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I uncover a new force towards increasing dominance (the property whereby, in
dynamic games, the leader tends to increase his or her lead in expected terms). The
new effect results from the strategic choice of covariance in races. I assume that
players must choose not the amount of resources to spend but how to allocate those
resources. I show that, in equilibrium, the laggard chooses a less promising path,
in effect trading off lower expected value for lower correlation with respect to
the leader. This results in increasing dominance and holds true even if no joint-
payoff (or efficiency) effect is present. Journal of Economic Literature Classification
Numbers: C7, L1. � 2001 Elsevier Science
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1. INTRODUCTION

In a dynamic R6D race, does the leader tend to get farther ahead of the
rival (increasing dominance), or does the rival tend to catch up with the
leader? This important question has been studied by a number of authors.
Gibert and Newbery [10] characterize conditions under which monopoly
dominance persists over time even though there are opportunities for rival
firms to challenge the incumbent. Budd, Harris and Vickers [5] identify
some of the basic forces leading to increasing dominance (ID) in the con-
text of a one-dimensional dynamic model of R6D. Cabral and Riordan
[7] provide sufficient conditions for ID is the context of dynamic competi-
tion with learning-by-doing. More recently, Athey and Schmutzler [2]
derive general conditions for increasing dominance in a reduced-form
model of dynamic competition.2
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One common feature of all of these models is that strategies are defined
by some measure of effort in trying to move ahead of competitors.
Moreover, the increasing dominance results are all based on two parts.
First is the fact (which may be assumed or derived from primitive assump-
tions) that total payoffs are greater the greater the asymmetry between
players��the efficiency effect. Second is the property of certain dynamic
games that the system tends to move in the direction where joint payoffs
are greater. In other words, suppose that total payoffs are greater when the
leader gets farther ahead in a race. Then, in equilibrium the leader will tend
to get farther ahead in the race.

In this paper, I uncover an additional force towards increasing dominance,
one that is based on the strategic choice of covariance. Suppose that
players must choose not the amount of resources to spend but how to
allocate those resources.3 Specifically, suppose that each player has a fixed
amount of resources to spend and must choose between alternative paths
of uncertain success. By choosing the same path, the players' success is per-
fectly correlated. By choosing different paths, success is independent across
players. In this context, I show that the laggard in a race has an incentive
to choose a different path from the leader. In equilibrium, this results in the
laggard choosing a less promising path, in effect trading off lower expected
value for lower correlation with respect to the leader. This in turn leads to
increasing dominance.

In order to make the point as clear as possible, I assume that no joint-
payoff (or efficiency) effect is present. In this context, any force towards
increasing dominance must originate in something other than the joint-
payoff (or efficiency) effect.

The paper is organized as follows. In the next section, I introduce a two-
player, infinite period game where players must choose in each period
between two alternative paths. Section 3 presents the main results. Sec-
tion 4 includes a discussion of the results and their robustness to a number
of generalizations.

2. MODEL DEFINITIONS AND ASSUMPTIONS

Consider an infinite-period game with two players. In each period, the
state of the game is summarized by an integer z # Z. Short run payoffs are
summarized by the functions pi (z), i=1, 2. I assume that payoff functions are
monotonic and symmetric, i.e., p1(z) is increasing in z and p2(z)= p1(&z)
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(and thus p2(z) is decreasing in z). By an abuse of notation that simplifies
the analysis, I denote by p(s) the payoff for a player who is ``ahead'' is state
z=s�0 (the ``leader''); the payoff for the rival player (the ``laggard'') is
therefore p(&s).

One useful way of thinking about the model is that two firms attempt to
move up a quality ladder (or down a cost ladder) by exerting R6D effort.
In each period, payoffs are determined by the difference in quality levels,
s=qi&qj . Motion across states is therefore determined by the firms'
success in moving up the ladder.

A crucial feature of the model is that players must choose between two
alternative paths, a and b; and, once a path is chosen, a fixed amount of
effort is spent in following that path. If we interpret the model as one of
R6D competition, then this amounts to assuming that the R6D budget
is fixed and that the only choice is between different research paths.
Each path allows players to move up the ladder one step with a positive
probability, : and ;, respectively, where both : and ; are strictly between
0 and 1.

If players were to choose paths based on expected value only, then the
choice would be trivial��a if :>; and b if ;>:. However, selecting a par-
ticular path also implies a particular correlation with respect to the rival
player's motion. Specifically, I assume that if both players choose the same
path, then either both players move up one step or neither one does. If
players choose different paths, however, then the probability of success is
independent across players. Finally, if players choose each of the paths with
strictly positive probability, then the players' motion is positively but
imperfectly correlated. Formally:

Assumption 1. Success is perfectly correlated for a given period and
path, independent across periods and paths.

As an example, consider the case of two R6D labs working on super-
conductors. Suppose the only choice that each lab has to make is the par-
ticular type of ceramics to use in developing a better superconductor. Since
in this case R6D is primarily a matter of finding out whether a particular
material ``works'' or does not work, success is only a function of the
material chosen by the lab, not a function of the lab itself. Assumption 1
would then follow.

A Markov strategy for player i is a map xi (s), giving the probability of
choosing path a in state s. A pair of strategies xi (s), together with the
(common) discount factor $, induce value functions vi (s). I treat value
functions in terms of average period payoff, so vi (s)=(1&$) pi (s)+$v+

i ,
where v+

i is player i 's expected continuation value. Moreover, I restrict to
symmetric equilibria. For simplicity, if with some abuse of notation, I
denote strategies and value functions by x(s) and v(s), respectively.
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The main result of the paper is that increasing dominance results even
when there is no joint-payoff effect. For this purpose, I assume that total
payoffs are constant, that is, independent of the state. Specifically, I assume
that

Assumption 2. 0� p(s)�1; p(s)+ p(&s)=1.

Assumption 2 implies that, if increasing dominance occurs, it does not
result from the joint-payoff effect. I also assume that a leader achieves his
or her maximum payoff for a finite lead length:

Assumption 3. There exists an s� such that, for s>s� , p(s)=1.

3. MAIN RESULTS

I now present the main results of the paper. Lemma 1 and Corollary 1
characterize the equilibrium when the two paths are equally promising
(:=;). I show that the race then has the nature of a ``matching pennies''
game, the equilibrium being for players to choose each path with probabil-
ity 1

2 . If :>;, however, then the leading player chooses the most promising
path with greater probability, which in turn implies ID-Proposition 1.

Lemma 1. Suppose that :=;. Then, in equilibrium and for s>s� it must
be that,

1 if x(&s)>1�2 0 if x(s)>1�2
x(s)={0 if x(&s)<1�2 x(&s)={1 if x(x)<1�2

[0, 1] if x(&s)=1�2 [0, 1] if x(s)=1�2

Proof. Expected payoff in state s is given by

v(s)=(1&$) p(s)+$,v(s&1)+$,v(s+1)+$(1&2,) v(s),

where

,#:(1&:)(x(s)(1&x(&s))+(1&x(s)) x(&s)).

First notice that it must be 0<v(s)<1 for all s. In fact, suppose the
opposite is true and that v(&s$)=0, v(&s$+1)>0. This is only possible if,
in state s$, ,=0, which corresponds to the case when x(s$) and x(&s$) are
equal to each other and equal to 0 or 1. But clearly this is not an equi-
librium, for in state s$ the player receiving a payoff of zero would increase
his or her value by choosing a different x(&s$). This argument also implies
that, if s>s� , ,>0.
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Suppose that ,{0. It follows that

v(s)&
1
2

v(s&1)&
1
2

v(s+1)=
1&$
2,$

( p(s)&v(s)).

If s>s� , 1= p(s)>v(s). Consequently, v(s) is locally concave and v(&s)=
1&v(s) is locally convex. This implies that the leader's optimal x(s) is that
which minimizes ,, whereas the laggard's optimal x(&s) is that which
maximizes ,. The best responses in the lemma then follow. K

In words, Lemma 1 states that the leader's best response is to ``imitate''
the laggard, whereas the laggard's best response is to ``differentiate'' from
the leader. In fact, if the leader wants to maximize the probability of select-
ing the same path as the laggard, then he or she should take path a with
probability 1 if the laggard selects a with probability greater than 1�2, as
indicated by the Lemma. Likewise, if the laggard wants to minimize the
probability of selecting the same path as the leader, then he or she should
take path b if the leader selects a with probability greater than 1�2, as
indicated by the Lemma.

The intuition for this result is that a leader's current payoff is greater
than his or her discounted value, that is, ``things can only get worse.'' To
be more precise: the leader is worse off in equilibrium than he or she would
be if the state were never to change. Moreover, in equilibrium the system
moves to left and to the right with probability 1�2 each. These facts imply
that the leader's value function is concave: the leader has less to gain from
extending his or her lead than he or she has to lose from being caught up
by the laggard. The leader thus prefers to minimize the variance of motion
across states, which he or she does by maximizing the correlation with
respect to the laggard. Conversely, the laggard's current payoff is lower
than his or her discounted value, that is, ``things can only get better.'' This
implies, by a similar argument, that his or her value function is convex: the
laggard has less to lose from letting his or her lag extend than he or she
has to gain from catching up with the leader. The laggard thus prefers to
maximize the variance of motion across states, which he or she does by
minimizing the correlation with respect to the leader.

An immediate implication of Lemma 1 is that, as mentioned above, the
game has the nature of a ``matching pennies'' game, the equilibrium of
which is for players to equally mix between the two possible paths:

Corollary 1. Suppose that :=;. Then, in equilibrium and for s>s� ,
x(s)=x(&s)=1�2.

Lemma 1 and Corollary 1 characterize the equilibrium when the two
paths are equally promising (:=;). I now consider the case when one of
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the paths is more promising (:>;) and show that increasing dominance
results in equilibrium:

Proposition 1 (increasing dominance). There exists an = such that, if
;<:<;+=, then in equilibrium and at state s>s� the gap between leader
and follower increases in expected value.

Proof. From the proof of Lemma 1, we conclude that, in equilibrium,
players mix between the two paths. In fact, value functions are strictly con-
cave (leader) and convex (laggard), so that, even if : is changed by a small
amount, the nature of the best response functions remains as before: the
leader preferring to ``imitate'' the laggard, the latter preferring to differen-
tiate from the former.

Expected payoff at state s is given by

v(s)=(1&$) p(s)+$,&v(s&1)+$,%v(s)+$,+v(s+1),

where

,&#x(s)(1&x(&s))(1&:) ;+(1&x(s)) x(&s)(1&;) :

,+#x(s)(1&x(&s)) :(1&;)+(1&x(s)) x(&s) ;(1&:).

,%#1&,�,+.

The fact that the leader mixes implies that the right-hand side of the value
function is invariant with respect to x(s). Substituting 1 and 0 for x(s),
equating, and solving for x(&s), we get

x(&s)=
(:+;&2:;) v(s)&;(1&:) v(s&1)&:(1&;) v(s+1)

(:+;&2:;)(2v(s)&v(s&1)&v(s+1))
.

Differentiating with respect to : at :=; yields

�x(&s)
�: }:=;

=&
v(s+1)&v(s&1)

4:(1&:)(2v(s)&v(s&1)&v(s+1))
.

Since p(s)�1, s<s� (strict inequality for s< &s� ) and p(s)=1, s>s� , v(s) is
increasing in s for s>s� . Moreover, by the same argument as in the proof
of Lemma 1, v(s) is concave for s>s� . It follows that the above derivative
is negative, which in turn implies that x(&s)<1�2 (recall that, for :=;,
x(s)=x(&s)=1�2). An analogous argument implies that x(s)>1�2. Since
path a is better than b (in expected value), the result follows. K
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The above results are based on several assumptions regarding the value
of : and s. The results are tight in the sense that one can find counter-
examples when those assumptions fail. Specifically, if : is much greater
than ;, it is no longer the case that players mix between the two paths. In
fact, for : sufficiently greater than ;, both players choose path a. Moreover,
if s is less than s� , one can find examples whereby the system moves toward
zero in expected value: it suffices to assume that $ is close to zero and p(s)
convex.

Alternative formulations of main result. The previous results are limited
in that they only apply for the case when the leader is ``far'' ahead of the
laggard (that is, for s large enough). However, imposing additional restric-
tions on the value of $, I can prove similar versions of the increasing
dominance result which apply at every state. The following results dispense
with Assumption 3.

Proposition 2. Suppose that p(s) is strictly concave for s>0. There
exist =, $� >0 such that, if ;<:<;+=, and $<$� , then the gap between
leader and follower increases in expected value.

Proof. If $ is close to zero, then the payoff function provides a first-
order approximation to the value function. Concavity of p(s) therefore
implies concavity of v(s). The rest of the proof proceeds as in Lemma 1. K

Proposition 3. Suppose that p(s)> 1
2 iff s>0. There exist =, $� >0 such

that, if ;<:<;+=, and $>$� , then the gap between leader and follower
increases in expected value.

Proof. Recall that v(s)=(1&$) p(s)+$(,&v(n&1)+,%v(s)+,+v(n+
1)). Together with v(s)+v(&s)=1, this implies that lim$ � 1 v(s)= 1

2 . Since
p(s)> 1

2 iff s>0, it follows that for $ large enough, p(s)>v(s). The proof
then proceeds as in Lemma 1. K

4. DISCUSSION

Although my model implies increasing dominance, the reasons for the
result are in stark contrast to standard increasing dominance results. In the
latter, total payoffs are increasing when increasing dominance takes place.
Typically, this results from a convex payoff function, that is, a function
with the properties that the leader has more to gain from extending his or
her lead than the laggard has to lose from falling farther behind. By con-
trast, my model features constant total payoffs, so that the above effect is
absent. Instead, the crucial feature of the equilibrium is that the leader has
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less to gain from moving farther ahead than he or she has to lose from
being caught up by the laggard, whereas the laggard has more to gain from
moving closer to the leader than he or she has to lose from falling farther
behind. This implies that the leader prefers low variance of motion in the
state space, or, equivalently, high correlation with respect to the laggard;
whereas the laggard prefers the opposite, that is, low correlation with
respect to the leader.

In the standard increasing dominance results, convexity of the payoff
function translates into equilibrium strategies whereby the loader makes a
greater effort than the laggard. By contrast, my model features constant
total effort, so that the previous effect is absent. Instead, convexity of the
laggard's value function translates into an equilibrium strategy whereby the
laggard trades off a lower expected value for a lower correlation with
respect to the leader.

The results in the previous sections are based on a strong set of assump-
tions. These assumptions are in some cases necessary. In other cases,
however, they are only made for simplicity and could be generalized. In
what follows, I discuss the importance of each of the assumptions.

The assumption that there are only two possible R6D paths is not
necessary. The result can be generalized to the case when firms have L
available paths, whereby choosing li implies moving up one step with prob-
ability *i . When *i=*� , \i, the equilibrium is for both firms to choose each
path i with probability 1�L. Moreover, if *i>*i+i and *i # [*� &=, *� +=],
then, for *i>*$ # [*� &=, *� +=], the leader follows path i with probability
greater than 1�L and the laggard with probability lower than 1�L. This in
turn results in increasing dominance.

The assumptions that (a) the motion technologies only allow for one-
step moves and (b) total payoff is constant are important for the proof of
Propositions 1�3. In Cabral [6], I consider the case of more complex
motion technologies and payoff functions. I am able to (conditionally)
characterize the Nash equilibrium but unable to prove existence or unique-
ness of equilibria.

The assumption that the outcome of R6D is perfectly correlated across
players when they follow the same path is made for simplicity and not at
all crucial. What matters is that (1) correlation is greater when players
follow the same path than when they follow separate paths; and (2) correla-
tion is the same for each path.4

I have assumed that the set of available paths is common knowledge and
that choices are always simultaneous (that is, each player does not observe
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the other player's choice until making his or her own choice). Departing
from these assumptions would lead to a very different game structure; it is
not clear whether ID would still hold.5

Finally, the assumption that there are only two players is quite impor-
tant. In competitive sailing��a sport that, in many respects, is similar to the
game in this paper��there is also a crucial difference between two boats
(match racing) and more than two boats (normal racing). In match racing,
the optimal strategy for the leading boat is quite clear: to cover the laggard
(which implies a high level of correlation). In normal racing, by contrast,
the optimal strategy is significantly more complicated. I suspect the same
would be true in R6D races with more than two players.
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