The Risk Anomaly Tradeoff of Leverage*

Malcolm Baker
Harvard Business School and NBER

Jeffrey Wurgler
NYU Stern School of Business and NBER

December 3, 2014

Abstract
We investigate how optimal leverage is affected by the robust empirical pattern, known as the low risk anomaly, that high-risk equities do not earn commensurately high returns. The risk anomaly generates a simple tradeoff model: Given correctly priced debt, the cost of equity and the overall cost of capital falls as leverage transfers asset risk to equity. As debt becomes risky, however, the benefit of transferring risk to correctly priced debt declines. The optimum is reached at lower leverage for firms with high asset risk. We find strong empirical support for the prediction that firms with low-risk assets choose higher leverage. We also find support for more distinct predictions of the risk anomaly tradeoff, including that leverage is inversely related to systematic risk, not just total risk; that a large number of firms maintain small or zero leverage despite high marginal tax rates (addressing the low leverage puzzle); and that many others maintain high leverage despite little tax benefit.

* The authors also serve as consultants to Acadian Asset Management. Baker gratefully acknowledges financial support from the Division of Research of the Harvard Business School.

2 These apply to any firm i but we suppress the relevant subscripts on betas and costs of capital. We also suppress
I. Introduction

According to traditional capital structure theory, adding leverage increases the risk and cost of equity but, in the absence of other frictions, does not change the overall weighted average cost of capital. As long as equity and debt markets are integrated, and therefore price risk the same way, the precise division of risk between equity and debt is irrelevant.

Empirical research in asset pricing has called into question how the stock market, in particular, prices risk and return. For example, the Capital Asset Pricing Model (CAPM) predicts that the expected return on a security is proportional to its systematic risk (beta). The “low risk anomaly” is the empirical pattern that stocks with higher beta or volatility have tended to earn lower returns, not higher returns, both in risk-adjusted basis and sometimes even in unadjusted basis. Put simply, the fundamental risk-return relationship in the stock market has historically been flat, if not inverted. This result was originally documented in the 1970s and was given new emphasis by results in, for example, Fama and French (1992), Ang, Hodrick, Ying, and Zhang (2006), and Baker, Bradley, and Wurgler (2011). There is now a burgeoning empirical and theoretical literature on this anomaly.

In this paper, we study how capital structure should be set in the presence of the low risk anomaly. The basic idea is that firms with low risk assets may want to lever up in order to make their equity riskier, taking advantage of empirical pattern that riskier equity is not proportionally costlier. We develop and test this idea in three steps. The first is to measure the low risk anomaly and confirm that it is not also found in the debt market. The second step is to model optimal leverage in in the presence of the anomaly. The third step is to test the model’s main prediction.

We measure the anomaly in a large sample of CRSP returns data. Consistent with prior results, a one-unit increase in equity beta is associated with lower beta-adjusted stock returns—
that is, lower realized cost of equity—of around 5% per year, which we use in subsequent calibrations. But since irrelevance depends only on market integration, not a rational tradeoff between risk and return, we also confirm that the same anomaly does not extend to debt markets. Given these results, we proceed under the assumption that the risk anomaly is large enough to be worth developing its downstream implications for corporate finance.

Our model of optimal capital structure, the main contribution of the paper, illustrates a simple tradeoff. It assumes no frictions other than a low risk anomaly in equity. This contrasts with traditional tradeoff theories, which generate an interior optimum by assuming one friction to limit leverage on the high side and another to limit it on the low side.

The intuition of the risk anomaly tradeoff is as follows. Under the anomaly, risk is overvalued in equity securities (and fairly valued in debt). Ideally, then, to minimize the cost of capital, risk is concentrated in equity. A firm will always want to issue as much riskless debt as it can. This lowers the cost of equity by increasing its risk without any “inefficient” transfer of risk from equity to debt. But as debt becomes risky, further increases in leverage have a cost. Shifting overvalued risk in equity securities to fairly valued risk in debt increases the cost of capital. For firms with high-risk assets, this increase is high even at low levels of leverage. For firms with very low risk assets, this increase remains low until leverage is high, and the space to add further equity also runs out.

The main prediction of the model is that leverage should be inversely related to asset beta. Calibrations using the magnitude of the anomaly suggest that the value gains from exploiting the tradeoff appropriately—or losses from failing to do so—can be substantial.

We find strong empirical support for this prediction. In a large CRSP-Compustat sample, the inclusion of asset risk variables more than doubles the explanatory power of standard
leverage regressions that include profitability, asset tangibility, market-to-book assets, size, and marginal tax rates. The results are robust to alternative measures of asset beta, such as industry asset beta or equity beta only, and leverage, such as market values or net leverage.

The risk anomaly tradeoff may help to explain features of the data that aren’t compatible with the traditional tradeoff theory, based on tax benefits versus bankruptcy costs. In particular, Graham (2000) and others have pointed out that hundreds of profitable firms, with high marginal tax rates, maintain literally zero leverage, creating a low-leverage puzzle. A number of profitable firms maintain quite high leverage despite no tax benefit. Given our finding that low leverage firms tend to have high asset beta, and vice-versa, these facts are consistent with the risk anomaly tradeoff. For example, if low leverage firms find that the tax benefit of debt is less than the opportunity cost of transferring risk to lower-cost equity, low leverage would be optimal even in the presence of such (realistic) additional frictions.

While we do not argue that the forces behind standard tradeoff models are unrealistic, we also argue that increasingly complex variants of the standard theory also have trouble explaining the data. For example, optimal leverage may depend inversely on systematic risk because higher asset beta, all else equal, reflects the market state and increase in the costs of financial distress when distress is likelier to occur. Almeida and Philippon (2007) make this general argument, while Shleifer and Vishny (1992) suggest clustered asset fire sales as a mechanism mechanism. But we argue that the traditional tradeoff theory, with rational asset pricing, cannot explain both how systematic risk increases both the cost of financial distress and the asset pricing evidence that systematic risk is not priced. The risk anomaly tradeoff accommodates both facts.

An intriguing incidental finding is that the standard regressors tend to have the opposite correlation with asset beta as they do with leverage. For example, high market-to-book is
associated with low leverage as well as high risk. A topic for future research is the extent to which variables like market-to-book are proxying for investment opportunities and the costs of debt overhang, as traditionally argued, or whether part of its explanatory power, and that of some of the other standard variables, derives from a link to risk that cannot be fully controlled for in a simple regression.

The paper proceeds in the order mentioned above. Section II reviews the literature on the low risk anomaly, measures it in our data, and investigates the extent to which it is shared in the debt market. Section III presents a model of optimal capital structure under the low risk anomaly. Section IV tests its predictions and discusses alternative explanations. Section V concludes.

II. The Low Risk Anomaly

In this section we give some background on the anomaly and then estimate its size in our own data. Based on a broad view of the evidence, we conclude that the anomaly is a sufficiently robust pattern to justify a study of its normative implications for capital structure.

A. Background

Over the long run, riskier asset classes have earned higher returns in U.S. markets. Small stocks have outperformed large caps, which have outperformed corporate bonds, which have outperformed long-term Treasuries, and so on (Ibbotson Associates (2012)). Our interest, however, is the evidence that the historical risk-return tradeoff within the stock market is flat or inverted. While the standard Capital Asset Pricing Model (CAPM) predicts that the expected return on a security is proportional to its systematic risk (beta), the “low risk anomaly” is the cross-sectional pattern that stocks with higher beta (or higher idiosyncratic risk) have tended to earn lower returns, particularly on a risk-adjusted basis.
The low risk anomaly is present across stock markets and sample periods. Black (1972), Black, Jensen, and Scholes (1972), Haugen and Heins (1975), and Fama and French (1992) all noted the relatively flat relationship between expected returns and beta risk in the U.S. More recently, Ang, Hodrick, Ying, and Zhang (2006, 2009) have emphasized the magnitude and robustness of the anomaly, including in world markets. Blitz and van Vliet (2007) and Baker, Bradley, and Taliaferro (2013) confirm the presence of the anomaly within developed markets and Blitz, Pang, and van Vliet (2012) extend this to emerging markets.

The magnitude of the risk-return inversion is substantial. For example, Baker, Bradley, and Taliaferro (2013) find that a dollar invested in a low quintile beta portfolio of U.S. stocks in early 1968 grows to $70.50 by the end of 2011, a while dollar invested in a high beta portfolio grows to only $7.61. In a sample of up to 30 developed equity markets over a shorter period beginning in 1989, the comparable figures are $6.40 and $0.99. We estimate the anomaly’s size in more useful units in a moment.

Several explanations for the anomaly have been developed. Investors may have an irrational preference for volatile or skewed investments, due to overconfidence, as in Cornell (2008), or lottery preferences, as in Kumar (2009), Bali, Cakici, and Whitelaw (2011) and Barberis and Huang (2008). Leverage-constrained investors who seek maximum returns from beta risk must invest in high beta stocks directly as opposed to a levered portfolio of low beta stocks (Black (1972) and Frazzini and Pedersen (2013)). Moreover, sophisticated investors may have trouble exploiting and eliminating the anomaly. Fund managers may prefer high-beta assets themselves because the inflows to performing well are greater than the outflows to performing poorly (Karceski (2002)), or because they are rewarded for beating the market, which presumably has a positive risk premium, on a non-beta-adjusted basis (Brennan (1993) and
Baker et al. (2011)). More generally, short-selling constraints inhibit sophisticated investors’ ability to exploit an overpricing of high-beta stocks (Hong and Sraer (2012)).

A relatively open question is the existence or size of a similar anomaly in debt markets. As we discuss below, this is important for corporate finance implications. The most recent evidence is Houweling, van Vliet, Wang, and Beekhuizen (2014), who find that short-maturity corporate bonds issued by low risk firms have somewhat higher beta-risk-adjusted returns. A significant difference for our purpose is their betas are with respect to the corporate bond market. Fama and French (1993) report that stock market betas are practically identical for bond portfolios of various ratings and conclude that different risk factors describe returns in the stock and bond markets. Baele, Bekaert, and Inghelbrecht (2009) find that the magnitude and even the sign of the correlation between stock index and government bond returns is highly unstable. Nonetheless, we are not aware of a more formal test for an integrated low risk anomaly.

The low risk anomaly challenges not just the CAPM, a convenient but not strictly necessary assumption of traditional capital structure theory, but any framework where risk and expected return are positively related. There is a large literature in asset pricing that aims to identify measures of risk that perform better than beta, with the implicit notion that beta is not a meaningful risk to the representative investor. In light of the robust evidence and reasonable explanations, however, this paper follows several others and takes the view that the low risk anomaly reflects inefficient asset pricing, not misspecification of risk.

B. Measuring the Anomaly

We focus on estimating the magnitude of the anomaly as an input to later calibrations. Along the way we establish that it is primarily an equity market phenomenon. Should there happen to be an identical anomaly across the equity and debt markets, then the cost of capital
would vary pathologically with asset risk but in a way that managers could not control with financial structure, so it is important to rule this out.

We use a linear specification for low risk anomaly in equity

\[r_e = (\beta - 1)\gamma + r_f + \beta r_p \]

(1)

and debt

\[r_d = (\beta_d - \overline{\beta}_d)\gamma_d + r_f + \beta_d r_p \]

(2)

where \(r_f \) is the risk free rate, \(r_p \) is the market risk premium, \(\overline{\beta}_d \) is average debt beta, and \(\gamma \leq 0 \) measures the size of the anomaly in that market.\(^2\) Risk-adjusted expected returns decrease linearly with risk: Securities with one additional unit of risk relative to their market average have \(-\gamma\) lower risk-adjusted returns. Otherwise, the CAPM holds.\(^3\)

Figure 1 shows three potential scenarios involving low risk anomalies. The light solid line shows the theoretical security market line. Panel A illustrates an integrated low risk anomaly in which \(\gamma = \gamma_d < 0 \). While this scenario has investment implications—overinvestment relative to the CAPM prediction for firms with high asset beta and vice-versa—it has none for capital structure. If the two markets are integrated then the Modigliani-Miller theorem is restored and (with the minor modification that the weighted average of equity and debt betas is one) the cost of capital is simply

\[WACC = er_e + (1-e)r_d = (\beta_e - 1)\gamma + r_f + \beta_d r_p \]

(3)

which is independent of the chosen capital structure \(e \). Panel B shows the case of a low risk anomaly in equities and correctly priced debt. Here, \(\gamma < \gamma_d = 0 \). Panel C shows the case of low

\(^2\) These apply to any firm \(i \) but we suppress the relevant subscripts on betas and costs of capital. We also suppress the subscript \(e \) on the equity beta and gamma.

\(^3\) Following typical practice, we will compute betas with respect to the stock market, but conceptually all that matters is that we use a common market for equity and debt.
risk anomalies in both equity and debt with the empirically relevant case of \(\gamma < \gamma_d < 0 \), although there is no theoretical reason why the anomaly could not be greater in debt.

We first estimate the relationship between equity returns and beta using data from January 1931 through December 2012 from the Center for Research in Securities Prices (CRSP) data. We include all industries. We compute results for the 44 years (528 months) since January 1968, when the number of stocks in the beta portfolios becomes large and which approaches the beginning of our Compustat leverage sample, as well as the full sample of 81 years (972 months) since January 1931. We use CRSP value-weighted market returns for CAPM-based analyses and add the Fama-French control factors SMB and HML for their three-factor model. We use a minimum of 24 months and a maximum of 60 months of returns to estimate market betas for each stock, and then form value-weighted and equal-weighted bottom 30%, middle 40%, and top 30% beta portfolios.

Tables 1 and 2 show the raw returns, factor slopes, and alphas for each portfolio weighting, risk-adjustment model, and sample period combination. Figure 2 also plots the alphas against CAPM beta. The lack of a meaningful (positive) relationship between risk and return in equities is evident.

Between 1968 and 2012, the equal-weighted average monthly return on low risk stocks was 70 basis points, versus 79 basis points for the middle risk portfolio and 72 basis points for the high risk portfolio. On a risk-adjusted basis, the low risk anomaly becomes even clearer, with a statistically significant CAPM-adjusted difference of 29 basis points per month for a spread of 0.74 in market beta. The ratio of the intercept to the market return slope in the Top-Bottom column also gives us a rough estimate of \(\gamma \). In the equal-weighted CAPM specification, the estimate is \(\gamma = 29/0.74 = 39 \) basis points, or 4.6% per unit beta lower annual cost of equity. By
comparison, the market risk premium itself in the Fama-French data is 5.1\% in the 1968-2012 period and 7.9\% in the 1931-2012 period.

The value-weighted raw returns are monotonically decreasing in risk, at 45 basis points for the low risk portfolio, 43 basis points for the middle risk portfolio, and 36 basis points for the high risk portfolio. Indeed, the high beta portfolio returns are sufficiently variable that even after 44 years of mostly rising markets, one cannot reject the hypothesis that their mean is zero. We plot these results in Figure 2. There is a slightly inverted empirical security market line. Between the high and low risk portfolios, the intercepts relative to the theoretical security market line differ by 39 basis points against a spread of 0.71 in market beta. For the Fama-French model all of the above results are the same or stronger. Finally, a Gibbons, Ross, Shanken (1989) test for the joint significance of the intercepts rejects the null in all specifications.

The story since 1931 is similar. The anomaly is not immediately apparent in raw returns, although even after 81 years there is no statistically significant difference between the return on high and low risk portfolios. The risk-adjusted returns again reveal the anomaly. The weakest but still significant anomaly is found in equal-weighted returns with CAPM betas. As before, there is a stronger anomaly with respect to the Fama-French models. The greater underperformance appears to come from netting out the more prominent small cap (SMB) and value (HML) effects in the high beta portfolio.

We next look for a debt market anomaly. We compute an alpha and beta for long-term corporate and government bonds using data from Ibbotson Associates. We report these in Table 3 and plot them alongside the equity portfolios in Figure 2. There are two immediate observations from the figure. First, the corporate bond data points fall below the extended security market line computed from the equity market in both samples. Second, while the
corporate bond returns still fall above the theoretical security market line, this appears to be entirely due to a term premium in both government and corporate bonds.

Table 3 tests more formally for an integrated anomaly. Using the difference in point estimates between the low risk and high risk stock portfolios, alpha should rise by 54 basis points (\(-39.0/0.72\)) for each unit reduction in beta. Hence, the simple alpha of the corporate bond portfolio, with a beta that is 0.51 lower, ‘should be’ 27.5 basis points higher than the alpha of the low risk portfolio. The actual alpha of 3.7 falls 23.8 basis points short of this integrated markets target. The actual and extrapolated alphas are far enough together that we can reject integration at a 10% level.\(^4\)

A portion of the return on corporate bonds during this period reflects falling inflation, not an integrated low risk anomaly. With this in mind, we also control for the term premium on government bonds in the second panel. Baker and Wurgler (2013) find that there is a statistically strong link between bond returns and the cross-section of stock returns. The low risk stock portfolio is exposed to government bond returns to a much greater degree than the high risk stock portfolio. This turns out to explain only a small portion of the low risk anomaly in stocks, however. By contrast, exposure to government bond returns explains the entire alpha on corporate bonds. The alpha on corporate bonds is now 11.3 basis points lower than the low risk stock portfolio, while it ‘should be’ 23.5 basis points higher. The gap of 34.8 basis points is highly statistically significant.

Over the full history, when the performance of government bonds was more modest, we reject integration equally or more strongly. In short, while there is a link between government bonds

\(^4\) To compute a p-value we draw from a multivariate normal distribution using the OLS estimates and covariances for the coefficients in the first three columns. For each of 10,000 draws, we compare the actual and extrapolated alpha. A one-tailed p-value of 0.095 indicates that approximately 950 of the random draws feature an actual alpha that is higher than the extrapolated alpha.
bonds and low risk stocks, there is otherwise little evidence of a common low risk anomaly across debt and equity markets. This means reducing the risk of corporate equity by substituting equity for corporate bonds would not have left the overall cost of capital unchanged. In terms of Figure 1, the data are most consistent with Panel B or perhaps Panel C with a modest low risk anomaly in debt markets. As these two cases have qualitatively similar conclusions for optimal capital structure, we will assume that debt is correctly priced in the theoretical work.

III. The Low Risk Anomaly and Capital Structure

This section starts with a model of optimal capital structure with no frictions other than a low risk anomaly in equity. There are no taxes, transaction costs, issuance costs, incentive or information effects of leverage, or costs of financial distress or bankruptcy. Unlike other tradeoff models, which require one tradeoff to limit leverage on the low side and another to limit it on the high side, this single mechanism drives an interior optimum. The central prediction we are working toward is that firms with high asset beta will prefer low leverage, since the natural benefit they acquire from the low beta anomaly deteriorates quickly with leverage, while low beta firms will maintain high leverage in order to better capture it.

At the end of the section, we discuss this prediction in more detail in anticipation of the empirical work. We hypothesize that the risk anomaly mechanism may contribute explanatory power to the cross-section of leverage both within the normal range and in the extremes, where the basic tradeoff model plainly fails: the hundreds of firms that maintain almost no debt despite clear tax benefits and ability to pay, e.g. the case of Linear Technology discussed in the introduction, and the hundreds more that maintain quite high debt despite low or zero marginal tax rates, such as the case of Textainer.
A. A Low Risk Anomaly Tradeoff Theory

The main assumption is the existence of a linear anomaly in equity and no anomaly in debt, roughly consistent with our previous empirical results. This is the case of Panel B in Figure 1, corresponding to $\gamma < \gamma_d = 0$ in terms of Equations (1) and (2). A less important assumption is that the CAPM holds up to the low risk anomaly in equity. Any model where there is a stronger low risk anomaly in equity markets will lead to the same qualitative conclusions. By assuming sufficient conditions for the CAPM to hold in rational markets, we can develop comparative statics using the transfer of beta risk from equity to debt as leverage increases.

When there is a low risk anomaly in equity, so that γ is nonzero, the weighted average cost of capital depends not only on asset beta but on leverage:

$$WACC = e \gamma + (1 - e) r_d = r_f + \beta_a r_p + \beta_d (1 - e)\gamma - \gamma [e + (1 - e) \beta_d (e, \beta_a)],$$

where e is the ratio of equity to total assets and debt beta, without any further loss of generality, is a function of leverage and the underlying asset risk. The second to last term (the asset beta times γ) is the uncontrollable reduction (increase) in the cost of capital that comes from having high-risk (low-risk) assets. The last term is the controllable cost of having too little leverage that arises only when equities contain a non-zero low risk anomaly.

The optimal capital structure minimizes this last term, by satisfying the first order condition for e. With the further assumption of a differentiable debt beta, the optimal capital ratio e^* satisfies:

$$-\gamma [1 - \beta_d (e^*, \beta_a) + [1 - e^*] \beta_d^* (e^*, \beta_a)] = 0 \text{ or } \beta_d^* (e^*) = 1 + [1 - e^* (\beta_a)] \frac{\partial \beta_d^* (e^* (\beta_a), \beta_a)}{\partial e}. (3)$$

Interestingly, the optimum leverage does not depend on the size of the low risk anomaly. This is somewhat of a technicality, however. If there were other frictions associated with leverage, such
as taxes or costs of financial distress, then the existence as well as the size of the anomaly would be relevant.

Observation 1: A firm will issue as much risk-free debt as possible and at least a bit of risky debt. The first order condition cannot be satisfied as long as the debt beta is zero. At a zero debt beta, the left side of Equation (3) is positive. In other words, issuing more equity at the margin will raise the cost of capital.

At first blush, this would seem to deepen the low leverage puzzle. One might ask why nonfinancial firms do not increase their leverage ratios further to take advantage of the low risk anomaly: It is initially unclear how the low leverage ratios of nonfinancial firms represent an optimal tradeoff between the tax benefits of interest and the costs of financial distress, much less an extra benefit of debt arising from the mispricing of low risk stocks.

The answer contained in Equation (3) is that many low leverage firms—e.g. the stereotypical unprofitable technology firm—start with a high asset beta or overall asset risk, so their assets are already quite risky at zero debt. Even at modest levels of debt, meaningful amounts of risk are transferred from equity to debt.

The problem of minimizing the cost of capital will generally have an interior optimum, which can be verified by testing the second order condition. The first derivative of the debt beta with respect to capital e is negative. While there is no tidy, general formula for the debt beta, any reasonable model features a debt beta that is increasing in leverage. The second derivative of the debt beta with respect to capital is also positive, and the intuition is not much more subtle. The marginal reduction in the debt beta per unit increase in e is falling as e rises; the debt beta is convex in e. This must also be true with some generality, because the debt beta cannot fall below
zero. A negative first derivative and a positive second derivative makes the second order condition positive and any solution to Equation (3) a minimum.

We can then sign the change in optimal leverage as a function of the underlying asset beta. Taking the derivative of \(e^* \) with respect to the asset beta yields:

\[
\frac{de^*}{d\beta_a} = -\left[-2 \frac{\partial \beta_d(e^*, \beta_a)}{\partial e} + (1 - e^*) \frac{\partial^2 \beta_d(e^*, \beta_a)}{\partial e^2} \right]^{-1} \left[-\frac{\partial \beta_d(e^*, \beta_a)}{\partial \beta_a} + (1 - e^*) \frac{\partial^2 \beta_d(e^*, \beta_a)}{\partial e \partial \beta_a} \right].
\]

This expression is shown to be positive as follows. The first term in braces is simply the second order condition, which we just determined is positive. The second term in braces is in general negative. All else equal, debt betas are increasing in asset betas, so the first term is negative. For the second term also to be negative, the sensitivity of the debt beta to the asset beta must fall as capital rises. As the firm gets better capitalized, the asset risk no longer matters as much. We know that at the limit, asset risk does not matter at all, so this also seems general. A negative times a negative times a positive is a positive. This means that optimal capital is increasing in asset betas. High asset beta firms carry less debt, when subjected to a low risk anomaly, than do low asset beta firms, restated as Observation 2.

Observation 2: The optimal leverage ratio is decreasing in asset beta. There is a simple intuition. Risk is overvalued in equity securities and fairly valued in debt securities. Ideally, to minimize the cost of capital, risk is concentrated in equity. This leads to the first result that firms will issue as much risk-free debt as possible. This lowers the cost of equity by increasing its risk without any inefficient transfer of risk from equity to debt. However, once debt becomes risky, further increases in leverage have a cost. Shifting overvalued risk in equity securities to fairly valued risk in debt increases the cost of capital. For firms with high-risk
assets, this increase is high even at low levels of leverage. For firms with very low risk assets, this increase remains low until leverage is high.

Observation 3: The optimal leverage ratio can be reframed as a target level of debt risk. The first order condition in Equation (3) can be rearranged as the choice of a debt beta, consistent with the notion that firms target debt ratings, not leverage ratios per se. As already noted, the derivative of the debt beta is negative, making the optimal debt beta less than one, regardless of asset risk. If the first dollar of debt were to have a beta greater than or equal to one, then a firm would choose zero debt, or possibly hold excess cash, to lower its asset risk and its marginal debt beta. More generally, the target debt beta depends on asset risk:

\[
\frac{d\beta^*}{d\beta_a} = -\frac{\partial e^*(\beta_a) \beta^*_a(e^*(\beta_a),\beta_a)}{\partial \beta_a} + \\
\left[-e^*(\beta_a) \left(\frac{\partial^2 \beta^*_a(e^*(\beta_a),\beta_a)}{\partial e^2} \beta^*_a(e^*(\beta_a),\beta_a) + \frac{\partial \beta^*_a(e^*(\beta_a),\beta_a)}{\partial e} \beta^*_a(e^*(\beta_a),\beta_a)\right)\right].
\] (5)

Riskier firms target somewhat lower credit ratings. The first term is positive, because equity capital \(e^*\) is increasing in asset risk and debt betas are decreasing in capital. The second term is weakly positive, because the second derivative and the cross partial derivative are both negative as discussed above and equity capital cannot go below zero. Negative debt is possible, but not negative equity. Taking only the low risk anomaly into account, riskier firms will target lower credit ratings, but this is attenuated by a more conservative leverage choice.

B. Illustrations

To go further than these three directional results, we need to specify the debt beta as a function of asset risk and leverage. A leading candidate for the functional form of debt betas is the Merton (1974) model. This does not give a tractable formula to differentiate, but it is easy to solve numerically. To keep things simple, we use the Black and Scholes (1973) assumptions and
a single liquidation date, five years forward, with a contractual allocation of value between debt and equity and no costs of financial distress. For each level of leverage, we compute the value of debt, the value of equity, and the equity beta using the Merton model.

Figure 3 shows the cost of capital and firm value as a function of leverage for a variety of asset risk levels. In the absence of a low risk anomaly, cash flows grow and are discounted at the CAPM rate, so firm value is the same at all asset risk levels. In the Figure we modify the value of equity using the low risk anomaly in Equation (1) with an anomaly of $\gamma = -5\%$ per year, roughly the observed value.

The figure shows how an equity beta greater than one makes use of the anomaly and raises value. An equity beta less than one reduces value, and then some, in passing it up. Because the only effects here are through the weighted average cost of capital, with no cash flow effects, a weighted average cost of capital minimum in Panel A is equivalent to a firm value maximum in Panel B. Finally, since a low risk anomaly high asset risk means higher valuations at any level of leverage, Panel C removes this effect and shows value levels relative to the maximum for each level of asset risk. This panel shows that at least under these calibration parameters, failing to exploit the low risk anomaly can lead to large losses in firm value.

C. Predictions

These figures illustrate the effects of a low risk anomaly on capital structure choice and the main testable prediction: All else equal, leverage should be set inversely to asset beta.

We restate the mechanism here. It is easiest to see in terms of extreme cases. First, low leverage firms that start with a high asset beta have only modest incentives to issue debt. Their high-risk equity is already highly valued. Although there may be a small additional amount of
value to a bit of debt (the value maximum is not quite at zero leverage), even a small exogenous cost of accessing the debt markets might lead a firm to zero debt.

This may help to explain some of the low leverage puzzle broached by Miller (1977) and documented clearly by Graham (2000). As an example, Linear Technology Corporation (Nasdaq: LLTC) produces semiconductors with a market capitalization of $7.7 billion as of December 2012. Despite profitable operations, a pre-interest marginal tax rate of 35% by the methodology in Graham and Mills (2008), and a cash balance of $1 billion, Linear maintains zero debt. One explanation for this may be its high asset beta.

While rarer than inexplicably low-leverage firms, numerous profitable firms maintain high leverage despite little tax benefit. An example here is Textainer (NYSE: TGH), leases and trades marine cargo containers. As of the end of 2012, its market capitalization was approximately $1.7 billion. It has tangible assets of $3.4 billion, a cash balance of $175 million. Despite a marginal tax rate of 0%, as a result of front-loaded depreciation and modest growth, it maintains $2.7 billion in debt. A potential explanation for this failure of the standard tradeoff theory is the firm’s low asset beta. Equity is undervalued at low leverage, and its value rises steadily, to its correct valuation and beyond, as leverage increases.

This discussion is also pertinent a special set of uniquely high leverage firms, banks, which are often excluded from capital structure analyses. As Figure 3 shows, a low risk anomaly in equities means that regulating low asset beta firms, in the sense of requiring them to de-lever significantly, can impose large losses in private value and increases in the cost of capital. As an example, Baker and Wurgler (2015) find that banks’ asset betas are on the order of 0.10, and that the low risk anomaly within banks is at least as large as what we find for all firms. While there are numerous other forces at play in regulatory debates, the loss of the low risk anomaly’s
benefits provides one foundation for bankers’ common argument that reducing leverage would increase their cost of capital (e.g., Elliott (2013)).

Most firms fall somewhere in between leverage extremes. We explore the extent to which the risk anomaly tradeoff, as captured through asset beta, can explain the middle of the cross-section as well as such extreme cases. Those are actually not uncommon, and are particularly interesting here because they are where the standard tradeoff theory is least adequate.

IV. Empirical Tests

We introduce the data and then proceed to the main analysis of the relationship between leverage and risk. We control for the intersection of traditional capital structure explanatory variables found in studies such as Bradley, Jarrell, and Kim (1984), Rajan and Zingales (1995), Baker and Wurgler (2002), Frank and Goyal (2009), and others.

A. Data

Our main variables are introduced in Table 5. Our data sources are the merged CRSP-Compustat sample and marginal tax rates are available from John Graham. The data begin in 1980, when marginal tax rates are first available, and end in 2012. They contain 1,010,640 firm-months and they span all 50 Fama-French (1995) industries. In an average cross-section there are 2,247 profitable firms and 305 unprofitable firms.

Variable definitions are detailed in the Appendix. The standard variables are as follows. Gross book leverage is long-term debt and notes payable divided by the plus book equity. Net book leverage nets out cash and equivalents from the numerator and denominator. Gross and net market leverage replace book equity with the market value of common equity from CRSP. The

5 For our purpose there is no particular reason to drop financial firms; we are not focused on determinants such as structure such as asset tangibility other than as control variables. Their inclusion, in any case, does not drive any of the relevant results.
fixed assets ratio, a proxy for the relevance of financial distress costs, is net property, plant and equipment divided by total assets. Profitability, which would be positively correlated with leverage under the standard tradeoff theory but inversely correlated under the Myers and Majluf (1984) pecking order theory, is EBIT divided by total assets.

Market-to-book assets is known to be negatively related to leverage, consistent with the need for firms with strong growth opportunities to avoid having to pass them up (Myers (1977)), or perhaps equity market timing (Baker and Wurgler (2002)). It is gross debt and market equity divided by the sum of gross debt and book equity. Asset growth is somewhat exploratory. It could be a proxy for growth opportunities, or it could capture size or the profitability that helps to make debt-financed acquisitions. Firm size, measured as the natural log of book assets, may also proxy for a variety of influences. Fama and French (1992) use it to represent the greater cash flow volatility of smaller firms and their higher expected costs of financial distress. It will also be correlated with their generally lesser access to debt markets. Finally, John Graham’s pre-interest marginal tax rates account for many features of the tax code. As shown by Graham and Mills (2008), they approximate the tax rates simulated with federal tax return data.

The leverage determinants that interest us most are constructed from stock returns. Asset beta is unlevered equity beta, assuming debt is riskless. As we reported earlier, betas on corporate debt are very low, and in any case it is hard to do better without debt returns data. Total equity risk is the standard deviation of excess stock returns. Asset risk is the unlevered version. Industry asset beta and risk are market equity weighted averages.

B. Summary Statistics and Correlations

Tables 4 and 5 show summary statistics and correlations. With respect to the standard capital structure regression variables, the summary statistics, which show profitable and
unprofitable firms separately, contain no surprises. Profitable firms have higher tax rates and are larger. Asset beta is somewhat higher for unprofitable firms, at least for own (firm-specific) asset beta. Total risk is as well. With respect to asset risk, a firm must be promising and at least on a path to profitability to enter the CRSP-Compustat sample for the 24 months that we require to compute beta. Becoming unprofitable may be associated with unexpectedly negative returns; also, firms in variable industries are more likely to find themselves unprofitable in a given period. The latter logic also applies to beta, on the downside.

The correlations in Table 5 contain a few insights, however. One is that gross and net leverage measures are loosely correlated enough to consider both as a robustness exercise. It is less important to consider both book and market leverage measures, given their 0.93 correlation, but we follow tradition and do so. The more interesting correlations are those between our risk measures and standard regression variables. In particular, asset beta risk is negatively correlated with tax rates, fixed assets, profitability, and size, and positively correlated with market-to-book and asset growth. Correlations are not transitive, but we will see, and prior research confirms, that several of these variables then have the opposite sign coefficients in leverage regressions. We will then need to ask whether the standard variables affect leverage because of an assortment of different theories, or because they are also picking up on a single force, asset beta risk. We return to this when we discuss the regressions.

Table 6 looks more closely within profitable firms, where we have 889,922 observations and where the shortcomings of the standard tradeoff theory appear most clearly. The panels separate profitable firms into low leverage (gross book leverage <5%), medium leverage, and high leverage (gross book leverage >50%) groups. Zero leverage is obviously low, but what counts as high leverage is subjective. We obviously cannot expect a spike at the 100%—
insolvency. For simplicity, we choose a cutoff of 50%. The columns then add an additional sort into low (MTR<5%), medium, and high (MTR>30%) marginal tax rate groups.

The low leverage puzzle is represented in the large number of firm-months with positive profitability, high marginal tax rates, and very low leverage. In fact, these make up 80% of all profitable, low leverage firms (=122,003/(7,236+23,936+122,003)). Firms like Linear Technology are in this bin. Conversely, there are a reasonable number of firm-months where, despite almost no tax benefit, leverage exceeds 50%. These make up somewhat over 4% of all profitable high-leverage firms (=8,407/(8,407+34,436+162,315)) and include firms like Textainer.

Some initial support for the risk anomaly tradeoff, on the other hand, comes from the strong difference in asset market risks across the leverage levels, which is also essentially independent of tax rates. Within the middle tax rate group, for example, asset betas rise sharply with leverage. Firms with very low leverage have a median asset beta of 1.57. This falls to 0.92 for medium leverage firms and all the way to 0.49 for high leverage firms. Also consistent with the risk anomaly tradeoff is the steady decline in asset risk. This, however, is somewhat less specific to the theory, as it could in principle just be another control for financial distress costs. We will, therefore, be more interested in the effect of asset beta controlling for total asset risk, among other influences, in regressions.

C. Regressions: Standard Determinants

The first column of Table 8 shows a baseline capital structure regression. We report marginal effects of Tobit regressions that cluster on both firm and month to improve standard errors. We choose gross book leverage for this baseline and include the typical empirical covariates. The pattern of coefficients, as well as the poor overall R^2, match prior results. The
weak regression coefficient on the tax rate variable is typical. The next several variables’ signs and effects are also consistent with prior research. Fixed assets has a fairly strong positive coefficient, profitability a negative coefficient, market-to-book a negative coefficient, and size a positive coefficient. Rajan and Zingales (1995) focus on these four variables and obtain the same results. Finally, asset growth has a positive coefficient, rather inconsistent with it proxying for growth opportunities and more so with the interpretation that asset growth is more a consequence of the ability and desire to finance with debt, determined by other underlying sources, as opposed to being a determinant of leverage in its own right.

Note that each of these variables is typically given a somewhat different interpretation. One is used to proxy for one effect; another for another. Yet comparing the pattern of signs in this regression with the pattern of correlation signs suggests an intriguing hypothesis: the standard may also be “working” because they capture the single force of asset beta. We hypothesize that asset beta is negatively related to leverage. And each of these variables, with the exceptions of profitability and asset growth (where the theory is weaker, as well as the correlation with asset beta, at between 0.03 and 0.07), has a regression coefficient that is the opposite sign to its correlation with asset beta. It is hard to know exactly what these variables capture, but it is an appealing idea that a common mechanism may, in part, contribute to their explanatory power.

The reason it is so difficult to explain the cross-section of capital structure, even with a set of variables curated over decades, is apparent in Figure 5. The yellow bars in Panel A show the distribution of actual book leverage ratios for profitable firms with very low and high marginal tax rates. The low-leverage puzzle constituents are those in the spike at the left extreme of the high tax rate distribution. The firms with high leverage are those in the spike at the right
extreme of the low tax rate distribution—keeping in mind that the spike is artificial because we are censoring the data at 50% leverage. Except for the mode at 1% leverage or less, the distribution of (book) leverage declines only gradually until we reach the extremely high levels of leverage where banks tend to reside. Finally, given that the leverage distributions for low- and high-tax firms are the same, the weak coefficient on tax rates is not surprising.

The white bars in Figure 5 show the distribution of predicted values according to the baseline model. The hump shapes near mean leverage levels, which are about 33% for profitable firms and 30.5% for unprofitable firms (neither figure is conditioned further on tax rates), are indicative of the model’s low explanatory power for the broad span of leverage.

D. Regressions: Adding Asset Beta

We now add risk measures to the standard regression determinants. Our special focus is on asset beta, which is exactly what our theory suggests. We also control for overall risk. In principle, any effect of total asset risk could reflect the low risk anomaly tradeoff—some explanations of the low risk anomaly are specific to beta, others are not. However, even though it is not usually included in leverage regressions, total asset risk is also a plausible proxy for the expected costs of financial distress, especially compared to asset beta. Firms care far more about going bankrupt at all than about precisely when it happens.

The results in the remaining columns of Table 7 show that asset beta is a very strong determinant of leverage, consistent with the main prediction. This is true controlling for overall asset risk (as well as in a univariate regression). In fact, a simple regression including these two asset risk variables has almost double the explanatory power than the baseline regression with six regressors. Adding the control variables does not significantly affect the coefficient or t-statistic on asset beta. In terms of magnitude, a one unit increase in asset beta reduces leverage of
profitable firms by 6.4%. The economic effect of total asset risk is larger, though its interpretation is unfortunately cloudy, while the economic effects of the other determinants are lower in all cases.

Figure 7 maps this back into predicted values and the improvement relative to the baseline model, which excludes risk, becomes obvious. The distribution of predicted leverage spreads and flattens considerably, more closely approaching the actual distribution. The predictions spread to the point where a good fraction more low or zero leverage firms can be accommodated.

The remaining regressions establish robustness through a number of alternative specifications. The key issue in these regressions is the mechanical link between the leverage ratio used to unlever the equity betas and volatilities to form independent variables and the dependent variable. Our first approach is to substitute firm-level estimates of risk with industry measures in the rest of Table 7. The economic effects are almost identical.

In Table 8, we consider a wider range of leverage measures, netting out cash and substituting book value with market value equity. The effects of beta on leverage are slightly larger when we go from book to market and when we go from gross to net leverage. This also spreads the distribution of predicted leverage ratios in Figure 6 further, relative to the market leverage baseline, picking up more of the low leverage cases.

In the final table, we remove the mechanical link between beta and leverage entirely by replacing asset beta and asset risk with an equity beta and equity volatility. Note that this creates a potential reverse causality that goes in the opposite direction from the predicted direction. Leverage, if chosen randomly, should be associated with higher equity betas and volatilities. However, if firms with higher asset risk choose lower leverage and firms with lower asset risk
choose higher leverage in a way that does not fully equilibrate the betas, as the model predicts, then there will be an on net a negative relationship between beta and leverage. This is what we find in Table 9.

E. Regarding Alternative Explanations

Suppose we take the empirical fact to be truth: Higher asset beta is associated with lower leverage. This is consistent with the risk anomaly tradeoff in leverage. The cost of equity for high beta assets is lower and so less debt is used at the optimum. But, the fact is also consistent with other capital structure theories. Most notably, the costs of financial distress depend not only on the unconditional probability of default and the unconditional value lost in default but also when distress occurs and value is lost. If asset beta, holding all else constant, dictates the market state when distress is likely to occur, then the present value of the costs of financial distress are higher for assets with higher systematic risk. Almeida and Philippon (2007) argue that risk-adjustment increases the cost of financial distress.

In the lingo of asset pricing, it is the covariance of the stochastic discount factor with the costs of financial distress that determine the present value of distress costs. If these are higher for some firms at a given level of leverage, they might optimally choose to have less debt (though it is still hard to justify zero debt in the presence of large tax benefits).

Another alternative explanation involves refinancing risk and fire sales, as in Shleifer and Vishny (1992). If refinancing risk and fire sales discounts are higher during market downturns, this would increase the dollar value lost in distress and again lower the optimal leverage for firms with higher levels of systematic risk.

The forces of a traditional tradeoff between costs of financial distress and tax and other benefits undoubtedly play an important role in leverage choice, at least for some firms. However,
it is hard for the traditional tradeoff theory, combined with rational asset pricing, to fit both the leverage and asset pricing evidence on the pricing of beta. If beta is truly a measure of risk, then it would help to explain the cross section of asset returns, which it does not. Investors, recognizing the investment opportunities, would demand higher returns on assets exposed to periods of fire sales. If beta is not truly a measure of risk—as the literature that follows Fama and French (1992, 1993) has claimed—then asset beta should not be a constraint on leverage, after controlling for total asset risk. In contrast, the risk anomaly tradeoff of leverage can naturally accommodate both the facts in Tables 1 and 2 as well as those in Tables 7 through 9.

V. Conclusion

Since Modigliani and Miller, the academic literatures on asset pricing and corporate finance have grown separately. In particular, the corporate finance literature has largely taken the pricing of risk as given, since the overall cost of capital, and hence optimal capital structure, is unaffected under the seemingly plausible assumption that markets for different forms of securities are integrated.

We develop a tradeoff theory of capital structure based on the asset pricing evidence of a low risk anomaly in the stock market, under which equity with high systematic risk is overvalued and therefore costs less than debt on a risk-adjusted basis. Our analysis indicates that the anomaly appears to be concentrated in the stock market, as we confirm, and since it involves risk directly, which leverage shifts across markets, it drives a simple theory of capital structure despite the presence of only a single friction. The model shows that firms set leverage to the point where the distribution of risk across equity and debt minimizes the overall cost of capital. For firms with relatively risky assets, the transfer of risk to correctly priced debt happens at
lower levels of leverage. We test and confirm the prediction that leverage is inversely related to systematic risk. Overall, the theory adds new explanatory power for the cross-section of leverage, accommodates the low leverage puzzle, is consistent with the empirical asset pricing evidence, and, more generally, may help to renew a fruitful connection between asset pricing and corporate finance research.
References

Figure 1. Segmented Debt and Equity Markets. For the low risk anomaly to impact the cost of capital, debt and equity markets must be segmented. Panel A shows a low risk anomaly that extends across asset classes, e.g. from safe debt with very low beta to equity with higher beta, rendering capital structure irrelevant. Panel B, C, and D show segmented debt and equity markets, first with debt correctly priced and then with a low risk anomaly appearing within each market to varying degrees.

Panel A. Integrated Debt and Equity Markets

Panel B. Markets Not Integrated, Debt Correctly Priced

Panel C. Markets Not Integrated, Small Low Risk Anomaly in Debt Markets
Figure 2. Bond Returns and the Low Risk Anomaly in Stocks. Plots of average returns and CAPM betas for three equity portfolios sorted into quintiles using pre-ranking betas as well as long-term corporate and government bonds from Ibbotson and Associates. The returns and betas are estimated as in Tables 1 and 2. An empirical security market line is fit through the three equity data points.

Panel A. 1968-2012

Panel B. 1931-2012
Figure 3. Value Effects of Leverage When There is a Low Risk Anomaly in Equities. We compute firm value for firms with five different levels of asset beta. Each firm has a normally distributed terminal value five years hence, with a contractual distribution of value between debt and equity and no costs of financial distress or tax effects. The value of each firm would be exactly $10, regardless of leverage, if there were no low-risk anomaly. Volatility is equal to asset beta times the sum of a market volatility of 16% plus an idiosyncratic firm volatility of 20%. The risk free rate is 2%. We compute the value of equity, the value of debt, and the equity beta under the Merton model with no low risk anomaly. We compound this equity value using the CAPM expected return with a market risk premium of 8% over five years, and then present value this future equity value using the discount rate from Equation (1) with a γ of 5%. This is the adjusted equity value. The weighted average cost of capital uses the adjusted equity value and the value of debt as weights, the cost of equity from Equation (1), and the CAPM expected return for debt. Firm value is the adjusted equity value plus the value of debt. Leverage is computed using these market values.

Panel A. Weighted Average Cost of Capital

Panel B. Absolute Firm Value

Panel C. Firm Value Relative to the Maximum
Figure 4. Marginal Tax Rates, 1980-2012. Histograms of marginal tax rates for profitable and unprofitable firms. A firm is defined as profitable if it has earnings before interest and taxes (Compustat = EBITDA) greater than zero. The marginal tax rate is from John Graham, computed using the methodology of Graham and Mills (2008). The data are censored at 0.05 and 0.5. There are 889,922 observations in 50 industries across 396 months.

Panel A. Firms with EBITDA > 0

Panel B. Firms with EBITDA < 0
Figure 5. Leverage Ratios for Profitable Firms. Histograms of actual and predicted gross leverage ratios for profitable firms. A firm is defined as profitable if it has earnings before interest and taxes (Compustat = EBITDA) greater than zero. The sample is further divided according to marginal tax rate into firms with a pre-interest marginal tax rate less than 5% and greater than 30%. The marginal tax rate is from John Graham, computed using the methodology of Graham and Mills (2008). Gross leverage ratio is defined in Panel A as long-term debt (DLTT) plus notes payable (NP) divided by long-term debt plus notes payable plus book equity. Book equity is computed in the same way as in Ken French’s data library. Panel B replaces book equity with market capitalization, equal to price times shares outstanding from CRSP. Predicted leverage ratios use the Tobit regression from the first two columns of Table 6 in Panel A and an equivalent regression with market leverage as the dependent variable in Panel B. There are 889,922 observations in 50 industries across 396 months.

Panel A. Book Leverage Ratios

Panel B. Market Leverage Ratios
Figure 6. Leverage Ratios for Profitable Firms: Adding Risk. Histograms of actual and predicted gross leverage ratios for profitable firms. A firm is defined as profitable if it has earnings before interest and taxes (Compustat = EBITDA) greater than zero. The sample is further divided according to marginal tax rate into firms with a pre-interest marginal tax rate less than 5% and greater than 30%. The marginal tax rate is from John Graham, computed using the methodology of Graham and Mills (2008). Gross leverage ratio is defined in Panel A as long-term debt (DLTT) plus notes payable (NP) divided by long-term debt plus notes payable plus book equity. Book equity is computed in the same way as in Ken French’s data library. Panel B replaces book equity with market capitalization, equal to price times shares outstanding from CRSP. Predicted leverage ratios use the Tobit regression from the third two columns of Table 6 in Panel A and an equivalent regression with market leverage as the dependent variable in Panel B. There are 889,922 observations in 50 industries across 396 months.

Panel A. Book Leverage Ratios

Panel B. Market Leverage Ratios
Table 1. Realized Returns and Risk: Beta Portfolios, 1968-2012. Regressions of portfolio returns on market excess returns and the Fama-French factors, SMB and HML. Each portfolio total return in excess of the riskless rate is computed using either equal or value weights. The sample is divided within each month into low (bottom 30%), medium (middle 40%), and high (top 30%) portfolios according to pre-ranking beta. Gibbons, Ross, and Shanken (1989) tests are shown for each set of regressions.

<table>
<thead>
<tr>
<th>Basis Points</th>
<th>Bottom 30%</th>
<th>Middle 40%</th>
<th>Top 30%</th>
<th>Top – Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [t]</td>
</tr>
<tr>
<td>Mean Excess Returns</td>
<td>70.3 [3.84]</td>
<td>78.8 [3.22]</td>
<td>72.0 [2.08]</td>
<td>1.7 [0.09]</td>
</tr>
<tr>
<td>CAPM Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.70 [25.41]</td>
<td>1.06 [36.07]</td>
<td>1.43 [31.24]</td>
<td>0.74 [24.04]</td>
</tr>
<tr>
<td>Intercept</td>
<td>41.2 [3.34]</td>
<td>34.6 [2.63]</td>
<td>12.2 [0.59]</td>
<td>-29.0 [-2.11]</td>
</tr>
<tr>
<td>T</td>
<td>528</td>
<td>528</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.551</td>
<td>0.712</td>
<td>0.650</td>
<td>0.524</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>8.53 (<0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fama-French 3-Factor Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.63 [35.38]</td>
<td>0.96 [66.46]</td>
<td>1.27 [48.97]</td>
<td>0.64 [24.55]</td>
</tr>
<tr>
<td>SMB</td>
<td>0.62 [24.56]</td>
<td>0.74 [35.82]</td>
<td>1.09 [29.38]</td>
<td>0.47 [12.48]</td>
</tr>
<tr>
<td>HML</td>
<td>0.25 [9.23]</td>
<td>0.37 [16.77]</td>
<td>0.25 [6.25]</td>
<td>0.00 [-0.06]</td>
</tr>
<tr>
<td>Intercept</td>
<td>23.4 [3.02]</td>
<td>11.0 [1.73]</td>
<td>-9.8 [-0.86]</td>
<td>-33.2 [-2.89]</td>
</tr>
<tr>
<td>T</td>
<td>528</td>
<td>528</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.829</td>
<td>0.936</td>
<td>0.898</td>
<td>0.680</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>4.68 (<0.01)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Value Weighted

<table>
<thead>
<tr>
<th>Basis Points</th>
<th>Bottom 30%</th>
<th>Middle 40%</th>
<th>Top 30%</th>
<th>Top – Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [t]</td>
</tr>
<tr>
<td>Mean Excess Returns</td>
<td>45.0 [2.86]</td>
<td>43.1 [2.13]</td>
<td>35.8 [1.20]</td>
<td>-9.3 [-0.45]</td>
</tr>
<tr>
<td>CAPM Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.71 [42.17]</td>
<td>1.02 [130.49]</td>
<td>1.42 [58.42]</td>
<td>0.71 [20.86]</td>
</tr>
<tr>
<td>Intercept</td>
<td>15.4 [2.03]</td>
<td>0.5 [0.13]</td>
<td>-23.6 [-2.16]</td>
<td>-39.0 [-2.54]</td>
</tr>
<tr>
<td>T</td>
<td>528</td>
<td>528</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.772</td>
<td>0.970</td>
<td>0.867</td>
<td>0.453</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>2.52 (0.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fama-French 3-Factor Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.71 [40.26]</td>
<td>1.01 [102.19]</td>
<td>1.33 [71.18]</td>
<td>0.63 [19.57]</td>
</tr>
<tr>
<td>SMB</td>
<td>-0.02 [-0.62]</td>
<td>-0.08 [-5.36]</td>
<td>0.27 [9.91]</td>
<td>0.28 [6.14]</td>
</tr>
<tr>
<td>HML</td>
<td>0.15 [5.49]</td>
<td>0.13 [8.53]</td>
<td>-0.04 [-1.30]</td>
<td>-0.18 [-3.78]</td>
</tr>
<tr>
<td>Intercept</td>
<td>10.5 [1.37]</td>
<td>-1.9 [-0.45]</td>
<td>-22.4 [-2.73]</td>
<td>-32.9 [-2.35]</td>
</tr>
<tr>
<td>T</td>
<td>528</td>
<td>528</td>
<td>528</td>
<td>528</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.773</td>
<td>0.957</td>
<td>0.928</td>
<td>0.561</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>2.48 (0.06)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Realized Returns and Risk: Beta Portfolios, 1931-2012. Regressions of portfolio returns on market excess returns and the Fama-French factors, SMB and HML. Each portfolio total return in excess of the riskless rate is computed using either equal or value weights. The sample is divided within each month into low (bottom 30%), medium (middle 40%), and high (top 30%) portfolios according to pre-ranking beta. Gibbons, Ross, and Shanken (1989) tests are shown for each set of regressions.

Panel A. Equal Weighted

<table>
<thead>
<tr>
<th>Basis Points</th>
<th>Bottom 30%</th>
<th>Middle 40%</th>
<th>Top 30%</th>
<th>Top – Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Excess Returns</td>
<td>Coef</td>
<td>[t]</td>
<td>Coef</td>
<td>[t]</td>
</tr>
<tr>
<td>94.5</td>
<td>[5.77]</td>
<td>112.7</td>
<td>[4.78]</td>
<td>121.6</td>
</tr>
<tr>
<td>CAPM Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.82</td>
<td>[51.19]</td>
<td>1.25</td>
<td>[66.18]</td>
</tr>
<tr>
<td>Intercept</td>
<td>42.4</td>
<td>[4.95]</td>
<td>33.3</td>
<td>[3.29]</td>
</tr>
<tr>
<td>T</td>
<td>972</td>
<td>972</td>
<td>972</td>
<td>972</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.730</td>
<td>0.819</td>
<td>0.763</td>
<td>0.598</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>13.18</td>
<td>(<0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fama-French 3-Factor Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.67</td>
<td>[61.74]</td>
<td>1.02</td>
<td>[121.24]</td>
</tr>
<tr>
<td>SMB</td>
<td>0.56</td>
<td>[32.14]</td>
<td>0.73</td>
<td>[54.78]</td>
</tr>
<tr>
<td>HML</td>
<td>0.18</td>
<td>[11.64]</td>
<td>0.40</td>
<td>[33.09]</td>
</tr>
<tr>
<td>Intercept</td>
<td>27.5</td>
<td>[5.00]</td>
<td>9.4</td>
<td>[2.22]</td>
</tr>
<tr>
<td>T</td>
<td>972</td>
<td>972</td>
<td>972</td>
<td>972</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.891</td>
<td>0.969</td>
<td>0.946</td>
<td>0.757</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>10.90</td>
<td>(<0.01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Value Weighted

<table>
<thead>
<tr>
<th>Basis Points</th>
<th>Bottom 30%</th>
<th>Middle 40%</th>
<th>Top 30%</th>
<th>Top – Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Excess Returns</td>
<td>Coef</td>
<td>[t]</td>
<td>Coef</td>
<td>[t]</td>
</tr>
<tr>
<td>59.6</td>
<td>[4.46]</td>
<td>70.4</td>
<td>[3.70]</td>
<td>75.0</td>
</tr>
<tr>
<td>CAPM Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.73</td>
<td>[80.10]</td>
<td>1.10</td>
<td>[184.41]</td>
</tr>
<tr>
<td>Intercept</td>
<td>13.3</td>
<td>[2.72]</td>
<td>0.6</td>
<td>[0.19]</td>
</tr>
<tr>
<td>T</td>
<td>972</td>
<td>972</td>
<td>972</td>
<td>972</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.869</td>
<td>0.972</td>
<td>0.907</td>
<td>0.598</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>4.05</td>
<td>(<0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fama-French 3-Factor Regressions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.72</td>
<td>[72.32]</td>
<td>1.06</td>
<td>[152.47]</td>
</tr>
<tr>
<td>SMB</td>
<td>-0.05</td>
<td>[-3.41]</td>
<td>-0.02</td>
<td>[-2.09]</td>
</tr>
<tr>
<td>HML</td>
<td>0.05</td>
<td>[3.78]</td>
<td>0.14</td>
<td>[13.95]</td>
</tr>
<tr>
<td>Intercept</td>
<td>13.5</td>
<td>[2.70]</td>
<td>-1.8</td>
<td>[-0.50]</td>
</tr>
<tr>
<td>T</td>
<td>972</td>
<td>972</td>
<td>972</td>
<td>972</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.865</td>
<td>0.968</td>
<td>0.941</td>
<td>0.672</td>
</tr>
<tr>
<td>GRS Test (p)</td>
<td>7.88</td>
<td>(<0.01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Debt and Equity Market Segmentation. Regressions of portfolio returns on market excess returns and government bond excess returns. Each portfolio total return in excess of the riskless rate is computed using value weights. The sample is divided within each month into low (bottom 30%), medium (middle 40%), and high (top 30%) portfolios according to pre-ranking beta, using all CRSP stocks. We also compute the returns to corporate bonds in excess of the riskless rate using data from Ibbotson and Associates. Below we show the market beta, government bond beta, and the alpha (or intercept) for the Bottom 30% portfolio in absolute terms and for the Top 30% portfolio and corporate bonds in relation to the Bottom 30%. The final column compares the extrapolated alpha using the relationship between alpha and beta in the Bottom and Top 30% portfolios to the actual alpha for corporate bonds. In an integrated market, where the low beta anomaly holds equally in stock and bond markets, the actual and extrapolated betas are the same. There are 528 months in the first two panels and 972 in the second two panels.

<table>
<thead>
<tr>
<th>Basis Points</th>
<th>Bottom 30%</th>
<th>Top - Bottom 30%</th>
<th>Corporate - Bottom 30%</th>
<th>Bottom 30% - Extrapolated Corporate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [t]</td>
<td>Coef [prob]</td>
</tr>
<tr>
<td>CAPM Regressions, January 1968-December 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.67 [36.61]</td>
<td>0.72 [27.77]</td>
<td>-0.51 [-19.57]</td>
<td>-23.8 [p =0.095]</td>
</tr>
<tr>
<td>Intercept</td>
<td>17.4 [2.01]</td>
<td>-39.0 [-3.19]</td>
<td>3.7 [0.30]</td>
<td>27.5</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Squared</td>
<td></td>
<td></td>
<td></td>
<td>0.8251</td>
</tr>
<tr>
<td>CAPM Regressions with Government Bond Returns, January 1968-December 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.66 [45.17]</td>
<td>0.75 [36.56]</td>
<td>-0.57 [-27.55]</td>
<td>-34.8 [p =0.009]</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.17 [7.67]</td>
<td>-0.31 [-10.08]</td>
<td>0.60 [19.39]</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Squared</td>
<td></td>
<td></td>
<td></td>
<td>0.8931</td>
</tr>
<tr>
<td>CAPM Regressions, January 1931-December 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.71 [64.15]</td>
<td>0.80 [50.76]</td>
<td>-0.63 [-39.78]</td>
<td>-25.3 [p =0.029]</td>
</tr>
<tr>
<td>Intercept</td>
<td>14.2 [2.35]</td>
<td>-35.3 [-4.12]</td>
<td>2.4 [0.28]</td>
<td>27.7</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Squared</td>
<td></td>
<td></td>
<td></td>
<td>0.8919</td>
</tr>
<tr>
<td>CAPM Regressions with Government Bond Returns, January 1931-December 2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market</td>
<td>0.71 [73.01]</td>
<td>0.82 [59.80]</td>
<td>-0.66 [-47.94]</td>
<td>-30.8 [p =0.003]</td>
</tr>
<tr>
<td>Bonds</td>
<td>0.17 [8.14]</td>
<td>-0.35 [-11.63]</td>
<td>0.57 [18.80]</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>11.3 [2.15]</td>
<td>-29.3 [-3.96]</td>
<td>-7.3 [-0.98]</td>
<td>23.5</td>
</tr>
<tr>
<td>Difference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-Squared</td>
<td></td>
<td></td>
<td></td>
<td>0.9197</td>
</tr>
</tbody>
</table>
Table 4. Summary Statistics: CRSP Data and Compustat Data. Leverage ratios, asset beta and risk, and capital structure determinants, 1980-2012. We divide firms into profitable and unprofitable. A firm is defined as profitable if it has earnings before interest and taxes (Compustat = EBITDA) greater than zero. Variable definitions are provided in the appendix. There are 1,010,640 observations in 50 industries across 396 months.

<table>
<thead>
<tr>
<th>Variable Description</th>
<th>Profitable Firms</th>
<th>Unprofitable Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg N</td>
<td>Mean</td>
</tr>
<tr>
<td>Book Leverage, Gross (%)</td>
<td>2,247</td>
<td>33.0</td>
</tr>
<tr>
<td>Book Leverage, Net (%)</td>
<td>2,247</td>
<td>27.0</td>
</tr>
<tr>
<td>Market Leverage, Gross (%)</td>
<td>2,247</td>
<td>21.6</td>
</tr>
<tr>
<td>Market Leverage, Net (%)</td>
<td>2,247</td>
<td>18.7</td>
</tr>
<tr>
<td>Asset Beta</td>
<td>2,247</td>
<td>0.90</td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>2,247</td>
<td>11.4</td>
</tr>
<tr>
<td>FF Industry Asset Beta</td>
<td>2,247</td>
<td>0.87</td>
</tr>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>2,247</td>
<td>7.6</td>
</tr>
<tr>
<td>Pre-Interest, Marginal Tax Rate (%)</td>
<td>2,247</td>
<td>33.4</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>2,247</td>
<td>32.5</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>2,247</td>
<td>9.7</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>2,247</td>
<td>2.0</td>
</tr>
<tr>
<td>Log(Assets)</td>
<td>2,247</td>
<td>5.6</td>
</tr>
<tr>
<td>Asset Growth (%)</td>
<td>2,247</td>
<td>15.1</td>
</tr>
</tbody>
</table>
Table 5. Correlations: CRSP Data and Compustat Data. Leverage ratios, asset beta and risk, and capital structure determinants, 1980-2012. Variable definitions are provided in the appendix. There are 1,010,640 observations in 50 industries across 396 months.

Panel A. Leverage Measures

<table>
<thead>
<tr>
<th></th>
<th>Book Leverage</th>
<th>Market Leverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gross (%)</td>
<td>Net (%)</td>
</tr>
<tr>
<td>Book Leverage,</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Gross (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Leverage,</td>
<td>0.77</td>
<td>1.00</td>
</tr>
<tr>
<td>Net (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Leverage,</td>
<td>0.93</td>
<td>0.76</td>
</tr>
<tr>
<td>Gross (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Leverage,</td>
<td>0.78</td>
<td>0.93</td>
</tr>
<tr>
<td>Net (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B. Leverage Predictors

<table>
<thead>
<tr>
<th></th>
<th>Own Asset Risk</th>
<th>FF Industry Asset Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beta RMSE</td>
<td>Beta RMSE</td>
</tr>
<tr>
<td>Asset Beta</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>0.61</td>
<td>1.00</td>
</tr>
<tr>
<td>FF Industry Asset Beta</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>0.23</td>
<td>0.31</td>
</tr>
<tr>
<td>Pre-Int. Mgl. Tax Rate (%)</td>
<td>0.09</td>
<td>-0.35</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>0.21</td>
<td>-0.24</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>0.07</td>
<td>-0.31</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>0.13</td>
<td>0.20</td>
</tr>
<tr>
<td>Log(Assets)</td>
<td>0.07</td>
<td>-0.40</td>
</tr>
<tr>
<td>Asset Growth (%)</td>
<td>0.06</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table 6. Summary Statistics for Profitable Firms: CRSP Data and Compustat Data. Leverage ratios, asset beta and risk, and capital structure determinants, 1980-2012. We divide the sample of profitable CRSP-Compustat firms into six groups, according to gross book leverage (in Panels A through C) and according to pre-interest marginal tax rate (across three pairs of columns). A firm is defined as profitable if it has earnings before interest and taxes (Compustat = EBITDA) greater than zero. The marginal tax rate is from John Graham, computed using the methodology of Graham and Mills (2008). Variable definitions are provided in the appendix. There are 889,922 observations in 50 industries across 396 months.

<table>
<thead>
<tr>
<th>Tax Rates</th>
<th>N</th>
<th>MTR<5%</th>
<th>N</th>
<th>Middle</th>
<th>N</th>
<th>MTR>30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A. Low Leverage, <5% Gross Book Leverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Leverage, Gross (%)</td>
<td>7,236</td>
<td>0.8</td>
<td>23,936</td>
<td>0.9</td>
<td>122,003</td>
<td>1.0</td>
</tr>
<tr>
<td>Book Leverage, Net (%)</td>
<td>7,236</td>
<td>0.7</td>
<td>23,936</td>
<td>0.8</td>
<td>122,003</td>
<td>0.7</td>
</tr>
<tr>
<td>Market Leverage, Gross (%)</td>
<td>7,236</td>
<td>-0.3</td>
<td>23,936</td>
<td>-0.8</td>
<td>122,003</td>
<td>-2.0</td>
</tr>
<tr>
<td>Market Leverage, Net (%)</td>
<td>7,236</td>
<td>-15.8</td>
<td>23,936</td>
<td>-16.9</td>
<td>122,003</td>
<td>-13.8</td>
</tr>
<tr>
<td>Asset Beta</td>
<td>7,236</td>
<td>1.68</td>
<td>23,936</td>
<td>1.57</td>
<td>122,003</td>
<td>1.34</td>
</tr>
<tr>
<td>FF Industry Asset Beta</td>
<td>7,236</td>
<td>1.03</td>
<td>23,936</td>
<td>1.02</td>
<td>122,003</td>
<td>0.99</td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>7,236</td>
<td>27.7</td>
<td>23,936</td>
<td>25.5</td>
<td>122,003</td>
<td>17.1</td>
</tr>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>7,236</td>
<td>9.3</td>
<td>23,936</td>
<td>9.2</td>
<td>122,003</td>
<td>8.7</td>
</tr>
<tr>
<td>Pre-Interest, Marginal Tax Rate (%)</td>
<td>7,236</td>
<td>1.8</td>
<td>23,936</td>
<td>17.8</td>
<td>122,003</td>
<td>36.7</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>7,236</td>
<td>21.9</td>
<td>23,936</td>
<td>21.8</td>
<td>122,003</td>
<td>22.0</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>7,236</td>
<td>5.0</td>
<td>23,936</td>
<td>6.5</td>
<td>122,003</td>
<td>14.7</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>7,236</td>
<td>3.1</td>
<td>23,936</td>
<td>2.2</td>
<td>122,003</td>
<td>3.1</td>
</tr>
<tr>
<td>Panel B. Medium Leverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Leverage, Gross (%)</td>
<td>14,902</td>
<td>26.6</td>
<td>69,309</td>
<td>27.6</td>
<td>447,378</td>
<td>28.1</td>
</tr>
<tr>
<td>Book Leverage, Net (%)</td>
<td>14,902</td>
<td>24.5</td>
<td>69,309</td>
<td>26.7</td>
<td>447,378</td>
<td>23.0</td>
</tr>
<tr>
<td>Market Leverage, Gross (%)</td>
<td>14,902</td>
<td>13.3</td>
<td>69,309</td>
<td>15.7</td>
<td>447,378</td>
<td>17.1</td>
</tr>
<tr>
<td>Market Leverage, Net (%)</td>
<td>14,902</td>
<td>14.5</td>
<td>69,309</td>
<td>16.6</td>
<td>447,378</td>
<td>15.3</td>
</tr>
<tr>
<td>Asset Beta</td>
<td>14,902</td>
<td>0.96</td>
<td>69,309</td>
<td>0.92</td>
<td>447,378</td>
<td>0.91</td>
</tr>
<tr>
<td>FF Industry Asset Beta</td>
<td>14,902</td>
<td>0.96</td>
<td>69,309</td>
<td>0.90</td>
<td>447,378</td>
<td>0.86</td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>14,902</td>
<td>16.9</td>
<td>69,309</td>
<td>14.5</td>
<td>447,378</td>
<td>10.2</td>
</tr>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>14,902</td>
<td>8.7</td>
<td>69,309</td>
<td>8.1</td>
<td>447,378</td>
<td>7.5</td>
</tr>
<tr>
<td>Pre-Interest, Marginal Tax Rate (%)</td>
<td>14,902</td>
<td>2.2</td>
<td>69,309</td>
<td>18.1</td>
<td>447,378</td>
<td>37.7</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>14,902</td>
<td>33.5</td>
<td>69,309</td>
<td>34.8</td>
<td>447,378</td>
<td>34.3</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>14,902</td>
<td>3.2</td>
<td>69,309</td>
<td>5.0</td>
<td>447,378</td>
<td>10.7</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>14,902</td>
<td>2.1</td>
<td>69,309</td>
<td>1.6</td>
<td>447,378</td>
<td>1.9</td>
</tr>
<tr>
<td>Panel C. High Leverage, >50% Gross Book Leverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book Leverage, Gross (%)</td>
<td>8,407</td>
<td>76.5</td>
<td>34,436</td>
<td>74.9</td>
<td>162,315</td>
<td>68.1</td>
</tr>
<tr>
<td>Book Leverage, Net (%)</td>
<td>8,407</td>
<td>57.3</td>
<td>34,436</td>
<td>58.2</td>
<td>162,315</td>
<td>55.1</td>
</tr>
<tr>
<td>Market Leverage, Gross (%)</td>
<td>8,407</td>
<td>72.0</td>
<td>34,436</td>
<td>70.6</td>
<td>162,315</td>
<td>63.5</td>
</tr>
<tr>
<td>Market Leverage, Net (%)</td>
<td>8,407</td>
<td>53.8</td>
<td>34,436</td>
<td>54.3</td>
<td>162,315</td>
<td>51.2</td>
</tr>
<tr>
<td>Asset Beta</td>
<td>8,407</td>
<td>0.49</td>
<td>34,436</td>
<td>0.49</td>
<td>162,315</td>
<td>0.51</td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>8,407</td>
<td>9.1</td>
<td>34,436</td>
<td>8.3</td>
<td>162,315</td>
<td>6.3</td>
</tr>
<tr>
<td>FF Industry Asset Beta</td>
<td>8,407</td>
<td>0.82</td>
<td>34,436</td>
<td>0.81</td>
<td>162,315</td>
<td>0.76</td>
</tr>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>8,407</td>
<td>7.4</td>
<td>34,436</td>
<td>7.3</td>
<td>162,315</td>
<td>6.7</td>
</tr>
<tr>
<td>Pre-Interest, Marginal Tax Rate (%)</td>
<td>8,407</td>
<td>2.1</td>
<td>34,436</td>
<td>17.9</td>
<td>162,315</td>
<td>37.2</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>8,407</td>
<td>38.1</td>
<td>34,436</td>
<td>37.4</td>
<td>162,315</td>
<td>35.4</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>8,407</td>
<td>1.9</td>
<td>34,436</td>
<td>4.1</td>
<td>162,315</td>
<td>7.7</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>8,407</td>
<td>2.0</td>
<td>34,436</td>
<td>1.8</td>
<td>162,315</td>
<td>1.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Base</th>
<th>Own Risk Measures</th>
<th>Industry Risk Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef</td>
<td>Coef</td>
<td>Coef</td>
</tr>
<tr>
<td>Asset Risk (%)</td>
<td>-0.83 [-16.00]</td>
<td>-0.89 [-14.94]</td>
<td>-1.03 [-3.36]</td>
</tr>
<tr>
<td>Pre-Interest</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Tax Rate (%)</td>
<td>0.09 [1.87]</td>
<td>-0.08 [-1.86]</td>
<td>0.06 [1.30]</td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>0.20 [4.10]</td>
<td>0.09 [2.41]</td>
<td>0.15 [3.62]</td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>-0.36 [-8.12]</td>
<td>-0.44 [-11.38]</td>
<td>-0.36 [-7.88]</td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>-1.21 [-5.62]</td>
<td>-0.54 [-2.28]</td>
<td>-1.01 [-5.2]</td>
</tr>
<tr>
<td>Asset Growth (%)</td>
<td>0.04 [4.38]</td>
<td>0.06 [9.02]</td>
<td>0.04 [4.61]</td>
</tr>
<tr>
<td>Two-Way Clustering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industries</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Months</td>
<td>396</td>
<td>396</td>
<td>396</td>
</tr>
<tr>
<td>N (000)</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
</tr>
<tr>
<td>OLS R²</td>
<td>0.09</td>
<td>0.17</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Table 8. Alternate Leverage Ratios, 1980-2012. Tobit regressions of leverage on capital structure determinants. We repeat the final regression of Table 6 using four different measures of leverage. Net leverage ratios deduct cash and equivalents from debt. Market leverage ratios replace book equity with market capitalization, equal to price times shares outstanding from CRSP.

<table>
<thead>
<tr>
<th></th>
<th>Gross Leverage (%)</th>
<th></th>
<th></th>
<th>Net Leverage (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FF Industry Asset Risk (%)</td>
<td>-0.92 [-2.67]</td>
<td>-0.57 [-1.78]</td>
<td>-1.41 [-2.9]</td>
<td>-0.95 [-2.28]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Tax Rate (%)</td>
<td>0.06 [1.3]</td>
<td>0.10 [2.62]</td>
<td>0.12 [1.7]</td>
<td>0.15 [2.99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed Assets Ratio (%)</td>
<td>0.15 [3.62]</td>
<td>0.12 [3.03]</td>
<td>0.29 [5.31]</td>
<td>0.23 [4.86]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profitability (%)</td>
<td>-0.36 [-7.88]</td>
<td>-0.36 [-7.18]</td>
<td>-0.40 [-7.12]</td>
<td>-0.39 [-6.82]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market-to-Book Assets</td>
<td>-1.01 [-5.2]</td>
<td>-4.05 [-11.91]</td>
<td>-2.09 [-6.46]</td>
<td>-5.31 [-14.08]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asset Growth (%)</td>
<td>0.04 [4.61]</td>
<td>0.02 [3.09]</td>
<td>0.03 [2.44]</td>
<td>0.02 [1.7]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two-Way Clustering</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Months</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLS R²</td>
<td>0.11</td>
<td>0.23</td>
<td>0.15</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9. Equity Risk Instead of Asset Risk, 1980-2012. OLS regressions of leverage on capital structure determinants. We repeat the final regression of Table 7 using equity beta and equity risk in place of asset beta and asset risk.

<table>
<thead>
<tr>
<th></th>
<th>Gross Leverage</th>
<th></th>
<th></th>
<th>Net Leverage</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Book</td>
<td>Market</td>
<td></td>
<td>Book</td>
<td>Market</td>
</tr>
<tr>
<td></td>
<td>Coef</td>
<td>Coef</td>
<td>[t]</td>
<td>Coef</td>
<td>Coef</td>
<td>[t]</td>
</tr>
<tr>
<td>Risk (%)</td>
<td>0.89 [7.69]</td>
<td>0.69 [6.93]</td>
<td></td>
<td>1.02 [7.08]</td>
<td>0.81 [6.91]</td>
<td></td>
</tr>
<tr>
<td>Pre-Interest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marginal Tax Rate</td>
<td>0.21 [4.73]</td>
<td>0.21 [5.98]</td>
<td></td>
<td>0.29 [4.59]</td>
<td>0.29 [6.09]</td>
<td></td>
</tr>
<tr>
<td>Fixed Assets Ratio</td>
<td>0.20 [4.06]</td>
<td>0.17 [3.54]</td>
<td></td>
<td>0.36 [5.35]</td>
<td>0.29 [4.94]</td>
<td></td>
</tr>
<tr>
<td>Profitability</td>
<td>-0.29 [-7.12]</td>
<td>-0.32 [-7.28]</td>
<td></td>
<td>-0.33 [-6.31]</td>
<td>-0.34 [-6.61]</td>
<td></td>
</tr>
<tr>
<td>Asset Growth (%)</td>
<td>0.02 [2.58]</td>
<td>0.01 [0.99]</td>
<td></td>
<td>0.01 [0.91]</td>
<td>0.00 [0.06]</td>
<td></td>
</tr>
<tr>
<td>Two-Way Clustering</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Industries</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Months</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
<td>396</td>
</tr>
<tr>
<td>N</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
<td>1,011</td>
</tr>
<tr>
<td>OLS R²</td>
<td>0.11</td>
<td>0.22</td>
<td>0.13</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix. Variable Definitions. All variables are Winsorized at 1% and 99%, measured across the whole sample.

Asset Beta Beta times one minus market leverage, net.
Asset Growth The annual change in total assets (AT) divided by total assets one year ago, in percentage terms.
Asset Risk (%) Risk times one minus market leverage, net.
Beta Market beta computed from CRSP returns (RET) net of Treasury bill returns (YLDMAT) from CRSP regressed on the value-weighted market return (VWRET), also net of the Treasury bill return. We require at least 24 months of returns and use at most 60 months of returns.
Book Equity Shareholder’s equity minus preferred stock plus deferred taxes. Shareholder’s equity (SEQ) or the sum of common equity (CEQ) plus preferred stock (PSTK) if shareholder’s equity is missing or total assets (AT) minus total liabilities (LT) if common equity is missing. Preferred stock is equal to the redemption value of preferred stock (PSTKRV) or the liquidating value of preferred stock (PSTKL) or total preferred stock (PSTK) in that order and set to zero if still missing. Deferred taxes are equal to deferred tax and investment tax credit (TXDITC) or balance sheet deferred tax (TXDB) in that order and zero if missing.
Book Leverage, Gross (%) The sum of total long-term debt (COMPUSTAT = DLTT) and notes payable (NP) divided by the sum of total long-term debt and notes payable and book equity, in percentage terms.
Book Leverage, Net (%) The sum of total long-term debt (COMPUSTAT = DLTT) and notes payable (NP) less cash and equivalents (CHE) divided by the sum of total long-term debt and notes payable and book equity less cash and equivalents, in percentage terms.
FF Industry Asset Beta Market equity weighted average asset beta, computed for each Fama-French industry classification. Market equity is equal to price (PRC) times shares outstanding (CRSP) from CRSP. The 49 industry classifications are defined in Ken French’s data library.
FF Industry Asset Risk (%) Market equity weighted average asset risk, computed for each Fama-French industry classification. Market equity is equal to price (PRC) times shares outstanding (CRSP) from CRSP. The 49 industry classifications are defined in Ken French’s data library.
Fixed Assets Ratio (%) Plant, property, and equipment, net (PPENT) divided by total assets (AT), in percentage terms.
Log Assets The natural log of total assets (AT).
Market-to-Book Assets Sum of total long-term debt (COMPUSTAT = DLTT) and notes payable (NP) and market equity divided by the sum of total long-term debt and notes payable and book equity. Market equity is equal to price (PRC) times shares outstanding (CRSP) from CRSP.
Market Leverage, Gross (%) The sum of total long-term debt (COMPUSTAT = DLTT) and notes payable (NP) divided by the sum of total long-term debt and notes payable and market equity. Market equity is equal to price (PRC) times shares outstanding (CRSP) from CRSP, in percentage terms.
Market Leverage, Net (%) The sum of total long-term debt (COMPUSTAT = DLTT) and notes payable (NP) less cash and equivalents (CHE) divided by the sum of total long-term debt and notes payable and market equity less cash and equivalents. Market equity is equal to price (PRC) times shares outstanding (CRSP) from CRSP, in percentage terms.
Pre-Interest, Marginal Tax Rate (%) John Graham provided estimates of the pre-interest marginal tax rate, computed using the methodology of Graham and Mills (2008), in percentage terms.
Profitability (%) Earnings before interest and taxes (EBIT) divided by assets (AT), in percentage terms.
Risk (%) Standard deviation of CRSP returns (RET) net of Treasury bill returns (YLDMAT), in percentage terms.