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Abstract

The conjectural variations solution is usually seen as the reduced form of the equilibrium of an (unmodeled)
dynamic game. We show that. in linear oligopolies and for an open set of values of the discount factor, this
correspondence holds exactly for a quantity-setting repeated game with minimax punishments during T periods.
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1. Introduction

The conjectural variations (CV) oligopoly solution, first introduced by Bowley (1924), has
been a useful tool in both applied theoretic and empirical industrial organization. The basic
idea is to consider a static quantity-setting oligopoly, together with the assumption that each
firm expects a one-unit change in its quantity to lead to a change of 1 + vy in total output. That
is, each firm conjectures that a one-unit change in its output leads to a variation of y in the
other firms’ output. By varying the value of y between —1 and N — 1 (where N is the number
of firms), one obtains different solutions, from the most competitive to the most collusive one.

The CV solution is not entirely satisfactory from a game-theoretic point of view because it
describes *dynamics’ based on a static model (cf. Tirole, 1989, pp. 244-245; Makowski, 1987).
However, despite this theoretical shortcoming, many authors believe that the CV model,
taken as a reduced-form model, can be a useful tool for many practical purposes. The idea is
that conjectural variations are “best interpreted as reduced form parameters that summarize
the intensity of rivalry that emerges from what may be complex patterns of behavior”
(Schmalensee. 1989, p. 650); in particular, from “the equilibrium of an (unmodeled) dynamic
oligopolistic game™ (Farrell and Shapiro, 1990, p. 120, footnote 27).

In this paper, we attempt to formalize this idea by providing an explicit dynamic game of
which the CV solution is an exact reduced form. The dynamic game we have in mind is a
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quantity-setting oligopoly supergame with an equilibrium of the following kind. In each
period, each firm produces some designated quantity. If in any period one firm alone deviates
from its designated action, then it is minimaxed for T periods (thus receiving a payoff of zero).
For some given value of the discount factor 8, there exists a unique solution that maximizes
total profits, the ‘optimal’ equilibrium. Our main result asserts that for each value of § in a
given open set, there exists a value of y such that, for any linear oligopoly structure, each
firm’s quantity along the ‘optimal’ equilibrium path is equal to that firm’s quantity in the CV
solution.

Notice that the order of the quantifiers in the preceding section is crucial. To say that for
any oligopoly structure and discount factor there exists a y such that the CV solution replicates
the dynamic solution would be a much weaker result. In particular, for the case of symmetric
oligopolies, it would be a trivial result. The strength of our result lies in the fact that we may
fix 8 (and the corresponding y), vary the oligopoly structure (among the set of linear
oligopolies), and still maintain the exact correspondence. This is important insofar as it
legitimizes comparative statics on changes in demand and costs based on an initial estimate of
Y.

2. Main result

A linear oligopoly is defined by a linear demand function and a set of firms, each with its
own linear cost function. Without loss of generality, we can denote a linear oligopoly by
® = (N, c). where N is the number of firms and ¢ an N-dimensional vector with each firm’s
marginal cost. ¢ =|c¢,|. Units of ¢, are chosen so that the demand function is given by
P=1-0.

The CV solution is given by a quantity-setting ‘game’ with the assumption that each firm
expects a onec-unit variation of its quantity to be ‘followed” by a change of 1+ in total
quantity, 1.e. dQ/dg, =1+ y.i=1..... N.

Firm i's profits are given by

H=q(1-0Q  -q -c).

where Q =Y 4. The ‘equilibrium’ quantities are then determined by the first-order
conditions:
g;=(1-0Q  ~—c)(2+y). (1)

It is useful to think of the CV solution as a vector-valued function from the set of (linear)
oligopolies to M™Y. flw]|y): 2 —N", giving each firm's equilibrium quantity; that is, the
values [g,] = f(w | y) that satisfy (1).

Now consider a repeated quantity-setting game with discount factor 6 and the following
class of equilibria. In each period, each firm chooses some designated quantity g,. If in any
period ¢ firm 7 alone deviates from the prescribed action, then firm ¢ is minimaxed in the
following period, thus receiving a payoff of zero. After one period of punishment, the
Juantities corresponding to the equilibrium path are again played.
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Equilibria of a similar type were studied by Abreu (1986), who concentrated on symmetric
equilibria of symmetric oligopolies. In what follows, we will also consider the possibility of
asymmetric oligopolies (and equilibria). In general. the conditions for the described strategies
to form a Nash equilibrium are

Q) —l(q,.Q )=éllq.0_,), (2)
where

II*(Q?I)Em(Eix qP(qg+0Q _)—C(q).
H(q,.Q )=qP(q+0Q ,)-Cq,). i=1..... N.

The left-hand side of (2) gives the increase in current period profits for a firm that deviates,
while the right-hand side gives the loss in profits resulting from the minimax punishment in the
following period.'

In the case of a linear oligopoly, we have

H*(Q_)=41-0 —¢).
H(g,.Q )=q(1 -Q  —q —c).

and so the equilibrium conditions become

A

%(I“Q'1¥(‘I) = _._5)(11(1,_()7,_6[1,-(-"). (3)

There are. of course. many equilibria in this class. Of particular interest are what we call
‘optimal equilibria’, i.c. equilibria that maximize total profits [T = ¥, g, (1—-Q —c,) in the
given class of one-period minimax-punishment equilibria’ '

By analogy with the CV solution, we can then define the function glw|8): 2— M"Y, which
gives each firm’s quantity along the equilibrium path in the optimal one-period minimax-
punishment equilibrium: that is, the values [¢,] = g(w | § ). which maximize total profits subject
to (3).

The main result in the paper concerns the equivalence between the above dynamic
equilibria and the CV solution: more specifically. the equivalence between f and g.

Theorem 1. There exists an open set of values of & such that

y/2:5+\/%(_Ijgw):>f(w‘y)=g(w|5). Vo .

' For simplicity. we only consider Nash equilibria at this stage. Below, we argue that for an open set of values of
d these equilibria are subgame pertfect.

*Note that these equilibria are not optimal in a more general sense. since the punishments considered are not
optimal themselves.
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Proof. The proot consists of two steps. First, we show that the equilibrium necessary

conditions (3) can be written as simple inequalities similar to the first-order conditions of the

CV model. Second. we show that in the optimal equilibrium all these inequalities are binding.
Step 1. Solving (3) for g,, we get

;li(l‘Q'li(‘i)lg(l%_(s)ql(lAQ177(’117(‘;)-
0=(1+8)g, —(1=8)1—-Q ,—c)g+L(1-0Q ,—¢,),
81 -Q , )

4.7 2(1+5)
VII+8)Y(1-Q ,-¢)y —41+8)L(1-0_,—¢)
- 2(1+8)
I +86-\Vo(1+8)
e ) 2(1\+é)
B I - Q—: - ¢ . (4)

2428 +VE(1+6))

since optimality dictates we choose the lowest root. (That is, the second inequality resulting
from the above quadratic inequality is redundant.)

Step 2. We now show that in the optimal equilibrium, the inequalities (4) are all binding.
First note that if & is zcro. then all firms produce their Cournot quantities under the optimal
equilibrium, and thus Q = (N — ¥ ¢,)/(N + 1). By continuity, for a small enough 8, O > (1 —
¢;)/2. Suppose one of the constraints. say the ith, is not binding. If ¢, > ¢, for some j, then we
can easily increase total profits by decreasing g, and increasing q; by equal amounts, which
contradicts the hypothesis of optimality. Let us therefore consider the case when ¢, is the
lowest of all costs. Consider a small decrease in g, given by dg, <0. If we make dg; = —dgq,/
(N+vy), then dQ  =dg (1 —(N-2)/(N+y))=dq,(2+y)/(N+vy) and so dg, = —dQ _,/
(2 + 7). Therefore. all constraints (4) are still satisfied. What is the change in total profits?
Since IT=Y g(1 = Q ~¢,), we have all’dg, =1 —2Q — c,. Therefore,

a0 L <.,
“ag = U0 g 220 ¢

1
=-(1-2¢ "(’,)+N+—yﬁ(1”3Q*Q)

which contradicts the hypothesis of optimality.
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Finally. having established that in the optimal equilibrium all inequalities (4) hold as
cqualities. we have established the equivalence between this equilibrium and the CV solution,
hecause substituting 2(8 + (1 +8)) for y in (1) we get (4) as equalities. [J

3. Remarks

(1) In our main result we have applied the concept of Nash equilibrium. However, it can be
shown that, for sufficiently high values of § (but lower than the upper limit considered in the
theorem). the equilibria considered are subgame perfect.

(2) Although we have only considered one-period punishments, our main result applied to
T-period punishments as well, so long as the firm being punished is minimaxed in each of the
T periods. In this case, the equilibrium conditions (3) would become

o =8h
—j(l—Q.,—c‘_..)‘fi-(H'OT:‘(g—)q,(l Qg

(3) The equivalence between the static and the dynamic game was established through the
values of y and 6. Normally, we expect differences in § across industries to result from
differences in the length of each period (not the degree of impatience). The idea is then that
the shorter the time before retaliation is possible, the greater the value of y; that is, the more
collusive the oligopoly solution is.

Notice. however, that the correspondence between models may also be established through
the values of y and T, holding & fixed. In this case. the idea is that the longer the period of
retaliation to a deviation, the greater the value of y.

(4) A word should be said about econometric estimation. Although the CV model is a static
one, it is typically estimated using time-series data for demand and cost parameters. How does
the correspondence between the static and the dynamic models hold here? The answer is that
il changes in demand and cost parameters are taken to be permanent changes, then
econometric estimation will yield correct estimates of & and correct predictions of g;.
Otherwise, expectations about future changes in the parameters have to be incorporated in the
design of the optimal agrecement, and the relation between the dynamic model and the CV
model will only be approximate.

(5) Dockner (1992) presents a result similar to ours. He solves for the subgame perfect
equilibrium of an infinite horizon adjustment cost model and shows that it coincides with the
CV solution. The CV parameter is shown to be a continuous function of the discount factor as
well as of adjustment costs. The main difference of our paper is that it is based on a repeated
game rather than on a differential game. In this sensc. our approaches are complementary;
they present two different classes of dynamic models for which the CV solution results as a
reduced form.

Dockner’s approach has the advantage of not being restricted to lincar oligopolies. Our
approach has, in turn, an advantage in that adjustment to some exogenous shock (either to
demand or to firms’ costs) is processed immediately. whereas convergence to the new steady
state of a differential game (like the one used by Dockner) will take a very long time. This
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implies that econometric estimation of the CV solution based on time-series data should yield
better estimates of the repeated game model than of the differential game model.

4. Conclusion

In this paper. we show that. in linear oligopolies and for an open set of values of the
discount factor, there exists an exact correspondence between the conjectural variations
solution and the solution of a quantity-sctting repeated game with minimax punishments
during T periods.

The main result of the paper seems. therefore, to justify the use of the CV solution as the
reduced form of the equilibrium of an (unmodeled) dynamic game; and the CV model as a
means of estimating the degree of oligopoly power.

It should be noted, however, that the result only holds for the case of linear oligopolies and
for a particular class of equilibria of the dynamic game. In other cases, the CV solution can
only be taken as an approximate reduced form. It is an open question for empirical research
whether it provides a good approximation in those cases.
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