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A Theoretical Derivations

A.1 Proofs
We first provide proofs for the simplified model considered in Sections 1 and 2 of the paper. We then study a more general
environment with non-zero default costs. At times we rely on auxiliary mathematical results collected in Section A.3.

Proof of Proposition 1. (Mean and variance shifts with normally distributed beliefs).

Variable House Size. In the variable house size scenario, given Equation (8), it is sufficient to establish the behavior of
ΨVHS

(
δ̃
)
≡ Ei

[
g| g ≥ δ̃

]
to characterize the effect of beliefs on leverage. Under standard regularity conditions, any change

in parameters associated with an upwards point-wise shift in ΨVHS (·) for a range of δ̃ implies a higher equilibrium level of
δi. We respectively denote the pdf and cdf of the standard normal distribution by φ (·) and Φ (·). Under the assumption
that g ∼ N

(
µi, σ

2
i

)
, we can express ΨVHS

(
δ̃
)
as follows

ΨVHS

(
δ̃
)

= Ei
[
g|g ≥ δ̃

]
= µi + σiλ (αi)

where λ (αi) = φ(αi)
1−Φ(αi)

and αi = δ̃−µi
σi

. The relevant comparative statics in µi and σi are given by

∂ΨVHS

(
δ̃
)

∂µi
= 1− λ′ (αi) > 0

∂ΨVHS

(
δ̃
)

∂σi
= λ (αi)− λ′ (αi)αi = λ (αi) (1− (λ (αi)− αi)αi) > 0,

where we have used the properties of the Normal hazard rate from Fact 2 in Section A.3. These results establish the
conclusions for the variable house size scenario.
Fixed House Size. In the fixed house size scenario, given Equation (9), it is sufficient to establish the behavior of

ΨFHS

(
δ̃
)
≡ 1− Fi

(
δ̃
)

= 1− Φ (αi) ,

where αi = δ̃−µi
σi

, to characterize the effect of beliefs on leverage. Any change in parameters associated with an upwards
point-wise shift in ΨFHS (·) for a range of δ̃ implies a lower equilibrium level of δi. The relevant comparative statics in µi
and σi are given by

∂ΨFHS

(
δ̃
)

∂µi
= 1
σi
φ (αi) > 0

∂ΨFHS

(
δ̃
)

∂σi
= φ (αi)

αi
σi

= −φ
′ (αi)
σi

,

which is negative when the probability of default is less than 50% (sufficiently low default probability), that is, when αi < 0
or, equivalently, when δ̃ < µi.
Summary. Formally, we can summarize both sets of predictions as follows:

∂Ei
[
g| g ≥ δ̃

]
∂µi

> 0, ∀δ̃ ⇒ ∂δi
∂µi

> 0,
∂Fi

(
δ̃
)

∂µi
< 0, ∀δ̃ ⇒ ∂δi

∂µi
< 0,

∂Ei
[
g| g ≥ δ̃

]
∂σi

> 0, ∀δ̃ ⇒ ∂δi
∂σi

> 0,
∂Fi

(
δ̃
)

∂σi
> 0, ∀δ̃ ⇒ ∂δi

∂σi
> 0, if δ̃ < µi.
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Proof of Proposition 2. (Additional predictions)

To be able to meaningfully study to impact of changes on the cost of default we must consider a model with non-zero
default costs, so we provide the proof of part (a) of the proposition in the next section. We also refer to our derivations in
the context of the more general model below regarding the part (b) results concerning the variable house size scenario.
In the fixed house size scenario, in which ΨFHS

(
δ̃
)
≡ 1− Fi

(
δ̃
)

= 1− Φ (αi), we can find that

∂2ΨFHS

(
δ̃
)

∂µ2
i

= − 1
σ2
i

φ′ (αi) ,

which is negative when the probability of default is less than 50%, that is, when δ̃ < µi. We also find that

∂2ΨFHS

(
δ̃
)

∂σi∂µi
= 1
σi

[
− 1
σi
φ′ (αi)αi − φ (αi)

1
σi

]
= φ (αi)

σ2
i

[
α2
i − 1

]
= φ (αi)

σ2
i

[(
δ̃ − µi
σi

)2

− 1

]
,

which is positive as long as
∣∣δ̃ − µi∣∣ > σi. Hence, it is needed that δ̃ < µi − σi, which is valid whenever the probability of

default is less than 16%. Note that the characterization of Proposition 2 exclusively focuses on the direct effects of changes
in the default cost and average beliefs. As we describe in more detail below, when formally characterizing the more general
environment, second-order comparative statics exercises are determined by both direct effects and curvature effects. Our
focus is on the former set of effects.

A.2 General Environment: Non-zero default costs
We now proceed to systematically study a more general model in which default costs are non-zero. The goal of this section
is to show that the results derived in Propositions 1 and 2 extend to the case of non-zero default costs, while providing a
more detailed formal analysis of the environment that we consider in the body of the paper.36

Borrowers’ Problem and Default Decision

When borrowers face non-zero default costs, they solve the following optimization problem

max
c0i,b0i,h0i

ui (c0i) + βEi
[
max

{
wN

1i , w
D
1i
}]
,

subject to Equation (1), where wN
1i and wD

1i denote borrowers’ wealth in non-default and default states, given by

wN
1i = n1i + p1h0i − b0i
wD

1i = n1i − κih0i,

where κi ≥ 0. Assuming that the default cost is proportional to the house size preserves the homogeneity of the borrowers’
problem. This assumption can be relaxed without affecting our insights, though we believe that it is reasonable to assume
that individual default costs are larger for homeowners with larger properties. At date 1, borrowers default according to
the following threshold rule,

if

{
g ≤ δi − χi, Default
g > δi − χi, No Default

where χi = κi
p0

and δi = b0i
p0h0i

,

and where g denotes the actual realization of house price growth. Note that χi ≥ 0 is simply a rescaled version of the default
cost, so that χi = 0 when κi = 0. Intuitively, borrowers decide to default only when date-1 house prices are sufficiently low.

36Throughout the paper, we present our results in a principal-agent formulation in which borrowers and lenders have predetermined
roles. A common theme in existing work is that optimists endogenously become asset buyers and borrowers while pessimists become
asset sellers and lenders. This type of sorting is natural if belief disagreement is the single source of heterogeneity. However, in housing
markets, additional dimensions of heterogeneity (e.g., life-cycle motives, wealth, risk preferences, access to credit markets, etc.) also
determine which agents become buyers and borrowers in equilibrium.
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For any realization of house price changes, the probability of default by borrower i increases with the borrower’s promised
repayment δi and decreases with the magnitude of default costs κi.

Properties of Λi (δi)

When allowing for non-zero default costs, we also allow for the possibility of loan-to-value ratios to vary with the identity
of the borrower, so we denote them by Λi (δi). We also allow for potential deadweight losses associated with default,
parameterized by 1−η. Therefore, the loan-to-value ratio offered to borrower i for a given promised repayment δi corresponds
to

Λi (δi) =
η
∫ δi−χi
g

gdFL (g) + δi
∫ g
δi−χi

dFL (g)

1 + r
,

which can be alternatively written in terms of default and non-default probabilities and truncated expectations as
Λi (δi) = ηFL(δi−χi)E[g|g≤δi−χi]+(1−FL(δi−χi))δi

1+r . Note that Λi (δi) is strictly positive and that Λ′i (δi) can be expressed
as

Λ′i (δi) = (1− (ηχi + (1− η) δi)λL (δi − χi))
1− FL (δi − χi)

1 + r
,

where λL (δi − χi) = fL(δi−χi)
1−FL(δi−χi)

. In general, Λ′i (δi) can take positive or negative values, depending on the sign of
1 − (ηχi + (1− η) δi)λL (δi − χi). When η < 1 or χi > 0, the function Λi (δi) has a well-defined maximum. Note that,
whenever δi > 0, it is the case that Λ′i (δi) < 1 . At any interior optimum for leverage there exists a positive relation between
Λi (δi) and δi. Alternatively, we could have formulated homebuyers’ choices in terms of the margin/haircut/downpayment,
which is equal to 1−Λi (δi), or the leverage ratio, which is equal to 1

1−Λi(δi)
, since there exists a one-to-one relation among

these variables. For instance, if a borrower pays $100k dollars for a house, borrowing $75k and paying $25k in cash, the
borrower’s loan-to-value ratio is 0.75, his downpayment is 25%, and his leverage ratio is 4. Note that the limits of the LTV
schedule offered by lenders correspond to

lim
δi→∞

Λi (δi) =
η
∫ g
g
gdFL (g)

1 + r
= ηEL [g]

1 + r
and lim

δi→0
Λi (δi) = 0.

Figure A1 illustrates the behavior of Λi (δi) when lenders’ beliefs are normally distributed.

Figure A1: LTV schedule Λi (δi)
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Note: Figure shows the LTV schedule Λi (δi) offered by lenders with normally distributed beliefs with mean µL = 1.17 and standard
deviation σL = 0.1, for a recovery rate after default of η = 0.9 and a default cost that corresponds to χi = 0.1. The red dashed line
corresponds to the maximum LTV ratio with full recovery, which corresponds to µL

1+r .

Note that our results remain valid under weaker assumptions on the determination of credit supply. For instance, our results

A3



are unchanged if lenders are restricted to offering a single loan-to-value schedule to all borrowers. A correct interpretation of
our empirical findings requires that potentially unobserved characteristics used by lenders’ to offer loan-to-value schedules
to borrowers must be orthogonal to the recent house price experiences of a borrower’s geographically distant friends.

Borrowers’ Leverage Choice

The specification of the housing constraint in Equation (2) guarantees equilibrium existence provided that n0i > p0hi,
which guarantees that the feasible choice set is non-empty. Exploiting homogeneity, the problem solved by borrowers to
determine their optimal leverage choice can be expressed in terms of the following Lagrangian:

max
c0i,δi,h0i

ui (c0i) + βp0h0i

[
−χi

∫ δi−χi

g

dFi (g) +
∫ g

δi−χi

(g − δi) dFi (g)

]
− λ0i (c0i + p0h0i (1− Λi (δi))− n0i) + ν0i

(
h0i − hi

)
.

The optimality conditions of this problem regarding consumption, promised repayment, and housing choice, are the
counterparts to Equations (5) to (7) in the text. The derivation of Equation (7) uses the envelope theorem. Even though
borrowers take into account that adjusting their leverage choice affects their probability of default ex-post — formally,
varying δi modifies the limits of integration — no additional terms appear in Equation (7) to account for this effect, since
borrowers make default decisions optimally. Intuitively, because borrowers are indifferent between defaulting and repaying
at the default threshold, a small change in the default threshold has no first-order effects on borrowers’ welfare. The same
logic applies to the derivation of Equation (6).

Formally, when borrowers can adjust housing freely, the following relation must hold at the optimum:

u′i (c0i)︸ ︷︷ ︸
Marginal Benefit
of Consumption

=
β
∫ g
δi−χi

dFi (g)
Λ′i (δi)︸ ︷︷ ︸

Return on Larger
Downpayment

=
β
[
−χi

∫ δi−χi
g

dFi (g) +
∫ g
δi−χi

(g − δi) dFi (g)
]

1− Λi (δi)︸ ︷︷ ︸
Return on Leveraged House Purchase

. (A1)

Intuitively, at an optimum in which the housing constraint is slack, a borrower is indifferent between (i) consuming a dollar,
(ii) using a dollar to increasing today’s downpayment, and (iii) leveraging the dollar to make a larger housing investment.
The second and third terms in Equation (A1) have an intuitive interpretation. A dollar of extra downpayment at date 0
allows borrowers to reduce their future per-dollar of housing repayment by ∂δi

∂Λi
= 1

Λ′
i
(δi)

> 1 dollars. The per-dollar net

present value of such a reduction corresponds to β
∫ g
δi−χi

dFi (g) , since borrowers only repay in states of the world in which
they do not default. Said differently, pessimistic borrowers who think they are quite likely to default in the future perceive
a very small benefit of reducing the promised payment tomorrow, and will therefore make small downpayments and take
on larger leverage. Alternatively, a dollar invested in housing at date 0 can be levered 1

1−Λi(δi)
times, while the per-dollar

net present value of a housing investment corresponds to β
[
−χi

∫ δi−χi
g

dFi (g) +
∫ g
δi−χi

(g − δi) dFi (g)
]
.

In the variable house size scenario, the borrowers’ problem simplifies to

max
c0i

J (c0i) , where J (c0i) = ui (c0i) + (n0i − c0i)βρi,

and

ρi = max
δi

−χi
∫ δi−χi
g

dFi (g) +
∫ g
δi−χi

(g − δi) dFi (g)

1− Λi (δi)
. (A2)

With a solution is given by
Λ′i (δi)

1− Λi (δi)
=

∫ g
δi−χi

dFi (g)

−χi
∫ δi−χi
g

dFi (g) +
∫ g
δi−χi

(g − δi) dFi (g)
. (A3)

Equation (A3) determines borrowers’ optimal leverage choice independently of the choices of consumption and housing.
Once δi is determined, borrowers choose initial consumption by equalizing the marginal benefit of investing in housing with
the marginal utility of consumption, that is, setting u′i (c0i) = βρi, where ρi, defined in (A2), is the maximized levered
return on a housing investment. Finally, given δi and c0i, borrowers choose h0i to satisfy their budget constraint, defined
in Equation (1). Note that when κi = χi = 0, Equation (A3) can be mapped to Equation (12) in Simsek (2013). The
upshot of introducing a consumption margin in our formulation is that it highlights that borrowers’ optimism only increases
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leverage indirectly – through Equation (6), not Equation (7) – through the fact that more optimistic borrowers need to
lever up a given amount of resources to buy larger properties.

We derive all regularity conditions for the leading case κi = χi = 0. Similar conditions apply to the general case.
Given c0i and δi, borrowers’ housing choice satisfies h0i = 1

p0
n0i−c0i
1−Λi(δi)

. Note that the problem solved by borrowers can be
decoupled into two problems. First, borrowers maximize the levered return on a housing investment. Second, borrowers solve
a consumption savings problem. Therefore, introducing a consumption margin per se does not affect borrowers’ leverage
choice. If κi = χi = 0 and η = 1, then the borrowers’ leverage choice has a unique optimum if borrowers’ beliefs dominate
lenders’ beliefs in a hazard rate sense, as in Simsek (2013). That condition is not necessary when η < 1 or χi > 0, which we
assume throughout. In that case, the problem that maximizes the levered return on a housing investment always has a well
defined interior solution, since Λ′i (δi) has to be strictly positive at the optimum, implying that an optimum is reached before
the maximum feasible LTV level. The consumption-savings problem is equally well defined, since ∂J

∂c0i
= u′i (c0i)− βρi = 0

and ∂2J
∂c2

0i
= u′′i (c0i) < 0.

In the fixed house size scenario, the problem solved by borrowers can be expressed as

max
δi

J (δi) , where J (δi) = ui (n0i − p0h0i (1− Λi (δi))) + βp0h0i

[
−χi

∫ δi−χi

g

dFi (g) +
∫ g

δi−χi

(g − δi) dFi (g)

]
,

where h0i = hi. Borrowers’ first order condition corresponds to

∂J

∂δi
= p0h0i

(
u′i (n0i − p0h0i (1− Λi (δi))) Λ′i (δi)− β (1− Fi (δi − χi))

)
= 0. (A4)

Borrowers’ second order condition satisfies

∂2J

∂δ2
i

= p0h0i

(
u′′i (c0i)

(
Λ′i (δi)

)2
p0h0i + u′i (c0i) Λ′′i (δi) + βfi (δi − χi)

)
= p0h0i

(
u′′i (c0i)

(
Λ′i (δi)

)2
p0h0i + β

∫ g

δi−χi

dFi (g)
(

Λ′′i (δi)
Λ′i (δi)

+ fi (δi − χi)
1− Fi (δi − χi)

))
= p0h0i

(
u′′i (c0i)

(
Λ′i (δi)

)2
p0h0i + β

∫ g

δi−χi

dFi (g)
(
M − fL (δi − χi)

1− FL (δi − χi)
+ fi (δi − χi)

1− Fi (δi − χi)

))
,

where the second line is valid at an optimum and M ≡ −((1−η)λL(δi−χi)+(ηχi+(1−η)δi)λ′L(δi−χi))
(1−(ηχi+(1−η)δi)λL(δi−χi))

< 0. Hence, sufficient
conditions that guarantee that borrowers’ first order condition corresponds to an optimum are a) a non-decreasing lenders’
hazard rate, and b) that borrowers’ beliefs dominate lenders’ beliefs in a hazard rate sense. Once δi is determined, borrowers
choose initial consumption to satisfy their budget constraint, defined in Equation (1), where h0i = hi.

Proof of Generalized Proposition 1. (Mean and variance shifts with normally distributed beliefs
and non-zero default costs)

In the variable house size scenario, given Equation (A3) and the sustained regularity conditions, it is sufficient to establish
the behavior of

ΨVHS

(
δ̃
)
≡ −χi

Fi
(
δ̃ − χi

)
1− Fi

(
δ̃ − χi

) + Ei
[
g| g ≥ δ̃ − χi

]
to characterize the effect of beliefs on leverage. Any change in parameters associated with an upwards point-wise shift in
ΨVHS (·) for a range of δ̃ implies a higher equilibrium level of δi. Under the assumption that g ∼ N

(
µi, σ

2
i

)
, we can express

Ei
[
g|g ≥ δ̃ − χi

]
and Fi

(
δ̃ − χi

)
as follows

Ei
[
g|g ≥ δ̃ − χi

]
= µi + σiλ (αi)

Fi
(
δ̃ − χi

)
= Φ (αi) ,

where λ (αi) = φ(αi)
1−Φ(αi)

and αi = δ̃−χi−µi
σi

, which allows us to express ΨVHS

(
δ̃
)
as

ΨVHS

(
δ̃
)

= −χi
Φ (αi)

1− Φ (αi)
+ µi + σiλ (αi) .
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The relevant comparative statics in µi and σi are given by

∂ΨVHS

(
δ̃
)

∂µi
= χi

φ (αi) 1
σi

(1− Φ (αi))2 + 1− λ′ (αi) > 0

∂ΨVHS

(
δ̃
)

∂σi
= χi

φ (αi) 1
σi
αi

(1− Φ (αi))2 + λ (αi)− λ′ (αi)αi = χi
λ (αi)

1− Φ (αi)
αi
σi︸ ︷︷ ︸

R0

+λ (αi) (1− (λ (αi)− αi)αi)︸ ︷︷ ︸
>0

,

where we have used the properties of the Normal hazard rate from Fact 2. Note that the sign of the comparative statics on
σi is strictly positive for low or moderate values of χi, since limχi→0 χi

λ(αi)
1−Φ(αi)

αi
σi

= 0, so the variance result remains valid
in this case for sufficiently low default costs. Importantly, sufficiently low default costs is only a sufficient condition, not a
necessary one. These results establish the conclusions for the variable house size scenario.

In the fixed house size scenario, given Equation (A4) and the sustained regularity conditions, it is sufficient to establish
the behavior of

ΨFHS

(
δ̃
)
≡ 1− Fi

(
δ̃ − χi

)
= 1− Φ (αi) , (A5)

where αi = δ̃−χi−µi
σi

, to characterize the effect of beliefs on leverage. Any change in parameters associated with an upwards
point-wise shift in ΨFHS (·) for a range of δ̃ implies a lower equilibrium level of δi.

The relevant comparative statics in µi and σi are given by

∂ΨFHS

(
δ̃
)

∂µi
= 1
σi
φ (αi) > 0

∂ΨFHS

(
δ̃
)

∂σi
= φ (αi)

αi
σi

= −φ
′ (αi)
σi

,

which is negative when the probability of default is less than 50%, that is, when αi < 0 or, equivalently, when δ̃ < µi + χi.

Proof of Generalized Proposition 2(a) (Interaction with cost of default)

Note that we exclusively focus on the direct effects of how changes in χi affect the sensitivity of leverage choices to beliefs.
Abstractly, in an optimization problem in which agents choose x to solve maxx F (x; θ, α), where θ are parameters and
where an interior optimum x? is characterized by Fx (x?; θ, α) = 0 and Fxx ≤ 0, we can characterize first-order comparative

statics by dx?

dθ
= Fxθ
−Fxx and second-order comparative statics by

d
(
dx?

dθ

)
dα

= d2x?

dθdα
= Fxxx

dx?

dα
dx?

dθ
+Fxxα dx

?

dθ
+Fxθx dx

?

dα
+Fxθα

−Fxx .

When we state that we characterize the direct effect of recourse, we refer to the term of the form Fxθα, which does not rely
directly on assumptions about the curvature of the model, as Fxxx and Fxxα do.

In the fixed house size scenario, where ΨFHS (·) is defined in Equation (A5),

∂2ΨFHS

(
δ̃
)

∂µi∂χi
= − 1

σ2
i

φ′ (αi) ,

which is negative when the probability of default is less than 50%. The marginal cost of borrowing goes up by less when
the cost of default is higher.

∂2ΨFHS

(
δ̃
)

∂σi∂χi
= 1
σ2
i

φ′′ (αi) ,

which is positive as long as
∣∣δ̃ − µi − χi∣∣ > σi. Hence, it is needed that δ̃ < µi + χi − σi, which is valid whenever the

probability of default is less than 16%.
In the variable house size scenario, to be able to derive unambiguous predictions, we focus for simplicity on the case in

which χi → 0. In that case,

∂2ΨVHS

(
δ̃
)

∂µi∂χi
= 1
σi
λ′′ (αi) +

φ (αi) 1
σi

(1− Φ (αi))2 > 0

∂2ΨVHS

(
δ̃
)

∂σi∂χi
= − 1

σi
λ′ (αi) + αi

σi
λ′′ (αi) + 1

σi
λ′ (αi) +

φ (αi) αiσi
(1− Φ (αi))2 = αi

σi
λ′′ (αi) +

φ (αi) αiσi
(1− Φ (αi))2 ,

which is negative when the probability of default is less than 50%, that is, when αi < 0 or, equivalently, when δ̃ < µi + χi.
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Proof of Generalized Proposition 2(b) (Interaction with average beliefs)

In the fixed house size scenario, where ΨFHS (·) is defined in Equation (A5),

∂2ΨFHS

(
δ̃
)

∂µ2
i

= − 1
σ2
i

φ′ (αi) ,

which is negative when the probability of default is less than 50%, that is, when δ̃ < µi. We also find that

∂2ΨFHS

(
δ̃
)

∂σi∂µi
= 1
σi

[
− 1
σi
φ′ (αi)αi − φ (αi)

1
σi

]
= φ (αi)

σ2
i

[
α2
i − 1

]
= φ (αi)

σ2
i

[(
δ̃ − χi − µi

σi

)2

− 1

]
,

which is positive as long as
∣∣δ̃ − χi − µi∣∣ > σi. Hence, it is needed that δ̃ < µi + χi − σi, which is valid whenever the

probability of default is less than 16%.
In the variable house size scenario, to be able to derive unambiguous predictions, we focus for simplicity in the case in

which χi → 0. In that case,

∂2Ei
[
g| g ≥ δ̃

]
∂µ2

i

= λ′′ (αi)
1
σi

> 0, ∀δ̃

∂2Ei
[
g| g ≥ δ̃

]
∂σi∂µi

= −λ′ (αi)
1
σi

+ 1
σi
λ′′ (αi)αi + 1

σi
λ′ (αi) = αi

σi
λ′′ (αi) ,

which is negative when the probability of default is less than 50%, that is, when δ̃ < µi.

A.3 Auxiliary results
Facts 1 and 2 follow from Greene (2003). Fact 3 follows from Krishna (2010). When needed, we respectively denote the
pdf and cdf of the standard normal distribution by φ (·) and Φ (·).

Fact 1. (Truncated expectation of a normal distribution) If X ∼ N
(
µ, σ2), then

E [X |X > a ] = µ+ σλ (α) , where λ (α) = φ (α)
1− Φ (α) and α = a− µ

σ

E [X |X < b ] = µ− σ φ (β)
Φ (β) , where β = b− µ

σ
.

More generally, E [X |a < X < b ] = µ+ σ φ(α)−φ(β)
Φ(β)−Φ(a) , where α and β are defined above.

Fact 2. (Properties of normal hazard function) The function λ (·), which corresponds to the hazard rate of the normal
distribution, is also known as the Inverse Mills Ratio. It satisfies the following properties:

1. λ (0) =
√

2
π
, λ (α) ≥ 0, λ (α) > α, λ′ (α) > 0, and λ′′ (α) > 0.

2. limα→−∞ λ (α) = limα→−∞ λ
′ (α) = 0, and limα→∞ λ

′ (α) = 1.

3. λ (α) < 1
α

+ α, λ′ (α) = φ′(αi)
1−Φ(αi)

+ (λ (αi))2 = λ (α) (λ (α)− α) > 0, λ′ (α) < 1, and λ′′ (α) ≥ 0.

Fact 3. (Hazard rate dominance implies first-order stochastic dominance) The hazard rate of a distribution with cdf F (·)
is defined by λ (x) = f(x)

1−F (x) = − d ln(1−F (x))
dx

, so F (x) = 1− e−
∫ x

0
λ(t)dt. If λi (g) > λj (g), ∀g, then it trivially follows that

Fi (·) > Fj (·).

At times, we use the fact that φ′ (α) = −αφ (α). The following results are also relevant for our derivations:

∂
(

Φ(α)
1−Φ(α)

)
∂µ

=
−φ (α) 1

σ

(1− Φ (α))2 and
∂
(

Φ(α)
1−Φ(α)

)
∂σi

=
−φ (α) α

σ

(1− Φ (α))2 ,
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as well as
∂α

∂µ
= ∂α

∂χ
= − 1

σ
and ∂α

∂σ
= −α

σ
.

A.4 AR(1) Mathematics
Let us assume that investors perceive the following law of motion for house prices:

∆pt+1 = µ+ ρ∆pt + εt+1, (A6)

where εt+1 ∼ N
(
0, σ2

ε

)
and ∆pt+1 ≡ pt+1 − pt. Equivalently, this process can be expressed as a non-stationary AR(2)

process: pt+1 = µ+ (1 + ρ) pt − ρpt−1 + εt+1, where we define an agent’s information set by It = {pt, pt−1}.

Perception of Future Prices: Analytical Results

First, we can analytically characterize the distribution of individual perceptions over house prices k-period forward, given
by pt+k. We analytically characterize up to to k = 5, but illustrate our results for higher k in Figure A2. Note that, from
the perspective of date t, any statistical moment of the perceived distribution of pt+k translates one-for-one into moments
of the distribution of pt+k − pt. Note also that pt+k − pt =

∑k

m=1 ∆pt+m, so we can refer in the text to the distribution of
cumulative price changes.

One and two periods forward, we can write

pt+1|It ∼ N
(
µ+ (1 + ρ) pt − ρpt−1, σ

2
ε

)
.

pt+2|It ∼ N
(
(1 + (1 + ρ))µ+

(
(1 + ρ)2 − ρ

)
pt − (1 + ρ) ρpt−1,

(
1 + (1 + ρ)2)σ2

ε

)
.

Three periods forward, we can show that pt+3|It is normally distributed with the following moments:

E [pt+3|It] =
(
2 + (1 + ρ)2)µ+

(
(1 + ρ)3 − 2ρ (1 + ρ)

)
pt +

(
ρ2 − (1 + ρ)2 ρ

)
pt−1

Var [pt+3|It] =
(

1 + (1 + ρ)2 +
(
(1 + ρ)2 − ρ

)2)
σ2
ε .

Four periods forward, we can show that pt+4|It is normally distributed with the following moments:

E [pt+4|It] = µ
[
1 + (1 + ρ)

(
2 + (1 + ρ)2)− ρ (2 + ρ)

]
+ pt

[
(1 + ρ)4 − 3ρ (1 + ρ)2 + ρ2]+ pt−1

[
2ρ2 (1 + ρ)− ρ (1 + ρ)3]

Var [pt+4|It] =
[
1 + (1 + ρ)2 +

(
(1 + ρ)2 − ρ

)2 +
(
(1 + ρ)3 − 2ρ (1 + ρ)

)2]
σ2
ε .

Finally, we can show that pt+5|It is normally distributed with the following moments:

E [pt+5|It] = µ
[
1− 2ρ+ (1 + ρ) + (2− ρ) (1 + ρ)2 + (1 + ρ)4 − ρ (1 + ρ) (2 + ρ)

]
+ pt

[
(1 + ρ)

[
(1 + ρ)4 − 3ρ (1 + ρ)2 + ρ2]− ρ ((1 + ρ)3 − 2ρ (1 + ρ)

)]
+ pt−1

[
(1 + ρ)

[
2ρ2 (1 + ρ)− ρ (1 + ρ)3]− ρ (ρ2 − (1 + ρ)2 ρ

)]
Var [pt+5|It] =

[
1 + (1 + ρ)2 +

(
(1 + ρ)2 − ρ

)2 +
(
(1 + ρ)3 − 2ρ (1 + ρ)

)2 +
(
(1 + ρ)4 − 3ρ (1 + ρ)2 + ρ2)2]σ2

ε .

Perception of Future Prices: Simulation

Given our assumption about the behavior of beliefs in Equation (A6), when we obtain information about house price growth
one-period forward, the average belief reported by an individual must be mapped to µ+ ρ∆pt and the standard deviation
reported by an individual must be mapped to σε.

Figure A2a shows the sensitivity of the expected house price k periods forward to a change in the parameter µ as of
date t. This exercise corresponds to attributing the reported expected house price growth by an individual over the next
twelve months to a change in µ: hence, the values in Figure A2a provide an upper bound for the impact that an increase of
E [pt+1|It] may have on E [pt+k|It]. Figure A2b shows the sensitivity of the standard deviation of the house price k periods
forward to a change in the parameter σε as of date t. Because there is a one-to-one mapping between Var [pt+k|It] and σ2

ε ,
these values are exact within the context of the process, and not only a bound.

Our results map a unit change in µ into roughly a twenty-fold increase for the expected price ten periods forward. Our
results map a unit change in σε into a roughly seven-fold increase for the standard deviation of house prices ten periods
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(a) Sensitivity of E [pt+k|It] to a change in µ
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(b) Sensitivity of
√

Var [pt+k|It] to a change in σε.

Note: Figure A2a illustrates the path of expected values for the house price k-periods forward induced by a change in µ. In other words, it
shows how a unit change in µ propagates over individual expectations of house prices. Figure A2b illustrates the path of standard deviations
induced by a unit change in σε, that is, it shows how a change in σε affects future perceived house price volatility. Both figures correspond
to the stochastic process ∆pt+1 = µ + ρ∆pt + εt+1. The blue dotted line is drawn for ρ = 0.65, while the green dashed line is drawn for a
random walk (ρ = 0), for comparison.

Figure A2: Expectation and Standard Deviation of pt+k

forward.

A.5 Further Extensions
Two assumptions crucially allow us to derive tractable analytical results: the risk neutrality of borrowers, common in
existing work on leverage cycles, and our formulation for housing preferences. Here, we show how our framework can be
extended to incorporate curvature in borrowers’ date-1 utility and smooth preferences for housing. Our theoretical results
can be interpreted as a first-order approximation to the more general case.

It is conceptually easy to make borrowers in our model risk averse. We assume that, at date 1, borrowers derive a
continuation utility of wealth vi (·). We also assume that their date-0 flow utility corresponds to a sufficiently regular
ui (c0i, h0i), so

max
δi,h0i

ui (n0i − p0h0i (1− Λi (δi)) , h0i) + β

[∫ δi−χi

g

vi
(
wD

1i
)
dFi (g) +

∫ g

δi−χi

vi
(
wN

1i
)
dFi (g)

]
,

where wN
1i = n1i + p1h0i − b0i = n1i + p0h0i (g − δi) and wD

1i = n1i − κih0i = n1i − χip0h0i.
Borrowers’ optimality conditions in this case correspond to

∂ui
∂c0i

(1− Λi (δi)) =
∂ui
∂h0i

p0
−χiβ

∫ δi−χi

g

v′i
(
wD

1i
)
dFi (g) + β

∫ g

δi−χi

(g − δi) v′i
(
wN

1i
)
dFi (g)︸ ︷︷ ︸

Expected Return

,

∂ui
∂c0i

Λ′i (δi) = β

∫ g

δi−χi

v′i
(
wN

1i
)
dFi (g)︸ ︷︷ ︸

Mg. Cost of Borrowing

,

which are the counterparts of Equations (6) and (7) in the main text. We highlight the terms through which the expected
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return and downpayment protection channels materialize. Equation (A1) corresponds in this case to

∂ui
∂c0i

= β

∫ g
δi−χi

v′i
(
wN

1i
)
dFi (g)

Λ′i (δi)
=

∂ui
∂h0i

p0 (1− Λi (δi))
+ β

(
−χi

∫ δi−χi
g

v′i
(
wD

1i
)
dFi (g) +

∫ g
δi−χi

(g − δi) v′i
(
wN

1i
)
dFi (g)

)
1− Λi (δi)

.

In this more general scenario, changes in borrowers’ beliefs only affect borrowers’ decisions insofar as they affect the expected
return and downpayment protection terms, which now include marginal utilities. We now sequentially study the impact of
several alternative modeling assumptions.

Final date risk aversion

We now assume that housing does not enter borrowers’ utility directly. In that case, we can combine borrowers’ optimality
conditions for housing and leverage to find a condition that generalizes (8). In particular, assuming κi = 0 for simplicity,

Λ′i (δi)
1− Λi (δi)

= 1
Ei[ (g−δi)v′i(wN

1i)|g≥δi]
Ei[ v′i(wN

1i)|g≥δi]

,

where
Ei
[

(g − δi) v′i
(
wN

1i
)∣∣ g ≥ δi]

Ei [v′i (wN
1i )| g ≥ δi]

= Ei [g − δi| g ≥ δi] +
Covi

[
g − δi, v′i

(
wN

1i
)
|g ≥ δi

]
Ei [v′i (wN

1i )| g ≥ δi]
.

This more general expression includes a new term that separately affects borrowers’ leverage choices. Unfortunately, it is
not possible to analytically characterize how a change on borrowers’ beliefs affects the new term.

In the fixed house size scenario, a simple result can be found when borrowers are prevented from defaulting. In that
case, the first-order condition for borrowing corresponds to

∂ui
∂c0i

Λ′i (δi) = β

∫ g

g

v′i (n1i + p0h0i (g − δi)) dFi (g) .

In this case, it is easy to show that more optimistic borrowers, in a first-order stochastic dominance sense, decide to borrow
more. Intuitively, optimism is associated with a desire to transfer resources from the future and lower precautionary savings,
both of which are associated with higher borrowing.

Smooth preferences for housing

In this case, we preserve borrowers’ risk neutrality and focus on the case in which preferences for housing are separable,

so ui (c0i, h0i) = vi (c0) + α
2

(
h0i − h̄

)2 and
∂ui
∂h0i
p0

= αh0i−h̄
p0

. Setting again κi = 0 for simplicity, we can express borrowers’
optimality condition for housing as

h0i = h̄+ p0

α

(
∂ui
∂c0i

(1− Λi (δi))− β
∫ g

δi

(g − δi) dFi (g)
)
.

In the limit in which α → ∞, it must be that h0i → h̄, so changes in borrowers’ beliefs do not affect housing choices. In
that case, borrowers’ make leverage choices according to

∂ui
∂c0i

Λ′i (δi) = β

∫ g

δi

dFi (g) ,

as in the fixed house size scenario.

Alternative savings opportunities

Finally, although we have introduced consumption at date 0 as homebuyers’ alternative use of funds, they could be indifferent
at the margin between their investment return on housing and alternative investment opportunities. If we assume that
households have access to a savings opportunity with a constant gross returns Rs, their date 0 budget constraint becomes

n0i = p0h0i (1− Λi (δi)) + s, (A7)
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where s denotes savings. Therefore, at the optimum, the counterpart of Equation (A1) corresponds to

Rs =
β
∫ g
δi−χi

dFi (g)
Λ′i (δi)

=
β
[
−χi

∫ δi−χi
g

dFi (g) +
∫ g
δi−χi

(g − δi) dFi (g)
]

1− Λi (δi)
. (A8)

Homebuyers’ housing and borrowing decisions must at the margin yield a return Rs, so every argument in the paper remains
valid. We adopt the formulation with consumption in the paper because for this alternative formulation to be well-behaved
in the variable house size case, we would need to impose some curvature in the return Rs. By slightly changing the default
formulation, one can allow for borrowers to save at date 0 to use some of those funds to avoid default at date 1. In that
case, Equations (A7) and (A8) still determine the equilibrium after accounting for the different default behavior.

Role of Lenders’ Beliefs

Although our empirical findings build on cross-sectional variation on homebuyers’ beliefs, it may be valuable to separately
characterize the effect of changes in lenders’ beliefs on the equilibrium leverage choices of borrowers. We show that an
increase in lenders’ optimism can increase equilibrium leverage in both the fixed house size and the variable house size
scenarios. We assume that lenders have normally distributed beliefs with mean µL.

Proposition. (Parametric predictions of lenders’ beliefs.) In the variable house size scenario and the fixed house size
scenario, higher optimism by lenders, in the form of a higher average belief µL, holding all else constant, including borrowers’
beliefs, can be associated with higher leverage.

We now formally show that a change in the average belief of lenders µL is associated with point-wise shifts in Λi (·) and
Λ′i (·). Intuitively, when lenders become more optimistic, borrowers have access to cheaper funding. In the variable house
size scenario, we show that access to cheaper credit increases the maximum levered return that a borrower can achieve,
generating a substitution effect towards higher leverage in equilibrium. In the fixed house size scenario, in addition to the
substitution effect, there is an income effect that works in the opposite direction: lower interest rates make borrowers feel
richer, which generates a force towards higher consumption and lower leverage. Therefore, our results show that shifts in
the beliefs of borrowers and lenders, when considered in isolation, can have opposite predictions for equilibrium leverage.

To provide comparative statics in the case of lenders’ beliefs, we must characterize the behavior of ∂Λi(δi)
∂µL

and ∂Λ′i(δi)
∂µL

.37

Formally, we find that both the LTV schedule offered by lenders and its derivative with respect to δi shift pointwise with
changes in µL:

∂Λi (δi)
∂µL

=
ηΦ
(
δi−χi−µL

σL

)
− (ηµL−δi)

σL
φ
(
δi−χi−µL

σL

)
+ ηφ′

(
δi−χi−µL

σL

)
1 + r

> 0,

∂Λ′i (δi)
∂µL

= (ηχi + (1− η) δi)
(
λ
(
δi − χi − µL

σL

)
− δi − χi − µL

σL

) 1
σL

φ
(
δi−χi−µL

σL

)
1 + r

+
[
1− (ηχi + (1− η) δi)λ

(
δi − χi − µL

σL

)] 1
σL

φ
(
δi−χi−µL

σL

)
1 + r

> 0,

where we use the fact that the pdf of the Normal distribution satisfies φ′ (x) = −xφ (x) and that 1 >

(ηχi + (1− η) δi)λ
(
δi−χi−µL

σL

)
at any interior solution. Both results, when combined, imply that

d
(

Λ′i(δi)
1−Λi(δi)

)
dµL

> 0.

In the variable house size scenario, Equation (A3) directly implies that upward point-wise shifts on Λ′i(δi)
1−Λi(δi)

are
associated with a higher equilibrium leverage choice δi. Hence, a higher µL is associated with a higher equilibrium

37Note that we can express LTV schedules as

Λi (δi) =

ηΦ
(
δi−χi−µL

σL

)(
µL − σL

φ
(
δi−χi−µL

σL

)
Φ
(
δi−χi−µL

σL

))+
(
1− Φ

(
δi−χi−µL

σL

))
δi

1 + r

=
δi + (ηµL − δi) Φ

(
δi−χi−µL

σL

)
− ησLφ

(
δi−χi−µL

σL

)
1 + r
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leverage choice δi. In the fixed house size scenario, Equation (A4) directly implies that upward point-wise shifts on
u′i (n0i − p0h0i (1− Λi (δi))) Λ′i (δi) are associated with a higher equilibrium leverage choice δi. In this case,

∂ (u′i (·) Λ′i (δi))
∂µL

= u′i (n0i − p0h0i (1− Λi (δi)))
∂Λ′i (δi)
∂µL

+ p0h0iu
′′
i (n0i − p0h0i (1− Λi (δi)))

∂Λi (δi)
∂µL

Λ′i (δi) ,

whose sign is ambiguous. An increase in µL generates both a substitution and an income effect. More optimistic lenders
offer more attractive LTV schedules at the margin, so borrowers substitute towards higher leverage. More optimistic lenders
offer more attractive schedule, which makes borrowers effectively richer at date 0, reducing their need to borrow, which
reduces their equilibrium leverage.
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B Numerical Simulation
Although we have derived our analytical results in the context of two polar scenarios, we now simulate an extension
of the model in which homebuyers have conventional CES preferences over consumption and housing (see, for example,
Piazzesi, Schneider and Tuzel, 2007). In that case, the return sensitivity of housing investments is not determined by a
potentially-binding housing size constraint, but instead arises endogenously from household preferences.

Our goal with this simulation is twofold. First, we show that we can recover the predictions of both polar scenarios for
the relationship between beliefs and leverage choices when employing more conventional preferences for housing. The fact
that we can generate opposite predictions reinforces our motivation for the empirical analysis, which seeks to understand
which effects dominate in the data. At the same time, we can provide a sense of the parameters that are consistent with
the predictions of the fixed house size scenario that we find in the data. Second, the extended model allows us to formally
reconcile the findings of this paper with the findings of Bailey et al. (2017), who document that more optimistic individuals
purchase larger homes. Specifically, we show that in a world with partial collateral return sensitivity, it is possible to have
more optimistic individuals purchasing larger houses with lower LTV ratios.

Environment. We consider the same environment as in Section 3, except that we drop the housing constraint, given
by Equation (2), and instead introduce standard CES preferences between consumption and housing at date 0. Formally,
homebuyers solve the following problem:

max
c0i,δi,h0i

J (c0i, δi, h0i)

where

J (c0i, δi, h0i) = U (c0i, h0i) + βp0h0i

∫ g

δi

(g − δi) dFi (g)− λ0i (c0i + p0h0i (1− Λ (δi))− n0i) ,

and where
U (c0i, h0i) = (ui (c0i, h0i))1−γ

1− γ and ui (c0i, h0i) =
[
αc

ε−1
ε

0i + (1− α)h
ε−1
ε

0i

] ε
ε−1

where σ corresponds to the elasticity of substitution between consumption and housing.38 The lenders’ LTV schedule is
given by

Λi (δi) =
η
∫ δi
g
gdFL (g) + δi

∫ g
δi
dFL (g)

1 + r
,

with FL (·) normally distributed. Using the fact that c0i = n0i − p0h0i (1− Λ (δi)), the solution of the model can be found
by solving the following system of two equations and two unknowns, δi and h0i:

∂ui (c0i, h0i)
∂h0i

= p0β (1− Fi (δi))

(
1− Λ (δi)

Λ′ (δi)
−

∫ g
δi

(g − δi) dFi (g)∫ g
δi
dFi (g)

)
∂ui (c0i, h0i)

∂c0i
= β

1− Fi (δi)
Λ′ (δi)

Parameters. Although our model is highly stylized, we stay close to existing quantitative models with housing when
selecting parameters for our simulation. We interpret the single period in the model as five years. Our choices for preference
parameters build on Piazzesi, Schneider and Tuzel (2007). We select a static elasticity of substitution between consumption
and housing of ε = 1.25, an EIS/Risk Aversion parameter of γ = 1 (corresponding to log-utility), and α = 0.5, which would
imply equal shares of consumption and housing services in a static setup. We use a recovery rate for lenders of η = 0.75
after default, consistent with Campbell, Giglio and Pathak (2011). We normalize p0 = n0i = 1, so that lenders’ date-0
resources are equal to unity. We assume that lenders’ average belief is µL = 1.1 and that both homebuyers and lenders have
the same standard deviation of beliefs, σB = σL = 0.25. We assume that r = 1.15 ≈ 1.035 and consider two scenarios: one
with patient homebuyers/borrowers (β = 0.95 ≈ 0.995), and one with impatient homebuyers/borrowers (β = 0.7 ≈ 0.945).
We set (effectively non-binding) upper and lower thresholds for all distributions g = 0.1 and g = 2.

Results. We illustrate the results of our simulation in Figure A3. The left panels show the relationship between impatient
borrowers’ beliefs and choices for LTV ratio and house size. Over almost the entire range of beliefs considered, µB ∈ [1, 1.2],
we find a negative relationship between borrowers’ beliefs and leverage choices, consistent with the empirical results in
Section 3. Only when borrowers are very optimistic, we find that LTV ratios are increasing in borrowers’ beliefs. In

38This preference specification implies that Uc = αu
1
ε
−γ

i c
− 1
ε

0i and Uh = (1− α)u
1
ε
−γ

i h
− 1
ε

0i .
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Figure A3: Simulation

(a) Relatively Impatient Homebuyers
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(b) Relatively Patient Homebuyers
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Note: Both panels show homebuyers’ optimal leverage and housing decisions for different values of homebuyers’ average belief. Both
panels share the following parameters: ε = 1.25, γ = 1, α = 0.5, η = 0.75, r = 0.12, n0i = 1, p0 = 1, µL = 1.1, σL = 0.25, and
σB = 0.22. The left panel corresponds to impatient homebuyers, with β = 0.7. The right panel corresponds to patient homebuyers,
with β = 0.95.

addition, over the entire range of beliefs considered, more optimistic borrowers purchase bigger houses. This suggests that
for reasonable parameters, the predictions from our model are consistent with both our empirical results and the findings in
Bailey et al. (2017). In terms of magnitudes, a 5 percentage points increase in borrowers’ beliefs about house price changes
over the following 5 years (starting from µB = 1.05) reduces patient homebuyers’ LTV choice by roughly 100 basis points
and impatient homebuyers’ LTV choice by roughly 2 basis points. These values are within the ballpark of our empirical
estimates, although more sophisticated structural modeling could provide more precise predictions.

Which parameters are important for the model to generate both observed relationships? To explore this question,
the right panels show simulations of these relationships for impatient homebuyers. For relatively pessimistic borrowers
we continue to observe house size to increase and leverage to decrease with optimism. However, the relationship between
changes in optimism and changes in leverage turns positive at lower baseline levels of optimism. This suggests that
homebuyer impatience is helpful in generating the empirical findings within our model. The intuition is that, all else equal,
more impatient homebuyers choose to borrow more, and are therefore closer to the default threshold. More generally,
assumptions on primitives that generate high perceived probabilities of default are likely to generate the negative link
between optimism and leverage that we identify in this paper.
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C Non-Parametric Predictions

C.1 Theoretical results
While the parametric assumption underlying Propositions 1 and 2 are natural, given that the distribution of g is unimodal
and symmetric in the data, these results impose a priori unnecessary distributional restrictions. An alternative approach is
to consider cross-sectional comparisons among borrowers that do not rely on parametric assumptions. This approach uses
the ability to potentially observe shifts of the whole distribution of beliefs, which is a unique feature of our empirical setup.

In general, there are numerous ways in which one borrower may be “more optimistic” than another in a non-parametric
sense. For example, two borrowers could disagree primarily about the probability of very large declines or very large
increases in house prices. In this section, we identify the appropriate definition of stochastic dominance that allows us to
provide unambiguous directional predictions for borrowers’ leverage choices across both the fixed house size and variable
house size scenarios. Because of the inherent difficulties with establishing general comparisons between infinite-dimensional
distributions, our non-parametric results only provide a partial order when comparing borrowers in the data — there are
many pairwise comparisons of borrowers’ distributions that cannot be ranked according to the appropriate dominance
notion.

We use three different stochastic orders to define optimism. Given two distributions with cumulative distribution
functions Fj (·) and Fi (·) with support

[
g, g
]
, we define truncated expectation stochastic dominance, first-order stochastic

dominance and hazard rate dominance as follows:

1. Truncated expectation stochastic dominance: Fj stochastically dominates Fi (borrower j is more optimistic
than i) in a truncated expectation sense if

Ej [g| g ≥ δ] ≥ Ei [g| g ≥ δ] , ∀δ ∈
[
g, g
]
.

2. First-order stochastic dominance: Fj stochastically dominates Fi (borrower j is more optimistic than i) in a
first-order sense if

Fj (δ) ≤ Fi (δ) , ∀δ ∈
[
g, g
]
.

3. Hazard rate stochastic dominance: Fj stochastically dominates Fi (borrower j is more optimistic than i) in a
hazard rate sense if

fj (δ)
1− Fj (δ) ≤

fi (δ)
1− Fi (δ) , ∀δ ∈

[
g, g
]
.

All three definitions capture different notions of optimism. We show in Appendix A.3 that if Fj (·) dominates Fi (·) in a
hazard rate sense, then Fj (·) also dominates Fi (·) in a first-order and a truncated expectation sense. The converse is not
true: first-order stochastic dominance and truncated expectation dominance do not imply hazard rate dominance. Figure
A4 illustrates the relation between the different orders. Hazard rate dominance is equivalent to saying that 1−Fj(g)

1−Fi(g)
is

increasing on g. It captures the idea that optimists are increasingly optimistic about higher house price growth realizations.

Figure A4: Relation Between Stochastic Orders

Variable House Size Fixed House Size

Ej
[
g| g ≥ δ̃

]
≥ Ei

[
g| g ≥ δ̃

]
,∀δ̃ ⇒ LTVj ≥ LTVi

Truncated Expectation Stochastic Dominance

Fj

(
δ̃
)
≤ Fi

(
δ̃
)
,∀δ̃ ⇒ LTVj ≤ LTVi

First Order Stochastic Dominance

fj(δ̃)
1−Fj(δ̃)

≤ fi(δ̃)
1−Fi(δ̃)

,∀δ̃

Hazard Rate Stochastic Dominance

We have shown that in the variable house size scenario, when κi = 0, there are clear predictions for the leverage choices
across two borrowers whose belief distributions could be ranked according to truncated-expectation stochastic dominance.
We also showed that in the fixed house size scenario, clear predictions were obtained for belief distributions that could be
ranked according to first-order stochastic dominance. However, neither of these dominance concepts implies the other, so it
is unclear how to compare belief distributions if we are ex-ante agnostic about whether the fixed house size or the variable
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house size scenario applies. Therefore, we adopt hazard rate dominance as the appropriate definition of optimism that
allows to test non-parametrically for the effect of beliefs on leverage regardless of the underlying scenario, as formalized in
Proposition 3.

Proposition 3. (Non-parametric predictions.) Compare two borrowers i and j with different distributions Fi (·) and Fj (·)
about the growth rate of house prices changes.
a) In the variable house size scenario, if Fj (·) dominates Fi (·) in a hazard rate sense (or in a truncated expectation sense
when κi = 0), all else equal, borrower j chooses a higher LTV ratio and a larger house than borrower i.
b) In the fixed house size scenario, if Fj (·) dominates Fi (·) in a hazard rate sense (or in a first-order sense), all else equal,
borrower j chooses a lower LTV ratio and lower consumption than borrower i.

Proposition 3 shows that borrowers’ optimism, measured as hazard rate dominance, has opposite predictions in the polar
scenarios we consider for any value of κi. More optimistic borrowers take on more leverage in the variable house size
scenario, but they take on less leverage in the fixed house size scenario. These results generalize the insights from the
case with normally distributed beliefs, but they are not exactly identical. We show here that, when beliefs are normally
distributed, a distribution with a higher mean dominates in a hazard rate sense a distribution with a lower mean (holding its
variance constant). Hence, when comparing means in the normal case, the results of Proposition 1 are implied by those of
Proposition 3. However, we also show that, in the normal context, a distribution with a higher variance does not dominate
in a hazard rate sense a distribution with a lower variance (holding its mean constant). This illustrates that hazard rate
dominance is only a sufficient (not a necessary) condition to derive unambiguous predictions for the relationships between
beliefs and leverage choice.

Proof of Proposition 3. (Non-parametric predictions)

In the variable house size scenario, it follows that an upward pointwise shift in 1 − Fi
(
δ̃
)
, ∀δ̃, is associated with a lower

equilibrium value of δi. If the beliefs of borrower j first-order stochastically dominate the beliefs of borrower i (borrower j
is more optimistic), then Fj

(
δ̃
)
< Fi

(
δ̃
)
and 1−Fj

(
δ̃
)
> 1−Fi

(
δ̃
)
, which implies that borrower j takes on more leverage

on equilibrium.
In the variable house size scenario, from Equation (8), it follows that an upward pointwise shift in −χi

Fi(δ̃−χi)
1−Fi(δ̃−χi) +

Ei
[
g| g ≥ δ̃ − χi

]
, ∀δ̃ is associated with a higher equilibrium value of δi. To compare the leverage choices of two different

borrowers i and j, it is thus sufficient to show that Fj �HRD Fi implies that

Ej
[
g| g ≥ δ̃

]
− Ei

[
g| g ≥ δ̃

]
> 0, ∀δ̃,

to conclude that the more optimistic borrower j takes on more leverage, since hazard-rate dominance implies first order
stochastic dominance, which trivially implies that Fj(δ̃−χi)

1−Fj(δ̃−χi) <
Fi(δ̃−χi)

1−Fi(δ̃−χi) . To this purpose, we can define h (δ) as

h
(
δ̃
)

= Ej
[
g| g ≥ δ̃

]
− Ei

[
g| g ≥ δ̃

]
.

We can express the derivative of h
(
δ̃
)
as

h′
(
δ̃
)

=
∂Ej

[
g| g ≥ δ̃

]
∂δ

−
∂Ei

[
g| g ≥ δ̃

]
∂δ

=
fj
(
δ̃
)

1− Fj
(
δ̃
) [Ej [g| g ≥ δ̃]− δ̃]− fi

(
δ̃
)

1− Fi
(
δ̃
) [Ei [g| g ≥ δ̃]− δ̃]

=

(
fj
(
δ̃
)

1− Fj
(
δ̃
) − f

(
δ̃
)

1− F
(
δ̃
))︸ ︷︷ ︸

>0

Ej
[
g| g ≥ δ̃

]
+

fi
(
δ̃
)

1− Fi
(
δ̃
)h (δ̃) . (A9)

When δ̃ → 0, it follows from hazard-rate dominance that Ej [g] − Ei [g] > 0. Note that all elements in (A9) are strictly
positive under hazard rate dominance, which implies that the solution to the ordinary differential equation for h

(
δ̃
)
must

be weakly positive everywhere, implying that h
(
δ̃
)
is positive, which shows our claim.
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C.2 Non-Parametric Test
The empirical results presented in Sections 3.3 and 3.4 test the predictions from our model under the assumption
that individuals’ beliefs about future house price changes are normally distributed. We argued that this is a realistic
approximation, given the shape of the distribution of actual house price changes. In Section C.1, we also derived non-
parametric predictions on the relative mortgage leverage choices of individuals with arbitrary belief distributions. In
particular, we showed that an individual whose belief distribution dominated that of an otherwise identical individual in
the sense of hazard rate dominance would choose higher leverage in the variable house size scenario, but lower leverage in
the fixed house size scenario.

While we are not able to measure the full belief distribution of each individual, we can compare how the leverage
choices of individuals vary with the full distribution of the house price experiences of their friends.39 Specifically, we
conduct pairwise comparisons of the distributions of the house price experiences of all friends (and all out-of-commuting
zone friends) of individuals purchasing houses in the same county in the same month, and who borrow from the same
lender. We then test whether one distribution dominates the other in a hazard rate dominance sense. We only focus on
county-month-lender combinations with at least three mortgage originations: at the average (median) such combination, we
have 9.8 (5) mortgage originations. Of all the pairwise comparisons across these originations, we can rank the distribution
of all friends’ house price experiences in a hazard rate sense for 3.5% of transaction pairs, and the distributions of out-
of-commuting zone friends’ house price experiences for 8.1% of transaction pairs. When comparing the mortgage leverage
choices across the individuals with a clear ranking using the experience distribution of all friends, we find that individuals
with an experience distribution that is hazard rate dominant will choose 90 basis points lower leverage; this difference is
highly statistically significant. When comparing the experience distribution of individuals’ out-of-commuting zone friends,
those with a hazard rate dominant distribution choose a 68 basis points lower leverage. Both of these results provide
additional evidence that the fixed house size scenario, in which collateral choices are return insensitive, is dominant in the
data.

39This test builds on the survey evidence in Section 3.2, which showed that, on average, the first and second moments of the house
price experiences of an individual’s friends affect the corresponding moments of her belief distribution about future house price changes.
The assumption underlying the test in this section is that additional moments of the distribution of individuals’ friends’ house price
experiences will also shift the corresponding moments of those individuals’ belief distribution.
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D Additional Evidence

D.1 Distribution of County-Level House Price Changes
Figure A5 shows the distribution of county-year level annual house price changes in the United States between 1993 and
2017, as measured by Zillow. The distribution is unimodal and approximately symmetric, motivating our choice of modeling
beliefs about house price changes to follow a normal distribution.

Figure A5: Distribution of House Price Changes (1993-2017)
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Note: Figure shows the distribution of annual county-level house price changes in the United States since 1993, as measured by Zillow.

D.2 Transactions Over Time
Figure A6 shows the number of transactions per calendar year in the baseline sample studied in Section 2.1.

Figure A6: Number of Transactions
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Note: Figure shows the number of transactions by purchase year in our matched transaction-Facebook sample.
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D.3 Hedonic Valuation Model
In Section 3.4, we address the concern that the relationship between optimism and leverage is the result of more optimistic
individuals not being able to increase their mortgage amount. The concern is that these optimistic individuals overpay
for their properties, yet banks determine maximal mortgage amounts based on their own assessed value of the property.
To rule out such concerns, we control for the extent of overpayment by individual homebuyers in column 4 of Table 5. In
column 5 of that Table, we restrict the sample to transactions where the homebuyer paid less for the property than its
predicted value. In this Appendix, we discuss our procedure of arriving at the automated valuation of the property, and
describe how we construct our measure of overpayment. Specifically, we begin by running a hedonic regression of the log of
the transaction price on observable characteristics of the property (see Giglio, Maggiori and Stroebel, 2015; Stroebel, 2015,
for similar hedonic pricing approaches):

log (Pricei,t) = α+ βXi,t + ψzipi,t + εi,t.

We control flexibly for the property characteristics that are observable in our data set: property size, lot size, property
age, property type, and whether the property has a pool. For property size and lot size, we include year-specific dummy
variables for 50 quantiles of the distribution. For the other variables, we include year-specific dummy variables for each of
the possible values. In addition, we include zip code by month fixed effects, to control for localized time-trends in house
prices. This regression has an R2 of 83.6%, which is high, particularly given the fact that we observe prices in buckets. We
then calculate, for each property, the predicted price based on this hedonic pricing model. We then construct a measure of
whether a particular buyer “overpaid” relative to the predicted value as:

Overpay = 100× TransactionPrice− PredictedPrice
PredictedPrice

.

D.4 County Wealth vs. County House Price Changes
One concern addressed in Section 3.4 was that wealthier people would have friends in wealthier counties. If these wealthier
counties also experienced house price appreciation, then the estimates of β1 in Equation R1 might be picking up that
wealthier people make larger downpayments. We argued that this is unlikely to be the explanation of our results, since
no persons’ friend experience consistently higher or lower house price experiences. Specifically, we argued that it was not
the case that wealthier regions always have higher house price growth — in some years, wealthier counties see larger house
price increases, in other years they see smaller house price increases. In this Appendix, we provide the evidence for these
claims.

Specifically, to measure household wealth at the county level, we use county-level measures of average household net
wealth constructed by Applied Geographic Solutions for the years 2011 to 2016.40 The ranking of counties in their net
wealth is stable over time: counties that were relatively wealthy in 2011 were generally relatively wealthy in 2014 — see
Panel (a) of Figure A7. However, house price changes over the prior 24 months were quite different between 2011 and 2014:
counties that had a relatively positive house price experience in the 24 months leading up to January 2011 had a relatively
negative house price experience in the 24 months leading up to January 2014 – see Panel (b) of Figure A7. As a result, the
relationship between county-level wealth and house price growth depends on time horizon considered. For example, Panel
(c) shows that in January 2011, wealthier counties had experienced relatively larger house price declines over the previous
24 months while Panel (d) shows that in January 2014, wealthier counties had seen larger relative house price increases.

The instability of the relationship between county wealth and house price experiences is a persistent pattern in our
data. To document this, we calculate, for every month between January 2008 and December 2016, the correlation between
net wealth and house price changes over the previous 24 months. Panel (e) of Figure A7 plots that correlation over time.
One can see that the correlation between wealth and past house price experiences is zero or negative until January 2013,
after which it becomes positive. Due to the strong persistence in county net wealth over time, this pattern is unaffected by
when we measure of county level net wealth.

40Applied Geographic Solutions defines net worth as the difference between assets and debts of households at the county level,
where assets include transactions accounts, life insurance with cash value, primary residence value, and debts include mortgage and
credit card debt. This measure is constructed using a number of data sets, including from the American Community Survey, the U.S.
Census, IRS statistics, and credit bureau data.
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Figure A7: County Level Wealth and House Price Changes
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(b) County Wealth vs. House Price Changes
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(c) County Wealth vs. House Price Changes: January 2011
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(d) County Wealth vs. House Price Changes: January 2014
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(e) Correlation between House Price Changes and Net Wealth
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Note: Panel (a) shows a binned scatter plot of counties’ average net wealth in 2011 and 2014. Panel (b) shows a binned scatter plot
of counties’ house price changes in the 24 months up to January 2011 and the 24 months up to January 2014. Panels (c) and (d) show
binned scatter plots of county-level wealth in 2011 and county-level house price changes in the 24 months prior to January 2011 and
prior to January 2014, respectively. Panel (e) shows a monthly time-series in the correlation between county-level net wealth (either
measured in 2011 or in 2014) and the counties’ house price changes over the previous 24 months.
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D.5 Downpayments and Expected Default
As discussed in Section 4, many personal financial advice websites and blogs discuss the tradeoffs between making larger
and smaller downpayments. Many of these highlight explicitly the tradeoffs that we formally model in Section 1. For
example, the real estate brokerage website Home Point Real Estate describes one of the benefits of high leverage as follows:

This last reason for putting down a small down payment is kind of twisted, but sadly practical. I doubt we
are going to have any down turn in the market soon, and I really doubt it will be like the one we just came
through if it does come; but the less you put down the less you lose. Yet, if you are upside down on your home
and have to walk away (or lose to foreclosure) the less down payment you put into it the less you lose.

Reuters (2011) outlines similar reasons for making a smaller downpayment:

Even if you have the money for a bigger down payment, there can be good reasons to save your cash. Mortgage
rates continue to skirt all-time lows: Why not put your money to work for yourself and borrow as much as you
can reasonably afford, on a monthly basis, at today’s rates? You can put the money you’re not paying into a
down payment to work elsewhere. If home values rise, you will have done your best to leverage a small down
payment into bigger equity. If they fall, you’ll have less skin in the game, and that could put more pressure on
your banker to improve your loan terms lest you walk away.

US News (2017) described the benefits of a smaller downpayment as follows:

The last major housing crash scared some people away from low down payments after many homeowners
found themselves owing more than their homes were worth when values plummeted. But even a 20 percent
down payment won’t protect you against a 50 percent drop in home values. In fact, if you lost your home to
foreclosure or did a short sale, you may have lost less money if you made a small down payment.

MK Real Estate (2016) describes why making smaller downpayments is the more conservative choice for home buyers
worried about potential house price drops.

The link between the economy and home prices is the third reason to consider a small down payment. In
general, as the U.S. economy improves, home values rise. When the U.S. economy sags, home values sink.
Buyers with large down payments find themselves over-exposed to economic downturns compared to buyers
whose down payments are small.
Consider the purchase of a $400,000 home and two home buyers, each with different ideas about how to buy a
home. One buyer makes a 20% down payment to avoid Private Mortgage Insurance (PMI). The other buyer
wants to stay as liquid as possible, and puts down just 3.5%. The first buyer takes $80,000 from the bank and
converts it to illiquid home equity. The second buyer puts $14,000 into the home.
Over the next few years, the economy falters. Our two buyers lose 20% of the value of each of their homes,
bringing their values down to $320,000. Neither buyer has any equity left. Our first buyer lost all $80,000 of
their money. That money is lost and cannot be recouped except through the housing market’s recovery. The
second buyer lost only $14,000. While the second buyer’s home is “underwater,” with more money owed on
the home than the home is worth, the bank has the risk of loss and not the borrower.
Let’s say that both borrowers default and no longer make their payments. Which homeowner will the bank
be more likely to foreclose upon? It’s counter-intuitive, but the buyer who made a large down payment is less
likely to get relief during a time of crisis and is more likely to face foreclosure. A bank’s losses are limited to
when the home is sold at foreclosure. The homeowner’s twenty percent home equity is already gone, so the
remaining losses (legal and home prep costs) are easily absorbed by the bank. Foreclosing on an underwater
home will lead to great losses. All of the borrower’s money is already lost. The bank will not only have legal
and home prep costs, but will also have to write down $66,000 in lost value.
Conservative borrowers recognize that risk increases with the size of the down payment. The smaller your down
payment, the smaller your risk.

D.6 Downpayment Motivation Survey
In Section 4.2, we described results from our Downpayment Motivation Survey. In this Appendix, we provide additional
information on the respondent demographics, and more details on how the responses vary with these demographics. For
complete disclosure, the full data set is available from the authors upon request.
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We ran two waves of the survey between September 19, 2017, and September 21, 2017. The survey was designed using
the SurveyMonkey survey platform. Each wave was targeted at approximately 800 homeowners, and no additional filters
for the target audience were selected. In each wave, respondents were presented with two different house price growth
scenarios, and asked to select one of three different mortgage choices for each house price scenario. In Table A1, we
show the changes in the downpayment recommendation between the optimistic and the pessimistic scenario (“Decreased
Downpayment” represents individuals who suggested a smaller downpayment in the more pessimistic house price scenario).

Table A1: Downpayment Motivation Survey - Results by Demographics

Total
Decreased

DP

Same 

DP

Increased

DP
Total

Decreased

DP

Same 

DP

Increased

DP

All 826 20.5% 69.4% 10.2% 794 14.0% 77.6% 8.4%

Income
   $0 to $9,999 17 11.8% 82.3% 5.9% 12 8.3% 91.7% 0.0%
   $10,000 to $24,999 38 13.2% 63.2% 23.7% 37 10.8% 62.2% 27.0%
   $25,000 to $49,999 92 14.1% 76.1% 9.8% 84 8.3% 88.1% 3.6%
   $50,000 to $74,999 56 23.2% 73.2% 3.6% 46 15.2% 60.9% 23.9%
   $75,000 to $99,999 35 20.0% 71.4% 8.6% 40 17.5% 80.0% 2.5%
   $100,000 to $124,999 15 6.7% 86.7% 6.7% 18 16.7% 83.3% 0.0%
   $125,000 to $149,999 50 26.0% 66.0% 8.0% 51 7.8% 84.3% 7.8%
   $150,000 to $174,999 103 28.2% 59.2% 12.6% 88 13.6% 77.3% 9.1%
   $175,000 to $199,999 122 22.1% 68.0% 9.8% 122 13.1% 80.3% 6.6%
   $200,000 and up 117 18.0% 75.2% 6.8% 108 16.7% 74.1% 9.3%
   Prefer not to answer 125 16.0% 76.8% 7.2% 137 16.8% 77.4% 5.8%

Age
   18‐29 51 23.5% 62.8% 13.7% 42 14.3% 78.6% 7.1%

   30‐44 168 18.5% 68.4% 13.1% 154 11.7% 76.6% 11.7%

   45‐59 215 16.7% 76.3% 7.0% 216 16.2% 76.4% 7.4%

   60+ 336 21.4% 70.5% 8.0% 331 13.0% 79.2% 7.8%

Gender
   Male 324 19.4% 67.9% 12.6% 294 14.3% 77.2% 8.5%

   Female 446 21.5% 70.8% 7.7% 449 9.2% 83.1% 7.7%

Region
   East North Central 130 21.5% 70.8% 7.7% 130 9.2% 83.1% 7.7%
   East South Central 46 15.2% 73.9% 10.9% 41 9.8% 82.9% 7.3%
   Middle Atlantic 94 18.1% 73.4% 8.5% 90 16.7% 75.6% 7.8%
   Mountain 58 13.8% 82.8% 3.5% 63 14.3% 74.6% 11.1%
   New England 44 13.6% 77.3% 9.1% 47 12.8% 78.7% 8.5%
   Pacific 133 23.3% 65.4% 11.3% 111 10.8% 79.3% 9.9%
   South Atlantic 131 22.1% 64.1% 13.7% 134 18.7% 72.4% 9.0%
   West North Central 59 17.0% 78.0% 5.1% 55 18.2% 76.4% 5.4%
   West South Central 74 20.3% 71.6% 8.1% 68 11.8% 79.4% 8.8%

Wave 1 Wave 2

Note: Table shows responses in the Downpayment Motivation Survey separately by the reported demographic of the respondents.
The results show how the downpayment recommendation changes in the pessimistic house price scenario relative to the optimistic
house price scenario.
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