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ELEMENTARY PORTFOLIO

MATHEMATICS

6.1 AN INTRODUCTION TO PORTFOLIO ANALYSIS

(Background reading: sections 5.1 and 5.5)

An investor’s portfolio is the set of all her investments. The investor’s wealth and abil-
ity to spend is a function of her entire portfolio of investments. Thus, it is reasonable
for an investor to be concerned with the performance of individual securities only to
the extent that their performance affects overall portfolio performance. Since the
returns of individual investments tend to be related to one another, the composition of
the investor’s portfolio is of primary importance. We can demonstrate that investors
can more effectively control their investment risk by selecting appropriate securities in
appropriate combinations.

The return on an investor’s portfolio is a simple weighted average of the component
individual security returns. One calculates the expected return of a portfolio based on
either a function of potential portfolio returns and their associated probabilities (as com-
puted in chapter 5) or finding the weighted average of expected returns on individual
securities. In the vast majority of cases, portfolio returns variance or standard devi-
ation will be less than the weighted average of the individual security return variances
or standard deviations. The extent to which overall portfolio risk is less than the
weighted average of component asset risk levels will depend on the nature of co-
movement between the assets.

6.2 PORTFOLIO RETURN

(Background reading: sections 2.8, 5.5, and 6.1)

In section 5.5, we computed the expected return of a security as a function of poten-
tial return outcomes and associated probabilities. The expected return of a portfolio 
is calculated similarly, using equation (6.1), where the subscript p designates the 
portfolio and the subscript j is a counter designating a particular outcome out of m
potential outcomes:
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104 Elementary portfolio mathematics

(6.1)

For many portfolio management applications, it is useful to express portfolio return
as a function of the returns of the individual securities that comprise the portfolio:

(6.2)

The subscript i designates a particular security out of n in the portfolio. The weights
wi are the portfolio proportions. Thus, a security weight wi specifies how much money
is invested in security i relative to the total amount invested in the entire portfolio:

Thus, portfolio return is simply a weighted average of individual security returns.
Consider a portfolio made up of two securities, one and two. The expected return of

security one is 10% and the expected return of security two is 20%. If 40% of the dol-
lar value of the portfolio is invested in security one (that is, [w1] = 0.40), and the remain-
der is invested in security two ([w2] = 0.60), the expected return of the portfolio may
be determined as follows by equation (6.2):

E[Rp ] = (w1 · E [R1]) + (w2 · E [R2 ]),

E[Rp ] = (0.4 · 0.10) + (0.6 · 0.20) = 0.16.

6.3 PORTFOLIO VARIANCE

(Background reading: sections 2.9, 5.7–5.10, and 6.2)

Portfolio return variance may also be defined as a function of potential portfolio
returns and associated probabilities:

(6.3)

Again, it is usually helpful to express portfolio variance as a function of individual secur-
ity characteristics. However, we stress that the variance of portfolio returns is not simply
a weighted average of individual security return variances. We will actually be able to
demonstrate that we can combine a set of high-risk assets into a low-risk portfolio. This
is due to the important relationship between portfolio risk and return covariances between
pairs of securities. The portfolio returns variance can be computed by solving the fol-
lowing function:
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(6.4)

Section 2.9 discussed the general process for working with double summations. We
would solve equation (6.4) to compute the variance of a two-security portfolio as follows:

σ 2
p = w1 · w1 · σ1 · σ1 · ρ1,1 + w1 · w2 · σ1 · σ2 · ρ1,2

+ w2 · w1 · σ2 · σ1 · ρ2,1 + w2 · w2 · σ2 · σ2 · ρ2,2. (6.5)

Notice that we start the summation operations at i = 1 and j = 1. This means that in
the first stage of operation, both i and j refer to security 1. In the second stage, i still
refers to security 1 but j refers to security 2. Since n, the number of securities, equals
2, the third stage starts j over again at 1 and i now refers to security 2. In the fourth
stage, both i and j refer to security 2. We simplify the result to complete the computa-
tional process.

Equation (6.5) can only be used for a two-security portfolio. Equation (6.4) and vari-
ations of it to be discussed later may be used to compute portfolio variances when n
exceeds 2 (see equation (6.9)). Hence, equation (6.5) is only a special case of equation
(6.4).

Consider the portfolio constructed in section 6.2. The weights associated with secur-
ities 1 and 2 are 0.4 and 0.6, respectively. Assume that the standard deviations of returns
for securities one and two are 0.20 and 0.30, respectively, and that the correlation
coefficient ρij between returns on the two securities is 0.5. We should also note that
ρ1,2 = ρ2,1 and that ρ1,1 = ρ2,2 = 1 because the correlation coefficient between anything
and itself equals 1. Following equations (6.4) and (6.5), we compute the variance and
standard deviation of portfolio returns as follows:

σ 2
p = 0.4 · 0.4 · 0.2 · 0.2 · 1 + 0.4 · 0.6 · 0.2 · 0.3 · 0.5 

+ 0.6 · 0.4 · 0.3 · 0.2 · 0.5 + 0.6 · 0.6 · 0.3 · 0.3 · 1 = 0.0532. (6.6)

Thus, the standard deviation of portfolio returns would be 0.23, the square root of its
0.0532 variance level. By simplifying the expressions in the first and fourth sets of paren-
theses, combining the terms in the second and third sets, and rearranging, one can
simplify equations (6.5) and (6.6) for two-security portfolios:

σ 2
p = w2

1 · σ 2
1 + w2

2 · σ 2
2 + 2(w1 · w2 · σ1 · σ2 · ρ1,2 ),

σ 2
p = 0.42 · 0.22 + 0.62 · 0.32 + 2(0.4 · 0.6 · 0.2 · 0.3 · 0.5) = 0.0504.

A careful examination of these expressions will reveal that equation (6.4) can also be
rewritten as follows:
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106 Elementary portfolio mathematics

When a portfolio consists of only two securities, its variance can be determined by equa-
tion (6.8):

σ 2
p = w 2

1σ 2
1 + w 2

2σ 2
2 + 2w1w2σ1,2. (6.8)

Larger portfolios require the use of equations (6.4) or (6.7), accounting for all prod-
ucts of security weights and standard deviations squared and all possible combinations
of pair-wise security covariances and weight products. For example, equation (6.8) can
be rewritten for a three-security portfolio as

σ 2
p = w 2

1σ 2
1 + w 2

2σ 2
2 + w2

3σ 2
3 + 2w1w2σ1,2 + 2w1w3σ1,3 + 2w2w3σ2,3. (6.9)

Notice that equation (6.9) involves working with three individual security variances
(one for each security) and three sets of covariances (between 1 and 2, 1 and 3, and
2 and 3). Also notice the similarities between equation (6.8) for a two-security port-
folio and security 9 for a three-security portfolio.

As the number of securities in the portfolio increases, the amount of computa-
tional effort increases disproportionately. The number of sets of covariances between
nonidentical pairs of securities equals (n2 − n)/2. If 50 securities were to be included
in the investor’s portfolio, 1,225 sets of covariances would be required to combine 
with 50 variance terms in order to solve equation (6.7). Obviously, as the number of
securities in the portfolio becomes large, computers and computer spreadsheets
become quite useful in working through the repetitive calculations. The equations are
not difficult to solve; they are merely repetitive and time-consuming.

6.4 DIVERSIFICATION AND EFFICIENCY

The important contribution of the covariance terms in equations (6.4)–(6.9) is that
portfolio risk is a function of the extent to which security returns are related to one
another. Security risk can be diversified away by constructing portfolios of unrelated
assets. The statement “Don’t put all your eggs in one basket” has a strong basis in real-
ity. Investment in a variety of different securities with different return structures really
does result in portfolio risk reductions. One should expect that portfolio risk levels will
be lower than the weighted average security risk levels. Diversification is most effective
when the returns of the individual securities are inversely correlated. Lower covari-
ances σi,j result in lower portfolio risk. Portfolio risk is quite dependent on the correlation
coefficient of returns ρij between securities included in the portfolio. Lower correlation
levels imply lower risk levels. Because the covariance between security returns σi,j equals
the product σiσj ρi,j, reduced covariances imply reduced correlation coefficients. Thus,
lower correlation coefficients between securities imply lower portfolio risk. Portfolio risk
should be expected to decline whenever ρij is less than one and diversification increases.
We will normally expect any randomly selected pair of securities to have a correlation
coefficient less than one. Hence, we should normally expect that adding securities to
a randomly selected portfolio will tend to reduce portfolio risk.
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In our first example with securities 1 and 2, the weighted average of the standard
deviation of returns of the two securities is 26%:

Weighted Average σi = 0.4 · 0.2 + 0.6 · 0.3 = 0.26.

However, recall that the standard deviation of returns of the portfolio that they com-
bine to make is only 23%:

Clearly, some risk has been diversified away by combining the two securities into the
portfolio. In fact, the risk of a portfolio will almost always be lower than the weighted
average of the standard deviations of the securities that comprise that portfolio. The
only two exceptions occur when:

1 The returns correlation coefficient between all pairs of securities equals 1.
2 One of two assets in a two-asset portfolio has a zero standard deviation of returns.

For a more extreme example of the benefits of diversification, consider two securit-
ies, 3 and 4, whose potential return outcomes are perfectly inversely related. Data relev-
ant to these securities is listed in table 6.1. If outcome one occurs, security three will
realize a return of 30%, and security four will realize a 10% return level. If outcome
two is realized, both securities will attain returns of 20%. If outcome three is realized,
securities three and four will attain return levels of 10% and 30%, respectively. If each

 σ p   .   .   .   .   ( .   .   .   .   . )  . .= ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ =0 4 0 2 0 6 0 3 2 0 4 0 6 0 2 0 3 0 5 0 232 2 2 2

Table 6.1 A portfolio return with perfectly inversely correlated securities: w3 = w4 = 0.5

i R3i R4i Rpi Pi

1 0.30 0.10 0.20 0.333
2 0.20 0.20 0.20 0.333
3 0.10 0.30 0.20 0.333

Given:

B3 = 0.20, B4 = 0.20,

σ3 = 0.08165, σ4 = 0.08165,

w3 = 0.50, w4 = 0.50, ρ3,4 = −1.

Then:

Bp = w3B3 + w4B4 = (0.5 · 0.20) + (0.5 · 0.20) = 0.20,
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outcome is equally likely to occur (Pi is 0.333 for all outcomes), the expected return
level of each security is 20%; the standard deviation of returns for each security is
0.08165. The expected return of a portfolio combining the two securities is 20% if each
security has equal portfolio weight (w3 = w4 = 0.5), yet the standard deviation of port-
folio returns is zero. Thus, two relatively risky securities have been combined into 
a portfolio that is virtually risk-free. Application 3.5 in chapter 3 provides a general
format for constructing a riskless portfolio in the presence of two perfectly inversely
correlated assets.

Notice in the previous paragraph that we first combined securities 3 and 4 into a
portfolio and then found that portfolio’s return given each outcome. The portfolio’s return
is 20% regardless of the outcome; thus, it is risk-free. The same result can be obtained
with the variances of securities three and four, the correlation coefficient between their
returns, and solving for portfolio variance with equation (6.8) as in table 6.1.

The implication of the two examples provided in this chapter is that security risk can
be diversified away by combining the individual securities into portfolios. Spreading invest-
ments across a variety of securities does result in portfolio risk that is lower than the
weighted average risks of the individual securities. This diversification is most effective
when the returns of the individual securities are at least somewhat unrelated; or, bet-
ter still, inversely related, as were securities three and four in the previous example.
For example, returns on a retail food company stock and on a furniture company stock
are not likely to be perfectly positively correlated; therefore, including both of them in a
portfolio may result in a reduction of portfolio risk. From a mathematical perspective,
the reduction of portfolio risk is dependent on the correlation coefficient of returns ρij

between securities included in the portfolio. Thus, the lower the correlation coefficients
between these securities, the lower will be the resultant portfolio risk. In fact, as long
as ρij is less than one, which – realistically – is always the case, some reduction in risk
can be realized from diversification.

Consider the Portfolio Possibilities Frontier displayed in figure 6.1. This frontier
maps out portfolio return and standard deviation combinations as security weights vary.
The correlation coefficient between returns of securities C and D is one. Remember that
portfolio return is always a weighted average of individual security returns. The stand-
ard deviation of returns of any portfolio combining these two securities is a weighted
average of the returns of the two securities’ standard deviations, but only because the
correlation coefficient between returns on these securities equals 1. Thus, both portfolio
returns and portfolio standard deviation are linearly related to the proportions invested
in each of the two securities. Diversification here yields no benefits. In figure 6.2, 
the correlation coefficient between returns on securities A and B is 0.5. Portfolios 
combining these two securities will have standard deviations less than the weighted
average of the standard deviations of the two securities. Hence, the portfolio possibilit-
ies frontier for these two securities arches toward the vertical axis. Given this lower
correlation coefficient, which is more representative of “real-world” correlations, there
are clear benefits to diversification. In fact, we can see in figures 6.3 and 6.4 that decreases
in correlation coefficients result in increased diversification benefits. Lower correlation
coefficients result in lower risk levels at all levels of expected return. The portfolio 
possibilities frontier will exhibit a more significant arch toward the vertical axis as the
correlation coefficient between security returns decreases. Thus, an investor will benefit
by constructing his portfolio of securities with low correlation coefficients.

108 Elementary portfolio mathematics
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Diversification and efficiency 109

To this point, we have focused on using correlation coefficients to manage the diversi-
fication of a portfolio. However, we will also consider a second powerful diversification
tool. The risk of a portfolio will tend to decline as n, the number of securities in the
portfolio, increases. This result will hold as long as the securities are not perfectly 
correlated.1 It is perfectly reasonable to expect that securities will not be perfectly 
correlated. Thus, two factors govern the level of diversification in a portfolio:

Figure 6.1 The relationship between portfolio return and risk when ρCD = 1.

Figure 6.2 The relationship between portfolio return and risk when ρAB = 0.5.

1 This result also requires that as securities are added to the portfolio, their individual variances are not
increasing enough to offset the diversification benefits that they provide. If variances among all securities
are approximately equal or are randomly distributed with a constant mean, this result will hold. This result
will be demonstrated mathematically in application 8.5.
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110 Elementary portfolio mathematics

Figure 6.3 The relationship between portfolio return and risk when ρEF = 0.

Figure 6.4 The relationship between portfolio return and risk when ρGH = −1.

1 The covariances between pairs of securities in the portfolio. Smaller return covari-
ances of included securities lead to reduced portfolio risk.

2 The number of assets included in the portfolio. Larger numbers of included securities
lead to decreased portfolio risk.

6.5 THE MARKET PORTFOLIO AND BETA

The market portfolio is the collective set of all investments that are available to investors.
That is, the market portfolio represents the combination or aggregation of all securit-
ies (or other assets) that are available for purchase. Investors may wish to consider 
the performance of this market portfolio to determine the performance of securities 
in general. Since portfolio return is a weighted average of individual security returns,
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the return on the market portfolio is the average of returns on securities. Thus, the 
return on the market portfolio is representative of the return on the “typical” asset. 
An investor may wish to know the market portfolio return to gauge performance of a
particular security or investment portfolio relative to the performance of the market or
a “typical” security. The market return is also very useful for constructing additional
risk measures such as a security or investment portfolio beta:

(6.10)

Consider a stock A whose standard deviation of returns is 0.4 and assume that the
market portfolio standard deviation equals 0.2. Further assume that the correlation
coefficient between returns on security A and the market equals 0.75. Then the beta
(βA) of security A would be 1.5:

The beta of a stock measures the risk of a stock relative to the risk of the market port-
folio. Part of a stock’s risk derives from diversifiable sources (firm-specific) and other
risks are undiversifiable (market-related). The lower the correlation of a stock with the
market, the greater is the risk that can be diversified away. Thus, lower-risk stocks and
portfolios will have lower betas. Because beta only accounts for undiversified risk, the
beta of a portfolio equals the weighted average beta of its component securities.

Determination of the return on the market portfolio requires the calculation of
returns on all of the assets available to investors. Because there are hundreds of thou-
sands of assets available to investors (including stocks, bonds, options, bank accounts,
real estate, and so on), determining the exact return of the market portfolio may be
impossible. Thus, investors generally make use of indices such as the Dow Jones
Industrial Average or the Standard and Poor’s 500 to gauge the performance of the
market portfolio. These indices merely act as surrogates for the market portfolio; we
assume that if the indices are increasing, then the market portfolio is performing well.
For example, performance of the Dow Jones Industrials Average depends on the per-
formance of the 30 stocks that comprise this index. Thus, if the Dow Jones market index
is performing well, the 30 securities, on average, are probably performing well. This
strong performance may imply that the market portfolio is performing well. In any case,
it is easier to measure the performance of 30 or 500 stocks (for the Standard and Poor’s
500) than it is to measure the performance of all of the securities that comprise the
market portfolio.

6.6 DERIVING THE PORTFOLIO VARIANCE EXPRESSION

(Background reading: section 6.3)

We first discussed variance as a function of potential squared deviations from expected
return outcomes. This is consistent with definitions of variance in most other applications.
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For practical purposes, it is normally more useful to define portfolio variance in terms
of individual security variances and covariances between pairs of securities. This
enables us to characterize risk as a function of portfolio weights. Knowing appropriate
portfolio weights enables us to determine appropriate amounts to invest in each secur-
ity. An understanding of the relationship between the two portfolio risk measures will
help us understand more complex concepts concerning portfolio risk.

We will derive the variance of given portfolio p as a function of security variances,
covariances, and weights as in equation (6.4). First, we start with the variance
expressed as a function of m potential portfolio return outcomes j and associated 
probabilities:

(6.3)

For the sake of simplicity, we will work with n = 2 securities in our portfolio. It will be
easy to generalize this procedure from 2 to n securities. Portfolio variance may be rewrit-
ten from equation (6.3) as follows:

(A)

The first two terms inside the parentheses in combination refer to returns for securit-
ies 1 and 2 given outcome i. The last two terms in combination refer to expected returns
for securities 1 and 2. Next, we “complete the square” for equation (A) and combine
terms multiplied by w1 and w2:

+ w 2
2 (R2j − E [R2 ])2Pj

+ 2w1w2(R1j − E[R1])(R2j − E[R2])Pj ]. (B)

We next move the summation operation inside the brackets:

(C)

The derivation is completed by substituting in equation (C) variances and covariances
as defined in chapter 5:

σ 2
p = w2

1σ 2
1 + w2

2σ 2
2 + 2w1w2σ1,2, (6.8)

which is the two-security equivalent for equation (6.4).
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EXERCISES

6.1. Seventy-five percent of a portfolio is invested in Honeybell stock and the remain-
ing 25% is invested in MBIB stock. Honeybell stock has an expected return
of 6% and an expected standard deviation of returns of 9%. MBIB stock has
an expected return of 20% and an expected standard deviation of 30%. The
coefficient of correlation between returns of the two securities is expected to
be 0.4. Determine the following:

(a) the expected return of the portfolio;
(b) the expected variance of the portfolio;
(c) the expected standard deviation for the portfolio.

6.2. What is the standard deviation of returns for an equally weighted portfolio
comprising two independent securities with return variances equal to 0.09?

6.3. Each of the pairs of stock listed below will be combined into two-security port-
folios. In each case, the first stock will comprise 60% of the portfolio and the
second stock will comprise the remaining 40%. Compute the standard devi-
ation of returns for each portfolio.

(a) σ1 = 0.60, σ2 = 0.60, σ1,2 = 0.36;
(b) σ1 = 0.60, σ2 = 0.60, σ1,2 = 0.18;
(c) σ1 = 0.60, σ2 = 0.60, σ1,2 = 0;
(d) σ1 = 0.60, σ2 = 0.60, σ1,2 = −0.18;
(e) σ1 = 0.60, σ2 = 0.60, σ1,2 = −0.36.

6.4. An equally weighted portfolio will consist of shares from AAB Company stock
and ZZY Company stock. The expected return and standard deviation levels
associated with the AAB Company stock are 5% and 12%, respectively. The
expected return and standard deviation levels for ZZY Company stock are 10%
and 20%. Find the expected return and standard deviation levels of this port-
folio if returns on the two stocks are:

(a) perfectly correlated;
(b) independent;
(c) perfectly inversely correlated.

6.5. How do the coefficient of correlation between returns of securities in a port-
folio affect the expected return and risk levels of that portfolio?

6.6. An investor will place one-third of his money into security 1, one-sixth into
security 2, and the remainder (one-half ) into security 3. Security data is given
in the table below:
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Security, i E [R] σ (i) COV(i,1) COV(i,2) COV(i,3)

1 0.25 0.40 0.16 0.05 0
2 0.15 0.20 0.05 0.04 0
3 0.05 0 0 0 0

Find the expected return and variance of this portfolio.

6.7. The expected variance of returns on my two-security portfolio is 0.08. The
variance of my only risky security is 0.10; my other security is riskless and
has an expected return of 0.10. The expected return of the risky security is
0.25. What is the expected return of my portfolio?

6.8. There exists a market where all securities have a return standard deviation
equal to 0.8. All securities are perceived to have independent return outcomes;
that is, returns between pairs of securities are uncorrelated.

(a) What would be the return standard deviation of a two-security port-
folio in this market?

(b) What would be the return standard deviation of a four-security port-
folio in this market?

(c) What would be the return standard deviation of an eight-security 
portfolio in this market?

(d) What would be the return standard deviation of a 16-security port-
folio in this market?

(e) Suppose that all securities in this market have an expected return
equal to 0.10. How do the expected returns of the portfolios in parts (a)
through (d) differ?

114 Elementary portfolio mathematics
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