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Go for broke or play it safe? Dynamic
competition with choice of variance

Axel Anderson*

and

Luis M. B. Cabral**

We consider a differential game in which the joint choices of the two players influence the variance,
but not the mean, of the one-dimensional state variable. We show that a pure strategy perfect
equilibrium in stationary Markov strategies (ME) exists and has the property that patient players
choose to play it safe when sufficiently ahead and to take risks when sufficiently behind. We also
provide a simple condition that implies both players choose risky strategies when neither one is
too far ahead, a situation that ensures a dominant player emerges "quickly."

1. Introduction
M Characterizing observed firm behavior in terms of R&D budgeting, Cyert and March (1963)
argue that "most organizations are aware of and probably use such simple rules as per cent
of revenue as a guide to research and development allocations" (p. 274). In their study of the
microprocessor industry, Khanna and lansiti (1997) report that "interfirm researcher mobility
is remarkably low" (p. 406). Moreover, evidence from the microprocessor and other industries
suggests that there are frequently different paths to achieve the same goal. For example, a given
level of microprocessor speed can be attained through different computer architectures.

Together, the above observations suggest that, from a manager's point of view, the decision
is not just how much to spend on R&D but also how to spend it. In fact, in some cases, the main
decision may be to choose among R&D strategies with different degrees of risk. In this article, we
focus on this dimension of R&D policy. Specifically, we study the dynamics of R&D competition
when firms choose the variance of R&D outcomes.

We consider a differential game with two players (firms). At each moment in time, each
player's position is given by a real number qi. Each player's position may be interpreted as
its current quality level. In the example above, qi might denote the speed of firm i's current
microprocessor. Player i receives a payoff flow given by 7r(qi - qj). The player's position, qi,
evolves according to a Wiener process with mean g, which is exogenously given, and variance
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ao,, which is chosen by firm i. Our goal is to characterize the pure strategy perfect equilibrium in
stationary Markov strategies (Markov equilibrium; ME) of this game. In other words, we want
to understand when players choose safer or riskier R&D strategies as a function of their relative
position.

Strategic choice of risk (variance) plays an important role in sports. For example, in the
fourth quarter of a (American) football game, the team that is behind calls more passing plays,
whereas the team that is ahead runs the ball. Toward the end of a hockey game the team that is
behind pulls their goalie in favor of an additional offensive player, whereas the team that is ahead
substitutes in more defensive players. In both of these situations the team that is behind is opting
for a high variance strategy, whereas the team that is ahead is opting for a low variance strategy.
As the saying goes, "If you're behind you have nothing to lose."

What is common to the sports examples is that (i) we are close to the end of the game and
(ii) the final payoff function is locally convex for the laggard and locally concave for the leader.
For example, suppose a hockey team trails by one goal one minute from the end. In terms of final
outcome, the payoff is the same if the team allows an additional goal, but higher if it scores an
additional goal. So, the final payoff function is convex at - 1. The fact that we are close to the
end of the game makes it easy (at least conceptually) to compute the value functions. In fact, if
we are close to the end of the game, then convexity of the final payoff implies convexity of the
value function. Finally, by Jensen's inequality, it follows that the trailing team benefits from a
mean-preserving spread in the goal-scoring function.

There is no reason to suspect a priori that such reasoning should carry over to infinite
horizon games, as it seems to be the end game effect that drives the intuition.1 However, we
think an infinite horizon is a better description of real-world oligopoly competition. So, we ask,
do players still adopt a high-risk strategy when behind and a low-risk strategy when ahead in an
infinite horizon game?

Consider first the case when players are very impatient. In this case, the value function is
approximately equal to the flow profit function. In general, by Jensen's inequality, risk choices are
determined by the curvature of the value function. Thus, for very impatient players, the answer
to our question is unsurprising: choice of variance is entirely dependent on the local curvature of
the flow profit function.

Consider now the case of very patient players. Let x be the relative difference between the
players in the game. If flow profits as a function of this state variable are bounded, and admit
limits as the state variable tends to the extremes (÷/-oo), and satisfy a single-crossing property2

at some value x*, then in Markov equilibrium, patient players choose to play it safe when ahead
and to take risks when behind. Specifically, if players are patient enough, they will choose low
variance if x > x* and high variance if x < x*. Note that we need not make any assumptions
about the local curvature of the profit function.

The main thrust of our results is that, when players are very patient, the second derivative of
the value function is negatively related to the current payoff level. Specifically, a lagging player
receives a low payoff and has a convex value function; a leading player receives a high payoff
and has a concave value function. Once this has been established, equilibrium strategies follow
from Jensen's inequality. So, instead of the sports intuition that a laggard has "nothing to lose,"
we show that a laggard has only to gain from moving away from the current state, and does so by
choosing a high-risk strategy.

When x* > 0, both players choose risky strategies in states where x is close to zero. It follows
that, starting from a situation where players are more or less even, a dominant player will emerge

' However, some infinite horizon games may share some of the features of finite games as in the previous examples.
For example, suppose that if one of the players falls sufficiently far behind, then it must exit the game, receiving a payoff
of zero. See Section 4 for a related example.

I The single-crossing property we require is weaker than monotonicity.
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"quickly." Previous research (Athey and Schmutzler, 2001; Budd, Harris, and Vickers, 1993;
Cabral, 2002; Cabral and Riordan, 1994) has characterized dynamic games featuring increasing
dominance, the property whereby the gap between leader and follower tends to increase in
expected value, resulting in an asymmetric outcome. In our model, players' choices do not
influence the drift of the state variable, so that the gap between leader and follower must remain
constant in expected terms. Despite this restriction, our result shares the feature that asymmetry
tends to emerge rapidly.

We compare the ME outcome with the policy that maximizes the sum of the expected
discounted profits of the two players (the Planner's solution). We show that the Planner will
choose either the highest or the lowest variance possible for any discount factor. This immediately
yields that, with enough patience, the ME outcome is inefficient outside of the interval [-Ix*1,
Ix*I]. However, we also show that inside this interval the equilibrium is efficient; that is,
when the players are "close enough" together, the Planner's choice corresponds to the ME
outcome.

0 Related literature. Bhattacharya and Mookherjee (1986) and Klette and de Meza (1986)
consider patent race models where players choose variance. Although they explicitly consider
time, their models are static in the sense that firms make a once-and-for-all choice. They show
that, in equilibrium, firms choose too much risk from a social welfare point of view. The intuition
is that there is an externality in patent races: a firm's gain from anticipating its rival is less than
the social benefit from earlier adoption.

Judd (2003) develops an explicitly dynamic patent race in continuous time. He assumes that,
at each moment, each player may choose between a partial jump and a leap motion technology.
Because the latter implies a bigger variation in motion (zero motion or winning the race), placing
more resources into the leap technology effectively corresponds to a higher-risk strategy. Judd's
Theorem 8 states that, if the race prize is close to zero, then social welfare would be increased if
resources were shifted from the risky R&D projects to the less risky projects.

All three papers concur that there is too much variance in equilibrium. In broad strokes, the
intuition is that there is an externality in patent races: the marginal private benefit from winning
the race is lower than the social benefit as part of the increase in the probability of winning is
associated with a lower probability that others win (which would be equally good, from a welfare
point of view); and the higher the degree of risk, the greater the probability of an immediate end
to the race, and the greater the above externality. Our model, in turn, shows that the equilibrium
level of variance may be greater, smaller, or equal to the socially optimal level. The idea is that,
given the linearity of the stochastic process we consider, the social optimum is either the highest
or the lowest level of variance; but if players are sufficiently apart, then the curvature of their
value functions must have opposite signs, and so one of them (exactly one of them) will choose
the opposite of the social optimum.

More closely related to our model, Cabral (2003) considers a discrete-time, discrete-space
R&D game where firms choose variance. He presents a series of examples from economics and
management. However, his formal analysis is rather limited, as it does not include an existence
result or a complete characterization of equilibrium strategies, both of which we provide in this
article.

Several authors have looked at dynamic games with the properties that (i) in each period, each
firm is characterized by the value of its product; (ii) in each period, each firm's profit is a function of
all firms' product values; and (iii) by investing resources into R&D, a firm stochastically improves
the future quality of its product. The list includes Budd, Harris, and Vickers (1993), Ericson and
Pakes (1995), Fershtman and Pakes (2000), and Hbrner (2004). One feature that is common to
all of these models is that firm strategies consist of choosing the level of R&D expenditures. Our
analysis complements theirs: we fix the level of R&D expenditures and consider the strategic
choice of risk.

© RAND 2007.
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Technically, we study a (very simple) one-dimensional stochastic differential game in which
the agents' choices affect the variance of some state variable.' The equilibrium existence theory
for such variance choice games is not well developed. Thus, it is not surprising that existence
questions have been for the most part dodged in economic applications of stochastic differential
games with endogenous variance. Luckily, our model is simple enough that we can apply a result
from Harris (1993) to establish existence. We are aware of only two other papers that prove
existence for particular variance choice games: Bergemann and V5ilimaiki (2002) and Bolton and
Harris (2001). These papers consider the ME of the undiscounted game directly. Dutta (1991)
establishes that in the limit, the equilibrium strategies and payoffs of the discounted game must
converge to those of the undiscounted games when the strong long-run average payoff is used.
We could also have considered the limiting equilibrium directly. Instead, we characterize the
equilibrium value functions and optimal strategies, and then investigate their behavior as players
become infinitely patient. Given the simplicity of our model, we feel that this is the right approach.
Note that in Bergemann and Vdilimdiki (2002) and Bolton and Harris (2000) the models are more
complex, and the restriction to the undiscounted game is necessary in order to make reasonable
progress.

The article is organized as follows. In Section 3, we present the dynamic game and show
that an ME exists. In Section 4, we characterize the equilibrium in the cases when players are
very patient. We also present results for the particular case of constant sum games, and derive
implications for industry dynamics. In Section 5, we solve the Planner's problem and investigate
the efficiency of the ME. In Section 6, we discuss some natural extensions of the basic model.
Section 7 concludes the article.

3. The model and existence

N Consider the following two-player stochastic continuous time (differential) game.' At each
instant in time, player i E { 1, 2} chooses ri E [q, 6] (q_ > 0), the variance of its motion in a one-
dimensional state space. The state of the game at time t is summarized by x(t) E Rl. Conditional
on the joint choices of the two players, x evolves according to the following Ito process':

dx(t) = V/2(a1 + o2) dz(t),

where dz is the increment of a Wiener process. Let 7r(x) denote the flow profits that player 1
receives, while player 2 receives profit flows 7r(-x). Let 7r have limits lim,.--, 7r(x) = Lr > -00

and lim,-,•r r(x) = 57 < co. Our proof critically depends on these limits boundedly existing. One
situation in which this assumption would be automatically satisfied is if there is a threshold value
of i such that the laggard is eliminated from the market, so that 7r(x) would be the flow profits
from some outside option for x < &, and 7r(x) would be the flow monopoly profits for x > i.

We assume 7r satisfies the following single-crossing property: there exists an x* such that
I

7r(x) < (>)•(r + 5T) if and only if x < (>)x
2

"Several authors have considered one-dimensional games as models of duopoly competition: see Harris and Vickers
(1987), Budd, Harris, and Vickers (1993), and Athey and Schmutzler (2001). Budd, Harris, and Vickers (1993) present
some examples of oligopoly games that satisfy the one-dimensionality restriction. Additional examples are presented
in Section 4. These examples notwithstanding, we must acknowledge that the assumption of a one-dimensional state
space is fairly restrictive, and is violated by a number of standard oligopoly models, such as logit demand with an
outside good. Referring to models of effort choice, Budd, Harris, and Vickers (1993) claim that "the effects found in
the one-dimensional model were found to be at work also in a two-dimensional model" (footnote 2). In fact, Cabral and
Riordan (1994) consider a two-dimensional game and derive results similar to those of Budd, Harris, and Vickers (1993).
However, it is unclear whether such extension would work in the context of variance choice.

"4 See Harris (1993) for a very thorough treatment of one-dimensional stochastic differential games.
'A good (accessible) reference for basic stochastic control is Dixit and Pindyck (1994). For a more technical

reference, see Oksendal (1998).
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As mentioned in the introduction, this single-crossing property is satisfied by all strictly monotonic
flow profit functions. However, strict monotonicity is not required to satisfy this assumption.
Weakly monotonic flow payoff functions are fine as long as they are not flat around (Lr + T)/2.
Finally, we assume that players discount future profits at rate r.

We will be considering pure strategy equilibria in stationary Markov strategies, which we
will henceforth abbreviate as Markovian equilibria. A Markov strategy for player i is a measurable
map a-i : (-oo, +oo) -* [a, 8].6 Given a strategy pair a = ao + ar2, the payoffs for the players
are

U, (x, ai,,o 2 ) E [fOcer ½r (x(t)) dt I x, orf0 1
U2(x, or,, or2) -E [f e-r, r(-x (t)) dt I x, 0a

In summary, we have a symmetric game on a one-dimensional space, x(t) E R. The expected
motion of x is zero, but its variance depends on the players' choices. Specifically, at each point
x of the state space, each player chooses variance within the interval [q, 6], with the system
variance equal to the sum of the players' choices.

We now show that an equilibrium exists for this game. Fix a Markov strategy ar2 for player 2.
Then player 1 's Markov best response solves:

Ut(x; 02) = sup U1(x, Orl, 02).

Assume that an optimal Markov best response aO(Oa2) exists, then Theorem 11.2.3 in Oksendal
(1998) establishes that player 1 can achieve as high a payoff using aT as he can using any
(measurable) strategy. That is, a Markov strategy is a best response to a Markov strategy.

The Hamilton-Jacobi-Bellman equation (HJB) associated with this maximization problem
is (via Ito's Lemma):

rV,(x;0a2) = max [r(x) + (0I(x) +0 2(x)) V" (X;a 2 )]

Proposition 1. A Markov equilibrium exists, and V, = U* is continuous for i E {1, 2} in ME.

Proof We wish to apply Theorem 11.7 from Harris (1993). To do so requires we analyze a static
two-player game in which the players choose scalars ari e [q, 15] and the payoff for player i is 7

+ri(x) - rXi

a1 + a2

where (X,, E7) R R2. Following Harris, let i-e(x, A, A,") be the set of Nash equilibrium payoff
vectors for this static game, where AL = ()A, A-2) and V" = (XI', )A2). Then by Theorem 6.6 in Harris,
an ME to the original dynamic game will exist if 7-e(x, X, A") is nonempty and convex for all A,
A", and x.

Note that for all (A, x) such that ri(x) : rXi for all i, there is a unique equilibrium, so
7Fe(x, X, A") is nonempty and trivially convex. If 7ri(x) = rXi for all i, any allowable ar is an
equilibrium, and all equilibria have the same payoff vector. Finally, consider the case in which
r (x) > r. 1 and 7r 2(x) = rX2 (WLOG; this is the only remaining case to consider). In this case,

6 We focus on Markovian equilibria, rather than the more general feedback Nash equilibria for two reasons. (i)

We are specifically interested in how variance choice depends on the state variable rather than on calendar time; and
(ii) by focusing on stationary Markov strategies, we dodge technical difficulties in defining time-dependent strategies in
continuous time. For a discussion of feedback Nash equilibria, see Basar and Olsder (1998). For a discussion of issues
related to defining time-contingent strategies in continuous time, see Simon and Stinchcombe (1989) and Bergin and
MacLeod (1993).

For some intuition, substitute (k,, X7) for (Vi(x), V,"(x)) and rearrange the Bellman equation payoffs.

© RAND 2007.
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the set of Nash equilibria is a, = q, 9 2 E [q, 6]. The payoff vector for player 2 is the same in
every equilibrium. The set of payoff vectors for player 1 is the convex set

[irj(x)-rXij 7rj(x)-rX1 1
and thus Theorem 6.6 in Harris (1993) applies. Q.E.D.

4. Results with high patience

0 Players' attitudes toward risk will be influenced by the curvature of the flow profit function
7r. If players are very impatient (high r), then the local curvature of 7r will weigh heavily in their

decision making. In fact, if r is convex (concave) in a neighborhood of x, then player 1 chooses
the risky (safe) process at x if r is above a certain threshold. Because we can provide examples of
functions that alternate between convex and concave throughout the range of x, we cannot hope
for low-patience analogs of our high-patience results. One class of examples is

(a(x) - •(ax)
2

-bsinx X < 0
2 (X+x (1)
a (a+)

2 
+bsinx

with b > 2 (Figure 1).
We do not find these insights for the high r case surprising or particularly interesting. Instead

we focus on what happens for low r. Given our minimal assumptions on 7r, it is not obvious
a priori what the nature of the equilibrium strategy is.

[: Risk choice in the limit. Our main result is that x* divides the state space so that with
enough patience, high variance is chosen by player 1 when x < x* and low variance is chosen by
player I when x > x*. The structure of the argument that establishes this result is straightforward
and proceeds in the following three steps:

Step 1. The Bellman equation implies that sign(r V, (x) - 7r(x)) = sign( Vj'(x)). Also, the Bellman
equation is linear in variance choice with coefficient V'(x), so r V,(x) - 7r(x) > 0 implies
o,(x) = 5 and r V,(x) - 7r(x) < 0 implies or,(x) = q.

Step 2. In the long run, x spends almost all of its time arbitrarily far from 0. With no drift,
x is equally likely to be arbitrarily close to co and -co. Given limx.... 7r(x) = LT and
lira .... r(x) = fT, we have lim,•o r VI(x) = (ir + T)/2 (Lemma 1).

Step 3. The single-crossing property combined with Step 2 implies that for any x < x*, r low
enough yields r V,(x) > 7r(x) and thus or,(x) = 5 by Step 1.

FIGURE 1

PLOT OF FUNCTION GIVEN IN (1) FOR a = 3, b = 5

X
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First we formally establish Step 2:

Lemma 1. lim,_0 r V,(x) = (.T + Tr)/2 fori E {1, 2}.

The proof is in the Appendix.
Given the results in the last section, we can conclude almost immediately that players will

pursue the safe process when ahead and the risky process when behind.

Proposition 2. For all x < x*, 3r*(x) such that orl(x) = o, Vr < r*(x). Conversely, Vx > x*,
3r*(x) such that or = q, Vr < r*(x).

Proof We have 7r(x) > (i + Rf)/2 for all x > x* and 7r(x) < (L + iF)/2 for all x < x*. By
Lemma 1, lim,-o r VI(x) = (r + r)/2. Finally, by the HJB equation for player 1, r VI(x) > wr(x)
implies that Vl'(x) > 0, which in turn implies or,(x) = 6, while r V,(x) < 7r(x) implies that
Vý'(x) < 0, which in turn implies orl(x) = q. Q.E.D.

To illustrate this results, we graphed rV,(x) (Figure 2) for differing values of r for the
following constant sum case:

-2 if x < -2

2+2x if -2<x <-13
7r(x)= !x if <X < _

2x-2 if I <x <2

2 if x>2

Because 7r = -1, f" = 2, we have 7r(O) = (Lr + jr)/2. It follows that x* = 0; that is, a patient
player chooses low variance if and only if he is ahead by at least one unit. In fact, as Figure 2
shows, even for values of r away from zero (that is, long before rV converges to a constant), the
value function is concave below x* = 0 and concave above x* = 0, for example when r = 1/4.

Proposition 2 states that x* divides the state space, so that for all x < x* (laggard), high
risk is the equilibrium strategy given sufficient patience, whereas for x > x* (leader), low risk is
better given sufficient patience. Figure 3 illustrates this. Notice that the figure also illustrates that
the threshold value of r depends on the particular x considered. In this example, the closer x is to
zero the lower the threshold r*(x).

Intuitively, Proposition 2 can be understood with reference to each player's HJB. Clearly, the
value function is convex if and only if 7r(x) < r V(x). In other words, if current profit is less than
average discounted payoff, then "things can only get better." If things are going to get better it
is because the discounted payoff in neighboring states is better than in the current state, and so a
high-risk strategy is optimal, insofar as it will move us away from the current state. If we show that
7r(x) < r V(x) for a laggard then we are done: a laggard wants to choose a high-risk strategy. So,
instead of the sports intuition that a laggard has "nothing to lose," we show that a laggard has only
to gain from moving away from the current state, and does so by choosing a high-risk strategy.

Note that in the limit, the unique equilibrium can only be one of the three types pictured in
Figure 4. The knife-edged case of x* = 0 is straightforward. Note that in this case a = a + 6,
which we call the medium variance case. When x* 0 0, the state space is divided into three
intervals. When x* > 0, each player chooses high variance (or = 6) around x = 0, so we call
this the high variance case. When x* < 0, we again have medium variance at the extremes, but
low variance in a neighborhood of x = 0, so we call this the low variance case. These definitions
allow us to state the following simple corollary to Proposition 2.

Corollary 1. The high, medium, and low variance cases obtain as 7r(O) is lower than, equal to, or
greater than (,y + fi)/2, respectively.

0 Example: Bertrand competition. Consider an industry with two firms in which price
competition takes place after R&D investments are made. Specifically, suppose that each consumer

0 RAND 2007.
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FIGURE 2

HOW rV(x) CHANGES IN r
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receives utility u = max{zIq 1, z 2q 2 } ± z 0, where zi is the quantity of good i, qi is the quality
of good i, and z 0 denotes other goods. Suppose that each consumer buys at most one unit from
each firm (zi E {0, 1}) and is subject to a budget constraint such that he can only spendy. Finally,

assume that marginal cost is constant and equal across firms (with no further loss of generality,
assume marginal cost is zero). Firms simultaneously set prices and consumers then choose z0, zI,
z 2 . In equilibrium, consumers buy from the firm with the highest quality (say, firm i) at a price
given by min {qf - qj, y}. The profit function is therefore given by

0 if x <0

r(x)= x if 0O<x_<y.
y if x>y

© RAND 2007.
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FIGURE 3

THE CONCAVITY OF V(x)
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In this example, (Lr + fl)/2 = y/ 2 and thus x* = 1/2 > 0; thus, this is the high-variance
case. Corollary 1 applies: near x = 0, both firms choose high variance.

0 Example: competitive balance in sports. In sports leagues, a team's value is a function of
its competitive success as well as the overall success of its league, and the league's success is a
function of competitive balance. For simplicity, consider a league with two "important" teams.
Let x be the difference in quality between the teams (e.g., the average skill of its roster). Suppose
that each instant corresponds to a season and that at the beginning of the season each team gets
to choose the variance of its quality change. Let p(x) be the probability of winning the league
and v(x) the value of the league. We assume that p(x) is increasing and that v(x) is decreasing in
Ix 1, a measure of competitive imbalance.

Specifically, suppose that v(x) declines exponentially with competitive imbalance:

[Y + (1 -A)e-lxl if IxI < In2V(X) 0 +/A) if Ixj > ln2

where /t E (2, 1). Suppose moreover that the likelihood that team i wins each league is
exponentially increasing in its quality lead: p(x)= ½ex (for values of x in [0, In 2]). Pulling
all of these elements together, we have a profit function

© RAND 2007.
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0 if x < -ln2

(it +(1I-A)ex)(1-ex) if -ln2<x<0

l (l_-/+ ie) if 0<x<ln2

+(1 A,/t) if x > ln2

Consider now the equilibrium strategies, beginning with the case when r is very high (high
discounting). Straightforward computation shows that

3
7r"(0-) = 1 - 3 A

2

7r"(0+) = 2.

As /I E (2, 1), it follows by continuity that rr"(0-) < 0 whereas 7r"(0+) > 0. That is, forx close to
zero, 7r(x) is concave for the laggard and convex for the leader. This implies that, for low enough
discounting (high r) and when x is close to zero, the leader chooses high variance whereas the
laggard chooses low variance, a reversal of what must occur with patient players. This example
illustrates that discounting may be quite important in determining the variance choices of leaders
and laggards.

Finally, consider low r. Notice that 7r = 0, 5. = !(I +/t), and 7r(0)= i.As,[f < 1, r(0) >

(Lr + f)/2. In addition, gi E (', 1) implies 7r is monotonically increasing. All together, this implies
that x* < 0, and the low-variance case obtains by Corollary 1. Thus, for low r, both firms choose
low variance near x = 0.

El Constant Sum Games. Notice that if-r(x) + 7r(-x) = c for some constant c (i.e., we have
a constant sum game), then f" + 7r = 2c, so x* = 0 and we are in the medium-variance case. Thus,
in any constant sum game, patient players will choose high variance when behind and choose low
variance when ahead. In fact, we can prove a stronger result in the constant sum case.

Proposition 3. If 7r(x) + Yr(-x) = c for some constant c, then in equilibrium a(x) = + - for
all x.

Proof By definition:

r V(x) +r V2(x) = E re-r'(7r(x(t)) +.r(-x(t)) dt I x(0), (cr,, or2)

= C re-'dt = c.

Thus, r V,(x) ± r V2(x) = c = 7r(x) + 7r(-x). So,

r V, - -r(x) = -(r V2(x) - 7r (-x)),

and thus,

sign(r VI(x) - 7r(x)) = -sign(r V2(x) - 7r(-x)).

Finally, note that the variance choice of player i is determined by sign(rVi(x) - 7ri(x)). Q.E.D.

This result obtains for any r.

0 Example: price competition with brand loyalty. Consider a market where consumers are
divided into four segments. (1 - /t)/2 consumers are highly loyal to firm I's brand, and an equal
fraction is highly loyal to firm 2's. Highly loyal consumers are willing to pay P for their favorite
firm's product and zero for the rival's. The remaining consumers have lower levels of brand loyalty.
A fraction //2 is willing to pay p + q , for product 1 and q2 for product 2; an equal fraction is
willing to pay q, for product 1 and p + q2 for product 2.
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Suppose that it is small and that the initial product quality levels are such that qj > P for
all i. Then the unique equilibrium of the pricing game is for firms to set pi = P3, the highly
loyal consumers' willingness to pay. If jqj - qjl _< p, then mildly loyal consumers choose their
favorite brand. If, however, qj - qj > p, then all mildly loyal consumers choose firm i instead.

This situation leads to the following profit function:

Sif X -p

7r(x)= / ½/if -_p<x < _p.

[(I + AV if p<x

This is a constant sum example, so solving for the equilibrium is straightforward. We have

r V(x) = I [J e(`sx)r7(s) ds + eýX-S)7r(s) ds]

where y = 2 r(.Ir + j) and ai = ,Ir/(l + 6), by Proposition 3. Integrating we find:

[(1 - it +/tcosh(ap)e"x) if x < - p

r V(x)= kb(l +/t sinh(ax)e•P) if - p<x< p

/(1 + A - /cosh(uP)e-"x) if p < x,

where cosh(z) = (ez + e-Z)/2 and sinh(z) = (ez - e-z)/2. We can then twice differentiate to find:

(-1211 cosh(ab)e" > 0 if x < -

r V"(x) = pa 2't sinh(ux)e-uP if - p <x <p
-Da'tA cosh(ab)e-x < 0 if p < x.

Thus, firms choose the risky strategy when behind by more than P, and the safe strategy when
ahead by more than jb. However, because sinh(z) is negative for z < 0 and positive for z > 0, firm
1 chooses the safe strategy when x E (-,b, 0), the risky strategy when x E (0, D), regardless of
the value ofr. Thus, x* does not behave as a cutoff as in Proposition 2.

What fails? Notice that (Lr + Tr)/2 = b/2, and that 7r(x) = b/2 for a range ofx values. That
is, the single-crossing property is not satisfied in this example. Thus, despite the fact that rVi(x)
is converging to this constant, we cannot sign rVi (x) - r (x) regardless of the value of r on this
range.

[I How long until one player dominates? One question that has received a lot of empirical
and theoretical attention is whether R&D competition leads to increasing dominance. That is, is
it the case that firms that are ahead tend to pull farther ahead, or do firms that are behind tend
to catch up to the market leaders? This question concerns the expected drift in x, but as we have
ruled out expected drift a priori, we cannot opine on this question as it is usually posed in the
literature.

We can, however, ask a similar question: if two firms were located close together at time 0,
how long do we expect them to stay close together? Intuition suggests that the higher the variance
in Ito process x(t), the faster (on average) the two firms should separate. To see this, think of the
extreme case of zero variance; in that case, the two firms would never separate. This intuition
turns out to be correct. Specifically, if we let rx be the first exit time from the interval (-x, x),
given x 0 E (-x, x) for some x > 0, and ExO[rx] be the expected rT given x0, then we have the
following proposition.

Proposition 4. Exo[rx] is highest in the low-variance case, and lowest in the high-variance case.

Proof Recall that f(x' t, x(O), a) is the probability that x(t) = x' at time t, which is a normal
density with mean x(0) and some variance. Note that in the high-variance case the variance
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FIGURE 5

SAMPLE PATHS OF SYSTEM DYNAMICS WHEN aT = 0.5, a - 5, x* = 10

X(t)A

X*

0 >t

Ul(X) + 0 2(x) is higher for all x, thus the overall variance is higher as well. This means that
starting from the same x(0), the probability of being outside of any interval (-x, x) at any time t
is higher in the high-variance case. Thus, the expected exit time is lower. Q.E.D.

Figure 5 illustrates Proposition 4. Instead of working with a primitive 7r function, we simply
assume that x* > 0 and apply Proposition 2: if r is sufficiently small, which we assume, then
players choose a = ar if x > x* and ar = d if x < x*. It follows that or, + r2 = 2(7 for -x* <

x < x* and o,+ Cr 2 = q + 6 forx < - x* orx > x*. Figure 5 plots a series of equilibrium paths
{x(t)} for particular values of x*, a_, d. Even though the expected motion of x is zero, starting
from x = 0 the system moves away from the symmetry region [-x*, x*] relatively quickly.

Budd, Harris, and Vickers (1993) and Cabral and Riordan (1994) provide conditions such
that a dynamic competitive system will move away from symmetry in expected value (increasing
dominance). In both papers, the fundamental condition is the "joint profit" or "efficiency" effect:
namely thatjoint profits, 7r(x) + 7r (-x), be increasing in Ix[.! Cabral (2002) shows that increasing
dominance may also result when firms choose the correlation of their motion with respect to their
rivals', even if 7r(x) + 7r(-x) is constant (no efficiency effect). Our result, by contrast, requires
no particular assumption regarding 7r(x) + 7r(-x). It does not directly pertain to increasing
dominance. In fact, we assume that, in expected terms, the system will remain at the current
state x. However, Corollary 1 and Proposition 4 have a flavor similar to increasing dominance,
in the sense that, if 7r(0) < (Lr + ir)/2, then the system will have a tendency to move away from
symmetry (x = 0).

5. Equilibrium and efficiency

0 One question that has received some attention in the R&D literature is the relationship
between equilibrium and efficient choices of risk. Bhattacharya and Mookherjee (1986) and
Klette and de Meza (1986) show that, in a static patent race model, firms choose risk levels that
are inefficiently high.' In this section, we solve for the efficient solution (i.e., the solution that
maximizes joint payoffs), and compare this to the equilibrium solution. As we will see, the result
from the static patent race models does not extend to our model.

We consider an extension of the basic model as follows. Instead of two players, we now
consider a single player-the Planner-who receives a flow payoff given by irp(x) = 7r(x) +
7r(-x). The state of the game, x, evolves according to a Wiener process with zero drift and
variance ar E [2o, 26], where ar is the Planner's choice. Specifically, a Markov control for the

Cabral and Riordan (1994) consider, as we do, the limit case of very small discounting; Budd, Harris, and Vickers
(1993), by contrast, consider the case of high discounting.

9 Although there is time in their models, we refer to them as static in the sense that players make a one-time decision
regarding risk level.
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Planner is a measurable map or : (-co, +co) H-* [2a, 26]. Fix a Markov control ar and define the
expected discounted value of joint profits starting from x(0) as:

Up(x, a) - E [f e-rrp(X(t)) dt I x, a]

The social Planner then solves:

Ug(x) = sup Up(x, a)

F- Existence. Define the Hamilton-Jacobi-Bellman equation (HJB) as (via Ito's Lemma):

r Vp(x) = max [7rp(x) + a(x)Vp"(x)].

Proposition 5. A solution to the Planner's problem exists,joint profits are maximized by a Markov
control, and rVp(x) = r U* (x), where Vp is continuous.

Proof This is a standard stochastic control problem. Theorem 11.2.1 in Oksendal (1998)
establishes the necessity of the HJB, while Theorem 11.2.2 establishes sufficiency. Finally, 11.2.3
yields that the maximum is obtained by a Markov control. Q.E.D.

The Planner's solution is bang-bang if an optimal control or* can be chosen such that
a* E {2o, 26CY. A Markov control or is simple if any bounded interval (a, b) C IR admits a partition
{yi, i = 0,..., n}, a = Yo < y, < ... y,, = b such that o is constant on each subinterval (y, yi,,).
The Planner's solution is simple if there exists an optimal Markov control that is simple.

Lemma 2. The Planner's solution is simple and bang-bang.

Proof Let a* be an optimal Markov control. Assume rVp(x) > 7rp(x). The continuity of Vp and
7r then implies that there exists an E such that rVp(y) > 7rp(y) for all y E (x - e, x + E), and
thus r Vp(y) < 0 and a*(y) = 2a on this interval. Like reasoning establishes that a* is equal to
21 on an open interval whenever rVp(x) < 7rp(x). Finally, for anyx such that rVp(x) = .7rp(x) the
Planner is indifferent across all a, and thus we may choose an optimal Markov control & such
that &(x) = a*(x) for all x such that rVp(x) : 7rp(x) and &(x) = 26 otherwise. Q.E.D.

o Planner's value function characterization. Now that we know that an optimal control can
be chosen such that a is constant on open intervals, we can explicitly solve for the form of the
value function. Consider any interval on which a is constant. The HJB equation implies that:

r Vp(x) = 7rp(x) + a Vp'(x). (2)

The general solution to this differential equation is:

Vp(x) = ae" + be'x + ip(x; a),

where

Yp(x; a) I - eJ e(-x)rp(s) ds + ea(X-) 7rp(s) ds,

a and b are undetermined coefficients, y _ 21u"- > 0, a -= Irl > 0.
(To verify this solution, note that it must satisfy

Vp(x) 7rp(x)+oVp'(x) _ y-2ia ar(x)± o -"[aeX+ bex+ jp(x;ca)]
r y r

which is true iff y - 2aoa = 0 and U 2
ra/r = 1. These two equations are satisfied for the given y

and a. Further, it must be the case that ip is bounded. To see this, take the first term in brackets
and simplify:
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J eU(s-x) P(s) ds = e` w eprep(s) ds

< e` J es2r ds

25.

where the inequality follows from the assumption that 7r is bounded (7r(s) < T").)

Direct computation yields Tr(x;o) equal to the total expected discounted value of profits
starting in state x if or remained unchanged. Because x(t) is an Ito process, the distribution over
future values x at time t starting from x at time t = 0 is normal with mean x and variance 2ot if
or does not change. Thus, we compute

E [j e-"'rp(x(t)) dt x(0) = x, a]

= J0 e-7rp(s)(47rat)-Je--(4, dtds

= fe [f4at e - -dt 7rp(s)ds + (47ro-at'e`-e- •t dt f rp(s)ds.

Evaluating the bracketed expressions yields the desired result.
For an intuition of why this must be so, note that the value function is bounded and must

always satisfy the general form of Vp. If the Planner chooses or(x) equal to a constant, the value
function has the same form for all values of x, yet Vp(x) is unbounded unless a = 0 and b = 0.
Thus, if no one switched projects, Vp(x) = ip(x; a).

As i'p is the value when no one switches projects, then the other two terms must be the value
to the Planner of the option to switch projects, which implies a, b > 0.

E The patient Planner case. We know that the Planner will either choose the highest or lowest
possible variance, as the solution is bang-bang. It turns out that there is a simple condition that
determines which extreme the Planner will choose near x = 0 as long as the Planner is patient.
As in ME, the Planner's choice will be determined by the local curvature of the profit function
for high enough r. Thus, we focus on what happens for low r. Substituting 7rp for 7r in the proof

of Lemma I yields a similar result for the Planner's value.

Lemma 3. lim,_0 r Vp(x) = j + Tr.

[] Efficient variance choice when firms are "close". Given the results in the last section, we
can offer a simple condition that determines the Planner's choice of variance near x = 0 given
enough patience.

Proposition 6. If x* > 0, then Vx E (-x*, x*), 3r* > 0 such that the Planner sets a(x) = 25

for all r < r*. Conversely, if x* < 0, then Vx E (-lx*1, Ix*1), 3r* > 0 such that the Planner sets
a(x) = 2or for all r < r*.

Proof If x* > 0, then 7r(x) < (g + Tr)/2 for all x < x*, while 7r(-x) < (L + T")/2 for all x >
-x* so that Vx E (-x*, x*), 7rp(x) =_ 7r(x) + 7r(-x) < 7" + ff = limr-o r Vp(x) (by Lemma 3).
Finally, by the HJB equation for the Planner, 7rp(x) <rVp(x) =• Vp(x)> 0 =ý a(x)=

2E. Q.E.D.

We are able to characterize the patient Planner's variance choice on the interval (-Ix*I, Jx*I)

but not outside of this interval. To do so, we would need to assume that 7rp satisfies the single-

crossing property. Notice that none of the examples we have presented satisfy this property.
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w Equilibrium and efficiency. We are now ready to compare the equilibrium outcome with
the Planner's solution. Notice that the Planner will always choose the highest or lowest variance
possible. Thus, whenever the players choose different variances in ME, the ME is inefficient. By
Proposition 2, the players choose different variances outside of the interval (- x*I, jx* ) forr low
enough, whereas by Propositions 2 and 6, the Planner's choice corresponds to the ME on this
interval. Thus we have:

Corollary 2. For r low enough, total variance in ME is socially efficient in [-Ix*l, Ix*j] and
inefficient outside of this interval.

6. Extensions

0 There are a number of ways in which the simple model presented here could be extended.
In this section we will consider three of them: making the variance term a more general function
of player choices; adding exogenous drift; and adding in cost of variance to the flow payoffs.

Instead of the linear specification considered here, we could instead have the instantaneous
variance be some more general function E(9 1 , 0r2). As long as E is bounded away from 0 and 00
and monotonic in both oI and r2 individually, all of our results extend trivially. Thus, our results
are not driven by our linear specification.

We assumed no drift in x(t). The first step to relaxing this assumption would be to assume
some exogenous drift, A(x). Our existence results extend immediately with this change. The low
r characterization results are a bit more delicate. With drift, the Bellman equation becomes

r VI(x) = max[7(x) + A(x)V,'(x) + (Cr(x) + 0r2(x))V,"(x)].
•,l (x)

There are two issues: first, the limit of V'I(x) must be characterized. Intuitively, this should tend
to 0 as r tends to 0, but the proof is not as straightforward as the proof for rV,(x).

If V'1(x) tends to 0, then our result would extend as long as 7r < lim,_•0rV,(x) < fr.
Examining the proof of Lemma 1, the key is what happens to the mean of x(t) relative to
the standard deviation as t --+ o. More specifically, x(t) will be distributed normally with mean
m(t, x(O), it) and standard deviation s(t, x(O), a). To retain 7r < lim,_ 0 r Vi(x) < fr, we need

lim m(t, x(0), I)/s(t, x(0), a)

bounded. Thus, we need m(t, x(O), At) and s(t, x(O), a) to grow at the same rate. In our model,
s(t, x(O), a) is of the order IT. If we simply assumed that A(x) = /t (i.e., a constant), we would
have m(gt, t) = At and lim,- m(Az, t)/s(t, x(0), a) = oo. One natural way to deal with this issue
would be to make the process mean-reverting.

Another extension would be to include a cost function for different variance choices:
c(ar). What shape should such a cost function be? In most applications, the cost of setting
either very low variance or very high variance is likely prohibitive. Thus, one might consider a
U-shaped cost function. One immediate technical difficulty is existence of a pure strategy ME.
Our straightforward proof fails with the addition of cost of variance, but can be rescued by
allowing mixing. Specifically, modify the Bellman equation by making flow payoffs 7(x) -
c(ora(x)), which implies a first-order condition Vj"(x) = c'(ao(x)), and a satisfied second-order
condition -c"(aj(x)) < 0. Thus, from the first-order condition and the U-shaped cost function,
ao(x) will be monotonically increasing in Vj'(x). Again, rVi(x) will tend toward the average of
the flow payoffs at the extremes. Intuitively, rI (x) will be increasing in x.

7. Conclusion

N Conventional wisdom from sports indicates that, close to the end of a game or race, the
laggard should choose a high-variance strategy and the leader a low-variance strategy. In fact, the
laggard has "nothing to lose": his payoff does not decrease if he falls farther behind but his value
may increase substantially if he moves ahead; in other words, his value function is convex. In
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this article, we consider the situation of an infinite race. We show that, if players are sufficiently
patient, then a laggard, if sufficiently behind, will choose a high-variance strategy, and the leader
a low-variance strategy.

The summary intuition for our result is derived from the HJB equation, which in our game
becomes

r V(x) = 7r(x) + (or, + o 2) V"(x).

This implies that the second derivative of the value function is negatively related to the current
payoff level. Specifically, a lagging player receives a low payoff and has a convex value function,
whereas a leading player receives a high payoff and has a concave value function. Finally, Jensen's
inequality implies that a lagging player chooses high variance, whereas a leading player chooses
low variance.

We also show that, with enough patience, the ME outcome is efficient when players are close
enough together and inefficient when players are sufficiently far apart.

Appendix

El Proof ofLemma 1.

Proof We shall establish the result for rVj; the proof is nearly identical for rV2. Let f(x' It, x(O), u) be the probability
that x(t) = x' at time t, given starting value x(0) and Markov control a. As x(t) is an Ito process, f is a normal density
with mean x(O) and some standard deviation s(t, x(O), o), where lim,-_ s(t, x(0), a) = oc. To simplify notation, let

g(t I x(0), 'a) = a(x')f(x' It, x(0), c) dx'.

Claim 1. lim,- g(t I x(O), a) = (LT + fr)/2.

ProofofClaim 1. Fix any 5 > 0, then:

11 2 2

f(x' It,x (0), o) dx'= + 7 ,o e- dz.

So, lim,_ f(x' I t, x(O), a) dx'

- + lim I e- 2
dz

2'

where the last line follows from the fact that lim,_o s(t I x(O), ar) -o.

Similar steps establish that:

f-1lim f(x'It, x(O),a)dx' 2 X > 0.

Thus,

limn Jf(x'lt,x(0),a)dx' 0 Vx> 0,

and so,

lim f 7r(x')f(x'It, x(O), c)dx' = 0 V.i > 0.

Together these imply that

lim g(t I x(0), a) = lim 7r(x) + - lim 7r(x) = (Lr + ff)/2,
I 2 xcc 2

and we have established Claim 1.
Now for any optimal Markov control a, we have:

r V,(x) f re-,g(t I x(O), o)dt.
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Integration by parts yields:

r VI(x) = [-e`"g(t Ix(O),o')]'o + e`"g,Q Ix(0), u)dt

- 0 +g(O I x(O), a) + e- "g,(t I x(O), a)dt.

So that,

lim r VI (x) = g(0 I x(O), ) +lim e-"g,(t I x(O), a) dt

= g(O I x(0), a) + lim g(t Ix(0), a) - g(O Ix(0), o-)

= lira g(t I x(0), a),

which by Claim I equals (Zr + u)/2. Q.E.D.
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