Margin-Based Asset Pricing and Deviations from the Law of One Price

Nicolae Gârleanu
Berkeley, CEPR, and NBER

Lasse H. Pedersen
NYU, CEPR, and NBER
Motivation: Financial Frictions in the Macro Economy

- Key friction: **margin constraints**
- These constraints can become binding; e.g., 2007-2009
- One remarkable consequence: Failure of Law of One Price
 - Corporate-bond basis: price gap between bond and CDS
 - Covered interest-rate parity

Research question:

How do margin requirements affect asset prices?
What We Do

- Standard Lucas economy, extended in minimal way:
 - with 2 two agents
 - facing margin constraints
- Derive equilibrium: **Margin CAPM**
- **Quantify** effects of margin
- Help **explain**:
 - CDS-bond basis
 - Failure of covered interest-rate parity (CIP)
 - The effects of the Fed’s lending facilities
 - The incentive for regulatory arbitrage
Results: Theory

- Margin (C)CAPM
 \[E_t(r^i) - r^c_t = \lambda_t \beta^i_t + \psi_t x_t m^i_t \]

- Shadow cost of capital \(\psi_t \) can be captured by interest-rate spreads (LIBOR minus GC repo).

- Binding constraints, \(\psi_t > 0 \) (e.g., since August 2007):
 - occur following bad fundamental shocks
 - increase Sharpe market ratio: \(SR = \tilde{SR} + f(x_t) \left(\frac{\tilde{SR}}{\sigma} - \frac{1}{m} \right)^+ \)

- Basis: can arise due to difference in margins
 \[E_t(r^i) - E_t(r^{ik}) = (\beta^{Cb,i}_t - \beta^{Cb,ik}_t) + \psi_t (m^i_t - m^{ik}_t) \]

- High-margin assets have high sensitivity to funding risk
Calibrate model using standard parameters: consumption growth, discount rate, risk aversion, observed margins

- Large pricing effect of binding constraints
 - Collateralized interest rates drop
 - Interest-rate spreads blow out
 - Margin premium rises

- High margin assets have high sensitivity to funding risk
 - higher beta
 - higher comovement with each other

Consistent with model, CDS-bond basis related to:
- credit tightness (time series)
- relative margin requirements (cross section)

Relate interest-rate spread to failure of covered interest parity

Transmission of unconventional monetary policy:
- Compute effect of Fed’s lending facilities on asset values

Quantify banks’ incentives to loosen capital requirements
Related Literature

- Direct evidence from Fed that prices depend significantly on haircuts: Ashcraft, Garleanu, and Pedersen (2010)
- Evidence on stocks, bonds, and credit markets: Frazzini and Pedersen (2010)
Continuous-time endowment economy

Multiple assets in positive supply, characterized by

- dividend stream: δ^i_t
- margin requirement: m^i_t
- endogenous price: $dP^i_t = (\mu^i_t P^i_t - \delta^i_t) \, dt + P^i_t (\sigma^i_t) \top \, dB_t$

Multiple “derivatives”:
- derivative i_k has the same payoffs δ^i_t as asset i
- smaller margin: $m^{i_k}_t \leq m^i_t$

Two types of risk-free lending/borrowing:
- collateralized (rate r^c_t)
- uncollateralized (rate r^u_t)
Model: Agents

- Two types of agents $g = a, b$:
 - Risk averse: $\gamma^a > 1$
 - Risk tolerant (brave): $\gamma^b = 1$ (i.e., log)

- Utility: constant relative risk aversion

$$\max_{C^g, \theta^i, \eta^u} \mathbb{E}_0 \int_0^\infty e^{-\rho s} \frac{(C^g_s)^{1-\gamma^g}}{1 - \gamma^g} \, ds$$

- Constraints:
 - Solvency: $W_t \geq 0$
 - Funding constraint: $\sum_i m^i_t |\theta^i_t| + \eta^u_t \leq 1$
 - Agent a
 - Does not lend uncollateralized
 - Faces derivative-trading restrictions
Agent b solves

$$\max_{\theta^i_t, \eta^u_t} \left\{ r^c_t + \eta^u_t (r^u_t - r^c_t) + \sum_i \theta^i_t (\mu^i_t - r^c_t) - \frac{1}{2} \sum_{i,j} \theta^i_t \theta^j_t \sigma^i_t (\sigma^j_t)^T \right\}$$

subject to $\sum_i m^i_t |\theta^i_t| + \eta^u_t \leq 1$.

Proposition: The shadow cost of the margin constraint is

$$\psi^u_t = r^u_t - r^c_t$$

Proposition: If agent b is long asset i, its excess return is

$$\mu^i_t - r^c_t = \beta^{C^b,i}_t m^i_t + \psi^u_t m^i_t$$

where $\beta^{C^b,i}_t = \text{cov}_t \left(\frac{dC^b}{Cb}, \frac{dP^i}{Pi} \right)$
Suppose that agent \(a \) is unconstrained w.r.t. asset \(i \) and let

\[
\frac{1}{\gamma_t} = \frac{1}{\gamma^a} \frac{C_t^a}{C_t} + \frac{1}{\gamma^b} \frac{C_t^b}{C_t}
\]

\[
x_t = \frac{C_t^a}{\gamma^a} + \frac{C_t^b}{\gamma^b}
\]

\[
\beta^C,i_t = \text{COV}_t \left(\frac{dC}{C}, \frac{dP_i}{P_i} \right)
\]

Proposition:

\[
\mu^i_t - r^c_t = \gamma_t \beta^C,i_t + x_t \psi_t m^i_t
\]
Let q be the portfolio with highest correlation with aggregate consumption and

$$\beta_t^i = \frac{\text{cov}_t \left(\frac{dP^i_t}{P^i_t}, \frac{dP^q_t}{P^q_t} \right)}{\text{var}_t \left(\frac{dP^q_t}{P^q_t} \right)}$$

Proposition:

$$\mu_t^i - r_t^C = \lambda_t \beta_t^i + x_t \psi_t m_t^i$$
Proposition:

- If agent b is long asset i and derivative i_k

$$\mu_t^i - \mu_t^{i_k} = \psi_t (m_t^i - m_t^{i_k}) + (\beta_t^{C^b,i} - \beta_t^{C^b,i_k})$$

- If he is long i and short i_k, then

$$\mu_t^i - \mu_t^{i_k} = \psi_t (m_t^i + m_t^{i_k}) + (\beta_t^{C^b,i} - \beta_t^{C^b,i_k})$$

- The derivative price $P_t^{i_k}$ decreases with $m_t^{i_k}$.
Explicit Equilibrium

Specializing the setup for tractability to consider explicit equilibrium and calibration:

- Aggregate consumption C is geometric Brownian motion
- Continuum of underlying assets with dividend $\delta^i = Cs^i$, where s^i independent martingales
- All underlying assets have the same margin $m^i = m$
- Derivatives with $m^{ik} \leq m$ traded only by b

N. Gârleanu and L. H. Pedersen Margin-Based Asset Pricing
Solving Explicitly

- It suffices to calculate equilibrium as if there were one underlying paying C and derivatives on it
- State variables: C and $c^b = C^b / C$
- Pricing kernel for underlying assets: Agent a is marginal:
 \[
 \xi_t = e^{-\rho t} (C^a)^{-\gamma^a}
 \]
 \[
 d\xi_t = \xi_t \left(\mu^\xi_t dt + \sigma^\xi_t dw_t \right)
 \]
- Collateralized interest rate:
 \[
 r^c_t = -\mu^\xi_t = -\frac{D \left(e^{-\rho t} (C^a)^{-\gamma^a} \right)}{e^{-\rho t} (C^a)^{-\gamma^a}}
 \]
- Market price of aggregate wealth $P_t = C_t \zeta(c^b_t)$:
 \[
 P_t \xi_t = \mathbb{E}_t \int_t^\infty C_s \xi_s \, ds
 \]
Proposition:

- Agent b’s margin constraint binds iff
 \[\frac{\mu - r^c}{\sigma^2} = \frac{SR}{\sigma} \geq \frac{1}{m} \]

- The price-to-dividend ratio $P_t/C_t = \zeta(c^b_t)$ is given as the solution to an ODE and all other endogenous variables are explicit functions of ζ.

- Binding margin constraint increases the Sharpe Ratio:
 \[SR = \bar{SR} + \frac{x}{1-x} \frac{\bar{\sigma}}{1 - \zeta'_{c^b} m\zeta} \left(\frac{\bar{SR}}{\sigma} - \frac{1}{m} \right)^+ \]

where $\bar{SR} = \gamma \sigma^C$ and $\bar{\sigma}$ are the Sharpe and return volatility without constraints.
Proposition:

As $c^b \to 0$, the basis between asset i and derivative i_k becomes

$$\mu^i - \mu^{i_k} = \psi (m^i - m^{i_k})$$

where

$$\psi = \frac{(\sigma C)^2}{m} \left(\gamma^a - \frac{1}{m} \right)^+$$

In the cross section of asset-derivative pairs,

$$\frac{\mu^i - \mu^{i_k}}{m^i - m^{i_k}} = \frac{\mu^j - \mu^{j_k}}{m^j - m^{j_k}}$$
We use the following parameter values:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ^C</td>
<td>0.03</td>
</tr>
<tr>
<td>σ^C</td>
<td>0.08</td>
</tr>
<tr>
<td>γ^a</td>
<td>8</td>
</tr>
<tr>
<td>ρ</td>
<td>0.02</td>
</tr>
<tr>
<td>m</td>
<td>0.4</td>
</tr>
<tr>
<td>m^{med}</td>
<td>0.3</td>
</tr>
<tr>
<td>m^{low}</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Constraint binds for $c^b \leq 0.22$

Since b is levered more than a, low c^b is the result of bad shocks to fundamentals.
Calibration: Interest Rates

Figure: Interest rates: complete markets, collateralized with constraints \((r_c) \), and uncollateralized with constraints \((r_u) \).
Calibration: Bases

Figure: Return spreads of high-margin underlying versus low-margin derivative (i.e., large margin spread $m_{\text{underlying}} - m_{\text{low}} = 30\%$) and versus intermediate-margin derivative (i.e., small margin spread $m_{\text{underlying}} - m_{\text{medium}} = 10\%$).
Calibration: Sharpe Ratios

Figure: Sharpe ratios: complete markets, underlying with constraints, and two derivatives with constraints.
Figure: **Price Premium.** The figure shows how the price premium, $P_{\text{derivative}} / P_{\text{underlying}} - 1$ for three derivatives with identical cash flows and different margins.
Figure: The CDS-Bond basis, the LIBOR-GCrepo Spread, and Credit Standards.
CDS-Bond Basis: Cross Section

Figure: Investment Grade (IG) and High Yield (HY) CDS-Bond Bases, Adjusted for Their Margins.

N. Gârleanu and L. H. Pedersen

Margin-Based Asset Pricing
Monetary Policy and Lending Facilities

- Term Auction Facility (TAF), Dec. 2007
- Term Securities Lending Facility (TSLF), March 2008
- Term Asset-Backed Securities Loan Facility (TALF), Nov 2008

Goal: Improve funding conditions and “help market participants meet the credit needs of households and small businesses by supporting the issuance of asset-backed securities”

The model suggests that when the Fed offers lower margins, liquidity risk and required returns go down:

$$E(r_{i,Fed}^i) - E(r_{i,no \text{ Fed}}^i) \approx \lambda(\beta^{Fed,i} - \beta^{no \text{ Fed},i}) + \psi x(m^{Fed,i} - m^{i}) + \Delta\psi x m^{i} < 0$$

I.e., ABS yield down, access to credit eases, helping the real economy
Two Monetary Tools: Interest Rates and Haircuts (Ashcraft, Garleanu, and Pedersen (2009))

![Graph showing yields for different haircut regimes and maturities.](graph.png)
Two Monetary Tools: Interest Rates and Haircuts (Ashcraft, Garleanu, and Pedersen (2009))

Price Relative to No-TALF Price

- Low TALF haircut
- High TALF haircut
- No TALF

N. Gârleanu and L. H. Pedersen Margin-Based Asset Pricing
Evidence on Monetary Policy and Margins Affecting Prices (Ashcraft, Garleanu, and Pedersen (2009))

Figure: Market reaction to TALF-related announcements.
Failure of the Covered Interest Rate Parity

Figure: Average Deviation from Covered-Interest Parity and the TED Spread.

N. Gârleanu and L. H. Pedersen
Margin-Based Asset Pricing
Regulatory Arbitrage

- Pressure to free capital by moving assets off the balance sheet or titling portfolios towards low capital-requirement assets
- Basel requirement is similar to the margin constraint
 \[\sum_i m^{\text{Reg},i} |\theta^i| \leq 1 \]
- Required return increased by \(m^{\text{Reg},i,\psi} \)
Conclusion

- Margin-based general-equilibrium model
 - Strong asset pricing predictions
 - Predicts that a decline in fundamentals leads to
 - Binding constraints
 - Drop in Treasury and GC repo rates
 - Spikes in interest-rate spreads, risk premium, margin premium
 - Basis between securities with identical cash flows, related to margin differences

- Calibrated model predicts large margin premium in crisis

- Applications:
 - CDS-bond basis
 - Covered interest parity
 - Monetary policy, fed lending facilities
 - Banks’ incentives to use off-balance-sheet instruments