International Financial Manangement C45.0030.001 Problem Set II (Chapters 5 & 6) Due 10/02, Thursday

- 1. What was the basic cause of the Asian crisis? What was the basic cause of the Russian crisis?
- 2. As we have seen in past crises, sometimes exchange rate of a country gets devalued by more than one would predict based on parity condition, such as the interest rate parity. This, as we know ©, is called <u>overshooting</u> of exchange rates. Now, why overshooting is even more when countries have a lot of foreign debt?

Couple of number-crunching-exercises follow, but they will be very useful later \mathfrak{Q} .

3. Here are a few exchange rates, as quoted on 9/1 and today (9/26). Compute the percentage change from then to today. Which is the currency that changed by most?

	Spot Rate, 9/1	Spot Rate, 9/26
Currency (abbreviation in brackets)		-
Singapore Dollar (SGD)	\$ 1.754 /SGD	\$ 1.7313 /SGD
Indian Rupee (INR)	INR 45.7549/\$	INR 45.8599/\$
Brazilian Cruzeiro Real (BRR)	BRR 2.988/\$	BRR 2.9395/\$

Hint: Use the following rules
$$For \underline{direct\ quotation},\ \%Change = \frac{Ending\ Rate - Beginning\ Rate}{Beginning\ Rate} \times 100.$$

$$For \underline{indirect\ quotation},\ \%Change = \frac{Beginning\ Rate - Ending\ Rate}{Ending\ Rate} \times 100.$$

Note: these rates are for real, so imagine, if you could predict these changes, since we started the course, how much money you could make \odot .

4. Spot and 90-day forward exchange rates for several major currencies are shown below. For each pair, calculate the percentage <u>forward premium or discount</u>, expressed at an annual rate. So, what do you think the prospects of the different currencies are?

	Spot Rate, as of	90-day Forward,
Currency (abbreviation in brackets)	9/26	as of 9/26
Euro (EUR)	\$ 1.1468/ EUR	\$ 1.1454/ EUR
Swiss Franc (SF)	SF 1.3425/\$	SF 1.3395/\$
Japanese Yen (JPY)	¥ 111.83/\$	¥ 111.6615/\$
British Pound (GBP)	\$ 1.65955/ GBP	\$ 1.6488/ GBP

Hint: when you work on this one, use the following rules (remember from the lecture on forward rate):

$$For \ \underline{direct \ quotes}, \ f^{HOME} = \frac{Forward - Spot}{Spot} \times \frac{360}{days} \times 100.$$

$$For \ \underline{indirect \ quotes}, \ f^{FOREIGN} = \frac{Spot - Forward}{Forward} \times \frac{360}{days} \times 100.$$

5. (Look at that exercise on Tuesday, after class) The following exchange rates are available to you.

Bank	Quotation
Fuji Bank, Tokyo	¥120/\$
Credit Suisse First Boston, New York	SF 1.6/\$
Swiss First Bank, Zurich	¥80/ SF

Assume that you have an initial SF 10,000,000. Can you make a profit via <u>triangular arbitrage</u>(? If not, explain why? If yes, show how.

Well, no exercise for chapter 7 (yet ©). We will have exercises on it next Thursday, 10/02.