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Meaningful cheap talk must improve equilibrium payoffs
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Abstract

We generalize Farrell’s (1987) idea of coordination by means of cheap talk. We show that if
cheap talk is meaningful (in the sense that babbling equilibria are ruled out) and if there is room
for cooperation (namely if there exists at least one pure-strategy equilibrium Pareto superior to the
default equilibrium), then cheap talk must increase the equilibrium expected payoff relative to the
play of the game without preplay communication. The result is limited to proper equilibria of the
communication game and to games with two players. It is shown that [0 1999 Elsevier Science
BYV. All rights reserved.
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1. Introduction

In a semina paper, Farrell (1987) has shown that nonbinding, costless preplay
communication (cheap talk) may improve the equilibrium payoff in a game with the
structure of the ‘battle of the sexes.” The ‘battle of the sexes' is a game that entails both
elements of competition and of coordination. It possesses two pure-strategy equilibria
which are not Pareto ranked, and a third equilibrium in mixed strategies which is Pareto
inferior to the pure-strategy equilibria. The first fact induces the competitive element of
the game, while the second one adds the cooperative element. Farrell’s (1987) idea is
that cheap talk may help players coordinate in playing one of the pure-strategy
equilibria: while players preferences are opposite regarding the pure-strategy equilibria,
they both prefer any of these equilibria to the mixed-strategy equilibrium, which, by
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assumption, is the default equilibrium to be played in case no ‘agreement’ is reached at
the communication stage.

Specifically, Farrell considers an extended game whereby, before any action is taken,
players simultaneously announce which action they intend to take. Although announce-
ments are not binding (cheap talk), they serve as a means for coordinating on a Nash
equilibrium superior to the default equilibrium. In fact, Farrell shows that there exists an
equilibrium of the ‘extended’ game which yields a higher payoff than the default
equilibrium?

We generalize and strengthen Farrell’s result in two ways. First, we consider games
where each player chooses between n= 2 pure-strategies, whereas Farrell only consid-
ered the case n =27 Second, and more importantly, our results show that, provided
some conditions are satisfied, cheap talk must imply an improvement in equilibrium
payoffs, whereas Farrell only argues that it may imply an improvement in equilibrium
payoffs.

A central assumption underlying our result refers to the relation between communica-
tion and action. Following Farrell, we assume that, if players announcements corre-
spond to a Nash equilibrium of the game to be played, then such equilibrium becomes
focal and is indeed played; if, on the other hand, communication does not lead to any
particular equilibrium, then a default equilibrium is played. Moreover, we assume that
there exist pure-strategy Nash equilibria which are Pareto superior to the default
equilibrium, i.e., we assume there is scope for improvement in the equilibrium payoff.

The intuition behind our result is as follows. At the communication stage, players
have no incentive to announce a strategy associated with an equilibrium that yields the
other player a low payoff. This is so because, in equilibrium, such players will not
announce the action corresponding to that equilibrium. In fact, players will only make
announcements associated with superior equilibria (equilibria beneficia to both players),
which in turn implies that cheap talk must improve expected equilibrium payoffs.

In addition to the assumptions spelled out above, our result requires that the number
of players be two and that the equilibrium of the augmented game be proper? In Section
3, we show, by means of examples, that both these requirements are necessary. In fact,
the restriction to the case of two players is necessary even when we consider a richer
message space whereby players announce action profiles instead of actions (cf. Section
4).

The extended game consists of a communication stage (comprising one or more rounds) followed by play of
the original game.

*However, we require all pure-strategy Nash equilibria of the original game to be strict. Alternatively, we may
assume instead that there is only ‘one pure-strategy Nash equilibrium per row,” a weaker hypothesis than
strictness. Finally, we can aso consider a different message space than the one proposed by Farrell; cf.
Section 4.

®Cf. Myerson (1978). Essentially, properness implies that, for each two player i’s actions, a and &, if &,
yields alower payoff than g, ", then, in the play of the perturbed game, a, should be chosen with a probability
that is at least one order of magnitude lower than the probability that a," is chosen.
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2. Basic results

Consider the following two-player game in normal form, denoted by G: S is the space
of player i’s pure strategies and s, is a generic element of §,i =1, 2; S=S X S, and
S=(s,, S,); findly, u,(s) denotes player i’s utility.

Based on game G, we now define an extended game, denoted by I, which involves a
communication stage prior to playing G. At the communication stage, players simul-
taneously announce actions from their own pure-strategy sets S (the terms *action’ and
‘pure strategy’ meaning the same thing). After all messages are sent and received, game
G is played.

Games of this sort always admit equilibriain which cheap talk has no influence on the
outcome of G (‘babbling equilibria)* Following Farrell (1987), we concentrate on
no-babbling equilibria, that is, equilibria with the following properties:

1. If announcements correspond to a Nash equilibrium of G, then that equilibrium
becomes focal and is thus played.

2. If announcements do not correspond to a Nash equilibrium of G, then G is played as
if no communication has taken place: a ‘default’ equilibrium is played independently
of which announcements are made. Payoffs in this default equilibrium are given by
u.
Notice that properties (i)—(ii) induce a well-defined reduced game in the communica

tion stage, so the set of no-babbling equilibria (Nash, perfect Nash, or proper Nash) is

nonempty.

Finally, we define s to be a superior equilibrium of G if and only if s is a
pure-strategy equilibrium and u,(s) >u;, Vi. Our main result will be based on the
hypothesis that there exists at least one superior equilibrium. This hypothesis implies
that G is to some extent a game of coordination, specifically, a game with at least two
Nash equilibria which are Pareto ranked.

Theorem 1. Assume that all pure-strategy Nash equilibria of G are strict. If there exists
some superior equilibrium of the original game, then, in a proper no-babbling
equilibrium of the extended game, only actions corresponding to superior equilibria are
announced, and the expected payoff of both players is strictly greater than in the game
with no communication.

Proof. Consider a ‘perturbed’ game in the communication stage. In this game, every
message is announced with positive probability. Therefore, it is a strictly dominated
strategy for player i to announce an action corresponding to a pure-strategy Nash

“See, for example, Farrell and Gibbons (1989). Seidmann (1992) shows that the same is not necessarily true in
games of incomplete information.
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equilibrium, say s*, yielding him or her a payoff less than u,. In fact, the expected
payoff of announcing such an action would be lower than u;, by the assumption that all
pure-strategy Nash equilibria are strict; whereas announcing an action corresponding to a
superior equilibrium, say s**, would yield player i an expected payoff greater than u..
By the requirement of properness (Myerson, 1978), the weight assigned by player i to
the action corresponding to s* must be at least one order of magnitude lower than the
weight assigned to the action corresponding to s**.

Now, given the above, it is also a dominated strategy for player j to announce the
action corresponding to s*, assuming that payoffs are bounded and that the *perturbed’
game is sufficiently close to the ‘unperturbed game.” To see why, notice that player j’s
expected payoff from announcing the action associated to s* is

A=P(sf)u(s*) + (1= Py, , (1)

where P(s’) is the probability that action s*, is announced by player i. On the other
hand, announcing the action corresponding to s** yields player j an expected payoff of

B =P(s"*)uy(s**) + (1= P(sF )y - (2)

Since u;(s**)>u;, and P(s")=e€P(s'*) (the latter by properness), we have A<B.
Finally, a similar argument, if somewhat simpler, applies to actions corresponding to

no pure-strategy Nash equilibrium. Likewise, it is straightforward to show, by contradic-

tion, that at least one superior equilibrium must be played with positive probability. l

It should be remarked that the argument extends to games with T >1 rounds of cheap
talk (a case al'so considered in Farrell (1987)). It suffices to note that the proof applies to
any period t<T, with the difference that payoffs in case of no agreement at stage t are
now given by (U, U;), where U >u..

3. Counterexamples

In this section, we present a series of counterexamples which elucidate the necessity
of some of the assumptions and hypotheses underlying the main result of the previous
section. All examples involve a communication stage with a single round of cheap talk.

1. The first example shows how the assumption that all pure-strategy Nash equilibria are
strict is necessary for the result. In this example, the original game, shown in Fig. 1, has
two pure-strategy equilibria, (T, L) and (T, R), neither of which is strict. There also
exists a mixed-strategy equilibrium in which both players choose each action with equal
probability. The expected payoff in this equilibrium, which we assume to be the default
equilibrium, is 2/3 for each player. Since we restrict our interests to no-babbling
equilibria, expected payoffs at the communication stage are summarized by the payoff
matrix in Fig. 2. It can be seen that it is a proper equilibrium for the row player to
choose M and the column player to choose L with probability « and R with probability
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Fig. 1. Game G in first example.
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Fig. 2. Game I in first example.
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1— a, with a <1/3. Although there exists a superior equilibrium, namely (T, L), the row

player never announces the strategy corresponding to this equilibrium.

The intuition behind the first example is simple. By being indifferent between two
equilibria ((T, L) and (T, R)) and announcing more often the one least desired by its

opponent ((T, R)), one player may end up preventing coordination.

2. The second exampl e shows that perfection is not a sufficient refinement to produce the
main result. The original game in this example is described in Fig. 3. The game has three
pure-strategy equilibria, (T, R), (M, C) and (B, L). There also exists a mixed-strategy
equilibrium in which players choose the first two actions with equal probability. The
expected value in this equilibrium, which we assume to be the default equilibrium, is
3/2 for each player. The payoff structure at the communication stage is given by the

matrix in Fig. 4.

We will now show that it is a perfect equilibrium, although not a proper equilibrium,

WS
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Fig. 3. Game G in second example.

L

C

R

3/2 3/2

3/2 3/2

9 1

3/2 3/2

6 6

3/2 3/2

1 9

3/2 3/2

3/2 3/2

Fig. 4. Game I" in second example.



102 L. Arvan et al. / Mathematical Social Sciences 37 (1999) 97—-106

R R
0 0 0(0 O
1 0 214 4

= O
w|of t~
of
of |t~

1 0 2
3 0 4

SVl

LM RM

Fig. 5. Game G in third example.

for the row player to announce T and the column player to announce L. For this purpose,
consider the following strategies in an e-perturbed game: each player chooses the first
strategy with probability 1—2e and the two remaining strategies with probability e each.
Simple inspection reveals that this constitutes a Nash equilibrium given the constraint
that al actions be chosen with probability greater than e. Hence, the designated
equilibrium is indeed perfect. However, the strategies in the perturbed game do not
satisfy the requirement for properness, namely that the third strategy be chosen by each
player with a probability which is one order of magnitude lower than the second one. In
fact, our main result states that the only equilibrium at the communication stage consists
of players announcing the middle strategy with probability one.

The intuition behind the second example is aso simple. Perfectness allows actions
associated with superior and nonsuperior equilibria to be announced with probabilities of
the same order of magnitude. This, in turn, may lead players to try to coordinate on
nonsuperior but, to them, particularly favorable equilibria, a behavior that may end up
precluding coordination. Properness rules this out by ensuring that the probability of
coordinating on a nonsuperior equilibrium is at least one order of magnitude lower than
on a superior equilibrium.

3. Finally, the third example shows that the result does not extend to games with more
than two players. Fig. 5 depicts the origina game in this example. As before, players 1
and 2 choose rows and columns, respectively. Now we add a third player who picks one
of the two matrices, LM or RM. The game has two pure-strategy equilibria, (B, L, LM)
and (B, R, RM), both of which are strict. In addition, there exists a mixed-strategy
equilibrium in which the first two players mix with equal probability each of their
actions and the third player chooses RM. Expected payoff under this equilibrium, which
we assume to be the default equilibrium, is given by 2 for al players. The payoff matrix
at the communication stage is thus the one described in Fig. 6.
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Fig. 6. Game I" in third example.
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We will now argue that (T, L, LM) constitutes a proper equilibrium of I, even though
one of the players, player 1, chooses an action not associated with any Nash equilibrium.
Consider the following equilibrium of the perturbed game. Player 1 chooses T with
probability 1— e and B with probability e. Player 2 chooses L with probability 1— e and
R with probability e. Finally, player 3 chooses LM with probability 1—e and RM with
probability e. Clearly this equilibrium converges to the designated Nash equilibrium. We
will now show that it constitutes an equilibrium of the properly perturbed game® If
player 1 deviates, it gets 1(1—e€)°+4e°+2-2¢(1—€), which is lower than 2, its
equilibrium payoff. If player 2 deviates, it gets 4e”+2(1—€°), which is lower than
3e(1—€)+2(1—e+€), its equilibrium payoff. Finaly, if player 3 deviates, it gets
4€”+2(1—€°), which is lower than 3e(1—€)+2(1— e+ €7), its equilibrium payoff.

The idea of this example is that, with three or more players, there appear coordination
problems which are absent in the case of two players only. Players 2 and 3 would prefer
to switch from playing (T, L, LM) to playing (B, R, LM). Unilateral moves, however, can
only reduce expected payoff. At (T, L, LM), both player 2 and player 3 look forward to a
mistake by player 1, a mistake that will induce a payoff of 3 instead of 2. If player 2 or
player 3 unilaterally deviate, then it would require two simultaneous mistakes to increase
payoff, a possibility infinitely less likely.

4. A different message space

In the previous sections, we have considered a game with the structure proposed in
Farrell (1987): starting from a normal-form game, we augment this by adding a prior
stage of communication. The set of messages sent by player i in the communication
stage consists of the names of his or her actionsin the initial normal-form game. In other
words, each player announces what action he or she intends to play.

An aternative message space consists of players announcing action profiles instead of
actions?® This message space is perhaps as natural as the one assumed in Farrell (1987)
and by ourselves in the previous sections. It allows for a somewhat sharper result:

Theorem 2. If there exists some superior equilibrium of the original game, then, in a
proper no-babbling equilibrium of the extended game, only actions corresponding to
superior equilibria are announced, and the expected payoff of both players is strictly
greater than in the game with no communication.

Proof. Consider a ‘perturbed’ game in the communication stage. In this game, every
action profile is announced with positive probability. Therefore, it is a strictly dominated
strategy for player i to announce an action profile corresponding to a pure-strategy Nash

®Since each player has only two pure strategies, properness corresponds to trembling-hand perfection.

®This extension follows a referee’s suggestion that we consider a message space of the type {m,()}, where i
denotes the player and s an action profile, together with the assumption that m,(s)=m(s’) for s#s'. The
message space we propose is a natural particular case that satisfies this assumption.
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equilibrium, say s*, yielding him or her a payoff less or equal to u,. (For simplicity, we
will refer to this move in the communication stage as ‘proposing equilibrium s*.”) In
fact, the expected payoff from proposing s* would be strictly lower than u;, whereas
proposing a superior equilibrium, say s**, would yield player i an expected payoff
strictly greater than u..

By the requirement of properness (Myerson, 1978), the weight assigned by player i to
s* must be at least one order of magnitude lower than the weight assigned to s**.

Now, given the above, it is also a dominated strategy for player j to announce s*,
assuming that payoffs are bounded and that the ‘perturbed’ game is sufficiently close to
the ‘unperturbed game.” To see why, notice that player j's expected payoff from
announcing s* is

A=P(sf)u(s*) + (1= Py, , (3)

where P(s*) is the probability that s* is announced by player i. On the other hand,
announcing s** yields player j an expected payoff of

B = P(s" )u (s**) + (1 - P(S"* )i - (4)

Since u;(s**)>u;, and P(s})=eP(s’*) (the latter by properness), we have A<B.

Finally, a similar argument, if somewhat simpler, applies to actions profiles corre-
sponding to no pure-strategy Nash equilibrium. Likewise, it is straightforward to show,
by contradiction, that at least one superior equilibrium must be played with positive
probability. W

The main difference with respect to Theorem 1 is that Theorem 2 dispenses with the
assumption that all pure-strategy Nash equilibria of G are strict. However, the
assumption that there are only two players remains a necessary condition, as the
following example shows.

The example features a three-player game with payoffs asin Fig. 7. As before, players
1, 2 and 3 chose rows, columns and matrices, respectively. This game has two
pure-strategy Nash equilibria, (T, L, LM) and (B, R, RM), and one mixed-strategy
equilibrium where players 1 and 2 mix with equal probability and player 3 plays RM.
The latter equilibrium yields all players a payoff of 2 and is assumed to be the default
equilibrium.

Asin Theorem 2, we consider an extended game, I, in which players announce action
profiles. If the action profile announced by all three players coincides and if this action

L R L R
T(1 3 3|10 0 O 4 4 0|0 0 2
B|0O 0 1|1 0 O 0 0 2|4 4 4

LM RM

Fig. 7. Game G in fourth example.
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Fig. 8. Summary of payoffs of game I" in fourth example.

profile constitutes a Nash equilibrium, then that equilibrium is played; otherwise the
default equilibrium is played.

The normal form of the extended game is quite complex: it comprises eight matrices
of eight by eight. Instead of writing out the complete normal form, Fig. 8 presents a
summary of the payoffs of the extended game when all players propose the same action
profile. Whenever announcements differ, payoffs are (2, 2, 2).

Player 1 prefers to propose (B, R, RM) (expected payoff greater than 2) then to
propose an action profile that is not an equilibrium (expected payoff of 2); and this, in
turn, player 1 prefers to announcing (T, L, LM) (expected payoff lower than 2). Assume
that player 1 proposes (B, R, RM) with probability 1—6e—¢€? (T, L, LM) with
probability €, and all other action profiles with probability e.

Players 2 and 3 prefer to propose (B, R, RM) and (T, L, LM) (expected payoff greater
than 2) then to propose any other action profile (expected payoff of 2). Assume that
players 2 and 3 propose (T, L, LM) with probability 1—e®—6€*, (B, R, RM) with
probability € and all other action profiles with probability e*.

To show that this constitutes an equilibrium of the perturbed game, notice that, by
proposing (T, L, LM), players 2 and 3 receive a payoff that exceeds 2 by a factor of
order €” (the probability of a mistake by player 1). However, by unilaterally deviating to
proposing (B, R, RM), expected payoff exceeds 2 by a factor of order €* (the probability
of a mistake by player 2 or 3, whichever is not deviating).

5. Final remarks

As Farrell (1988) noted, ‘cheap talk is notoriously hard to model: there are no
obviously ‘right’ rules about who speaks when, what he may say, and when discussion
ends.” Not surprisingly, different structures of preplay communication have been
attempted in the literature, some of which present results related to ours.

Farrell (1988) and Watson (1991) consider the case in which one of the players
unilaterally suggests to the other which set of strategies to play. Watson (1991) shows
that if the original game has a single Pareto-efficient outcome, then this is the only
sensible outcome of the extended game.

Matsui (1991) assumes a structure of preplay communication similar to ours, with
players sending messages simultaneously. However, the equilibrium concept he consid-
ersis quite different from ours. He considers a large population matched to play a game



106 L. Arvan et al. / Mathematical Social Sciences 37 (1999) 97—-106

of common interest with cheap talk. He shows that a unique cyclically stable set exists
and this contains only Pareto optima outcomes.

The paper which is closest to ours is Rabin (1994). As in our paper, he considers a
two-player game and simultaneous message exchange. However, he considers a wider
set of communication possibilities than our paper (and Farrell, 1987). Rabin shows that
with enough rounds of cheap talk, each player’'s expected payoff is at least as great as
the payoff from his worst Pareto-efficient Nash equilibrium. Our paper partly confirms
the communication-yields-efficiency hypothesis, to borrow Rabin’s (1994) expression,
although we show that some important qualifications need to be made.

Finally, although our results imply that, under some conditions, equilibrium payoffs
must improve through cheap talk, it can be shown that, genericaly, there exists no lower
bound to the size (or the probability) of the improvement in payoff resulting from
preplay communication (cf. Farrell, 1987). It thus seems that our result is ‘tight’ both in
terms of its extent and in terms of the required conditions.
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