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We present a simple dynamic model of adoption of an innovation when there are ‘network’ 
externalities, that is, when one agent’s benefit from adoption increases with the number of other 
adopters. We assume there is a continuum of differentiated potential adopters who are perfectly 
informed rational agents. Our main conclusion is that if network externalities are strong, then 
the equilibrium adoption path is discontinuous, even when there is no coordination between 
potential adopters. We also argue that a steep S-shaped adoption path can be interpreted as the 
approximation to a discontinuous point (catastrophe) of the equilibrium adoption path. 
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1. Introduction 

Positive externalities often occur in the diffusion of innovations or standards: the 
value of adopting an innovation or standard depends positively on how many others 
adopt the same innovation or standard. Typical examples include communication 
networks (e.g. fax machines) and technology standards (e.g. the R.I.S.C. design for 
computer architecture). 

There is a vast literature on diffusion of innovations. Some authors justify the 
process of diffusion as the result of incomplete information about the value of an 
innovation (cf. Jensen, 1982). For others, differences in the time of adoption follow 
from differences between potential adopters (cf. David, 1969). Finally, in the case 
when there are adoption externalities, diffusion can be understood as the equilib- 
rium of a game played by potential adopters (cf. Reinganum, 1981). 

l This paper is a substantial revision of a previous paper with the same title (Cabral, 1987). and was 
completed while I was visiting the Santa Fe Institute. I thank Brian Arthur, Paul David, John Hillas, 
Michihiro Kandori, Mordecai Kurz, Pat McAllister, Paul Milgrom, Michael Riordan, and Jim Roche for 
useful conversations and suggestions. The usual disclaimer applies. 
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There is also a vast literature of the issue of network externalities, which includes 
Rohlfs (1974), Schelling (1978), Dybvig and Spatt (1983), Farrell and Saloner (1985), 
and Granovetter and Soong (1986) (additional references are given below). Most of 
these authors consider static models, or assume somewhat ad hoc dynamics. One 
common theme that seems to emerge from this literature is that network exter- 
nalities likely lead to multiple equilibria, some of which Pareto dominate others. 

In this paper we present a model similar to Ireland and Stoneman’s (1986) and 
David and Olsen’s (1984,1986). We assume there is a continuum of heterogeneous 
potential adopters and that benefits from adoption depend positively on the meas- 
ure of adoption (network externalities). We further assume that agents are rational 
and perfectly informed. As in Ireland and Stoneman (1986) and David and Olsen 
(1984,1986), we look for equilibrium adoption paths. The main innovation of this 
paper is the qualitative characterization of the equilibrium adoption path, based 
on the same tools as the study of regular economies and catastrophe theory (e.g. 
Debreu, 1976; Balasko, 1978). We argue that in the presence of network exter- 
nalities there may exist multiple (in fact, a continuum of) equilibrium adoption 
paths. Assuming there is no exogenous coordination between adopters, we can re- 
strict ourselves to a single equilibrium path, i.e. the one corresponding to minimum 
adoption. We show that if network externalities are strong, then the equilibrium 
adoption path is discontinuous (i.e. includes a catastrophe point). This is in sharp 
contrast with the case of diffusion with no network externalities. In the latter, as- 
suming the primitives of the model (distribution of potential adopters, benefits) are 
smooth functions, the equilibrium adoption path is also a smooth (and thus con- 
tinuous) function. 

We finally argue that a steep S-shaped adoption path can be interpreted as the 
approximation to a discontinuous point (catastrophe) of the equilibrium adoption 
path. We thus believe our model to be consistent with the empirical evidence of dif- 
fusion of innovations. 

2. Basic model 

Consider a given innovation, with positive ‘network’ externalities, and a measure 
one of potential adopters.’ Each potential adopter is characterized by a preference 
parameter, 0 - the higher IJ, the higher the net ‘benefit’ of using the technology, 
other things equal.’ Specifically, upon adoption, each agent receives a benefit flow 
given by B(IJ,x, t), where x is the measure of adopters (at time t) and t is time. It 

* For convenience of exposition, we will use the term ‘network’ externalities to represent any kind of 
positive adoption externalities, which may be due to other factors, e.g. ‘learning-by-doing’ economies. 
See Cabral (1987). 

z Different explanations for the heterogeneity of adopters are provided by the literature on the diffu- 
sion of innovations. See David and Olsen (1986). 
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is assumed that B is smooth, all first-order partial derivatives are positive, and o has 
a smooth c.d.f. F(o). 

The assumption that B,>O is a matter of convention. B,>O corresponds to the 
idea of ‘network’ externalities. The crucial assumption of the model is that B,>O. 
It is agreed among some theorists that the driving force for the diffusion of innova- 
tions is an exogenous trend by which adoption benefits increase over time. Bl is 
supposed to capture such an exogenous trend. One must note, however, that B, 
also includes the effects of changes in the conditions of supply of the innovation. 
Therefore, we are assuming that the conditions of supply are sufficiently stable that 
the increasing trend in benefits is not reversed.3 

3. Existence and uniqueness of equilibrium 

Since by assumption benefits at time t depend only on the measure of adoption 
at time t, we can begin by looking at the static problem of finding the equilibrium 
values of x for each value of t. 

In equilibrium, all types u for whom B is non-negative must adopt the innovation. 
Denote by g(x, t) the indifferent adopter’s u level, i.e. B(g(x, t),x, t) = 0. Define 
H(x, t)= 1 -F(g(x, t)). A static equilibrium for a given time t is a value x such that 
x=H(x, t). Denote by G(t) the set of (static) equilibrium measures of adoption for 
each time t. 

Our first result characterizes the graph of the equilibrium correspondence, @, 
which we denote by E. Some additional definitions are needed, however. Points in 
E where the tangent is vertical are called singular points (e.g. points A and B in 
Fig. 1). Denote by 7c the natural projection of E onto R (the domain of t). A regular 
value t is a value such that n-‘(t) includes no singular points. Finally, denote by S? 
the set of regular values. 

Proposition 1. (i) E is a one-dimensional smooth manifold. (ii) S is an open 
dense subset of R. (iii) The restriction of E to a connected component of .9? consists 
of an odd number of functionsJ(t) such thatx.(t)>J+, (t) andf;‘(t)>O iff i is odd. 

These results are well known from the study of regular economies, catastrophe 
theory, and standard differential topology (see Balasko, 1978, and references there- 

3 If, for example, the innovation were supplied by a monopolist, one would expect him or her to act 
strategically and - possibly - set a non-time-stationary price schedule. If this were the case, B,>O would 
be too narrow an assumption. There are two basic situations in which B,>O is a reasonable assumption 
to make. The first one is when supply is competitive, so that changes in price only reflect changes in cost. 
The second one is when the innovation is an ‘unsponsored’ innovation, i.e. an innovation which is not 
the property of any firm in particular, so that one cannot talk about ‘supply’ in the usual sense of the 
word. Examples of ‘unsponsored’ innovations are the QWERTY keyboard standard and the R.I.S.C. 
design in computer architecture. 
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Fig. 1. Equilibrium manifold. 

in). An example of what E may look like is given by Fig. 1. The idea of Proposi- 
tion 1 is that E will in general look like Fig. 1. 

Our next step is now to find an equilibrium adoption path (EAP). This is a func- 
tion X(t) such that X(t) E #(t) for all t. Inspection of E reveals that generically there 
exist multiple equilibrium adoption paths; in fact, a continuum of equilibrium adop- 
tion paths. One natural way of selecting among these is to assume there is no coor- 
dination among potential adopters, which seems to be consistent with the 
assumption that there is a continuum of them. Suppose that each agent makes his 
or her adoption decision at time t based on the extent of adoption at time t -6, 

where 6 is arbitrarily small, i.e. each agent assumes that the extent of adoption at 
time t is very close to what it was at time r-6. The next result shows that under 
this assumption there exists a unique equilibrium adoption path, given by the lower 
envelope of E. 

Proposition 2. Suppose thereexistsa t’such that #(t) issingle-valuedfor t< I’. Con- 
sider an alternative model in which the benefit function is given by B(v, X(t - 6), t), 
and denote the (unique) equilibrium adoption path by EAP(G). The limit as 6 --t 0 
of EAP(6) is the lower envelope of E. 

An example of an equilibrium adoption path corresponding to Proposition 2 is 
shown in Fig. 2. From this we conclude that a necessary condition for the equilib- 
rium adoption path to be discontinuous is that there exists a singular (or cata- 
strophe) point in E. Note, however, that this is not a sufficient condition. Fig. 3 
depicts a case in which the equilibrium adoption path is continuous even though E 
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0 t 
t’ 

Fig. 2. Equilibrium adoption path. 

includes a singular point. Our final result provides sufficient conditions for the 
existence of a continuous or discontinuous equilibrium adoption path. 

Proposition 3. Suppose that H(0, t) = 0 for all t c t’ and denote by x’ the lowest 
fixed point of lim,,, H(x, t). (i) If for all x<x’, H,< 1 for all t, then the equilib- 
rium adoption path is continuous. (ii) if there exists an x”<x’ such that 
H,(x”, t) > 1 for all t, then the equilibrium adoption path is discontinuous. 

I . t 
0 

t’ 
Fig. 3. Continuous equilibrium adoption path. 
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Fig. 4. Discontinuous equilibrium adoption path. 

The proof of the second part of the proposition can be seen with reference to Fig. 4. 
(The proof of the first part is analogous.) The conditions of the proposition imply 
that H(x, t’) and H(x, 00) 3 lim,,, H(x, t) must be like in Fig. 4. If H’(x”, t) > 1 for 

all t, then there must exist a t” such that (t”,x”‘) is a singular point, and the equi- 
librium adoption path is discontinuous at t”. 

What are the factors affecting the value of H,? Straightforward derivation yields: 

H, = F’(g(x, I))$ = kfB,, 
0 

(1) 

where km B;’ and f=g(x, t). This finally brings us to the main point of the paper. 
Even if we assume there is no coordination among potential adopters, we should 
expect the equilibrium adoption path to be discontinuous in situations of strong net- 
work externalities (large B,) and relative homogeneity among potential adopters 

(large f ). 

4. Example 

In this section we consider a simple example in which F is linear, B is a linear func- 
tion of U,C, and a concave function of x. Specifically: 

and 
F(o) = o, Ores 1, (2) 

B(u,x,t) = v+xa+t-_B, (3) 



L.M.B. Cabral / Adoption of innovations 305 

A 

u x’ X" 1 

Fig. 5. Static equilibria for a given t. 

where a< 1, /I> 1, and t< 1. From (2)-(3) we get, for t< 1: 

H(x,t) = max{O, 1 -/.I+xa+t}. (4) 

The restriction of H(x, t) to a particular value of t is depicted in Fig. 5. From this, 
we can find the static equilibrium values @(t) (in this case three values). By varying 
t, we obtain the equilibrium manifold E (Fig. 6), and taking the lower envelope we 

X 

t 
,, 

Fig. 6. Equilibrium adoption path. 
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get the equilibrium adoption path. As can be seen, the equilibrium adoption path 
is discontinuous at t”, where t”=P- 1 - (1 - cr)a”(’ -@). 

One may wonder how realistic the idea of a discontinuous equilibrium adoption 
path is. There is a vast body of empirical research giving evidence of an S-shaped 
pattern in the diffusion of innovations. We argue that a steep S-shaped adoption 
path can be interpreted as the approximation to a discontinuous point (catastrophe) 
of the equilibrium adoption path. To do so, we return to the alternative model of 
adoption with a short observation lag introduced in the previous section. How does 
the equilibrium adoption path EAP(G) behave in the neighborhood of a discon- 
tinuous point of EAP(O)? We argue that very likely EAP(6) looks like an S-shaped 
diffusion process. 

Fig. 7 shows how the equilibrium values X(t) can be obtained in the neighbor- 
hood of a catastrophe point of the underlying process. The thing to notice is that 
in the interval [x/,x”] the function H(x, t) -x is quasi-concave. This in turn implies 
an S-shaped pattern for EAP(G) as x goes from x’ to x”. For example, Fig. 8 depicts 
equilibrium paths for given parameter values (three values of o, p = 1, and 6 = 0.001). 
When network externalities are significant (high values of (r) and the observation 
lag is short (low values of 6), a steep S-shaped continuous path obtains. 

With a few exceptions (e.g. Jensen, 1982), the literature on S-shaped diffusion 
processes is based on rather ad hoc assumptions regarding the adoption process. We 
believe that one advantage of our model is that it takes an explicit equilibrium ap- 
proach, while at the same time being consistent with the empirical evidence on diffu- 
sion of innovations. 

1 

Fig. 7. Approximate equilibrium adoption path in the neighborhood of a singular point. 
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Fig. 8. Approximate equilibrium adoption path as a function of CI. 

5. Conclusion 

The adoption and diffusion of innovations is a far more complex issue than has 
been modeled in this paper. For example, agents often behave strategically (e.g. 
Reinganum, 1981; Fudenberg and Tirole, 1983; Quirmbach, 1986), whereas our as- 
sumption of a continuum of adopters abstracts from this possibility. On the other 
hand, patterns of diffusion are often due to uncertainty regarding the benefits of 
adoption (cf. Jensen, 1982). Finally, there may be several competing innovations 
(Arthur, 1989; Katz and Shapiro, 1985,1986a, 1986b), another issue which was not 
considered in this paper. 

The main point of the paper is that even with a simple model like ours - perfect 
information, no exogenous coordination, no strategic behavior, smooth supply con- 
ditions - the mere existence of network externalities leads to a discontinuous equi- 
librium adoption path. 
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