiple funds; we use quarterly frequency to describe the data as our final matched

dataset will be at this frequency) as expressing concerns about or considerations related

to climate risk.9 For our baseline disclosure shock, we exclude climate-focused investment

8The findings are robust to alternative ways of aggregating county-level heat shocks to the state level,
and to using more continuous measures, such as injuries or fatalities per capita.

9One might be concerned that this relatively small number of N-CSR reports that describe concerns
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funds’ disclosures, which leaves us with a total of 231 identified fund-quarters.10

2.3 Holdings and Location Data

There are several reasons why mutual fund managers are a natural focus of our study of

trading responses to idiosyncratic climate belief shocks. First, mutual funds make up a

substantial share of the investor universe and their portfolio holdings are observable at the

quarterly frequency (see Chen et al. 2010, Frazzini & Lamont 2008, Grinblatt & Titman 1989,

Wermers et al. 2012, for other uses of this data). And second, data on the location of mutual

fund advisors allows us to construct idiosyncratic belief shocks based on locally experienced

heat events, while the content of N-CSR reports allows us to construct an alternative measure

based on the extent of self-reported concerns about climate risks.

For our quantity-based approach to identify hedge portfolios, mutual fund managers must

adjust their portfolios in response to perceived changes in climate risk. Such portfolio adjust-

ments could occur for various reasons.11 Managers may believe that equilibrium valuations

do not fully account for climate risks and that they can thus earn alpha by reducing their

holdings of more exposed stocks (Krueger et al. 2020). Alternatively, managers may view

climate change as an additional risk to hedge, either because of their investors’ preferences

(Ceccarelli et al. 2021, Giglio, Maggiori, Stroebel, Tan, Utkus & Xu 2023) or to manage

flows in response to aggregate climate disasters (Dou et al. 2022). For some investors, sev-

eral of these motivations may be relevant at the same time. For example, in a recent article

exploring CalPERS’ motivations for adjusting portfolios based on climate risk exposures, it

was described that CalPERS ”plan[s] to generate alpha from climate investments”, but also

that ”another objective of the focus on climate investments is also to build more resilience

into the portfolio” (Cashion 2024). Importantly for our purpose, these different motivations

generate similar predictions: when managers become more concerned about climate risk,

they sell stocks that are more exposed to that risk, and buy stocks that are less exposed.

about climate risks suggests that those risks are not a first order consideration of mutual fund investors.
However, it is likely that not all investors who consider climate risks talk about these risks in the N-CSR
filings. Indeed, more direct evidence on the relevance of climate risks for mutual fund investors comes from
Krueger et al. (2020), who survey institutional investors about the perceived financial materiality of three
sources of climate risk: physical, regulatory, and technological. They report that, on average, “respondents
regard the financial materiality of climate risks to be somewhere between ‘important’ and ‘fairly important.’”
Similar evidence can be found in a related survey by Stroebel & Wurgler (2021). Our sample will likely
select a (small) subset of those funds that consider climate change relevant.

10We identify these climate-focused funds based on the fund name including one of the following: climate,
esg, sustainable, carbon, and/or green. Such funds represent 4.5% of fund quarters in our sample. Given the
higher general propensity of these funds to discuss climate risks in investor disclosures, changes in disclosures
that we flag could be less informative about changes in fund managers’ beliefs.

11Consistent with this discussion, Giglio, Maggiori, Stroebel, Tan, Utkus & Xu (2023) find that retail
investors mention several possible motivations for investing in ESG assets, including their expected perfor-
mance, the possibility that such assets hedge climate risk realizations, and ethical reasons.
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Portfolio Holdings Data. We use the Thomson Reuters Mutual Fund Holdings S12

database to obtain a panel of portfolio holdings of U.S. mutual funds.12 We combine the

holdings data with fund characteristics from CRSP.13 Since we hope to identify deliberate

fund manager asset reallocations in response to idiosyncratic climate belief shocks, we restrict

our analysis to actively managed funds, i.e., those with an Investment Objective Code of 2

(“Aggressive Growth”), 3 (“Growth”), 4 (“Growth & Income”), or missing, and that have

“Equity Domestic Non-Sector” as their CRSP Objective Code (see Song 2020).

We obtain stock-level characteristics from CRSP and Compustat and assign end-of-month

prices from CRSP to the holdings. We restrict holdings to assets with share codes 10, 11,

12, and 18, and exchange codes 1, 2, and 3, focusing the assets for our hedging portfolio

on North American common stocks. We obtain firm GICS industry codes from Compustat

by merging the stocks on their CUSIP identifiers. The first four GICS digits determine the

stock’s classification into the 24 “industry groups” that are the main focus of our analysis.14

Measuring Active Portfolio Changes. In our main analysis, we explore how idiosyn-

cratic climate belief shocks induce changes in the portfolio share of fund f in industry I

through active trading between consecutive holdings reports. Since holdings are usually re-

ported at three-month intervals—often, though not always, at the end of a quarter—we

measure fund composition changes over such intervals.15 We perform our baseline analysis

at the industry level, since the sparsity of the stock-level holding matrix would lead to very

noisy estimates of stock-level exposures. For every fund f and month t with a holdings

report, we define the active change in industry I holdings as:

ActiveChangesIf,t = 100 ∗




∑
j∈I

Pj,t−3Sf,j,t∑
j

Pj,t−3Sf,j,t

−


∑
j∈I

Pj,t−3Sf,j,t−3∑
j

Pj,t−3Sf,j,t−3


 1(

ShareIt−3

) . (2)

Pj,t−3 is the price for stock j at the end of month t-3, the time of the prior report. Sf,j,t is

the number of shares of stock j held by fund f at the end of month t, and ShareIt−3 is the

market capitalization of industry I as a share of the U.S. stock market at the beginning of

the interval. The term in square brackets thus captures the active three-month change of the

share of industry I in fund f ’s portfolio.16 The reason for scaling by industry size is that a

12We restrict our sample to end-of-month reports, that is reports that have an as-of date on the 27th of the
month or later. The S12 database occasionally contains multiple records for the same fund-CUSIP-report
date tuple, corresponding to multiple SEC filings by the same fund; for our analysis, we use data from the
first filing submitted to the SEC to ensure real-time implementability.

13We link mutual funds across Thomson Reuters and CRSP using their Wharton Financial Institution
Center Number (WFICN) as reported in WRDS MFLINKS. Our observations are thus set to the WFICN-
quarter-CUSIP level, which corresponds to quarterly, stock-level fund holdings.

14The Global Industry Classification Standard (GICS) is developed by MSCI and S&P based on earnings
and market perception in combination with revenues to classify companies.

15For the disclosure based measure, since the N-CSR report is filed semi-annually, we instead measure
fund composition changes over six month intervals. We provide more detail in Section 2.4

16 We verify below that our approach is robust to considering a separate variable, TotalChangesIf,t, where
the first fraction uses Pj,t instead of Pj,t−3, i.e., current period holdings are valued at current period prices.
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given change in the portfolio share of an industry—i.e., a shift of a given dollar amount—is

likely to induce larger price movements in smaller industries. We winsorize ActiveChanges

at the 1% level to mitigate the effect of outliers due to, e.g., fund mandate changes.

Investor Location Data. We obtain data on the locations of mutual fund advisers, which

are primarily responsible for making investment decisions (see Chang 2022). Specifically, we

parse adviser locations from funds’ SEC filings (N-SAR filings until 2017, N-CEN filings

from 2018 onward). Since these filings cannot be matched directly with Thomson Reuters or

CRSP mutual fund data, we apply a fuzzy string matching algorithm to match SEC filings

with mutual funds. We focus on near-perfect name matches, allowing us to match 84.1% of

fund-quarter observations. We drop all observations that do not match, leading to a sample

with 2,496 unique funds, making up 57,961 fund-quarter observations (23.2 observations per

fund on average) between 2010 and 2019.17

For 64.0% of funds, all advisers reside in the same county. For the extreme heat shock,

whenever funds have multiple advisers who are not all located in the same county, we as-

sign fund-level climate shock exposure as an average of fund adviser shock exposures. For

example, if a fund has two advisers in county A and one adviser in county B, and county A

is affected by a local extreme heat shock, we assume the fund is affected by 2/3 of a local

extreme heat shock; our results are robust to alternative aggregation choices.

Figure 1 shows the geographic distribution of fund advisers for the subset of funds where

all advisers reside in the same county. While some areas have a larger concentration of

advisers, advisers are generally spread throughout the country. The table below the figure

shows that about a quarter of advisers are located in New York (most of them in New York

City), 13.5% are located in Massachusetts (most of them in Boston), and 9.5% are located

in California. This gives us important geographic variation and therefore differential of fund

managers exposure to local extreme heat shocks.

Summary Statistics. Panels A and B of Table A.3 present summary statistics on the

GICS industries and the portfolio holdings of the mutual funds in our final sample. For

example, in an average quarter, funds in our sample held 245 unique companies in the

Energy sector (GICS code 1010). In the average sample-quarter, the energy sector market

share held by funds in our sample was 7.6%. The smallest industry by average share held by

funds in our sample was “Auto & Components”, comprising of an average of 44 held firms

and an average market capitalization share of 0.9%. Panel B shows that, on average, mutual

funds held 211 unique firms across 19.6 unique industries.

Panel C of Table A.3 shows summary statistics on ActiveChangesI . Intuitively, active

changes of 0 imply that there were no active changes in industry I’s relative weight within

fund f ’s portfolio, while active changes of 1 imply that I’s weight in the portfolio increased

by a percentage equal to one percent of the industry’s market share (e.g., if industry I has

This alternative approach takes price changes into account, and would be a more suitable model if we assume
that funds constantly rebalanced their portfolios.

17As we describe in more detail below, a fund-quarter observation requires two consecutive holding reports
spaced three months apart, allowing us to analyze the active trading of mutual funds over the period.
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Figure 1: Locations of Mutual Fund Advisers

Panel A: Adviser Locations - Largest Counties

FIPS County State % Funds % Fund-Quarters

36061 New York NY 20.5 21.2
25025 Suffolk (Boston) MA 13.0 10.3
17031 Cook (Chicago) IL 4.9 4.8
06075 San Francisco CA 3.8 3.0
06037 Los Angeles CA 3.0 3.6

Panel B: Adviser Locations - Largest States

State name State % Funds % Fund-Quarters

New York NY 24.0 24.9
Massachusetts MA 13.5 10.4
California CA 9.6 9.0
Illinois IL 6.3 6.5
Pennsylvania PA 5.3 5.7

Note: The map shows the distribution of the locations of mutual fund advisers in our final sample. Panel
A of the table shows the share of funds residing in the most represented counties in our sample, whereas
Panel B shows this information for the most represented states. Both the map and the two panels are based
on the subset of funds whose advisers all reside in the same location.
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a 10% market share, and a fund increased I holdings from 5% to 15% of its portfolio, then

ActiveChangesI would be 100). The average and median active changes in our sample are

close to zero.

2.4 Estimating the Response to Idiosyncratic Climate Shocks

To understand how mutual funds’ portfolios change with managers’ idiosyncratic climate

belief shocks, we estimate the following panel regression separately for each industry I:

ActiveChangesIf,t = βI,S
t Sf,t + δIt + ϵIf,t, (3)

where ActiveChangesIf,t is defined as in Equation 2 and δIt represents year-month fixed

effects. Sf,t captures the presence of an idiosyncratic climate belief shocks.

For the local extreme heat shock, Sf,t is set to ”1” whenever there was a heat shock in

the fund advisers’ county in at least one of the three months during which we measure active

portfolio changes (i.e., months t, t-1, and t-2). Table 1 shows that about 1.32% of fund-

holdings changes have a positive value for this shock. The data is at the quarterly frequency,

i.e., ActiveChangesf,t is the change in holdings of fund f between the end of quarter t − 1

to end of quarter t, and Sf,t refers to a heat shock a fund experiences during quarter t.

For the disclosure-based shocks, the N-CSR report is only available at a semi-annual

frequency, so we instead construct the sample semi-annually. Our sample construction follows

a three step process. First, to match disclosure reports to holdings data while ensuring real-

time implementabilty, we match each report to the next available mutual fund holdings data,

up to two months in the future. Second, to measure active portfolio changes, we use holdings

data from 6 months prior to the matched holdings data. Finally, we construct our disclosure

shock based on the change in discussion of physical and/or transition risks from the prior,

semi-annual N-CSR report.18 Specifically, we code the shock as ‘1’ if the current report

expresses concern about climate change while the previous report did not express concern,

and ‘0’ otherwise. Table 1 shows that about 0.15% of fund-holdings changes have a non-zero

value for this shock.

In addition to these two individual shocks, we also consider a pooled shock, constructed as

the sum across the two individual shocks. Combining the shocks raises the issue of matching

the time windows, since the heat shock can be constructed quarterly, but the disclosure

shock is only available semi-annually. To address this issue, we construct a version of the

disclosure shock based on a similar logic to our heat shock, and construct the pooled sample

with three month active holdings changes. Specifically, we set the disclosure portion of the

pooled shock to 1 if any month of the three-month holdings change window lies between two

report release dates that indicate an increase in climate concern, and zero otherwise.19

The main objects of interest are the estimates of βI,S. For each industry I, these rep-

resent the differential active change in fund holdings of that industry for funds affected by

18To ensure that we are capturing regular, semi-annual reports, we only prior consider N-CSR reports filed
between five and seven months after the matched, prior report.

19Note that this increases the effective sample frequency of the disclosure shock, explaining why the sample
frequency of the pooled shock shown in Table 1 is greater than the sum of the two component shocks.
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idiosyncratic belief shock S, relative to the change in holdings in the same period for funds

not affected by such shocks. We refer to these coefficients as the industry-specific climate

quantity betas. Estimates of βI,S vary with the sample over which regression 3 is estimated.

2.4.1 Baseline Estimates

Table 3 reports the estimated βI,S coefficients for the idiosyncratic climate belief shocks de-

scribed above, sorting industries by the estimate obtained using the “Pooled” shock.20 The

table shows estimates obtained over the 2010 to 2019 period, together with stars representing

statistical significance for standard errors clustered at the fund level to account for possible

correlation of holdings changes within funds over time. To interpret the magnitudes, recall

that active changes are defined as 100 times the portfolio percentage change, scaled by the

industry relative market cap. So, for example, the Auto & Components industry has a rela-

tive market cap of around 1.1% on average in our sample. A coefficient of 4.21, for the pooled

shock, shows that on average funds that are treated by the shock increase their allocation

by 1.1%× 4.21 = 4.5bp; for the disclosure shock, where the coefficient is 24.42, the increase

in allocation is 27bp. Appendix Table A.4 reports the t-statistics for each βI,S estimate and

the p-values of their joint significance tests. Industries towards the top of Table 3 are those

that mutual fund managers disproportionately buy after receiving idiosyncratic climate be-

lief shocks, while industries towards the bottom are those that investors disproportionately

sell (relative to managers who do not receive a shock).

A first key observation is that estimates of βI,S are generally noisy. This conclusion is

perhaps unsurprising given the relative rarity of the idiosyncratic belief shocks and the fact

that many considerations beyond climate risks drive funds’ investment decisions. However,

despite the substantial estimation noise, we note that many of the industry estimates in the

top fifth and bottom quintiles (according to the pooled shock, which has more power) are

statistically significant at standard confidence levels.

The ordering of industry-specific climate quantity betas appears broadly correlated across

the “Heat” and “Disclosure” based idiosyncratic climate belief shocks, despite the fact that

the correlation of the two belief shocks in the panel is zero, and the corresponding quantity

betas are thus based on independent information. Panels A and B of Table 4 formally show

this by reporting the correlation and rank-correlation, respectively, of the industry-specific

climate quantity betas obtained from running the regression in Equation 3 for the period of

2010-2019. It appears that mutual funds change their portfolios in broadly consistent ways

in response to the heat shock and the disclosure-based shock (correlation of 0.20).

Our interpretation of the estimates in Table 3 is that they indicate the relative climate risk

exposures of industries as perceived by fund managers. Analzying whether this inferred

ranking of climate risk exposures is reasonable is difficult, in part because the estimates are

naturally very noisy, and because each industry’s exposure to climate risk is determined by

a variety of economic mechanisms, not all of which might be immediately apparent. The

20Appendix Table A.5 reports the industry betas estimated without scaling ActiveChanges in Equation
(2) by industry share. The correlation between the scaled and unscaled industry betas is 0.87. Appendix
Figure A.2 shows the scatterplot of industry rankings based on scaled and unscaled betas.
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Table 3: Industry-Specific Climate Quantity Betas

GICS Description Pooled Shock Disclosure Shock Heat Shock

2030 Transportation 4.79∗ 24.42∗∗ 0.95
2510 Auto & Components 4.21∗ 24.58∗ 2.88
4530 Semiconductors & Equip. 2.46 3.80 4.60∗∗

2010 Capital Goods 2.38∗ 13.07∗∗ 0.53
1510 Materials 1.69 6.45 1.34
4010 Banks 1.60∗ 1.58 2.46∗∗

3030 Household & Pers. Prod. 1.34 6.18 -0.14

1010 Energy 1.32∗ 4.50 1.77∗

4520 Tech. Hardw. & Equip. 0.96 -8.40 3.81∗∗∗

2530 Consumer Services 0.20 -2.06 0.27
4020 Diversified Financials. -0.12 2.15 0.44
4510 Software & Services -0.19 2.46 0.91
3010 Food & Staples Retailing -0.21 0.14 0.94
3020 Food, Bev. & Tobacco -0.69 5.65 -1.91∗

2520 Consum. Durables & Apparel -0.69 1.27 3.67
5020 Media & Entertainment -0.85 3.85 -1.48
5010 Communication Services -0.94 1.32 -0.77
5510 Utilities -1.08 7.60 -2.43∗

3520 Pharma., Biotech., & Life Sc. -1.19 5.05 -1.84∗∗

3510 Health Care Equip. & Serv. -1.78 -10.06 -1.11
4030 Insurance -1.90 -4.13 -2.13

2020 Commercial & Prof. Serv. -2.20 -10.89 -3.52
6010 Real Estate -2.72∗∗ -4.15 -3.60∗∗

2550 Retailing -3.52∗∗ 5.84 -6.37∗∗∗

Note: Industry-specific climate quantity betas as in Equation (3). The coefficients are estimated based on
pooled data from 2010 to 2019 inclusive. Industries are sorted by the “Pooled Shock”. The standard errors
are clustered at the fund level. Appendix Table A.4 reports the t-statistics of each climate quantity beta
and the P-values of the joint significance tests. Significance levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

ultimate test for whether the estimated climate quantity betas meaningfully correspond to

investors’ perceived industry-level climate risk exposures is the ability of the portfolios built

on these betas to hedge climate news. Before moving to that assessment, the remainder of

this section explores in greater detail the stability and interpretation of the industry betas.21

2.4.2 Industry-Specific Quantity Betas: Possible Economic Mechanisms

Since the precise ranking of industries by their quantity beta is noisy, it is important to

not over-interpret differences between industries with similar estimates for climate quantity

21Table 3 shows different industries’ climate quantity betas estimated over the full horizon between 2010
and 2019. However, the climate risk exposures of an industry are not guaranteed to be stable. For example,
the focus of government policies changes frequently, which could affect industries differentially due to shifting
tax and subsidy policies. Similarly, industries’ exposures might change due to strategic adaptation along
the transition path. For example, many traditional fossil fuel firms now have substantial investments in
renewable energies (van Benthem et al. 2022), reducing their transition risk exposure. The quantity-based
approach can quickly learn about changes in underlying risk exposures since each period delivers multiple
data points from the cross-sectional information. To explore such changes, Appendix Figure A.3 shows
the industry ranking based on data for each (rolling) five-year window between 2010 to 2019; low numbers
correspond to the biggest “long” positions in the implied hedge portfolio. Despite the presence of sizable
estimation noise, there is quite some stability in rankings over time, though there are notable exceptions.

19



Table 4: Across-Shock Correlations of Industry-Specific Climate Quantity Betas

Panel A: Pearson Industry Climate Beta Correlations

Disclosure Shock Heat Shock Pooled Shock

Disclosure Shock 1.00
Heat Shock 0.20 1.00
Pooled Shock 0.69 0.74 1.00

Panel B: Spearman (Rank) Industry Climate Beta Correlations

Disclosure Shock Heat Shock Pooled Shock

Disclosure Shock 1.00
Heat Shock 0.12 1.00
Pooled Shock 0.51 0.81 1.00

Note: Panel A shows the Pearson correlations among the industry-specific climate quantity betas.
Similarly, Panel B shows the Spearman rank correlation among the industry-specific climate
quantity betas. The coefficients are based on estimating Equation 3 using pooled data from 2010
to 2019 inclusive.

betas. Nevertheless, it can be instructive to try and understand what economic forces might

drive mutual fund managers to buy and sell some industries in response to climate belief

shocks. We discuss some of the top (“Semiconductors and Semiconductor Equipment” and

“Automobiles and Components”) and bottom sectors (“Real Estate”, “Commercial and

Professional Services”, and “Retail”) by estimated beta, and also discuss “Energy” as a

particularly interesting industry.

Semiconductors & Semiconductor Equipment. Table 3 suggests that the semicon-

ductor sector is positively exposed to climate risk realizations. There are several mechanisms

that can explain such exposures. First, many firms in this sector produce solar panels, which

are generally based on silicone, a semiconductor material. Both regulatory and technological

transition risk realizations to avoid carbon emissions thus benefit this sector directly:

[O]ur module technology displaces up to 98% of greenhouse gas emissions and

other air pollutants when replacing traditional forms of energy generation. [...]

Other technological developments in the industry, such as the advancement of

energy storage capabilities, have further enhanced the prospects of solar energy

as an alternative to traditional forms of energy generation. [First Solar, 2020Q2]

Semiconductors and chips are also an integral component of other applications that con-

tribute to (and benefit from) the green transition, from the development of smart grid sys-

tems, to electric vehicles, to smart homes and buildings.

We also focus on increasing our [carbon] “handprint”—the ways in which Intel

technologies can help others reduce their footprints, including Internet of Things

solutions that enable intelligence in machines, buildings, supply chains, and fac-

tories, and make electrical grids smarter, safer, and more efficient. [Intel, 2019Q4]
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Automobiles & Components. Some of the largest positive climate quantity betas are

found among firms in the automotive sector, suggesting that these firms would benefit from

climate risk realizations. Since cars produce a large share of current carbon emissions (Ritchie

et al. 2020), this might at first appear counter-intuitive. However, it is important to real-

ize that the auto sector is at the forefront of the technological transition towards a green

economy, with electric vehicles playing an important role in plans to decarbonize the econ-

omy. Indeed, shifting consumer preferences and increasing tax benefits for producers and

consumers of electric vehicles have the potential to lead to a faster-than-usual turnover of

the current vehicle fleet, raising the sales and profits of automotive firms. In a recent 10-k

filing, Tesla described the effects of such programs as follows:22

We and our customers currently benefit from certain government and economic

incentives supporting the development and adoption of electric vehicles. In the

U.S. and abroad, such incentives include tax credits or rebates that [...] allow us

to lower our costs and encourage customers to buy our products. [Tesla, 2019Q4]

Importantly, these subsidies will not only raise the sales of firms exclusively focused on

electric cars, such as Tesla, but also of incumbents such as Ford and General Motors, which

have dramatically expanded their electric vehicle production capacities. This sentiment is

reflected in numerous equity analyst reports that we reviewed, in headlines such as “General

Motors is a buy as its transition to electric vehicles gains steam, Berenberg says”, “General

Motors’ EV Plans Present ‘Golden Opportunity’: Wedbush Analyst Says”, and “Ford Stock

Set to Benefit From Electric Vehicle Push”, and in 10-K reports such as:

In 2020, we announced the commitment of $27 billion in investments in electric

and autonomous vehicle technologies through 2025, with plans to launch 30 new

electric vehicle models globally in that timeframe. [General Motors, 2020Q4]

Retailing. The retail sector is negatively exposed to physical climate risk. The escalating

frequency and severity of natural hazards have the potential to devastate physical assets

such as factories and warehouses, and disrupt supply chains and distribution networks. As

a result, retail businesses may face increased operational disruptions, reduced inventory

availability, and increased costs associated with damage repairs and recovery efforts.

Natural disasters, such as hurricanes and tropical storms, fires, floods, tornadoes,

and earthquakes; unseasonable, or unexpected or extreme weather conditions;

or similar disruptions and catastrophic events can [. . . ] also disrupt or disable

operations of stores, support centers, and portions of our supply chain and dis-

tribution network, including causing reductions in the availability of inventory

and disruption of utility services. [Lowe’s Companies Inc, 2020Q1]
22For example, Tesla benefits from the California Alternative Energy and Advanced Transportation Fi-

nancing Authority Tax Incentive that provides multi-year sales tax exclusions on purchases of manufacturing
equipment and Nevada Tax Incentives that provide abatements for sales, use, real property, personal property
and employer excise taxes, discounts to the base tariff energy rates and transferable tax credits. Similarly, the
Inflation Reduction Act provides a tax credit of up to $7,500 for consumers who purchase electric vehicles.
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Commercial & Professional Services. This relatively small sector has substantially

negative climate quantity betas. To understand why this sector could be negatively exposed,

consider one of the sub-sectors, Environmental & Facilities Services, which has multiple firms

focused on waste management services. These entities are susceptible to regulatory risks as

a result of more stringent regulations governing air quality, waste management, and water

conservation.

Stricter environmental regulation of air emissions, solid waste handling or com-

bustion, residual ash handling and disposal, and wastewater discharge could ma-

terially affect our cash flow and profitability. [Covanta Holding Corporation,

2019Q2]

Other firms negatively exposed to climate risks are those in the Research & Consulting

Services subsector that service carbon-intensive sectors:

Legislation, international protocols, regulation or other restrictions on emissions

could also affect our clients, including those who are involved in the exploration,

production or refining of fossil fuels, emit greenhouse gases through the combus-

tion of fossil fuels or emit greenhouse gases through the mining, manufacture,

utilization or production of materials or goods. Such policy changes could in-

crease the costs of projects for our clients or, in some cases, prevent a project

from going forward, thereby potentially reducing the need for our services, which

would in turn have a material adverse impact on our business, financial condition,

and results of operations. [Jacobs Engineering Group Inc, 2016Q3]

Real Estate. It is perhaps not surprising that investors view real estate, and in particular

REITs, as negatively exposed to climate risks. While the most natural exposure for the sector

is physical climate risks (since real estate values are inherently tied to geography), there

are also transition risks associated with it (for example, regulation, building requirements,

preventive costs to mitigate climate exposures, higher energy costs due to cooling buildings).

We have significant operations and properties in Northwest Florida that could

be materially and adversely affected by natural disasters, manmade disasters,

severe weather conditions or other significant disruptions. [...] especially our

coastal properties, could experience significant, if not catastrophic, damage. Such

damage could materially delay sales or lessen demand for our residential or com-

mercial real estate in affected communities and lessen demand for our hospitality

operations and leasing operations. [...] Furthermore, an increase in sea levels due

to long-term global warming could have a material adverse effect on our coastal

properties and forestry business. [The St. Joe Company]
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Energy. The energy sector, which is focused on oil & gas exploration and production,

displays positive climate quantity betas. This is perhaps surprising, given the sectors’ sub-

stantial carbon emissions (van Benthem et al. 2022). However, several mechanisms are

consistent with a positive exposure of publicly traded firms in this sector, in particular since

concerns about “stranded assets” have likely been reflected in prices for some time. First,

fear of tighter future regulation can discourage new entry. The increased market power of

incumbents thus raises their profits from selling hydrocarbons while renewable alternatives

remain unreliable, even if a faster transition might reduce industry-wide profits in a calcula-

tion that included potential entrants (see Ryan 2012, Elliott 2022, Magolin & Santino 2022,

Acharya, Giglio, Pastore, Stroebel & Tan 2022). Second, large energy companies play an

important role in innovation in the clean energy space (see Pickl 2019, Cohen et al. 2020).

Summary. While the individual quantity-beta estimates for each industry are certainly

noisy, many of the estimates can be supported by plausible narratives about the various

industries’ climate risk exposures. Industries with positive climate quantity betas have busi-

ness models that should benefit from the decarbonization of the economy (see Fuchs et al.

2024), while industries with negative climate quantity betas are often substantially hurt by

both physical climate risk and regulatory efforts to reduce carbon emissions.

At the same time, while many of the estimated climate risk exposures can potentially

be rationalized ex post, a ranking based purely on an ex ante narrative approach might

have looked quite different; for example, it is certainly true that the different members of

our research team had a range of ex ante priors about different industries’ exposures. The

quantity-based approach proposed in this paper removes the need for researchers to take a

strong ex ante stand on different industries’ exposures, while also providing position sizing

in addition to position direction for how to include each industry in a climate risk hedge

portfolio. Taken together, these findings illustrate the complexity of determining sectors’

and firms’ exposure to climate risk, and help illustrate how approaches that rely on the

‘wisdom of the crowd’ help distill high-dimensional and possibly conflicting intuitions and

sources of information into an optimal hedge portfolio.

2.4.3 Subsample stability of climate quantity betas

To further probe the precision of our estimates, we study the stability of βI coefficients esti-

mated across subsamples. Specifically, we split the universe of mutual funds into two equally

sized random subsamples, estimate βI in each subsample, and obtain the Spearman and

Pearson correlations across the two sets of estimates. We repeat this 250 times, and report

the average correlations in Table 5. Quantity betas estimated across different subsamples

are substantially correlated, indicating that despite the sizable noise in each estimate, there

is a common signal across the climate risk exposures estimated across the different samples.

23



Table 5: Across-Sample Split Correlations of Industry-Specific Climate Quantity Betas

Fund Split
Climate Shock Spearman Pearson

Heat Shock 0.34 0.30
Disclosure Shock 0.15 0.16
Pooled Shock 0.32 0.26

Note: This table shows the average Spearman (rank) and Pearson correlations of
industry-specific climate quantity betas of a fund split robustness test.

3 Quantity-Based Climate Hedge Portfolios
We next describe how we use the estimated climate quantity betas to build our climate hedge

portfolios. We then evaluate the out-of-sample hedge performance of these portfolios, and

compare this performance against that of other approaches proposed in the literature.

3.1 Portfolio Construction and Description

We build our hedge portfolio for each month t by estimating β̂I,S
t as described in the previous

section, using data from the five years prior to t.23 We compute excess returns of each of

the 24 industries as in Equation 4, where RI
t is the value-weighted industry return and Rf

t

denotes the risk-free rate. We use the estimated β̂I,S
t as the portfolio weights (since each

component of the portfolio is an excess return, the portfolio is a net-zero investment and we

do not require
∑

i β̂
I,S
t = 1). The excess return of the quantity-based hedge portfolio is:

QP S
t =

∑
I

β̂I,S
t−1(R

I
t −Rf

t ). (4)

Table 6 shows the correlations of monthly returns among the quantity-based hedge portfolios

based on the different idiosyncratic climate belief shocks. Stars correspond to significance

levels. Given that the idiosyncratic belief shocks are largely uncorrelated (see Table 1), the

high correlations in the return series provide additional evidence that our various shocks are

picking up a common signal.

Table 6: Portfolio Return Correlations

Panel A: Pearson Portfolio Return Correlations

Heat Shock Disclosure Shock Pooled Shock

Heat Shock 1.00
Disclosure Shock 0.44∗∗∗ 1.00
Pooled Shock 0.72∗∗∗ 0.73∗∗∗ 1.00

Note: Monthly return correlations (constructed as in Equation 4) for the period 2015 to 2019
among our quantity-based hedge portfolios. Significance levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.

23To ensure that the portfolios are implementable in real time, for each month, we limit the regression
sample to reports that were filed with the SEC as of the end of the previous month.
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3.2 Climate Hedge Targets

One challenge with designing portfolios that hedge climate risk is that there is no unique way

of choosing the relevant hedge target. Climate change is a complex phenomenon and presents

a variety of risks, including physical risks, such as rising sea levels, and transition risks, such

as the threats to certain business models from regulations to reduce emissions. Different

risks may be relevant for different investors, and these risks are imperfectly correlated. In

addition, climate change is a long-run threat, and we would thus ideally build portfolios that

hedge the long-run realizations of climate risk, something difficult to do in practice.

To overcome these challenges, Engle et al. (2020) argue that the objective of hedging

long-run realizations of a given climate risk can be achieved by constructing a sequence

of short-lived hedges against news (one-period innovations in expectations) about future

realizations of these risks. Following the initial work in Engle et al. (2020), researchers have

developed a number of climate news series capturing a variety of different climate risks.

In this paper, we do not take a stand on which of these news series represents the

right hedge target—in part because the right target will vary across investors based on

their background risk exposure24—but instead assess the ability of our approach to hedge

different types of climate news shocks. To do so, we look at a broad range of climate news

measures proposed in the recent literature, which we describe below. Each measure is signed

such that a larger number corresponds to negative news. We aggregate daily series to the

monthly level by taking the average of the daily news series. Building on Engle et al. (2020),

we use monthly AR(1) innovations of each climate news series as the hedge targets. For a

given climate news series c, we denote these AR(1) innovations in month t as CCc,t.
25

We consider the following series:

Engle et al. (2020). The Wall Street Journal (WSJ) and Crimson Hexagon Negative News

(CHNEG) climate news indices created by Engle et al. (2020) were, to our knowledge, the

first climate news series used as hedge targets. The first one captures the number of news

articles in the WSJ dedicated to climate change (broadly assuming that “no news is good

news”), the second one builds upon proprietary news aggregations from Crimson Hexagon

combined with sentiment analysis that allows the separation of good news and bad news.

Both indices capture a mix of news about physical and transition risks. These news indices

are available at a monthly frequency. The WSJ index covers the period of February 1984 to

June 2017. The CHNEG index covers the period of July 2008 to May 2018.

Ardia et al. (2021). Ardia et al. (2020) build on the WSJ index of Engle et al. (2020) by

24For example, one would imagine that the sovereign wealth funds of Norway and the UAE would be
particularly interested in hedging transition risks, since the economies they represent are heavily dependent
on the ability to sell hydrocarbon fuels. Similarly, one might expect the sovereign wealth fund of Singapore,
a relatively low-lying island, to focus more on hedging physical climate risk realizations.

25We construct hedge targets at the monthly frequency because, for many events, it is hard to pin down the
news occurrence to a specific day. For example, news coverage of heat waves and similar natural disasters can
stretch over several days or even weeks; similarly, news coverage can sometimes predate policy announcements
by writing in anticipation of international summits.
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including additional media outlets and differentiating between positive and negative news.

Their daily Media Climate Change Concerns index is available January 2003 to June 2018.

Faccini et al. (2021). We include four of Faccini et al. (2021)’s climate news indices:

international climate summits, global warming, natural disasters, and narrative indices. The

international climate summits, global warming, and natural disasters indices measure news

coverage of the respective topics; the narrative index is constructed by manually reading and

classifying 3,500 articles. The international climate summits and narrative indices capture

news about transition risk, while the global warming and natural disasters indices are more

likely to capture news about physical risk (though these risk categorizations are not always

easy to separate, as bad news about realizations of physical risks may make subsequent

regulation more likely). These news measures are available at the daily frequency between

January 2000 and November 2019.

National Google searches. This climate news series is the national Google search interest

for “climate change”, capturing attention paid to climate change and its associated risks by

the general population. This monthly index does not differentiate between positive and

negative news, and could be associated with various climate risks.

National Temperature Deviations. Just as local extreme temperatures increase local

climate change awareness, U.S.-wide extreme heat events have the potential to drive national

awareness. Therefore, we include the AR(1) innovation of nationwide monthly maximum

temperature, controlling for the month fixed effects, as a climate news series.

Appendix Table A.6 shows the correlations of the climate news series as well as the correla-

tions of the AR(1) innovations. While most measures are positively correlated, many of the

correlations are somewhat small in magnitude (and some are actually negative), highlighting

the fact that these measures capture different aspects of climate risk.

3.3 Alternative Approaches to Building Hedge Portfolios

We want to compare the hedge performance of our quantity-based approach against that

of two alternative ways of constructing hedge portfolios: the narrative approach and the

mimicking portfolio approach. All approaches share the same goal: to be long stocks that

do well in periods with unexpectedly bad news about climate risks, and short stocks that do

badly in those scenarios. The approaches differ in how they identify those stocks.

Narrative approach. The first alternative approach we consider selects portfolio weights

of different assets based on an ex-ante view of the possible exposures of those assets to

climate risks. To do so, one needs to identify firm characteristics that are associated with

high predicted exposures. For example, one characteristic could be the firms’ environmental

scores constructed by ESG data providers, under the prior that high-ESG-score companies

will fare better when climate risks materialize (see Engle et al. 2020). Another example of

this approach is grouping energy stocks based on whether they focus on renewable energy

or fossil fuels, and then building a long-short portfolio of the two groups, motivated by
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the different regulatory transition risk exposure of the two groups. Overall, the narrative

approach requires identifying ex ante the economic forces that determine firms’ climate

exposures, something that we argue is quite difficult for many industries.

We build several portfolios using such a narrative-based approach. Our first narrative-

based portfolio takes positions in all U.S.-listed stocks covered by the Sustainalytics ESG

scores: the portfolio’s position in each stock is the stock’s ESG score percentile in each

period, minus 50. For example, the portfolio takes a long position of 50 in the company with

the highest ESG score and a short position of -50 in the company with the lowest score in

each month. Stocks with the median ESG score are not held. This portfolio corresponds to

the Sustainalytics hedging portfolio proposed in Engle et al. (2020).

Our second narrative-based strategy uses industries to take a directional view. We build

portfolios using four ETFs: the Invesco Global Clean Energy ETF (Ticker: PBD), which

invests in firms focused on the development of cleaner energy and conservation; the iShares

Global Clean Energy ETF (Ticker: ICLN), which tracks the S&P Global Clean Energy

Index; the Energy Select Sector SPDR Fund (Ticker: XLE), which tracks a market-cap-

weighted index of U.S. energy companies in the S&P 500 index; and the iShares U.S. Energy

ETF (Ticker: IYE), which tracks the Dow Jones US Energy Sector Index. Based on the

narrative that transition risk realizations would benefit renewable energy firms at the expense

of incumbant fossil-fuel based firms, we propose that realizations of climate change news

should increase PBD and ICLN’s returns and decrease XLE and IYE’s returns. Therefore,

the hedge portfolio would go long PBD and ICLN and short XLE and IYE.

Our third narrative-based portfolio is the stranded asset portfolio as in Jung et al. (2021)

based on XLE, the VanEck Vectors Coal (KOL), and SDPR S&P 500 (SPY) ETFs, using the

following weights: 0.3XLE+0.7KOL−SPY . Our narrative approach shorts this portfolio.

Our fourth narrative-based portfolio is constructed as a carbon-emissions-sorted portfo-

lio, which involves taking positions in all U.S.-listed stocks covered by the Trucost carbon

emission data. We calculate the sum of Scope 1 and 2 greenhouse gas emissions divided

by a company’s revenue to measure a firm’s carbon intensity. For each period, we rank

companies based on their carbon intensity and assign the portfolio’s position in each firm as

the percentile of the firm’s carbon intensity within the distribution, and remove that from

50. For instance, in a given month, the portfolio takes a long position of 50 in the company

with the lowest carbon intensity, while taking a short position of -50 in the company with

the highest carbon intensity.

The final narrative approach attempts to measure a firm’s climate risk exposure based

on textual and sentiment analysis of its 10-K reports (see Baz et al. 2023). First, we iden-

tify climate-related sentences in 10-K statements using regular expression searches, using

the same climate dictionary that we use to construct the disclosure-based measure based

on shareholder reports. Given that climate mentions can encompass both risks and oppor-

tunities, we employ sentiment analysis to separate such mentions. Specifically, we use the

BERT model to classify each climate-related sentence into positive, neutral, and negative

sentiments. For each firm-year, we count the number of positive and negative sentences and

compute a 10K-Climate-Negative Score as the number of negative climate sentences minus
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the number of positive climate sentences (see Giglio, Kuchler, Stroebel & Zeng 2023, for a re-

lated approach). Each year, companies are ranked according to their 10K-Climate-Negative

Scores, and the portfolio’s position in each firm is assigned as 50 minus the percentile of the

firm’s score. For example, the portfolios take a long position of 50 in the company with the

lowest score and short a position of -50 in the company with the highest score.

While we believe the five strategies described above all make intuitive sense, it is hard to

take a stand on which should be the most successful hedge for climate risk, as many complex

factors play a role in determining climate exposures. The approach we turn to next, the

mimicking portfolio approach, uses purely statistical methods to choose the portfolio weights,

and does not rely on economic priors or intuitions.

Mimicking portfolio approach. Amimicking portfolio approach combines a pre-determined

set of assets into a portfolio that is maximally correlated with a given climate change shock

using historical data to choose the portfolio weights. To obtain the mimicking portfolios, we

estimate the following time-series regression separately for each climate news series:

CCc,t = wcRt + ϵc,t

where CCc,t denotes the (mean zero) climate hedge target of type c in month t, wc is a vector

of N portfolio weights, and Rt is a vector of demeaned excess returns. The portfolio weights

are estimated each month using five-year rolling windows.

We consider different sets of excess returns (base assets) to build mimicking portfolios.

First, we use the market alone (the SPY ETF). A mimicking portfolio built using only one

asset is effectively equivalent to studying whether a long or a short position in that asset

was historically correlated with climate risk. Second, we use the three Fama-French factors

(Market, SMB, and HML).26 Third, we use two of the ETFs described above, PBD and XLE,

in combination with the Fama-French factors. Fourth, we add to the Fama-French factors the

excess returns of the 24 GICS industry portfolios. Fifth, we use the 207 firm characteristics

obtained from Chen & Zimmermann (2022) to construct a ‘factor zoo’ portfolio using the

returns of portfolios sorted on those 207 characteristics. Given the short time series available

for estimation, we regularize the estimation for the two latter hedge portfolios using LASSO,

choosing the tuning parameter by cross-validation, to minimize in-sample overfitting.

3.4 Hedging Climate Shocks: Evaluation of Hedge Portfolios

In this section, we evaluate the hedge performance of the different proposed portfolios. For

the quantity-based and mimicking portfolio approaches, for every month in our testing period

of 2015-2019, we construct the portfolios as described above using five-year rolling windows

of data. The portfolio weights for the narrative hedge portfolios do not vary over time (e.g.,

the PBD-based portfolio is always 100% long PBD). We focus on the post-2010 period to

26By construction, this portfolio, like the one based on the market alone, wouldn’t be able to hedge the
component of climate risk that is not spanned by the factors; therefore, it cannot provide investors with
a way to hedge the part of climate risk that is orthogonal to them, which limits its usefulness as a hedge
portfolio. We include it here for illustrative purposes, and because it does contain information about how
much climate risk is already reflected in the market and other aggregate factors.
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train our models, as investors likely paid very little attention to climate risks before 2010.

As a result, we do not expect information on prices and quantities from before 2010 to

be useful in building hedge portfolios today. As a criterion to evaluate the various hedging

approaches, we compare the out-of-sample correlations between the hedging portfolio returns

and the AR(1) innovations to the various climate news series in the same month, CCc,t.
27

27This approach evaluates the hedging ability of the portfolio up to a scaling parameter. Our quantity-
based methodology and the narrative approach do not identify the scale of the hedging portfolio. Such a
scale could also be estimated from a training sample, at the cost of having to rely on historical correlations
between aggregate shocks and portfolio returns. We leave this analysis for future work.
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Table 7: Climate Hedge Performance of Various Portfolios

Faccini et al. Engle et al. Ardia et al. Google Temp.

Avg. IntSummit GlobWarm NatDis Narrative WSJ CHNEG MCCC National National

Pooled Shock 0.18∗∗∗ 0.23 0.26∗∗ 0.12 0.02 0.08 0.13 0.31∗ 0.38∗∗∗ 0.11
Heat Shock 0.17∗∗∗ 0.38∗∗∗ 0.18 0.05 0.06 0.05 0.10 0.25∗∗ 0.34∗ 0.14
Disclosure Shock 0.11∗∗ 0.10 0.15 0.26∗∗ 0.01 0.06 0.06 0.23 0.06 0.09

Emission Portfolio 0.08∗ -0.03 0.13 0.06 -0.03 0.20 0.31∗∗ 0.18 0.05 -0.15
Long PBD ETF 0.07 0.06 0.09 0.19 0.04 -0.02 -0.03 0.23 0.02 0.05
Short Stranded Asset 0.02 -0.06 0.05 0.25∗∗∗ 0.12 -0.01 0.14 -0.11 0.04 -0.20
Long ICLN ETF 0.01 0.02 -0.02 0.22∗∗ -0.06 -0.06 -0.11 0.12 -0.04 0.00
Short IYE ETF -0.08∗ -0.08 -0.16 -0.10 0.13 -0.12 0.06 -0.27∗∗ -0.05 -0.09
Short XLE ETF -0.08∗ -0.09 -0.16 -0.12 0.14 -0.12 0.05 -0.27∗∗ -0.05 -0.07
10-K Negative Portfolio -0.09∗∗ 0.04 -0.01 0.02 0.08 -0.16 -0.17 -0.26∗∗ -0.30∗∗∗ -0.09
Sustainalytics Portfolio -0.10∗∗ 0.13 -0.08 0.06 0.07 -0.25∗∗ -0.23 -0.20 -0.27∗∗ -0.14

Lasso: All Industry+FF -0.02 0.15∗ 0.08 0.14∗ 0.04 0.01 -0.06 -0.36∗∗∗ -0.19∗ 0.00
Lasso: Factor Zoo -0.03 0.09 -0.03 -0.06 -0.12 -0.10 0.00 -0.04 0.00 0.00
Reg: ETFs+FF -0.03 0.01 0.05 0.05 -0.04 0.11 -0.17 -0.32∗∗ 0.03 -0.02
Reg: FF 3-Factors -0.04 -0.02 0.06 0.06 -0.11 0.20 -0.27∗∗ -0.26 0.00 0.01
Reg: SPY ETF -0.09∗∗ -0.09 -0.03 -0.12 -0.08 -0.17 -0.14 -0.13 -0.00 -0.07

Note: Monthly correlations for various climate hedge portfolios’ returns with various climate news series’ AR(1) innovations. Each row represents a
hedge portfolio, whereas each column corresponds to the innovations of a different climate news series. All climate news series are coded such that
high numbers indicate negative climate news. Therefore, positive correlation coefficients indicate successful hedges. While the narrative and quantity
portfolios stay identical along the rows, the mimicking portfolios in each cell was specifically trained on the respective climate news series. Significance
levels: ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1. P-values are calculated using a bootstrap of 1000 iterations.
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Table 7 reports out-of-sample correlations between the hedge portfolio returns and inno-

vations in each of the news series. Each row in the table corresponds to a different way of

forming a hedge portfolio, whereas each column corresponds to a different climate news series

(the first column reports the average correlation across all news series). All climate news

series are coded such that high numbers are indicative of negative climate news. Therefore,

positive correlations imply successful hedges. The table also reports stars representing statis-

tical significance.28 Similar information is displayed in Figure 2, which reports out-of-sample

correlations on the horizontal axis, and has one row for each hedge portfolio. Each point in

the dot plot is the out-of-sample correlation coefficient of a hedge portfolio return with one

of the climate news series. The different colors represent the different climate news series

(hedge targets) described above. The red rhombus shows the average among all correlations,

and portfolios are sorted top-to-bottom by this value.

Figure 2: Climate Hedge Performance of Various Portfolios

Note: Dot plot of monthly out-of-sample return correlations for various climate hedge portfolios with
various climate news series AR(1) innovations. Each dot represents one correlation coefficient. Different
colors represent different groups of climate news series. The red rhombus shows the unweighted average
among all correlations, and portfolios are sorted top-to-bottom by this value.

28We use bootstrap standard errors to compute the significance; the bootstrap resamples monthly observa-
tions with replacement from the 2015-2019 period—the period over which the correlations are calculated—
sampling jointly the climate news innovations and the returns of all hedging portfolios. Table A.7 reports
the bootstrap standard errors for each correlation.
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The first three rows of Table 7 show the hedging performance of the quantity-based

climate hedge portfolios. These portfolios tend to produce relatively high out-of-sample

correlations for a large variety of climate news series (the blue rows of Figure 2 show the

same results).29 The heat-based, disclosure-based, and pooled portfolio returns correlate

positively with essentially all climate news innovations. Only some of the correlations are

individually statistically significant, but the average correlation is strongly significant for

both the heat and disclosure hedge portfolios, as well as the pooled portfolio. These findings

suggest that our various quantity-based portfolios perform well in terms of hedging a range

of climate risks, spanning both physical and transition risks. Given that our quantity-based

approaches are not tailored to hedge specific climate targets, their good performance against

a variety of targets suggests that they are providing a hedge against some common component

of climate risks that is shared by the measures we consider.

Rows 4-11 of Table 7 (and red rows of Figure 2) show the performance of the narrative-

based portfolios. The main advantage of these portfolios is that they do not require estimat-

ing the portfolio weights from historical data, since the direction of the trades is based on

ex-ante information and beliefs. For example, the narrative portfolio that has a short posi-

tion in the stranded asset portfolio is motivated by the fact that this portfolio is dominated

by polluting companies in the coal sector. A similar logic applies to the narrative portfolio

that shorts high-carbon-emissions firms. The narrative portfolio featuring a long position in

the ETF PBD is motivated by a belief that a clean energy fund should gain upon transi-

tion risk realizations. All three of these portfolios have substantially positive average hedge

performances, though not quite at the same level as the quantity-based portfolios. More

broadly, however, the hedging performance of narrative portfolios is mixed, with some of

the narrative portfolios yielding among the most negative correlations with climate shocks.

The uneven hedging performance highlights just how difficult it is to predict, based only on

economic intuition alone, which stocks will gain or lose in response to climate shocks.

The remaining rows of Table 7 report the hedging performance of mimicking portfolios

based on aggregate time-series information (see also the green rows in Figure 2). The per-

formance of these portfolios varies substantially across climate news series, but is poor on

average. For example, the portfolio built using the three Fama-French factors has a relatively

high correlation of 0.2 with the WSJ index from Engle et al. (2020). But it also displays a

relatively high negative correlation with the CHNEG index of -0.27 from Engle et al. (2020),

and similarly negative correlations with the MCCC index from Ardia et al. (2020). All of

the other correlations are close to zero. Note that the mimicking portfolios have a relatively

weak hedging performance despite the fact that they are estimated separately for each hedge

29When evaluating this out-of-sample hedging performance, it is worth keeping in mind that hedging
macroeconomic shocks using stocks is generally difficult. As a reference, when building mimicking portfolios
for macro risks using a regularized projection method, Giglio & Xiu (2021) report in-sample R2s of 2.25% for
industrial production growth and 4.07% for consumption growth at the monthly frequency, corresponding
to in-sample correlations between the target and the hedging portfolio return of 0.15 and 0.20 respectively.
Appendix Table A.9 reports the in-sample R2 and adjusted-R2 for each ex post maximally correlated portfolio
of industries. While the in-sample R2s are high, this is due to the large number of covariates relative to the
number of observations; thus, the adjusted-R2s are, on average, approximately zero.
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target, giving them additional flexibility compared to the other methodologies (which instead

build a single hedge portfolio for all climate news series).

To further compare the hedging performance of the different approaches, we report in

Table A.8 the p-value for a test of the difference between the hedging correlation obtained

by the pooled portfolio and each other hedging portfolio, calculated using bootstrapped

standard errors as above. The table shows that the two quantity-based portfolios (heat

and disclosure-based) produce correlations that are statistically indistinguishable from the

pooled shock. But in almost all cases, the pooled quantity portfolio yields significantly

higher correlations than the narrative and mimicking portfolios (the exceptions are the few

relatively well performing narrative portfolios).

Overall, the results show that our quantity-based approach to forming hedge portfo-

lios consistently delivers the best out-of-sample climate hedging performance. Among the

alternative approaches, with only little historical data available for periods when climate

risk was potentially priced, the mimicking portfolio approaches do not deliver successful

climate hedges. In contrast, the narrative-based approach to building hedging portfolios is

potentially promising—for example, PBD has positive correlations with all but two news

series—especially because it does not require estimating portfolio weights using historical

data. However, there is often an inherent difficulty in choosing the right climate character-

istics, or even the direction of the trade, based only on prior information. Consistent with

this, other portfolios using the narrative approach do not perform well across measures. For

example, the short XLE position—an intuitive trade ex ante—does not perform well as a

climate hedge.

3.5 Robustness to Specification Choices

In this section we study the robustness of our results with respect to a variety of choices

that affect the construction of the portfolios and the implementation of the analysis.

Construction of the portfolios. We begin by varying several of the choices made in the

construction of the quantity-based portfolios. Figure 3 shows average out-of-sample corre-

lations similar to Figure 2 for variations of the pooled quantity-based portfolio. Appendix

Figure A.4 shows similar robustness checks for hedge portfolios built separately using the

heat and disclosure-based idiosyncratic belief shocks. We consider the following variations

to our baseline portfolio construction choices:

(i) Add the interaction of time fixed effects with fund type or fund family fixed effects in

the regression in Equation 3 (“Fund Type × Time FE”; “Fund Family × Time FE”);

(ii) Measure changes in investors’ industry-level portfolio holdings using current prices,

defined as TotalChanges in footnote 16. This allows for portfolio changes to be driven

by price changes in addition to active trading (“Total Changes”);

(iii) Change how we handle extreme changes in investors’ industry-level portfolio holdings

from the the baseline procedure of winsorizing at the 1% level (“1% Trimming”; “0.5%

Winsorizing”; “2% Winsorizing”; “No Winsorizing”);
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(iv) Do not weight changes in investors’ industry-level portfolio holdings by the industries’

relative market size (“No Industry Weighting”);

(v) Change the relevant universe of funds to be defined using only CRSP or Thomson

Reuters IOC data (“CRSP Equity Domestic”; “IOC in 2, 3, or 4”), and to exclude

ESG funds that are likely to have a large climate risk focus even before receiving

idiosyncratic belief shocks (“No ESG”);

(vi) Only keep funds where all advisers reside in the same county, and for which the ge-

ographic allocation of heat shocks is thus easier (“Unique County”), though at the

cost of having fewer shocks; only keep funds that have been hit by at least one of the

idiosyncratic belief shocks (“Shocks hit fund ≥ 1”);

(vii) Measure extreme local heat shocks and investor locations at the commuting zone level

instead of the county level (“Commuting Zone Shocks”);

(viii) Use three-year and one-year rolling windows of trading activity to identify industry-

level climate quantity betas, instead of five-year rolling windows as in the baseline

(“Three-Year Rolling Window”; “One-Year Rolling Window”);

(ix) Orthogonalize each hedge portfolio with respect to the market factor (“Orthogonal to

MktRF”) or the Fama-French market, size and value factors (“Orthogonal to MktRf,

HML, and SMB”);

(x) For news indices at the daily frequency, first calculate daily AR(1) innovations and

then aggregate to the monthly level instead of the baseline approach of aggregating to

the monthly level before taking innovations (“Aggregate daily innovations”);

(xi) The SHELDUS per-capita variables we use to construct the heat shock are rounded

to the nearest 10−5, which means that a heat shock requires at least 1 fatality or

injury per 200k residents; we re-construct the heat shock using alternative cutoffs of

one death/injury per 100k residents or one per 300k residents (“>1 per 100k Inj/Fat”,

>1 per 300k Inj/Fat”);

Most of the variation in how we construct hedge portfolios has little effect on the overall hedge

performance, and multiple changes appear to even improve the hedge performance relative to

our baseline data construction choices. One notable exception is excessively shortening the

estimation period for the quantity coefficients (regression 3); moving from five-year rolling

windows to one-year rolling windows reduces by 80% the amount of quantity data that our

approach can use to identify the industries’ quantity betas. This loss in data appears to

outweigh the potential gains from being able to better detect time-varying exposures with

one-year rolling windows. Performance also declines, though by much less, when going from

a 5-year window to a 3-year window to estimate climate quantity betas.
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Figure 3: Climate Hedge Performance - Robustness of Portfolio Construction Choices

Note: Dot plots of monthly out-of-sample return correlations for variations of the quantity-based portfolio
constructed using all idiosyncratic belief shocks. Each row corresponds to a different way to build the hedge
portfolio, described in the text. The red rhombus shows the unweighted average among all correlations, and
portfolios are sorted top-to-bottom by this value.

Definition of heat shock. As described above, there are several plausible ways to con-

struct local extreme heat shocks. Our baseline construction identifies local extreme heat

shocks that produce fatalities and injuries; here we explore two alternative definitions.

The first alternative definition uses temperature data from the National Oceanic and

Atmospheric Administration (NOAA) to identify extreme temperatures. We flag county-

months with a maximum temperature of at least 10 degrees Fahrenheit above the county’s

five-year historical average maximum for that month. We enforce that this maximum tem-

perature is above 90 degrees Fahrenheit, the threshold for “extreme caution” by the U.S.

National Weather Service. About 0.70% of county-months have such an extreme heat event.

The second alternative heat shock is based on crop indemnity payments. The underlying

data are collected by the U.S. Department of Agriculture, and we use a version maintained

by SHELDUS.30 We normalize the crop indemnity payments by the number of acres reported

as being planted adjusted by the insured’s share in the commodity. An extreme heat event

30Crop indemnity payments are insurance payments to farmers, which are paid when external disruptions
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is identified when the monthly normalized heat-related crop indemnity payments in a given

county exceed the 99.9th percentile across all county-months in the preceding 10 years; about

0.08% of county-months between 2010 and 2019 had such an event.

The correlation between the three versions of heat shocks in the panel is low (they are all

positive but less than 25% in magnitude). The reason is that different types of shocks tend

to affect different areas: for example, crop indemnity payments tend to affect rural areas.

Appendix Figure A.5 shows the out-of-sample correlations between the various heat-

based quantity portfolios and the climate news series; the figure also includes the baseline

quantity portfolios for comparison. The figure shows that all heat-based quantity portfolios

are positively correlated with the various climate news shocks on average, with average

correlations ranging from 0.08 to 0.18. The heat-based quantity portfolios outperform almost

all of the narrative and mimicking portfolios.

Granularity of Quantity Base Assets. In our baseline analysis, we focus on industry-

level changes in holdings because the large number of stocks and the relatively sparse holding

matrix would imply a large estimation error in each stock’s climate risk exposure (climate

quantity beta). To explore how our results depend on the granularity of the base assets

for the quantity-based approach data, Appendix Figure A.6 shows the hedging performance

of the pooled portfolio constructed with (i) 11 GICS 2-digit industries, 72 GICS 6-digit

industries and 175 GICS 8-digit industries; (ii) the top 10 and top 25 largest stocks within

each industry measured by the market cap in December 2019; and (iii) all stocks held by Dow

Jones 30 Index, NASDAQ 100 Index, and S&P 500 Index according to the index constitution

in December 2019 downloaded from Bloomberg. In portfolios formed with individual stocks,

we represent the active changes using indicators. Specifically, we assign a value of 1 if the

active change in a given shock is positive and -1 if the active change is negative. We find that,

while the hedge portfolios continue to work relatively well using a lower level of aggregation,

the performance does deteriorate as more assets are used, reflecting the increased noise in

the quantity-beta estimates. Hedge portfolios based on individual stocks are not able to

provide stable out-of-sample hedges against climate risk realizations.

A placebo test: hedging before 2010. Finally, as mentioned in Section 3.4, we would

not expect any of our hedging approaches to produce successful hedges before 2010, when

investors likely did not price in climate risks. We test this conjecture by computing the hedge

performance of the various approaches for the period 2000-2010, and report the results in

Appendix Figure A.7; among the quantity-based approaches, we only include the heat-based

one, since it is possible expand it backwards in time without substantial computational cost.

The figure confirms that the hedging ability is substantially lower for the pre-2010 period,

consistent with findings from Acharya, Johnson, Sundaresan & Tomunen (2022) that physical

climate risks only started being priced in municipal bond markets after 2010.

lead to crop yields or revenues below the agreed amount in the insurance contract. The U.S. Department of
Agriculture reports these payments for several private insurance companies, covering more than 100 crops.
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4 Tradeoffs Between Different Hedging Approaches
In this section, we review the main advantages and disadvantages of the various approaches

to constructing climate hedge portfolios. We focus on three important elements: (i) the

extent to which the approaches can deal with short time series and time-varying climate

risk exposures; (ii) the data requirements of the different approaches; and (iii) whether the

procedures require identifying the true climate risk exposures of different assets.

Short time series and time-varying exposures. The mimicking portfolio methodology

takes a purely statistical approach to constructing hedge portfolios. It requires little input

from the researcher beyond the choice of the base assets used in the projection, and instead

relies on the time series information (the historical covariance between the hedge target and

asset returns) to choose the portfolio weights. This approach works well as long as the time

series is sufficiently long (T → ∞) and asset risk exposures are stable over time: in that

case, a sufficiently large set of base assets (i.e., as N → ∞) asymptotically generates the

optimal hedge portfolio (see Giglio & Xiu 2021). The mimicking portfolio approach suffers

particularly when T is small, as is the case with newly emerging risks such as climate risk,

since a small T lead to noisy estimates of the covariance of prices with the hedging target.

For similar reasons, the mimicking portfolio approach also struggles when asset exposures

are time-varying, for example because firms’ strategic decisions affect their risk exposures

over time.31 In fact, one can think of a change in exposure over time as having the same

effect as reducing the time periods T that can be used to learn about the new exposure.

At the other end of the spectrum, the narrative approach does not rely on historical time

series at all. Rather, it requires the investor to specify the different assets’ exposures to

the hedge target based on their understanding, for example, of how each industry’s business

model would be affected by the different types of climate risk. However, as the previous

section showed, this process of identifying ex ante which stocks would stand to gain or lose

when climate risk materializes can be difficult.

The quantity-based approach relies neither on having prior knowledge of which stocks will

gain or lose when climate risks materialize, nor on having a long time series T or highly stable

risk exposures. Instead, it weakens these requirements by using cross-sectional information

on trading behavior to choose the portfolio weights. This allows investors and researchers

to obtain many signals of asset exposures every period (in principle, one from each investor

receiving an idiosyncratic climate belief shock), enabling them to construct climate hedge

portfolios based on fewer time periods. It also allows investors to learn more quickly when

asset exposures have changed.

Data Requirements. While the quantity-based approach has important benefits relative

to the mimicking portfolio approach, it has stronger data requirements. First, the quantity-

31For example, van Benthem et al. (2022) discuss that European IOCs such as Shell and BP have announced
ambitious net-zero targets, combined with substantial investments in renewable energies. Perhaps the most
striking example is Orsted, Denmark’s largest power company, which has transformed itself from a largely
hydrocarbon based firm to the largest offshore wind farm company in the world. Over time, Orsted’s exposure
to transition risk would thus have shifted from negative to positive.
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based approach requires the identification of idiosyncratic belief shocks, i.e., shocks that

move investor beliefs about the aggregate risk yet only affect a few investors at the same

time. While the need to identify such shocks might appear daunting, we believe that the

disclosure-based approach to identifying idiosyncratic belief shocks can be applied to other

types of risks beyond climate change. To highlight this, we show in Section 5 that quantity-

based approaches can be used to identify reasonable hedge portfolios for other macro risk

factors such as house price changes and unemployment rates.

The quantity-based approach also requires the researcher to observe portfolio holdings or

trading data. Such quantity data is generally less available than price data, in particular for

assets other than equities. Expanding the base assets to include, for example, commodities

or derivatives on emission allowances in the European Emissions Trading System (ETS)

would require researchers to also observe investor holdings in these assets. While various

regulators have access to portfolio holdings data that would allow them to implement our

approach with a wider range of base assets, those data sets are often not publicly accessible.

Accuracy of Exposure Measures. The quantity-based and mimicking portfolio ap-

proaches both aim to identify the average investors’ perceptions of assets’ climate risk expo-

sures, one using quantity information and one using price information. But what if investors

are wrong on average in their assessment of different assets’ true climate risk exposures?

Even if investors misperceive assets’ true risk exposures, both approaches can still build

portfolios that hedge aggregate news about climate risks in the short run, as long as the

average (incorrect) response to idiosyncratic climate belief shocks corresponds to the average

(incorrect) response to global climate news shocks. For example, it may be that investors

believe that car companies will benefit along the transition path (as suggested by their

quantity responses to idiosyncratic climate belief shocks), but in reality, car companies will

actually suffer disproportionate losses in response to transition risk realizations (perhaps

because electric vehicles will largely be sold by new entrants rather than the incumbents

currently trading on the stock market). In the short run, while the average investor holds

this mistaken belief, it is likely that news of aggregate climate risk will push investors to buy

car stocks and thus drive up their prices. Therefore the quantity-based portfolio would still

hedge news about aggregate climate risk in the short term. Yet, in the long run, any portfolio

that is long car stocks will ultimately lose in value once climate shocks actually materialize,

and the true climate risk exposures are revealed. Said differently, the short-term ability of

both quantity-based and mimicking portfolio approaches to hedge aggregate climate news

only relies on consistent behavior of investors in response to idiosyncratic and aggregate

shocks; the long-term hedging performance against actual climate risk realizations relies on

markets (i.e. the average investor) being correct about the risk exposures.

The narrative approach has the opposite challenge. Under the (certainly strong) assump-

tion that the researcher constructing the hedge portfolio has a better understanding than the

average investor of the true climate risk exposures of different assets, the resulting portfolio

will likely have solid long-run hedging properties against aggregate climate risk realizations.

However, in the short-run, while the researcher disagrees with the average market participant

on different assets’ risk exposures, the narrative approach will not hedge the arrival of news
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about climate risks. If the researcher constructing the hedge portfolio has incorrect percep-

tions of different assets’ actual climate risk exposures, but disagrees with the (possibly also

incorrect) assessments of the average market participant, the resulting narrative portfolio

will neither be able to hedge the arrival of news about climate risks in the short run, nor

will it be able to hedge the arrival of the actual climate risk realizations in the long run.

5 Hedging Macro Factors
While the main focus of this paper is on hedging climate risks, quantity-based portfolios can

also be built to hedge other macroeconomic risks. In this section, we briefly explore two

such applications: hedging national unemployment rate changes and hedging national house

price changes. In each case, we identify “idiosyncratic belief shocks” using local versions

of the aggregate shocks as well as shocks based on disclosures in investor reports. We

then construct hedge portfolios based on investors’ trading responses to these idiosyncratic

shocks. Our motivation for analyzing local housing market and unemployment shocks is the

connection between these local shocks and beliefs about the corresponding aggregate series

documented in prior work. Most directly relevant here is the work of Kuchler & Zafar (2019),

who show that locally experienced house price movements affect expectations about future

U.S.-wide house price changes, and that personally experienced unemployment affects beliefs

about the future national unemployment rate.

We view our efforts in this section as providing a “proof of concept” for the versatility of

our quantity-based approach. They should not be considered as the fully-optimized approach

to constructing quantity-based hedge portfolios for house price changes and unemployment

rates changes. Researchers interested in implementing our approach to hedge specific aggre-

gate risks should carefully consider how to refine the construction of the relevant local or

disclosure-based belief measures in their specific contexts.

Local and National Unemployment Shocks. We obtain monthly data on county-level

and national unemployment rates from the Bureau of Labor Statistics. Local unemployment

shocks are defined as quarterly AR(1) innovations in changes in the seasonally adjusted

county-level unemployment rate (we estimate the local belief shifters over three months

intervals to align them with the quarterly portfolio holdings data):

∆Unempt,t−3,c = θc∆Unempt−3,t−6,c + δm(t) + ϵt,c, (5)

∆Unempt,t−3,c is the change in county c’s unemployment rate between months t and t-3, and

δm(t) are calendar month fixed effects to remove possible seasonality. We run the regression

county by county and use these resulting county-level AR(1) innovations as idiosyncratic

shifters of local investors’ beliefs about future changes in the national unemployment rates.

The hedge targets are AR(1) innovations of national changes in the unemployment rate at

the monthly frequency:

∆Unempt,t−1 = θnational∆Unempt−1,t−2 + δm(t) + ϵt, (6)
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Local and National House Price Shocks. Our seasonally adjusted house price measure

is the Zillow Home Value Index (ZHVI). We obtain local house price shocks as AR(1) innova-

tions in the three-month growth rate of county-level house prices, where ∆Log(ZHV It,t−3,c)

captures the house price growth in county c between months t and t− 3. δm(t) are calendar

month fixed effects to remove possible seasonality:

∆Log(ZHV It,t−3,c) = θc∆Log(ZHV It−3,t−6,c) + δm(t) + ϵt,c. (7)

We run the regression county by county and use the resulting county-level AR(1) inno-

vations as idiosyncratic shifters of local investors’ beliefs about changes in national house

price growth. We construct the corresponding monthly AR(1) innovations of changes in the

national ZHVI as our hedge target:

∆Log(ZHV It,t−1) = θnational∆Log(ZHV It−1,t−2) + δm(t) + ϵt. (8)

Note that, unlike for climate news and the unemployment rate, positive innovations in the

house price growth series constitute “good” news, both at the local and the national level.

Disclosure-Based Idiosyncratic Shocks. In addition to using local unemployment and

house price developments as shifters of investors’ beliefs about the corresponding aggregate

series, we also attempt to directly measure changes in investor beliefs about these macro

risks from mutual fund managers’ disclosures in N-CSR reports.

To measure beliefs about national movements in unemployment rates and house prices,

we first extract relevant sentences from these N-CSR reports. For the unemployment rate, we

focus on sentences that contain one of the following words: ‘employment’, ‘unemployment’,

‘job’, ‘hiring’, and ‘labor market’. We exclude sentences with unrelated phrases such as ‘Jobs

Act’. For house price changes, we focus on sentences that contain the words ‘housing’ or

‘house’. We exclude sentences that include unrelated terms such as ‘White House’, ‘House of

Representatives’, ‘in-house modeling’, or ‘clearing house’. To further restrict our sample to

sentences that express beliefs about the respective national series, we only focus on sentences

that also contain one of the words ‘expect’, ‘believe’, or ‘anticipate’.

We then use the Bidirectional Encoder Representations from Transformers (BERT) model,

a state-of-art language model proposed by Devlin et al. (2018), to classify each of these sen-

tences to determine whether it expresses a positive or negative sentiment about the labor or

the housing market.32 The pre-trained model we used is developed by Araci (2019). Positive

sentences get a score of “1”, and negative sentences get a score of “-1”. Table A.2 presents

examples of sentences relating to these risks, alongside their BERT sentiment classification.

In the final step, we add up the sentiment scores of all relevant sentences in a report

to classify each report as overall positive or overall negative regarding the particular risk.

As with our climate risk application, we use changes in this measure between consecutive

reports to determine idiosyncratic changes in beliefs about macro risks.

Hedge Portfolio Construction. The construction of the hedge portfolios closely follows

the approach described in Section 2. We first estimate the regression in equation 3 with

32While it is theoretically possible to use GPT-4 for classification as above, this imposes a significant
financial cost, so for this section, we employ the (free) BERT model.
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different fund-specific measures of idiosyncratic belief changes to obtain industry-specific

quantity betas for each of the two macro risks. For the location-based belief shocks, we use

the county-level innovations from the AR(1) processes estimated in equations 5 and 8 as

proxies for each fund’s idiosyncratic belief shock Sf,t.

For the disclosure-based measures of changes in unemployment beliefs, we assign Sf,t a

value of “1” if the fund’s overall unemployment sentiment deteriorates between reports (e.g.,

when it changes from positive to negative or neutral and when it changes from neutral to

negative), a value of “0” if the sentiment is unchanged, and a value of “-1” if the fund’s senti-

ment about unemployment rates improves (e.g., when it changes from negative to neutral or

positive and when it changes from neutral to positive). Positive quantity betas, which cor-

respond to long positions in the hedge portfolio, therefore describe industries that investors

disproportionately buy when they become more pessimistic about national unemployment

rates. We would thus expect the hedge portfolio to outperform when the national unem-

ployment rate increases unexpectedly. Positive innovations in house price growth constitute

good news.33 Therefore, for the disclosure-based measure of changes in house price beliefs,

we assign Sf,t a value of “1” if the fund’s expressed sentiment regarding the housing market

improves between reports, and a value of “-1” when the sentiment deteriorates.

Using the estimated quantity betas, we then construct quantity-based hedge portfolios

for unemployment rate changes and house price growth as described in equation 4. Moreover,

for comparison, we construct mimicking portfolios as described in Section 3.3.

Hedge Performance. Table 8 shows the monthly out-of-sample correlations of various

hedge portfolios with AR(1) innovations in the national unemployment rate and the na-

tional growth rate of house prices. To align with the approach to hedging climate news,

we estimate the out-of-sample performance using data from 2015 to 2019, and estimate the

hedge portfolios using five-year rolling windows of holdings and price data.

Table 8: Macro Hedge Performance

Hedge Target

Growth in House Prices ∆ Unemployment Rate

Mimicking Portfolio Approaches
Reg: Fama-French Three-Factors 0.11 -0.03
Reg: SPY 0.13 -0.01
Lasso Reg: All-Industries + Fama-French 0.01 -0.13

Quantity-based Approaches
Quantity: Local Shocks 0.18 0.20
Quantity: Disclosure 0.14 0.10

Note: Monthly correlations for various hedge portfolios’ returns with AR(1) innovations of national changes
in the unemployment rate and the national house price growth rate. The first three rows are mimicking
portfolios, and the last two rows are quantity-based portfolios. Each row represents a hedge portfolio,
whereas each column corresponds to the innovations of either the growth in house prices or changes in the
national unemployment rate. Positive correlation coefficients are highlighted in bold.

33An investor hoping to hedge surprisingly weak house price growth should therefore short the hedge
portfolio we construct here.
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The mimicking portfolio approach produces hedge portfolios with positive out-of-sample cor-

relations with house price shocks, and zero or even negative correlations with the unemploy-

ment shock. The quantity-based portfolios (both the ones based on local shocks and those

based on disclosures) perform well at hedging the two macro series, in both cases outperform-

ing the best mimicking portfolios. These results highlight the fact that the quantity-based

methodology can be applied to a variety of other settings beyond hedging climate risks.

6 Conclusions and Directions for Future Research
In this paper we introduce a quantity-based approach to hedging aggregate news about

climate change and other macro risks. Our quantity-based hedge portfolios outperform

traditional approaches to hedging these risks.

Despite the initial success of the quantity-based approach, we believe that investors inter-

ested in operationalizing this approach can further improve upon the resulting hedge perfor-

mance by introducing portfolio holdings data from a wider range of investors, including retail

investors, and by expanding the set of base assets beyond industry equity portfolios. For

example, including positions in commodity or carbon futures may further improve the hedge

portfolios’ ability to hedge the arrival of aggregate physical or transition risk news. Similarly,

a fruitful direction for further work would be to explore whether other severe weather events

beyond extreme heat (e.g., hurricanes and wildfires) can also be used as shifters of investors’

climate risk beliefs, thus potentially expanding the set of trading activities that can inform

the construction of quantity-based hedge portfolios.34

Our work has focused on exploring the hedging ability of various portfolios in terms

of the correlations of their returns with realizations of climate news. Future work should

consider both the expected returns of these hedge portfolios as well as on the average portfolio

volatilities, both of which are informative about the overall costs of hedging climate risks.

The focus of our application is to allow for an optimal allocation of climate risks across

investors, taking as given the total amount of climate risk in the economy. Of course, re-

allocating risks can have general equilibrium effects which in turn affect the aggregate amount

of climate risk. The canonical channel for this effect is that equity market reallocation can

affect the cost of capital for firms, differentially affecting investment for ‘green’ and ‘brown’

firms. In the context of climate change, there is significant debate as to how large changes in

the cost of capital are, and the extent to which they can reduce overall emissions (see Pedersen

et al. 2021, Pástor et al. 2021, Goldstein et al. 2022, Berk & van Binsbergen 2021, Bolton

& Kacperczyk 2021b). More generally, even the direction of the overall amount of climate

risk is not clear. For example, hedging climate risk decreases its economic cost and could

lessen the incentives to mitigate these risks. Ultimately, the effect of individual investors’

hedging of climate risk on the aggregate amount of risk is ambiguous, and understanding

the quantitative importance of the various channels is an important area for research.

34One possible concern with using such events, that does not apply to using heat shocks, is that wildfires
and hurricanes often destroy local physical capital. To the extent that “home bias” makes local investors
more exposed to the resulting decline in local stock prices (see Huberman 2001, Kuchler et al. 2022), there
may be other forces beyond the updating of climate beliefs that affect investors’ trading behavior.
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Lastly, while our focus on this paper has been on hedging climate risks, investors are also

increasingly focusing on other emerging risks, such as biodiversity risks (Giglio, Kuchler,

Stroebel & Zeng 2023, Giglio et al. 2024), cybersecurity risks (Florackis et al. 2023), or

pandemic risks (Gormsen & Koijen 2023). An interesting avenue for future work would be

to explore the extent to which our new quantity-based approach can allow investors to also

improve investors’ ability to hedge these and other risks.

References

Acharya, V., Berner, R., Engle, R., Jung, H., Stroebel, J., Zeng, X. & Zhao, Y. (2023),

Climate stress testing, Technical report, National Bureau of Economic Research.

Acharya, V. V., Giglio, s., Pastore, S., Stroebel, J. & Tan, J. (2022), ‘Climate transition

Risk and Energy Prices’, Working Paper, NYU Stern School of Business .

Acharya, V. V., Johnson, T., Sundaresan, S. & Tomunen, T. (2022), Is physical climate

risk priced? evidence from regional variation in exposure to heat stress, Technical report,

National Bureau of Economic Research.

Alok, S., Kumar, N. & Wermers, R. (2020), ‘Do Fund Managers Misestimate Climatic Dis-

aster Risk’, The Review of Financial Studies 33(3), 1146–1183.

Araci, D. (2019), ‘Finbert: Financial sentiment analysis with pre-trained language models’,

arXiv preprint arXiv:1908.10063 .

Ardia, D., Bluteau, K., Boudt, K. & Inghelbrecht, K. (2020), ‘Climate change concerns and

the performance of green versus brown stocks’, National Bank of Belgium, Working Paper

Research (395).

Armantier, O., Bruine de Bruin, W., Topa, G., van der Klaauw, W. & Zafar, B. (2015),

‘Inflation expectations and behavior: Do survey respondents act on their beliefs?’, Inter-

national Economic Review 56(2), 505–536.

Armona, L., Fuster, A. & Zafar, B. (2019), ‘Home Price Expectations and Behaviour:

Evidence from a Randomized Information Experiment’, Review of Economic Studies

86(4), 1371–1410.

Bachmann, R., Berg, T. O. & Sims, E. R. (2015), ‘Inflation expectations and readiness to

spend: Cross-sectional evidence’, American Economic Journal: Economic Policy 7(1), 1–

35.

Bailey, M., Cao, R., Kuchler, T. & Stroebel, J. (2018), ‘The economic effects of social

networks: Evidence from the housing market’, Journal of Political Economy 126(6), 2224–

2276.

Bailey, M., Dávila, E., Kuchler, T. & Stroebel, J. (2019), ‘House price beliefs and mortgage

leverage choice’, The Review of Economic Studies 86(6), 2403–2452.

43



Bailey, M., Johnston, D., Koenen, M., Kuchler, T., Russel, D. & Stroebel, J. (2020), ‘Social

networks shape beliefs and behaviors: Evidence from social distancing during the covid-19

pandemic’.

Bakkensen, L. A. & Barrage, L. (2022), ‘Going Underwater? Flood Risk Belief Heterogeneity

and Coastal Home Price Dynamics’, The Review of Financial Studies 35(8), 3666–3709.

Baldauf, M., Garlappi, L. & Yannelis, C. (2020), ‘Does climate change affect real estate

prices? only if you believe in it’, The Review of Financial Studies 33(3), 1256–1295.

Barnett, J. (2020), ‘Global environmental change ii: Political economies of vulnerability to

climate change’, Progress in Human Geography 44(6), 1172–1184.

Baz, S., Cathcart, L., Michaelides, A. & Zhang, Y. (2023), ‘Firm-level climate regulatory

exposure’, Available at SSRN 3873886 .

Berk, J. B. & van Binsbergen, J. H. (2016), ‘Assessing asset pricing models using revealed

preference’, Journal of Financial Economics 119(1), 1–23.

Berk, J. & van Binsbergen, J. H. (2021), ‘The impact of impact investing’, Available at SSRN

3909166 .

Bernstein, A., Gustafson, M. T. & Lewis, R. (2019), ‘Disaster on the horizon: The price

effect of sea level rise’, Journal of Financial Economics 134(2), 253–272.

Bolton, P. & Kacperczyk, M. (2021a), ‘Do investors care about carbon risk?’, Journal of

Financial Economics 142(2), 517–549.

Bolton, P. & Kacperczyk, M. (2021b), Global pricing of carbon-transition risk, Technical

report, National Bureau of Economic Research.

Busse, M. R., Pope, D. G., Pope, J. C. & Silva-Risso, J. (2015), ‘ The Psychological Effect

of Weather on Car Purchases *’, The Quarterly Journal of Economics 130(1), 371–414.

Cashion, P. (2024), ‘Calpers’ plan to generate alpha from cli-

mate investments’, https://www.top1000funds.com/2024/07/

calpers-plans-to-generate-alpha-from-climate-investments/.

Ceccarelli, M., Ramelli, S. & Wagner, A. F. (2021), ‘Low-carbon mutual funds’, Swiss Fi-

nance Institute Research Paper (19-13).

Chang, S. (2022), ‘Local industry bias in investor behavior: Evidence from mutual funds’,

Working Paper .

Chang, T. Y., Huang, W. & Wang, Y. (2018), ‘Something in the Air: Pollution and the

Demand for Health Insurance’, The Review of Economic Studies 85(3), 1609–1634.

44

https://www.top1000funds.com/2024/07/calpers-plans-to-generate-alpha-from-climate-investments/
https://www.top1000funds.com/2024/07/calpers-plans-to-generate-alpha-from-climate-investments/


Chen, A. Y. & Zimmermann, T. (2022), ‘Open source cross-sectional asset pricing’, Critical

Finance Review 27(2), 207–264.

Chen, Q., Goldstein, I. & Jiang, W. (2010), ‘Payoff complementarities and financial fragility:

Evidence from mutual fund outflows’, Journal of Financial Economics 97(2), 239–262.

Choi, D., Gao, Z. & Jiang, W. (2020), ‘Attention to Global Warming’, The Review of

Financial Studies 33(3), 1112–1145.

Cohen, L., Gurun, U. G. & Nguyen, Q. H. (2020), The esg-innovation disconnect: Evidence

from green patenting, Technical report, National Bureau of Economic Research.

Constantino, S. M., Cooperman, A. D., Keohane, R. O. & Weber, E. U. (2022), ‘Personal

hardship narrows the partisan gap in covid-19 and climate change responses’, Proceedings

of the National Academy of Sciences 119(46), e2120653119.

D’Acunto, F., Malmendier, U. & Weber, M. (2022), ‘What Do the Data Tell Us About

Inflation Expectations?’, Working Paper .

Deryugina, T. (2013), ‘How do people update? the effects of local weather fluctuations on

beliefs about global warming’, Climatic Change 118(2), 397–416.

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. (2018), ‘Bert: Pre-training of deep

bidirectional transformers for language understanding’, arXiv preprint arXiv:1810.04805 .

Dou, W. W., Kogan, L. & Wu, W. (2022), Common fund flows: Flow hedging and factor

pricing, Technical report, National Bureau of Economic Research.

Egan, P. J. & Mullin, M. (2012), ‘Turning personal experience into political attitudes: The

effect of local weather on americans? perceptions about global warming’, The Journal of

Politics 74(3), 796–809.

Elliott, J. T. (2022), ‘Investment, emissions, and reliability in electricity markets’, Working

Paper .

Engle, R. F., Giglio, S., Kelly, B., Lee, H. & Stroebel, J. (2020), ‘Hedging climate change

news’, The Review of Financial Studies 33(3), 1184–1216.

Faccini, R., Matin, R. & Skiadopoulos, G. (2021), ‘Are climate change risks priced in the us

stock market?’, Working Paper .

Florackis, C., Louca, C., Michaely, R. & Weber, M. (2023), ‘Cybersecurity risk’, The Review

of Financial Studies 36(1), 351–407.

Fownes, J. & Allred, S. (2019), ‘Testing the Influence of Recent Weather on Perceptions

of Personal Experience with Climate Change and Extreme Weather in New York State’,

Weather, Climate, and Society 11(1), 143–157.

45



Frazzini, A. & Lamont, O. A. (2008), ‘Dumb money: Mutual fund flows and the cross-section

of stock returns’, Journal of Financial Economics 88(2), 299–322.

Fuchs, M., Stroebel, J. & Terstegge, J. (2024), Carbon vix: Carbon price uncertainty and

decarbonization investments, Technical report, Copenhagen Business School.

URL: https://www.carbonvix.org/project/paper/CarbonP riceUncertainty.pdf

Gennaioli, N., Ma, Y. & Shleifer, A. (2016), ‘Expectations and investment’, NBER Macroe-

conomics Annual 30(1), 379–431.

Giglio, S., Kelly, B. & Stroebel, J. (2021), ‘Climate finance’, Annual Review of Financial

Economics 13, 15–36.

Giglio, S., Kuchler, T., Stroebel, J. & Wang, O. (2024), The economics of biodiversity loss,

Technical report, National Bureau of Economic Research.

Giglio, S., Kuchler, T., Stroebel, J. & Zeng, X. (2023), ‘Biodiversity risk’, NBER Working

Paper 31137 .

Giglio, S., Maggiori, M., Rao, K., Stroebel, J. & Weber, A. (2021), ‘Climate change and

long-run discount rates: Evidence from real estate’, The Review of Financial Studies

34(8), 3527–3571.

Giglio, S., Maggiori, M., Stroebel, J., Tan, Z., Utkus, S. & Xu, X. (2023), Four facts about esg

beliefs and investor portfolios, Technical report, National Bureau of Economic Research.

Giglio, S., Maggiori, M., Stroebel, J. & Utkus, S. (2021a), ‘Five facts about beliefs and

portfolios’, American Economic Review 111(5), 1481–1522.

Giglio, S., Maggiori, M., Stroebel, J. & Utkus, S. (2021b), ‘The joint dynamics of investor

beliefs and trading during the covid-19 crash’, Proceedings of the National Academy of

Sciences 118(4), e2010316118.

Giglio, S. & Xiu, D. (2021), ‘Asset pricing with omitted factors’, Journal of Political Economy

129(7), 1947–1990.

Goldsmith-Pinkham, P. S., Gustafson, M., Lewis, R. & Schwert, M. (2021), ‘Sea level rise

exposure and municipal bond yields’, Working Paper .

Goldstein, I., Kopytov, A., Shen, L. & Xiang, H. (2022), On esg investing: Heterogeneous

preferences, information, and asset prices, Technical report, National Bureau of Economic

Research.

Gormsen, N. J. & Koijen, R. S. (2023), ‘Financial markets and the covid-19 pandemic’,

Annual Review of Financial Economics 15(1), 69–89.

46



Grinblatt, M. & Titman, S. (1989), ‘Mutual fund performance: An analysis of quarterly

portfolio holdings’, The Journal of Business (3), 393–416.

Haigh, M. S. & List, J. A. (2005), ‘Do professional traders exhibit myopic loss aversion? an

experimental analysis’, The Journal of Finance 60(1), 523–534.

Herrnstadt, E. & Muehlegger, E. (2014), ‘Weather, salience of climate change and congres-

sional voting’, Journal of Environmental Economics and Management 68(3), 435–448.

Hirshleifer, D., Lourie, B., Ruchti, T. G. & Truong, P. (2021), ‘First impression bias: Evi-

dence from analyst forecasts’, Review of Finance 25(2), 325–364.

Hoepner, A. G., Oikonomou, I., Sautner, Z., Starks, L. T. & Zhou, X. (2018), ‘Esg share-

holder engagement and downside risk’, Working Paper .

Hsu, P.-H., Li, K. & Tsou, C.-Y. (2022), ‘The pollution premium’, Available at SSRN

3578215 .

Huberman, G. (2001), ‘Familiarity breeds investment’, The Review of Financial Studies

14(3), 659–680.

Joireman, J., Truelove, H. B. & Duell, B. (2010), ‘Effect of outdoor temperature, heat

primes and anchoring on belief in global warming’, Journal of Environmental Psychology

30(4), 358–367.

Jung, H., Engle, R. & Berner, R. (2021), Climate stress testing, Technical report, Working

Paper.

Kaustia, M., Alho, E. & Puttonen, V. (2008), ‘How much does expertise reduce behavioral

biases? the case of anchoring effects in stock return estimates’, Financial Management

37(3), 391–412.

Koijen, R. S., Richmond, R. J. & Yogo, M. (2020), Which investors matter for equity valu-

ations and expected returns?, Technical report, National Bureau of Economic Research.

Koijen, R. S. & Yogo, M. (2019), ‘A demand system approach to asset pricing’, Journal of

Political Economy 127(4), 1475–1515.

Krueger, P., Sautner, Z. & Starks, L. T. (2020), ‘The Importance of Climate Risks for

Institutional Investors’, The Review of Financial Studies 33(3), 1067–1111.

Kuchler, T., Li, Y., Peng, L., Stroebel, J. & Zhou, D. (2022), ‘Social proximity to capital:

Implications for investors and firms’, The Review of Financial Studies 35(6), 2743–2789.

Kuchler, T. & Zafar, B. (2019), ‘Personal experiences and expectations about aggregate

outcomes’, The Journal of Finance 74(5), 2491–2542.

47



Lamont, O. A. (2001), ‘Economic tracking portfolios’, Journal of Econometrics 105(1), 161–

184.

Li, Y., Johnson, E. & Zaval, L. (2011), ‘Local warming: daily temperature change influences

belief in global warming’, Psychological Science 22(4), 454–459.

Magolin, S. & Santino, K. (2022), Policy will engage with reality: Re-focus on secular gas

theme as oil madness abates, Technical report, Wolfe Research.

Malmendier, U. & Nagel, S. (2011), ‘Depression Babies: Do Macroeconomic Experiences

Affect Risk Taking?’, The quarterly journal of economics 126(1), 373–416.

Malmendier, U., Nagel, S. & Yan, Z. (2021), ‘The making of hawks and doves’, Journal of

Monetary Economics 117, 19–42.

Murfin, J. & Spiegel, M. (2020), ‘Is the risk of sea level rise capitalized in residential real

estate?’, The Review of Financial Studies 33(3), 1217–1255.

Painter, M. (2020), ‘An inconvenient cost: The effects of climate change on municipal bonds’,

Journal of Financial Economics 135(2), 468–482.
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A Appendix

A.1 GPT Prompt

The prompt provided to GPT-4 to analyze the investor disclosures was:

Given a passage from Form N-CSR, evaluate if it discusses climate physical risks

and climate transition risks. Fully analyze the passage first, then answer the

questions. Physical climate risks can be defined as risks related to the phys-

ical impacts/damages due to climate change (e.g. heat waves, sea level rises,

global warming, etc.). Transition climate risks can be defined as risks related

to the transition to a lower-carbon economy (e.g. risks stemming from regu-

latory or governmental responses to climate change, risks from legal actions to

force carbon-emitting firms to provide compensation to those harmed by climate

change, or risks from shifts of consumer demand towards lower-carbon products).

This does not include those passages only describing fund strategies related to

climate change.

——

Please answer the following questions and present your findings as a single JSON

object, conforming to the following structure:

’Question1’: ’(choice id)’;

’Question2’: ’(choice id)’;

’Question3’: Provide detailed explanations on Question1 and Question2. The

explanation should be concise and precise, directly relating to the aspects men-

tioned in the article. (less than 100 words);

Question1: Does the passage discuss physical climate risks?

(a) No, the passage does not discuss the presence or effects of physical climate

risks

(b) Yes, the passage does discuss the presence or effects of physical climate risks

Question2: Does the passage discuss transition climate risks?

(a) No, the passage does not discuss transition climate risks

(b) Yes, the passage does discuss transition climate risks

——

Here are some examples for reference: Example 1:

Passage: ’Santa Barbara employs disciplined, rigorous fundamental research com-

bined with an objective, proprietary EcoFilter to construct the Fund’s portfolio.

This proprietary EcoFilter is a positive screen that focuses on environmental
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and climate change practices and scores candidate stocks using a proprietary

algorithm.’ Question1: ’a’ Question2: ’a’

Example 2: Passage: ’The agreement is intended to put an end to the dominance

of fossil fuels as the primary engine of economic growth and demonstrate that

governments across the planet are serious about climate change.’ Question1: ’a’

Question2: ’b’

Example 3: Passage: ’On the ESG front, climate change will likely remain a dom-

inant theme, as the world witnesses more climate change-related calamities and

governments introduce climate-related regulations.’ Question1: ’b’ Question2:

’b’

——

Now, Analyze this passage and answer the questions: <passage>

, where <passage> is replaced with the relevant text selection.
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A.2 Appendix Tables

Table A.1: GPT classification examples

Risk Passage

Neither Commodities were once again the leaders, driven by the precious metals, which were up on safe-
haven demand. Energy was slightly negative, with carbon emissions giving back a little ground.
Softs were mixed, but short positions in cotton and sugar both gained nicely.

Neither Specifically, capturing measures of quality related to sustainability, or so-called ESG (environmen-
tal, social and governance) criteria, were highly additive during market volatility. These insights,
including employee sentiment and greenhouse gas emissions, provided much needed defense dur-
ing periods of volatility. These contributions, however, were offset by weaker performance from
traditional quality insights such as balance sheet and efficiency measures, which surprisingly failed
to cushion against volatility.

Physical Trade-related issues with China and other trading partners are not yet fully resolved. Climate
change remains a concern in the form of more severe weather-related events. The Fed’s policy
reversed this year in the face of a slowing economy.

Transition There were numerous policy developments in the first half of 2014 impacting upon our markets.
The European Union (EU) unveiled its 2020 Climate and Energy Framework, proposing a re-
duction in the region’s greenhouse gas emissions by 40% in 2030, but does not extend as far as
legally binding renewables targets for individual member states beyond 2020. However, it sets an
EU-wide goal to boost the share of renewable energy and also includes an indicative goal to boost
energy efficiency by 25%.

Both While some adjustment to our weightings can be implemented over time, in the short-to-
intermediate-term our animal welfare investment strategy leads us to these over-and under-
weightings, which could also have a material effect on the Funds performance. Looking forward,
climate change and its impact on the planet and its inhabitants, especially animals, requires
changes in the behaviors of all stakeholders, especially corporations. Were already seeing rapid
and disruptive change in many industries, including fossil fuels and food and transportation, due
to a growing understanding of the threats posed by a warming climate.

Note: This table contains examples of sentences we selected and input into GPT-4, along with its resulting clas-
sification as explained in Section 2.1. The sentences could be indicated as not discussing climate risk (“neither”),
only discussing physical risk (“physical”), only discussing transitional risk (“transitional”), or discussing both
risks (“both”).
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Table A.2: BERT classification examples

Shocks Labels Scores Sentences

Unemployment Positive 1 Unemployment is expected to recede significantly as the economy
and business reopen, but it will take time to restore employment
back to 2019 levels.

Unemployment Positive 1 The employment situation remains sluggish, but economists an-
ticipate an improvement in hiring in the coming months.

Unemployment Negative -1 However, due to pressure on growth for the U.S. economy and
high unemployment expected for most of 2010, the Fed will most
likely keep interest rates at exceptionally low levels which will
affect interest rates for all money market mutual funds.

Unemployment Negative -1 And while the Fed may begin to roll back some of its bond pur-
chases, we do not expect a change in the Federal rate policy
stance, given that there is no inflationary pressure and unem-
ployment continues above Fed targets.

House Price Positive 1 However, with continued growth in consumer discretionary
spending expected, we believe the U.S. housing market could re-
bound in 2019.

House Price Positive 1 The housing market remained an area of weakness as home prices
continued to fall, but we anticipate a pickup in demand as the
weather improves in the months ahead.

House Price Negative -1 Having said that, the housing and job markets remain in poor
shape, and we don’t anticipate significant improvement in either
until 2012.

House Price Negative -1 The biggest risk we see to our constructive economic view would
be another sharp decline in the housing market, caused by more
foreclosed houses hitting the market than is currently anticipated,
thereby stifling demand for new homes.

Note: This table contains examples of sentences selected for the macro hedging disclosure shock in Section
5, along with their classification by the BERT model. Sentences classified as positive are assigned a score of
1 and sentences classified as negative are assigned a score of -1.
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Table A.3: Sample Summary Statistics

Panel A: Industry Summary Statistics
Number of Companies Share of Fund Holdings (%)

GICS Industry Avg. Min Max Avg. Min Max

1010 Energy 245 217 265 7.6 4.2 11.6
1510 Materials 211 180 233 3.7 2.1 4.8
2010 Capital Goods 330 308 351 7.6 5.0 8.6
2020 Commercial & Prof. Serv. 129 118 144 1.5 1.3 1.7
2030 Transportation 71 61 86 2.6 1.8 3.2
2510 Auto & Components 44 40 46 0.9 0.6 1.2
2520 Consum. Durables & Apparel 122 112 140 2.0 1.3 2.5
2530 Consumer Services 142 129 153 2.9 2.7 3.3
2550 Retailing 154 143 161 5.5 2.7 6.5
3010 Food & Staples Retailing 27 23 32 1.4 1.1 1.6
3020 Food, Bev. & Tobacco 94 83 105 4.3 3.3 5.2
3030 Household & Pers. Prod. 38 35 46 1.6 1.2 1.9
3510 Health Care Equip. & Serv. 256 233 291 6.1 5.4 6.9
3520 Pharma., Biotech., & Life Sc. 382 271 535 8.2 6.5 10.1
4010 Banks 433 400 503 6.4 5.3 8.4
4020 Diversified Financials. 153 145 160 4.9 4.2 6.1
4030 Insurance 109 95 131 3.0 2.4 3.5
4510 Software & Services 284 262 309 9.4 7.8 13.2
4520 Tech. Hardw. & Equip. 222 174 275 5.3 2.1 7.3
4530 Semiconductors & Equip. 108 81 135 3.5 2.8 4.4
5010 Communication Services 42 31 53 1.7 1.3 2.5
5020 Media & Entertainment 106 83 133 5.2 2.2 12.1
5510 Utilities 92 77 105 2.7 2.4 3.2
6010 Real Estate 152 113 185 2.3 1.2 4.4

Panel B: Mutual Fund Summary Statistics
Number of Companies Number of Industries

Avg. p10 p90 Avg. p10 p90

Mutual Fund Holdings 211 33 469 19.6 14.0 24.0

Panel C: Active Changes Summary Statistics
Avg. p1 p25 p50 p75 p99

Active Industry Change -0.12 -121.79 -6.32 0.00 5.99 124.97

Note: Panel A shows, for each industry, (i) the average, minimum, and maximum of the number of unique
companies held by at least one fund in our sample, and (ii) the average, minimum, and maximum industry
market share, all calculated across the 40 quarters between 2010 and 2019. Panel B shows the average
and the 10th and 90th percentiles of unique companies and industries held by individual funds across the
72,732 observed fund-quarter observations. Panel C shows summary statistics for the active industry changes
measure in pp as defined in Equation (2). The unit of observation is a fund-quarter-industry change and the
sample size is 1,391,064. Note that we require two consecutive holding reports to observe an active change,
which are not always available.
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Table A.4: Industry-Specific Climate Quantity Betas Significance

GICS Description Pooled Shock Disclosure Shock Heat Shock

2030 Transportation 1.95 1.98 0.46
2510 Auto & Components 1.74 1.83 0.91
4530 Semiconductors & Equip. 1.39 0.53 2.14
2010 Capital Goods 1.79 2.22 0.33
1510 Materials 1.31 1.18 0.82

4010 Banks 1.93 0.50 2.28
3030 Household & Pers. Prod. 1.18 1.17 −0.10
1010 Energy 1.69 1.64 1.78
4520 Tech. Hardw. & Equip. 0.65 −1.62 2.72
2530 Consumer Services 0.09 −0.21 0.09

4020 Diversified Financials. −0.11 0.61 0.31
4510 Software & Services −0.20 0.52 0.77
3010 Food & Staples Retailing −0.16 0.02 0.58
3020 Food, Bev. & Tobacco −0.81 1.32 −1.79
2520 Consum. Durables & Apparel −0.19 0.06 1.06

5020 Media & Entertainment −0.84 1.07 −1.12
5010 Communication Services −0.81 0.26 −0.48
5510 Utilities −1.00 1.45 −1.82
3520 Pharma., Biotech., & Life Sc. −1.51 1.16 −2.09
3510 Health Care Equip. & Serv. −1.17 −1.61 −0.59

4030 Insurance −1.34 −0.61 −1.19
2020 Commercial & Prof. Serv. −0.78 −0.80 −1.05
6010 Real Estate −1.98 −0.66 −2.12
2550 Retailing −2.25 1.13 −2.97

Joint Significance Test 0.0264 0.0001 0.0038

Note: This table shows the t-stats of industry-specific climate quantity betas as reported in Table 3, and
P-values of the joint significance test in the last row. We test if the climate quantity betas for all industries
deviate from zero jointly, controlling the month by industry fixed effect and the standard errors are clustered
at the fund level. The coefficients are based on pooled data from 2010 to 2019 inclusive.
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Table A.5: Industry-Specific Climate Quantity Betas (unscaled)

GICS Description Pooled Shock Disclosure Shock Heat Shock

2010 Capital Goods 16.1073∗ 82.0678∗∗ 4.4132
1010 Energy 15.9075∗∗ 38.6244 18.0780∗

4010 Banks 12.3007∗∗ 7.3828 18.9470∗∗

2030 Transportation 9.7578∗ 48.0269∗ 2.0660
1510 Materials 9.5616∗ 26.8613 9.4658

4530 Semiconductors & Equip. 6.1142 4.9171 14.4070∗∗

4520 Tech. Hardw. & Equip. 3.6722 -47.6637∗ 20.4623∗∗∗

2510 Auto & Components 3.5100 23.3109∗ 2.3746
3030 Household & Pers. Prod. 2.7243 13.6251 -0.6114
4020 Diversified Financials. 2.6979 10.4414 7.7727

2530 Consumer Services 0.6662 -5.2088 0.2067
5510 Utilities -1.8847 22.2410 -4.8670
5010 Communication Services -2.1177 3.5863 -1.0000
4510 Software & Services -2.1428 15.1465 7.1090
2520 Consum. Durables & Apparel -2.5238 -2.1896 4.5504

2020 Commercial & Prof. Serv. -3.8104 -10.4609 -5.9619
4030 Insurance -3.9739 -11.3642 -4.2553
3010 Food & Staples Retailing -4.2850 0.1823 -4.1413
5020 Media & Entertainment -4.7539 17.3065 -7.6636
3020 Food, Bev. & Tobacco -6.1528 30.8282 -15.2827∗∗

3520 Pharma., Biotech., & Life Sc. -7.9134 49.4110 -14.8916∗∗

6010 Real Estate -7.9772∗ -10.0917 -9.6117∗

3510 Health Care Equip. & Serv. -10.0095 -49.0774 -6.2651
2550 Retailing -16.7284∗∗ 25.1143 -30.7865∗∗∗

Note: This table reports industry-specific climate quantity betas, multiplied by 100 for easy readability, as
in Equation (3), but without scaling ActiveChanges by industry size in Equation (2). The coefficients are
based on pooled data from 2010 to 2019 inclusive. Industries are sorted by the “Pooled Shock”.
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Table A.6: Climate News Series Correlations

Panel A: Climate News Correlations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Faccini et al.
(1) IntSummit 1.00
(2) GlobWarm 0.28 1.00
(3) NatDis 0.43 0.37 1.00
(4) Narrative −0.26 −0.23 −0.31 1.00

Engle et al.
(5) WSJ 0.04 0.64 0.46 −0.30 1.00
(6) CHNEG 0.16 0.46 0.69 −0.08 0.23 1.00

Ardia et al.
(7) MCCC −0.13 0.35 0.07 0.43 0.38 0.19 1.00

Google
(8) National 0.38 0.20 0.34 0.10 0.07 0.18 0.52 1.00

Temperature
(9) National −0.08 −0.20 −0.10 −0.11 0.08 −0.31 0.01 −0.32 1.00

Panel B: Climate News AR(1) Innovations Correlations

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Faccini et al.
(1) IntSummit 1.00
(2) GlobWarm 0.22 1.00
(3) NatDis 0.09 0.36 1.00
(4) Narrative −0.20 −0.25 −0.25 1.00

Engle et al.
(5) WSJ 0.02 0.46 0.37 −0.06 1.00
(6) CHNEG 0.09 0.39 0.43 −0.07 0.35 1.00

Ardia et al.
(7) MCCC −0.02 0.46 0.05 0.21 0.60 0.49 1.00

Google
(8) National 0.20 0.30 0.12 −0.05 0.38 0.52 0.45 1.00

Temperature
(9) National 0.03 −0.05 −0.13 0.07 0.01 0.04 −0.06 0.11 1.00

Note: This table reports the correlation across climate news series, using monthly data from 2015-2020.
Panel A shows the correlation between news indices. Panel B shows the correlation of their AR(1) innova-
tions.
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Table A.7: Climate Hedge Performance of Various Portfolios (Bootstrap Standard Errors)

Faccini et al. Engle et al. Ardia et al. Google Temp.

Avg. IntSummit GlobWarm NatDis Narrative WSJ CHNEG MCCC National National

Pooled Shock 0.05 0.14 0.11 0.13 0.14 0.15 0.17 0.17 0.14 0.14
Heat Shock 0.05 0.14 0.12 0.10 0.15 0.14 0.16 0.13 0.19 0.14
Disclosure Shock 0.05 0.16 0.11 0.13 0.12 0.15 0.17 0.20 0.15 0.13

Emission Portfolio 0.05 0.13 0.14 0.11 0.12 0.17 0.14 0.17 0.13 0.14
Long PBD ETF 0.05 0.13 0.12 0.12 0.13 0.25 0.19 0.20 0.13 0.12
Short Stranded Asset 0.04 0.13 0.14 0.09 0.11 0.18 0.14 0.15 0.10 0.13
Long ICLN ETF 0.05 0.13 0.13 0.11 0.13 0.22 0.19 0.19 0.13 0.13
Short IYE ETF 0.04 0.14 0.12 0.12 0.11 0.16 0.17 0.14 0.13 0.13
Short XLE ETF 0.04 0.14 0.11 0.11 0.11 0.17 0.16 0.14 0.13 0.12
10-K Negative Portfolio 0.04 0.13 0.12 0.11 0.14 0.13 0.13 0.12 0.10 0.16
Sustainalytics Portfolio 0.04 0.12 0.10 0.09 0.15 0.12 0.14 0.14 0.11 0.15

Lasso: All Industry+FF 0.04 0.08 0.13 0.08 0.14 0.18 0.10 0.12 0.10 0.00
Lasso: Factor Zoo 0.04 0.10 0.11 0.08 0.11 0.16 0.00 0.18 0.00 0.00
Reg: ETFs+FF 0.04 0.12 0.11 0.09 0.14 0.13 0.13 0.14 0.20 0.14
Reg: FF 3-Factors 0.05 0.11 0.11 0.09 0.14 0.14 0.13 0.17 0.20 0.13
Reg: SPY ETF 0.04 0.09 0.12 0.15 0.09 0.18 0.17 0.15 0.12 0.11

Note: Standard errors of monthly correlations for various climate hedge portfolios’ returns with various climate news series AR(1) innovations,
calculated using a bootstrap. The bootstrap process is replicated 1000 times, with each iteration involving resampling the full-time period with
replacement. In each iteration, we calculate the correlations between the returns of various climate hedge portfolios and climate news, as well as
the average correlation across all climate news series using the resampled datasets. The standard errors are calculated as the standard deviations of
the correlation values obtained from the 1000 bootstrap iterations. Each row represents a hedge portfolio, whereas each column corresponds to the
innovations of a climate news series.
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Table A.8: Climate Hedge Performance of Various Portfolios (two-sided p-val of difference)

Faccini et al. Engle et al. Ardia et al. Google Temp.

Avg. IntSummit GlobWarm NatDis Narrative WSJ CHNEG MCCC National National

Heat Shock 0.88 0.47 0.65 0.66 0.83 0.87 0.88 0.82 0.81 0.86
Disclosure Shock 0.35 0.61 0.51 0.45 0.98 0.89 0.76 0.76 0.14 0.93

Emission Portfolio 0.16 0.21 0.40 0.74 0.77 0.63 0.42 0.61 0.11 0.21
Long PBD ETF 0.14 0.41 0.29 0.72 0.91 0.76 0.52 0.75 0.06 0.74
Short Stranded Asset 0.02 0.18 0.20 0.42 0.62 0.70 0.96 0.07 0.05 0.11
Long ICLN ETF 0.02 0.29 0.09 0.55 0.65 0.64 0.34 0.45 0.03 0.60
Short IYE ETF 0.00 0.12 0.01 0.19 0.56 0.35 0.72 0.01 0.03 0.32
Short XLE ETF 0.00 0.12 0.01 0.15 0.51 0.36 0.68 0.01 0.03 0.35
10-K Negative Portfolio 0.00 0.34 0.08 0.52 0.77 0.20 0.17 0.01 0.00 0.37
Sustainalytics Portfolio 0.00 0.61 0.02 0.69 0.83 0.07 0.10 0.02 0.00 0.24

Lasso: All Industry+FF 0.00 0.63 0.26 0.91 0.96 0.81 0.36 0.00 0.00 0.47
Lasso: Factor Zoo 0.00 0.44 0.06 0.22 0.45 0.39 0.44 0.14 0.01 0.47
Reg: ETFs+FF 0.00 0.24 0.17 0.62 0.75 0.81 0.17 0.01 0.13 0.53
Reg: FF 3-Factors 0.00 0.17 0.19 0.67 0.50 0.41 0.07 0.02 0.10 0.66
Reg: SPY ETF 0.00 0.05 0.09 0.22 0.52 0.28 0.27 0.06 0.04 0.32

Note: Bootstrap two-side p-values of the difference between correlation of target news with the ”Pooled Shock” and the correlation with the returns
of all other portfolios. We conduct 1000 resampling iterations. In each iteration, we randomly select data from the full-time period with replacement.
Each row represents a hedge portfolio, whereas each column corresponds to the innovations of a climate news series.
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Table A.9: Ex-post Evaluation

Faccini et al. Engle et al. Ardia et al. Google Temp.

Avg. IntSummit GlobWarm NatDis Narrative WSJ CHNEG MCCC National National

R2 0.48 0.50 0.27 0.29 0.39 0.81 0.74 0.60 0.38 0.32
Adjusted-R2 -0.03 0.15 -0.24 -0.22 -0.05 -0.11 0.35 0.02 -0.04 -0.13

Note: In-sample R2 and Adjusted-R2 from regressing each news series on all 24 industry portfolio returns. The sample consists of monthly observations
from 2015-2019.
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A.3 Appendix Figures

Figure A.1: Distribution of “Heat Shock”

Note: Spatial distribution of the “Heat Shock” from 2010 to 2019. The color-coding shows the number of
county-months that experienced the shock during that time interval.

61



Figure A.2: Industry Ranking by Scaled and Unscaled Industry Betas

Note: Scatterplot of industry beta ranking estimated with scaled and unscaled ActiveChanges. Both
coefficients are based on pooled data from 2010 to 2019 inclusive. Industries are ranked by the “Pooled
Shock”. Industry that is least exposed (rank=24) has the highest positive quantity beta.
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Figure A.3: Industry Betas Rankings Over Time

Note: Industry climate beta coefficients (estimated in Equation 3) rankings over time. The rankings are
sorted by the “Pooled Shock” and are based on data for every five-year window from 2010 to 2019 inclusive.
Each line represents an industry.
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Figure A.4: Climate Hedge Performance - Robustness of Portfolio Construction Choices

(a) Heat Shock

(b) Disclosure Shock

Note: Dot plot of monthly out-of-sample return correlations for the heat shock and disclosure shocks
against various climate news series AR(1) innovations. Each dot represents one correlation coefficient. Each
row represents a different robustness check. The red rhombus shows the unweighted average among all
correlations, and portfolios are sorted top-to-bottom by this value.
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Figure A.5: Climate Hedge Performance of Various Portfolios (Alternative Heat Shocks)

Note: Dot plot of monthly out-of-sample return correlations for various climate hedge portfolios with
various climate news series AR(1) innovations. Each dot represents one correlation coefficient. Different
colors represent different groups of climate news series. The red rhombus shows the unweighted average
among all correlations, and portfolios are sorted top-to-bottom by this value.

Figure A.6: Climate Hedge Performance of Various Granular Portfolios

Note: Dot plot of monthly out-of-sample return correlations for various climate hedge portfolios based on
the “Pooled Shock” with various climate news series AR(1) innovations. Each row corresponds to a different
levels of aggregation used to estimate the climate quantity betas for portfolio formation. Each dot represents
one correlation coefficient. Different colors represent different groups of climate news series. The red rhombus
shows the unweighted average among all correlations, and portfolios are sorted top-to-bottom by this value.
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Figure A.7: Placebo test in earlier period

Note: Dot plot of monthly return correlations for the three heat-based hedging portfolios and mimicking
portfolios with various climate news series AR(1) innovations, using data from 2000 to 2010. The PBD ETF
is only available after July 2007.
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