Liquidity Risk and the Structure of Financial Crises

Lasse Heje Pedersen
NYU, CEPR, NBER

October, 2008

Prepared for the
Internal Monetary Fund
and Federal Reserve Board

See also my related blog: http://sternfinance.blogspot.com
A Report from an Academic Returning from the Trenches
Overview of Talk

➢ Theory
 • What is liquidity risk?
 • How should liquidity risk affect prices and returns?
 • What happens during liquidity crisis?

➢ Evidence from notable liquidity crisis:
 • The current crisis
 • 2007 quant equity
 • 2005 convertible bond market
 • 1998 LTCM
 • 1987 stock market crash

➢ Conclusion
 • Will it happen again?
 • How do we solve the crisis and reduce the risk of future ones?
 • Liquidity risk lessons
What is Liquidity Risk

- Market liquidity:
 - A security is considered liquid if it is “easy” to trade: Low bid-ask spread, small price impact, high resilience, easy search (in OTC markets)

- Market liquidity risk:
 - The risk that the market liquidity worsens when you need to unwind

- Funding liquidity:
 - A trader’s available funding from own capital and (collateralized) loans

- Funding liquidity risk:
 - The risk that a trader cannot fund his position and is forced to unwind
The Pricing of Market Liquidity Risk: Introducing Liquidity Betas

- Investors care about returns net of trading costs
 - They want to be compensated for illiquidity and liquidity risk
 - CAPM holds for net returns in an OLG model.

- Decomposing systematic risk of return net of trading costs:

 \[
 \text{total systematic risk component} = \text{sign} \times \text{interpretation}
 \]

 \[
 \text{Cov}(R^i - C^i, R^M - C^M) = \text{Cov}(R^i, R^M) + \text{standard market beta} \\
 + \text{Cov}(C^i, C^M) + \text{commonality in liquidity} \\
 - \text{Cov}(R^i, C^M) - \text{return exposure to market liquidity} \\
 - \text{Cov}(C^i, R^M) - \text{liquidity exposure to market risk}
 \]

- Three liquidity betas, after division by \(Var(R^M - C^M) \)
The Pricing of Market Liquidity Risk: Liquidity-Adjusted CAPM

Liquidity-adjusted CAPM:

\[E_t(r_{t+1}) = r^f + E_t(c_{t+1}) + \lambda_t (\beta^M_t + \beta^{L1}_t - \beta^{L2}_t - \beta^{L3}_t) \]

\[\beta^{L1}_t = \frac{\text{cov}_t(c^i_{t+1}, c^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})} \]
\[\beta^{L2}_t = \frac{\text{cov}_t(r^i_{t+1}, c^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})} \]
\[\beta^{L3}_t = \frac{\text{cov}_t(c^i_{t+1}, r^M_{t+1})}{\text{var}_t(r^M_{t+1} - c^M_{t+1})} \]
\[\lambda_t = E_t(r^M_{t+1} - c^M_{t+1} - r^f) \]

Empirical tests consistent with predictions: explanatory power in the cross-section, positive risk premium, expected signs of betas.

- An increase in illiquidity increases the required return:

\[\frac{\partial}{\partial C_t} E_t(r_{t+1} - r^f) > 0 \]

- and contemporaneous returns are low

\[\text{cov}_t(c_t, r_t) < 0 \]

- Source: Acharya and Pedersen

Real World Examples

- Securities with high liquidity risk:

 high average return empirically

- Lesson from LTCM:

 liquidity important risk factor

- Current crisis:

 \(C_t \) is increased

 \(\lambda_t \) is increased

 Liquidity risk increased

 \(\rightarrow \) Prices are down
What Drives Market Liquidity Risk

- Liquidity is provided by market makers, hedge funds, prop. traders, “speculators”

- Speculators must be able to fund their positions, both long positions x^+ and short ones $x^-:

\[\sum_j \left(x_t^{j+} m_t^{j+} + x_t^{j-} m_t^{j-} \right) \leq W_t \]

- If speculators are well funded (large capital W and/or low margins m), then
 - they can trade more (larger x^+ and x^-)
 → which enhances market liquidity
 - “Funding liquidity” is a driver of market liquidity

- There is also feedback in the opposite direction:
 - Better market liquidity can lower margins because
 - financiers more willing to lend when they can more easily and quickly sell the collateral
 - market liquidity can lower volatility
 → eases funding restriction

- This mutual feedback can give rise to liquidity spirals
Liquidity Spirals

- Some traders hit or near **margin constraints** (or risk limits) and **reduce positions**, which
 - moves prices against them (and others with similar positions) leading to **further losses**
 - increases volatility and reduces market liquidity, leading to **increased margins** and **tightened risk management** (including reduction in counterparty exposure)

- These effects continue until a new equilibrium is reached
 - loss-spiral
 - margin-spiral
 - risk-management-spiral

Sources: Garleanu and Pedersen (2007) and Brunnermeier and Pedersen (2008)
Speculators consider each security j to maximize expected profit per capital use
- So, in equilibrium, profit-per-capital-use must be equal for all securities
- The common profit per capital use is the shadow cost of capital, denoted ϕ

\[
\frac{\text{profit}^j}{\text{capital-use}^j} = \phi
\] \hspace{1cm} (I)

Note that:
- $C^j = \text{market illiquidity}^j = \text{trading cost of liquidity-demander}^j = \text{profit of speculators}^j$ \hspace{1cm} (II)
- $m^j = \text{margin}^j = \text{capital-use of security}^j$ \hspace{1cm} (III)

Combining (I), (II), and (III) yields

\[
C^j / m^j = \phi \quad \Rightarrow \quad C^j = m^j \cdot \phi
\]

I.e. equilibrium a security’s market liquidity is the product of
- its capital use i.e. margin
 - which depends on its risk, trading characteristics
- the general scarcity of speculator capital, i.e. funding liquidity

See Brunnermeier and Pedersen (2007) for a formal theory.

Real World Example:
- Currently funding liquidity is low, i.e. bank balance sheet is scarce
- Hence, market liquidity is low, especially for high margin securities like convertible bonds
Market Liquidity and Funding Liquidity: Explaining the Stylized Facts

- Sudden liquidity “dry-ups”
 - liquidity spirals for market and funding liquidity
 - destabilizing margins, risk controls, redemptions

- Commonality of liquidity:
 - these funding problems affect many securities

- Market liquidity correlated with volatility:
 - volatile securities require more capital to finance

- Flight to quality / flight to liquidity:
 - when capital is scarce, traders withdraw more from “capital intensive” high-margin securities

- Market liquidity moves with the market
 - because funding conditions do

See Brunnermeier and Pedersen (2007) for a formal theory.
Commonality of Liquidity and Flight to Quality: Example

Two asset example: $\sigma^2 = 7.5 > 5 = \sigma^1$
Funding Liquidity Leads to Conditional Skewness and Kurtosis

- Price moves associated with losses for liquidity providers: amplified by liquidity spirals
- Price moves associated with gains: not amplified

Real World Example:
FX carry trade unwind

“investment currencies go up by the stairs and down by the elevator”

Source: Brunnermeier, Nagel, and Pedersen (2008)
Examples of Liquidity Events
Examples of Liquidity Events

- What happens in the real world liquidity crisis:
 - Current crisis
 - 2007 August quant equity
 - 2005 Convertible bonds
 - 1998 LTCM and convertible bonds
 - 1987 Stock market crash and merger arbitrage
The Current Crisis

- Housing bubble and burst

- Large losses in the levered financial sector

- Liquidity spirals as
 - banks’ balance sheets deteriorate
 - banks de-lever, selling assets
 - risk management tighten, lending reduced, counterparty exposures minimized
 - margins increase
 - liquidity vanishes
 - prices drop

- Extreme liquidity risk
 - Extreme funding liquidity risk: your bank may default
 - Extreme market liquidity risk: dealers shutting down (no bids!)
The Trigger: Housing Bubble and Bust

![Graph of Case-Shiller CSXR](image-url)
This Creates Losses and Funding Liquidity Problems for Banks
Banks Tighten Risk Management and Reduce Inter-bank Lending: Funding Spreads Rise

TED Spreads

<table>
<thead>
<tr>
<th>Date</th>
<th>BD</th>
<th>CN</th>
<th>JP</th>
<th>UK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/1/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Funding Liquidity Problems for Everyone: Banks Unwillingness to Lend

% Increasing Spreads of Loan Rates over Banks' Cost of Funds (source: FRB)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80

Further Funding Problems: Volatility Spikes, increasing Margins
Further Funding Problems: Commercial Paper Market

Rates

Outstandings

Source: Federal Reserve Bank
Market Liquidity Deteriorates: Bid-Ask Spreads

Percentage Bid-Ask Spread

ABX-HE-AAA 06-1 ABX-HE-AAA 06-2 ABX-HE-AAA 07-1 HY (right axis)
Extreme Liquidity Crisis: Covered Interest Rate Parity Fails

Deviation of Covered Interest-Rate Parity vs. USD

Percentage Points (annualized)

AU BD CN JP NW NZ SD SW UK

NYU Stern
Prices Drop, Especially of Illiquid Assets: Losses by Hedge Funds
Correlations Increase: Everything Trades on Liquidity

Commonality among SP500, Bonds, Crude, $-Yen, Gold:
Percent of Correlation Explained by First Principle Component

Correlation between Value and Momentum
All These Liquidity Effects are Connected in Equilibrium
August 2007 Quant Equity Event
Background: What is a Quant Hedge Fund

- Traditional non-quant hedge funds: “discretionary trading”:
 - Buy/sell based on an analyst’s overall assessment of certain selected securities

- Quantitative method:
 - Define trading rules explicitly
 - Back test using historical data
 - Build a system that implements trading idea systematically
 - Using economics, novel data, and novel data processing to identify relationships market participants may miss
 - Finding subtle relationships that the market does not easily understand
 - Superior processing of ideas using a wealth of data that cannot be easily processed using non-quantitative methods
Chronology of the 2007 Quant Event

- **July 2007:**
 - Credit spreads started to widen after sub-prime mortgage turmoil
 - Losses in certain multi-strategy hedge funds, who started reducing risk and raise cash by selling liquid instruments
 - Money pulled out of potential LBO candidates with strong value and cash flow characteristics, hurting the value strategy
 - Fund-of-fund hit loss triggers and redeem from certain hedge funds
 - Value stocks behave poorly with unusual correlation structure

- **August 2007**
 - Major de-leveraging of quant strategies
 - Spill-over
 - from value to other quant factors
 - from the US to international markets
 - Since the large price movements were created by de-leveraging, prices bounced back
Estimated Reduction of Overall Quant Positions

Pre Sell-Off

$300-$400 billion of long exposures

$300-$400 billion of short exposures

Post Sell-Off

$175-$250 billion of long exposures

$175-$250 billion of short exposures
Spillover from US to other Markets

Valuation Factor Returns, July 1 – August 24

-35.00% -30.00% -25.00% -20.00% -15.00% -10.00% -5.00% 0.00% 5.00% 10.00%

US Valuation JP Valuation Aus Valuation
Minute-by-Minute Cumulative Return to Value Factor, August 6 - 14

7% annualized vol ~ 7% / Sqrt(252) = 44 bps daily vol (vol. estimates from BARRA)

Move largest for illiquid stocks
Evidence of Liquidity Event due to Unwinding

<table>
<thead>
<tr>
<th></th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Mon</th>
<th>Tue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>-1.34%</td>
<td>-4.52%</td>
<td>-6.20%</td>
<td>-4.23%</td>
<td>9.82%</td>
<td>2.20%</td>
<td>0.35%</td>
</tr>
<tr>
<td># Stds (1 std is 0.44%)</td>
<td>-3</td>
<td>-10</td>
<td>-14</td>
<td>-10</td>
<td>22</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>P-value "normal" day</td>
<td>0.23%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>42%</td>
</tr>
<tr>
<td>Positive returns (%)</td>
<td>31%</td>
<td>10%</td>
<td>32%</td>
<td>41%</td>
<td>75%</td>
<td>43%</td>
<td>56%</td>
</tr>
<tr>
<td>Negative returns (%)</td>
<td>69%</td>
<td>90%</td>
<td>68%</td>
<td>59%</td>
<td>25%</td>
<td>57%</td>
<td>44%</td>
</tr>
<tr>
<td>Positive returns (%)</td>
<td>42%</td>
<td>32%</td>
<td>35%</td>
<td>42%</td>
<td>67%</td>
<td>47%</td>
<td>52%</td>
</tr>
<tr>
<td>Negative returns (%)</td>
<td>58%</td>
<td>68%</td>
<td>65%</td>
<td>58%</td>
<td>33%</td>
<td>53%</td>
<td>48%</td>
</tr>
<tr>
<td>P-value random walk</td>
<td>0.10%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.10%</td>
<td>0.00%</td>
<td>24%</td>
<td>39%</td>
</tr>
</tbody>
</table>
Interpretation

- Liquidity events can happen even in the most liquid markets in the world

- Market and funding liquidity are related

- Liquidity shocks are
 - sudden
 - common and spill over
 - affect mostly risky and illiquid securities

- Everyone seeks the highest alpha portfolio
 - The best quants are likely to be correlated
 - One needs to stay one step ahead

- Prices drop more and rebound slower in more illiquid markets
 - Cf. Duffie, Garleanu, Pedersen (Review of Financial Studies, 2007)
2005 Convertible Bond Event

- Capital outflow due to redemptions from convertible bond hedge funds

- Single-strategy hedge funds:
 - forced sellers of convertible bonds

- Multi-strategy hedge funds
 - had a choice: what do you think that they did?

- What happens to the price of convertible bonds?
Background: What is a Convertible Bond

- Convertible bond:
 - Corporate bond + call option (+ more)

- Theoretical value can be inferred from
 - Issuer stock price
 - Stock price volatility
 - Option-implied volatility
 - Risk-free interest rates
 - Credit spreads
 - Just like the price of a “Gin and Tonic” can be inferred from the respective prices of gin and tonic, and the amounts of each needed
Convertible Bond Arbitrage

- Buy convertible bond if it trades at a discount
- Short the issuer’s stock
- Potentially:
 - Short risk-free bonds
 - Short non-convertible bonds (or buy CDS)
 - Short stock options
Convertible Bond Arbitrage Capital Outflows in 2005

- Natural liquidity providers: Convertible Bond Arbitrage Hedge Funds (HFs)

- Capital outflows in 2005:
 - 2005Q1: 20% capital redeemed
 - 2005Q1 – 2006Q1: assets fell by half

- Convert Arb HFs sold convertible bonds
Redemptions in 2005

Source: Barclay Group
Redemptions Led to Selling: Adjusted Holdings of Convertible Bonds

Convertible Bond Arbitrage Returns and Market Price / Theoretical Value

Interpretation

- Prices drop and rebound

- Price-to-fundamentals lowest around redemption notices (45 days before end of June and end of December)

- Returns negative, then positive

- Response by other traders:
 - Multi-strategy hedge funds
 - Mutual funds
The Case of Amaranth

- In 2005, Amaranth had
 - Losses in convertible bonds
 - Profits in energy trading
 - Overall profit and no capital problems

- Decided to liquidate convertible bonds at time of significant cheapness

- Collapsed in 2006 due to losses in energy
LTCM Blowup in 1998: Implications for Convertible Bonds

- Large hedge fund LTCM had losses due to Russian default, option positions, etc.
- Had to liquidate large position in convertible bonds
- What happened to the price of the bonds and how was the subsequent return?
Convertible Bond Arbitrage Returns and Market Price / Theoretical Value

1987 Crash: Implications for Merger Arbitrage

- Oct. 19 (Black Monday) and 20: crash
- Oct: 21-31:
 - Stock market rebounds
 - Congress backs off proposed legislation
 - But, merger-arbitrage proprietary traders
 - had lost a significant amount of capital
 - Did they start buying or keep selling?
 - What happened to merger spreads?

- Berkshire Hathaway Annual Report (Warren Buffett):

 “During 1988 we made unusually large profits from [risk] arbitrage … the trick, a la Peter Sellers in the movie, has simply been ‘Being There.’”
Background on Merger Arbitrage

- In a merger, “target” is bought at a premium, say 20-30%.
- At announcement, target price increases to a value close to the offer value.
- But, there remains a “deal spread,” typically around 3%

\[
deal\ space = \frac{\text{offer value} - \text{target price}}{\text{target price}}
\]

- Due to
 - Risk of deal failure
 - Selling pressure: Mutual funds sell after announcement
- Merger arbitrageurs buy target
 - Stock deal: hedge by shorting acquirer
 - Cash deal: no hedge
Merger Arbitrage and the 1987 Crash

Conclusions
Conclusion: Will Liquidity Events Happen Again?

- Yes, almost surely in some markets
 - Certain trades often get crowded over time
 - Sudden losses can lead to simultaneous unwind and liquidity spirals

- Liquidity crisis is part of the equilibrium:
 - If there was no risk of crisis, traders will have an incentive to lever up more

- Crises are (somewhat) rare
 - Banks try to stay liquid and traders actively try to stay away from margin constraint
 - Most likely to occur in illiquid markets in which levered specialized traders play a large role
 - Least likely in liquid market using unique strategies
Conclusion: How do We Solve the Crisis and Reduce the Risk of Future Ones?

- Recapitalize banks
 - Raise new capital, dilute old equity, possibly reduce face value of old debt
 - Quick resolution bankruptcy for institutions with systemic risk, i.e. causing liquidity spirals

- Improve funding markets and trust
 - Broaden bank guarantees, open discount window (collateralized funding with reasonable margins), ensure CP market

- Risk management
 - must acknowledge systemic risk due to liquidity spirals
 - Policy and regulations must consider system, as opposed to each institution in isolation
How do We Solve the Crisis and Reduce the Risk of Future Ones, Continued

- Trading with a clearing house preferable
 - allows netting out
 - reduce counterparty co-dependencies
 - increases transparency

- Stock transaction taxes not a good idea:
 - moves trading away and into the land of OTC derivatives with no clearing house
 - reduces liquidity and, hence, increases firms’ cost of capital (liquidity-adjusted CAPM)
 - importance of the ability to raise capital is what this crisis is all about

- Shortselling ban is not a good idea:
 - Shortsellers bring new information to the market, increase liquidity, and reduce bubbles (remember the housing bubble started this crisis)
 - Prohibiting shortselling does not solve the general funding problem.
 - Temporarily banning new short sales of financial institutions can be justified if there is risk of predatory trading, but often firms on trouble look for scapegoats
Conclusion: Liquidity Risk Lessons

- Liquidity risk important for
 - security prices (liquidity-adjusted CAPM)
 - risk management
 - the speed of arbitrage

- Funding liquidity of banks and “speculators” is a driver of market liquidity risk

- Liquidity crisis:
 - Driven by liquidity spirals:
 - loss spiral
 - margin spiral
 - risk management spiral
 - Liquidity providers become demanders
 - New capital arrives slowly
 - Prices drop and rebound
Related Papers