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We provide the impact on asset prices of search-and-bargaining frictions in over-
the-counter markets. Under certain conditions, illiquidity discounts are higher when
counterparties are harder to find, when sellers have less bargaining power, when the
fraction of qualified owners is smaller, or when risk aversion, volatility, or hedging
demand is larger. Supply shocks cause prices to jump, and then ‘‘recover’’ over time,
with a time signature that is exaggerated by search frictions: The price jump is larger
and the recovery is slower in less liquid markets. We discuss a variety of empirical
implications. (JEL G1, G12, G14, D83, D4, D52)

Many assets, such as mortgage-backed securities, corporate bonds,
government bonds, US federal funds, emerging-market debt, bank loans,
swaps and many other derivatives, private equity, and real estate, are
traded in over-the-counter (OTC) markets. Traders in these markets
search for counterparties, incurring opportunity or other costs. When
counterparties meet, their bilateral relationship is strategic; prices are set
through a bargaining process that reflects each investor’s alternatives to
immediate trade.

We provide a theory of dynamic asset pricing that directly treats search
and bargaining in OTC markets. We show how the explicitly calculated
equilibrium allocations and prices depend on investors’ search abilities,
bargaining powers, and risk aversion, and how the time signature of price
reactions to supply or demand shocks depends on the speed with which
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counterparties interact. We discuss a variety of financial applications and
testable implications.

Investors in our model contact one another randomly at some mean rate
that reflects search ability. When two agents meet, they bargain over the
terms of trade on the basis of endogenously determined outside options.
Investors are infinitely lived and gains from trade arise from time-varying
costs or benefits of holding assets. We show how the equilibrium bargaining
powers of the counterparties are determined by search opportunities, using
the approach of Rubinstein and Wolinsky (1985).

We first study how search frictions affect asset prices in a steady-state
equilibrium in which agents face idiosyncratic risk, with no aggregate risk.
We compute steady-state prices both with risk-neutral and risk-averse
agents, and show how risk aversion can be approximated in a risk-neutral
setting using ‘‘holding costs’’ that capture the utility losses of suboptimal
diversification or hedging.

Naturally, search-based market incompleteness is priced by risk-
averse agents with time-varying hedging demands. Indeed, under stated
conditions, illiquidity discounts are higher if investors can find each other
less easily, if buyers have more bargaining power, if the fraction of qualified
owners is smaller, if volatility is higher,1 or if risk aversion is higher. We
also indicate situations in which search frictions can lead naturally to an
increase in the price of the asset, conveying to it a search-induced scarcity
value.

We introduce ‘‘aggregate liquidity shocks,’’ that is, shocks that affect the
holding costs of many agents simultaneously. We show that, under certain
conditions, when an aggregate liquidity shock occurs, the price drops and
recovers only slowly. The speed of the price recovery depends on the search
intensity that determines the speed of reallocation of securities to the more
liquid agents and on the time that it takes for illiquid agents to become
liquid, for example to ‘‘recapitalize.’’ Also, the risk of future aggregate
liquidity shocks significantly lowers the post-recovery price level. Search
frictions thus affect both the general level of prices, as well as the resiliency
of the market to aggregate shocks. Less liquid markets (those with lower
search intensities) often have lower price levels, larger price reactions to
supply shocks, and slower price recovery.

When an aggregate liquidity shock occurs, the expected utilities of
asset owners, even those owners who are not directly affected by the
liquidity shock themselves, decrease because selling opportunities worsen:
Sellers’ search times increase and their bargaining positions deteriorate.
Conversely, the expected utilities of agents ‘‘waiting on the sideline,’’ those
with no asset position, increase at times of aggregate liquidity shocks,

1 This volatility effect on liquidity is consistent with the empirical findings of, for instance, Benston and
Hagerman (1974) and Amihud and Mendelson (1989).
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because they may have the opportunity to purchase securities at distressed
prices.

We discuss how our results contribute to an explanation of the time
signatures of price responses to several types of aggregate liquidity shocks,
for example, to convertible bonds when convertible bond hedge funds have
capital redemptions [Mitchell, Pedersen, and Pulvino (2007)], to corporate
bonds that are downgraded or in default [Hradsky and Long (1989)],
to sovereign bonds during ‘‘debt crises,’’ to individual stocks at index
inclusion or exclusion events [as in Greenwood (2005)], to stocks affected
by sudden large outside orders [Andrade, Chang, and Seasholes (2005);
Coval and Stafford (2007)], or to catastrophe reinsurance risk premia
after large unexpected losses in capital caused by events such as major
hurricanes [Froot and O’Connell (1999)], among other relevant empirical
phenomena.

The point of departure of this article is a variant of the basic risk-neutral
search-based pricing model of Duffie, Gârleanu, and Pedersen (2005).
While Duffie, Gârleanu, and Pedersen (2005) focus on the steady-state
pricing of a simple consol bond and treat the behavior of marketmakers
and the implications of search frictions for bid-ask spreads, this article
instead treats the implications of search frictions for risky asset pricing.
We provide (i) the impact on asset prices of risk aversion in a setting
with search, above and beyond the usual implications of risk sharing in
incomplete markets, (ii) the implications of search frictions for the time
dynamics of price responses to supply or demand shocks, and (iii) the
determination of endogenous bargaining power based on the alternative
search opportunities of the buyers and sellers.

Search models have been studied extensively in the context of labor
economics, starting with the ‘‘coconuts’’ model of Diamond (1982), and in
the context of monetary economics, for example, Trejos and Wright (1995).
As for search-based models of asset pricing, Weill (2002) and Vayanos
and Wang (2007) have extended the risk-neutral version of our model
in order to treat multiple assets in the same economy, obtaining cross-
sectional restrictions on asset returns. Duffie, Gârleanu, and Pedersen
(2005) treat marketmakers, showing that search frictions have different
implications for bid-ask spreads than do information frictions. Miao (2006)
provides a variant of this model. Weill (2007) studies the implications of
search frictions in an extension of our model in which marketmakers’
inventories ‘‘lean against’’ the outside order flow. Newman and Rierson
(2003) present a model in which supply shocks temporarily depress prices
across correlated assets, as providers of liquidity search for long-term
investors, supported by empirical evidence of issuance impacts across
the European telecommunications bond market. Duffie, Gârleanu, and
Pedersen (2002) use a search-based model of the impact on asset prices
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and securities lending fees of the common institution by which would-
be shortsellers must locate lenders of securities before being able to sell
short. Difficulties in locating lenders of shares can allow for dramatic
price imperfections, as, for example, in the case of the spinoff of Palm,
Incorporated, documented by Mitchell, Pulvino, and Stafford (2002) and
Lamont and Thaler (2003). Finally, Gârleanu and Pedersen (2007) show
that search frictions increase the effective risk of a position by increasing
the expected selling time and, therefore, illiquidity and risk management
constraints can reinforce each other, leading to large price drops.

Our results also complement the literature treating the effect on
asset prices of an exogenously specified trading cost [Amihud and
Mendelson (1986), Constantinides (1986), Vayanos (1998), Huang (2003),
and Acharya and Pedersen (2005)] by endogenizing the trading cost in
the context of OTC markets. Krainer and LeRoy (2002) study housing
prices in a different search framework. Longstaff (2004) addresses market
frictions with the device of deterministic ‘‘blackout’’ periods on individual
trade, while Gârleanu (2006) allows for multiple assets and more general
configurations of market-access times.

The remainder of the article is organized as follows. Section 1 lays out
a baseline model with risk-neutral agents. Section 2 then treats an OTC
market for a risky asset whose risk-averse owners search for potential
buyers when the asset ceases to be a relatively good endowment hedge. We
characterize how search frictions magnify risk premia beyond those of a
liquid but incomplete-markets setting. Section 3 provides the implications
of search frictions for price reactions to supply or demand shocks, showing
especially how the time pattern of ‘‘price recovery’’ is influenced by search
frictions. Finally, Section 4 describes the empirical implications of search
frictions for asset pricing in a range of actual OTC markets. Some proofs
and supplementary results are relegated to appendices.

1. Basic Search Model of Asset Prices

This section introduces a baseline risk-neutral model of an OTC market,
that is, a market in which agents can trade only when they meet each
other, and in which transaction prices are bargained. This baseline model,
simplified from Duffie, Gârleanu, and Pedersen (2005) by stripping out
marketmakers, is then generalized in the remainder of the article to treat
risk aversion and the effects of aggregate liquidity shocks.

Agents are risk-neutral and infinitely lived, with a constant time-
preference rate β > 0 for consumption of a single nonstorable numeraire
good.2

2 Specifically, an agent’s preferences among adapted finite-variation cumulative consumption processes

are represented by the utility E
(∫ ∞

0 e−βt dCt

)
for a cumulative consumption process C, whenever the

integral is well defined.
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An agent can invest in a bank account—which can also be interpreted
as a ‘‘liquid’’ security—with a risk-free interest rate of r. As a form of
credit constraint that rules out ‘‘Ponzi schemes,’’ the agent must enforce
some lower bound on the liquid wealth process W . We take r = β in this
baseline model, since agents are risk neutral.

Agents may trade a long-lived asset in an OTC market. The asset can
be traded only bilaterally, when in contact with a counterparty. We begin
for simplicity by taking the OTC asset to be a consol, which pays one unit
of consumption per unit of time. Later, when introducing the effect of risk
aversion, we generalize to random dividend processes.

An agent is characterized by an intrinsic preference for asset ownership
that is ‘‘high’’ or ‘‘low.’’ A low-type agent, when owning the asset, has a
holding cost of δ per time unit. A high-type agent has no such holding cost.
We could imagine this holding cost to be a shadow price for ownership due,
for example, to (i) low liquidity, that is, a need for cash, (ii) high financing
or financial-distress costs, (iii) adverse correlation of asset returns with
endowments (formalized in Section 2), (iv) a relative tax disadvantage, as
studied by Dai and Rydqvist (2003) in an empirical analysis of search-
and-bargaining effects in the context of tax trading,3 or (v) a relatively low
personal use for the asset, as may happen, for example, for certain durable
consumption goods such as homes.

The agent’s intrinsic type is a Markov chain, switching from low to high
with intensity λu, and back with intensity λd . The intrinsic-type processes
of any two agents are independent.4 These type switches give agents an
incentive to trade because low-type owners want to sell and high-type
nonowners want to buy. These shocks can be seen as preference shocks.
They can also be captured as endowment shocks, as in Section 2, where
some agents have hedging motives to buy, others to sell. Alternatively,
switching to a low type can be viewed as facing a liquidity shock, for
example a large request for redemption of capital by a hedge fund. With
the latter interpretation, switching to a high type could be viewed as an
arrival of new capital, solving the liquidity problem.

A fraction s of agents are initially endowed with one unit of the asset.
Investors can hold at most one unit of the asset and cannot shortsell.
Because agents have linear utility, it is without much loss of generality
that we restrict attention to equilibria in which, at any given time and

3 Dai and Rydqvist (2003) study tax trading between a small group of foreign investors and a larger group of
domestic investors. They find that investors from the ‘‘long side of the market” get part of the gains from
trade, under certain conditions, which they interpret as evidence of a search-and-bargaining equilibrium.

4 All random variables are defined on a probability space (�,F, P r) with corresponding filtration {Ft : t ≥ 0}
of sub-σ -algebras ofF satisfying the usual conditions, as defined by Protter (2004). The filtration represents
the resolution over time of information commonly available to investors.
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state of the world, an agent holds either 0 or 1 unit of the asset.5 Hence,
the full set of agent types is T = {ho, hn, lo, ln}, with the letters ‘‘h’’ and
‘‘l’’ designating the agent’s current intrinsic liquidity state as high or low,
respectively, and with ‘‘o’’ or ‘‘n’’ indicating whether the agent currently
owns the asset or not, respectively.

We suppose that there is a ‘‘continuum’’ (a nonatomic finite measure
space) of agents, and let μσ (t) denote the fraction at time t of agents of
type σ ∈ T , so that

1 = μho(t) + μhn(t) + μlo(t) + μln(t). (1)

Equating the per-capita supply s with the fraction of owners gives

s = μho(t) + μlo(t). (2)

An agent finds a counterparty with an intensity λ, reflecting the efficiency
of the search technology. We assume that the counterparty found is ran-
domly selected from the pool of other agents, so that the probability that the
counterparty is of type σ is μσ (t). Thus, the total intensity of finding a type-
σ investor is λμσ . Hence, assuming that the law of large numbers applies,
hn investors contact lo investors at a total (almost sure) rate of λμloμhn

and, since lo investors contact hn investors at the same total rate, the total
rate of such counterparty matchings is 2λμloμhn. Duffie and Sun (2007)
provide a discrete-time search-and-matching model in which the exact law
of large numbers for a continuum of agents indeed applies in this sense.6

To solve the model, we proceed in two steps. First, we use the insight
that the only form of encounter that provides gains from trade is one
in which low-type owners sell to high-type non-owners. From bargaining
theory, we know (see Appendix A) that at these encounters trade occurs
immediately. We can therefore determine the asset allocations without
reference to prices. Given the time-dynamics of the masses, {μ(t) : t ≥ 0},
we then consider an investor’s lifetime utility, depending on the investor’s
type, the bargaining problem, and the resulting price. In equilibrium, the
rates of change of the fractions of the respective investor types are

μ̇lo(t) = −2λμhn(t)μlo(t) − λuμlo(t) + λdμho(t)

μ̇hn(t) = −2λμhn(t)μlo(t) − λdμhn(t) + λuμln(t)

μ̇ho(t) = 2λμhn(t)μlo(t) − λdμho(t) + λuμlo(t) (3)

μ̇ln(t) = 2λμhn(t)μlo(t) − λuμln(t) + λdμhn(t).

5 In a model with risk-averse agents who may not have continuous access to the market Gârleanu (2006)
endogenizes the position choices fully and studies the price implications of liquidity.

6 Giroux (2005) proves that the cross-sectional distribution of agent types in a natural discrete-time analog
of this model indeed converges to the continuous-time model studied here.
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The intuition for, say, the first equation in (3) is straightforward:
Whenever an lo agent meets an hn investor, he sells his asset and is no
longer an lo agent. This (together with the law of large numbers) explains
the first term on the right-hand side of (3). The second term is due to
intrinsic type changes in which lo investors become ho investors, and the
last term is due to intrinsic type changes from ho to lo.

Duffie, Gârleanu, and Pedersen (2005) show that there is a unique stable
steady-state solution for {μ(t) : t ≥ 0}, that is, a constant solution defined
by μ̇(t) = 0. The steady state is computed by using (1)–(2) and the fact
that μlo + μln = λd/(λu + λd) in order to write the first equation in (3) as
a quadratic equation in μlo, given as Appendix equation (C.1).

Having determined the steady-state fractions of investor types, we
compute the investors’ equilibrium intensities of finding counterparties of
each type and, hence, their utilities for remaining lifetime consumption,
as well as the bargained price P . The utility of a particular agent depends
on his current type, σ(t) ∈ T , and the wealth W(t) in his bank account.
Specifically, lifetime utility is W(t) + Vσ(t), where, for each investor type σ

in T , Vσ is a constant to be determined.
In steady state, the rate of growth of any agent’s expected indirect utility

must be the discount rate r, which yields the steady-state equations

0 = rVlo –λu(Vho − Vlo) − 2λμhn(P –Vlo + Vln)–(1–δ)

0 = rVln –λu(Vhn –Vln)

0 = rVho + λd(Vho − Vlo)–1 (4)

0 = rVhn + λd(Vhn –Vln)–2λμlo(Vho –Vhn –P ).

The price is determined through bilateral bargaining. A high-type
nonowner pays at most his reservation value �Vh = Vho –Vhn for
obtaining the asset, while a low-type owner requires a price of at least
�Vl = Vlo − Vln. Nash bargaining, or the Rubinstein-type game considered
in Appendix A, implies that the bargaining process results in the price

P = �Vl(1–q) + �Vh q , (5)

where q ∈ [0, 1] is the bargaining power of the seller.
While Nash equilibrium is consistent with exogenously assumed

bargaining powers, Appendix A applies the device of Rubinstein and
Wolinsky (1985) to calculate the unique bargaining powers that represent
the limiting prices of a sequence of economies in which, once a pair of
counterparties meets to negotiate, one of the pair is selected at random to
make an offer to the other, at each of a sequence of offer times separated
by intervals that shrink to zero. Specifically, suppose that when two agents
find each other, one of them is chosen randomly, the seller with probability
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q̂ and the buyer with probability 1– q̂, to suggest a trading price. The other
either rejects or accepts the offer, immediately. If the offer is rejected,
the owner receives the dividend from the asset during the current period.
At the next period, �t later, one of the two agents is chosen at random,
independently, to make a new offer. The bargaining may, however, break
down before a counteroffer is made. A breakdown may occur because at
least one of the agents changes valuation type, or if one of the agents meets
yet another agent, and leaves his current trading partner, provided agents
can indeed continue to search while engaged in negotiation. In that case, as
shown in Appendix A, the limiting price as �t goes to zero is represented
by (5), with the bargaining power of the seller q equal to q̂. This simple
solution, in which the only ‘‘bargaining advantage’’ that matters in the
limit is the likelihood of being selected as the agent that makes the next
offer, arises because a counterparty’s ability to meet an alternative trading
partner while negotiating makes that counterparty more impatient, but
also increases the trading partner’s risk of breakdown, to the point that
these two effects are precisely offsetting.

If, however, agents cannot search for alternative trading partners during
negotiations, then the limiting price is that associated with the bargaining
power

q = q̂(r + λu + λd + 2λμlo)

q̂(r + λu + λd + 2λμlo) + (1 − q̂)(r + λu + λd + 2λμhn)
. (6)

For the comparative statics that follow, we will use the limiting bargaining
power associated with search during negotiation, in order to simplify the
analysis by avoiding the dependence in (6) of the seller’s bargaining power
q on various parameters that may shift as part of the experiment being
considered.

The linear system of equations (4)–(5) has a unique solution, with

P = 1
r

− δ

r

r(1 − q) + λd + 2λμlo(1 − q)

r + λd + 2λμlo(1 − q) + λu + 2λμhnq
. (7)

This price (7) is the present value 1/r of dividends, reduced by an
illiquidity discount. The price is lower and the discount is larger, ceteris
paribus, if the distressed owner has less hope of switching type (lower λu),
if the quantity μhn of other buyers to be found is smaller, if the buyer
may more suddenly need liquidity himself (higher λd ), if it is easier for the
buyer to find other sellers (higher μlo), or if the seller has less bargaining
power (lower q).

These intuitive results are based on partial derivatives of the right-hand
side of (7)—in other words, they hold when a parameter changes without
influencing any of the others. We note, however, that the steady-state type
fractions μ themselves depend on λd , λu, and λ. The following proposition
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offers a characterization of the equilibrium steady-state effect of changing
each parameter.

Proposition 1. The steady-state equilibrium price P is decreasing in δ, s,
and λd , and is increasing in λu and q. Further, if s < λu/(λu + λd), then
P → 1/r as λ → ∞, and P is increasing in λ for all λ ≥ λ, for a constant λ

depending on the other parameters of the model.

The condition that s < λu/(λu + λd) means that, in steady state, there
is less than one unit of asset per agent of high intrinsic type. Under
this condition, the Walrasian frictionless price is equal to the present
value of dividends 1/r since the marginal owner is always a high-type
agent who incurs no holding costs. Naturally, as the search intensity
increases towards infinity and frictions vanish, the OTC price approaches
the Walrasian price (i.e., the liquidity discount vanishes). The proposition
also states that the price decreases with the ratio s of assets to qualified
owners, with reductions in the mean arrival rate λd of a liquidity shock,
and with increases in the speed at which agents can ‘‘recover’’ by becoming
of high type again. It can easily be seen that, if agents can easily recover,
that is, as λu → ∞, the price also approaches the Walrasian price.

While the proposition deals with the intuitively anticipated increase in
market value with increasing bilateral contact rate, the alternative is also
possible. With s > λu/(λu + λd), the marginal investor in perfect markets
has the relatively lower reservation value, and search frictions lead to a
‘‘scarcity value.’’ For example, a high-type investor in an illiquid OTC
market could pay more than the Walrasian price for the asset because it is
hard to find, and given no opportunity to exploit the effect of immediate
competition among many sellers. This scarcity value could, for example,
contribute to the widely studied on-the-run premium for Treasuries, as
discussed in Section 4.

It can be checked that the above results extend to risky dividends in
at least the following senses: (i) If the cumulative dividend is risky with
constant drift ν, then the equilibrium price is ν times the price in (7);
(ii) if the dividend rate and illiquidity cost are proportional to a process
X with Et [X(t + u)] = X(t)eνu, for some constant growth rate ν, then
the price and value functions are also proportional to X, with factors
of proportionality given as above, with r replaced by r − ν; (iii) if the
dividend-rate process X satisfies Et [X(t + u)] = X(t) + mu for a constant
drift m (and if illiquidity costs are constant), then the continuation values
are of the form X(t)/r + vσ for owners and vσ for nonowners, and the
price is of the form X(t)/r + p where the constants vσ and p are computed
in a similar manner.

Next, we model risky dividends, using case (i) above, in the context of
risk-averse agents.
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2. Risk Aversion

This section provides a version of the asset-pricing model with risk
aversion, in which the motive for trade between two agents is the different
extent to which they derive hedging benefits from owning the asset. We
provide a sense in which this economy can be interpreted in terms of the
baseline economy of Section 1.

Agents have constant-absolute-risk-averse (CARA) additive utility, with
a coefficient γ of absolute risk aversion and with time preference at rate β.
An asset has a cumulative dividend process D satisfying

dD(t) = mD dt + σD dB(t), (8)

where mD and σD are constants, and B is a standard Brownian motion
with respect to the given probability space and filtration (Ft ). Agent i has
a cumulative endowment process ηi , with

dηi(t) = mη dt + ση dBi(t), (9)

where the standard Brownian motion Bi is defined by

dBi(t) = ρi(t) dB(t) +
√

1 − ρi(t)2 dZi(t), (10)

for a standard Brownian motion Zi independent of B, and where ρi(t)

is the ‘‘instantaneous correlation’’ between the asset dividend and the
endowment of agent i. We model ρi as a two-state Markov chain with
states ρh and ρl > ρh. The intrinsic type of an agent is identified with this
correlation parameter. An agent i whose intrinsic type is currently high
(i.e., with ρi(t) = ρh) values the asset more highly than does a low-intrinsic-
type agent, because the increments of the high-type endowment have lower
conditional correlation with the asset’s dividends. As in the baseline model
of Section 1, agents’ intrinsic types are pairwise-independent Markov
chains, switching from l to h with intensity λu, and from h to l with
intensity λd . An agent owns either θn or θo units of the asset, where θn < θo.
For simplicity, no other positions are permitted, which entails a loss in
generality. Agents can trade the OTC security only when they meet, again
with a search intensity of λ. The agent type space is T = {lo, ln, ho, hn}.
In this case, the symbols ‘o’ and ‘n’ indicate large and small owners,
respectively. Given a total supply 
 of shares per investor, market clearing
requires that

(μlo + μho)θo + (μln + μhn)θn = 
, (11)

which, using (1), implies that the fraction of large owners is

μlo + μho = s ≡ 
 − θn

θo − θn

. (12)
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We consider a particular agent whose type process is {σ(t) : t ≥ 0},
and let θ denote the associated asset-position process [that is, θ(t) = θo

whenever σ(t) ∈ {ho, lo} and otherwise θ(t) = θn]. We suppose that there
is a perfectly liquid ‘‘money-market’’ asset with a constant risk-free rate
of return r, which, for simplicity, is assumed to be determined outside the
model, and with a perfectly elastic supply, as is typical in the literature
such as Wang (1994) treating multi-period asset-pricing models based on
CARA utility.7 The agent’s money-market wealth process W therefore
satisfies

dW(t) = (rW(t) − c(t)) dt + θ(t) dD(t) + dη(t) − P dθ(t), (13)

where c is the agent’s consumption process, η is the agent’s cumulative
endowment process, and P is the asset price per share (which is constant in
the equilibria that we examine in this section). The last term thus captures
payments in connection with trade. The consumption process c is required
to satisfy measurability, integrability, and transversality conditions stated
in Appendix C.

We consider a steady-state equilibrium, and let J (w, σ) denote the
indirect utility of an agent of type σ ∈ {lo, ln, ho, hn} with current wealth w.
Assuming sufficient differentiability, the Hamilton-Jacobi-Bellman (HJB)
equation for an agent of current type lo is

0 = sup
c ∈ R

{− e−γ c + Jw(w, lo)(rw − c + θomD + mη)

+ 1
2
Jww(w, lo)(θ2

oσ
2
D + σ 2

η + 2ρlθoσDση) − βJ (w, lo) (14)

+ λu[J (w, ho) − J (w, lo)] + 2λμhn[J (w + Pθ, ln) − J (w, lo)]},
where θ = θo − θn. The HJB equations for the other agent types are
similar. Under technical regularity conditions found in Appendix C, we
verify that

J (w, σ) = −e−rγ (w+aσ +a), (15)

where

a = 1
r

(
log r

γ
+ mη − 1

2
rγ σ 2

η − r − β

rγ

)
, (16)

and where, for each σ , the constant aσ is determined as follows. The
first-order conditions of the HJB equation of an agent of type σ imply an

7 Another typical feature of CARA models is that we allow negative dividends since the cumulative dividend
process is a Brownian motion. When the mean dividend mD is large enough, the price of the asset is always
positive as seen below.
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optimal consumption rate of

c = − log(r)

γ
+ r(w + aσ + a). (17)

Inserting this solution for c into the respective HJB equations yields a
system of equations characterizing the coefficients aσ .

The price P is determined using Nash bargaining with seller bargaining
power q, similar in spirit to the baseline model of Section 1. Given the
reservation values of buyer and seller implied by J (w, σ), the bargaining
price satisfies alo − aln ≤ Pθ ≤ aho − ahn. The following result is obtained.

Proposition 2. In equilibrium, an agent’s consumption rate is given by (17),
the value function is given by (15), and (alo, aln, aho, ahn, P ) ∈ R

5 solve

0 = ralo + λu

e−rγ (aho−alo) − 1
rγ

+ 2λμhn

e−rγ (P θ+aln−alo) − 1
rγ

−(κ(θo) − θoδ) (18)

0 = raln + λu

e−rγ (ahn−aln) − 1
rγ

− (κ(θn) − θnδ) (19)

0 = raho + λd

e−rγ (alo−aho) − 1
rγ

− κ(θo)

0 = rahn + λd

e−rγ (aln−ahn) − 1
rγ

+ 2λμlo

e−rγ (−Pθ+aho−ahn) − 1
rγ

− κ(θn),

with

κ(θ) = θmD − 1
2
rγ

(
θ2σ 2

D + 2ρhθσDση

)
(20)

δ = rγ (ρl − ρh)σDση > 0, (21)

as well as the Nash bargaining equation,

q
(

1 − erγ (P θ−(alo−aln))
)

= (1 − q)
(

1 − erγ (−Pθ+aho−ahn)
)

. (22)

A natural benchmark is the limit price associated with vanishing search
frictions, characterized as follows.

Proposition 3. If s < μhn + μho, then, as λ → ∞,

P → κ(θo) − κ(θn)

rθ
. (23)
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In order to compare the equilibrium for this model to that of the baseline
model, we use the linearization ez − 1 ≈ z, which leads to

0 ≈ ralo − λu(aho − alo) − 2λμhn(P θ − alo + aln) − (κ(θo) − θoδ)

0 ≈ raln − λu(ahn − aln) − (κ(θn) − θnδ)

0 ≈ raho − λd(alo − aho) − κ(θo) (24)

0 ≈ rahn − λd(aln − ahn) − 2λμlo(aho − ahn − Pθ) − κ(θn)

P θ ≈ (1 − q)(alo − aln) + q(aho − ahn).

These equations are of the same form as those in Section 1 for the indirect
utilities and asset price in an economy with risk-neutral agents, with
dividends at rate κ(θo) for large owners and dividends at rate κ(θn) for
small owners, and with illiquidity costs given by δ of (21). In this sense, we
can view the baseline model as a risk-neutral approximation of the effect of
search illiquidity in a model with risk aversion. The approximation error8

goes to zero for small agent heterogeneity (that is, small ρl − ρh). Solving
for the price P in the associated linear model, we have

P = κ(θo) − κ(θn)

rθ
− δ

r

r(1 − q) + λd + 2λμlo(1 − q)

r + λd + 2λμlo(1 − q) + λu + 2λμhnq
. (25)

The price is the sum of the perfect-liquidity price (that for the case
of λ = +∞), plus an adjustment for illiquidity that can be viewed as
the present value of a perpetual stream of risk premia that are due to
search frictions. The illiquidity component depends on the strength of
the difference in hedging motives for trade by the two types of agents, in
evidence in the factor δ defined by (21). One of these types of agents can
be viewed as the natural hedger; the other can be viewed as the type that
provides the hedge, at an extra risk premium. The illiquidity risk premium
need not be increasing in the degree of overall ‘‘market risk’’ exposure of the
asset, and would be nonzero even if there were no aggregate endowment
risk.9 Graveline and McBrady (2005) empirically link the size of repo
specials in on-the-run treasuries to the motives of financial services firms
to hedge their inventories of corporate and mortgage-backed securities.
The repo specials, which are reflections of search frictions in the treasury

8 The error introduced by the linearization is in O
(
(aho − alo)2 + (ahn − aln)2 + (P θ − alo + aln)2)

, which,
by continuity, is in O

(
(ρl − ρh)2)

for a compact parameter space. Hence, if ρl − ρh is small, then the
approximation error is an order of magnitude smaller, of the order (ρl − ρh)2.

9 We could arrange for the absence of aggregate endowment risk, for example by having half the population
exposed positively to the asset, the other half exposed negatively, in an offsetting way, with the portions
of endowment risks that are orthogonal to the asset returns being idiosyncratic and adding up (by the law
of large numbers) to zero. (We can adjust our model so that the asset is held in zero net supply, allowing
short and long positions; this was done in the risk-limits section.)
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repo market, are shown to be larger when the inventories are larger, and
larger when interest-rate volatility is higher, consistent with (21).

2.1 Numerical example
We select parameters for a numerical illustration of the implications of
the model for a market with an annual asset turnover rate of about 50%,
which is roughly that of the OTC market for corporate bonds. Table 1
contains the exogenous parameters for the base-case risk-neutral model,
and Table 2 contains the resulting steady-state fractions of each type and
the price. The search intensity of λ = 625 shown in Table 1 implies that an
agent expects to be in contact with 2λ = 1250 other agents each year, that
is, 1250/250 = 5 agents a day. Given the equilibrium mass of potential
buyers, the average time needed to sell is 250 × (2λμhn)

−1 = 1.8 days. The
switching intensities λu and λd mean that a high-type investor remains a
high type for an average of 2 years, while an illiquid low type remains a
low type for an average of 0.2 years. These intensities imply an annual
turnover of 2λμloμhn/s = 49% which roughly matches the median annual
bond turnover of 51.7% reported by Edwards, Harris, and Piwowar (2004).
The fraction of investors holding a position is s = 0.8, the discount and
interest rates are 5%, sellers and buyers each have half of the bargaining
power q = 0.5, and the illiquidity cost is δ = 2.5, as implied by the risk
aversion parameters discussed below.

We see that only a small fraction of the asset, μlo/s = 0.0028/0.8 =
0.35% of the total supply, is mis-allocated to low intrinsic types because
of search frictions. The equilibrium asset price, 18.38, however, is
substantially below the perfect market price of 1/r = 20, reflecting a
significant impact of illiquidity on the price, despite the relatively small
impact on the asset allocation. Stated differently, we can treat the asset as a
bond whose yield (dividend rate of 1 divided by price) is 1/18.38 = 5.44%,
or 44 basis points above the liquid-market yield r. This yield spread is of
the order of magnitude of the corporate-bond liquidity spread estimated

Table 1
Base-case parameters for baseline model

λ λu λd s r β q δ

625 5 0.5 0.80 0.05 0.05 0.5 2.5

Table 2
Steady-state masses and asset price, baseline model

μho μhn μlo μln P

0.7972 0.1118 0.0028 0.0882 18.38
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Table 3
Additional base-case parameters with risk-aversion

γ ρh ρl μη ση μD σD 
 θo θn

0.01 −0.5 0.5 10000 10000 1 0.5 16000 20000 0

by Longstaff, Mithal, and Neis (2005), of between 9 and 65 basis points,
depending on the specification and reference risk-free rate.

The base-case risk-neutral model specified in Table 1 corresponds to
a model with risk-averse agents with additional parameters given in
Table 3 in the following sense. First, the ‘‘illiquidity cost’’ δ = δ = 2.5
of low-intrinsic-type is that implied by (21) from the hedging costs of the
risk-aversion model. Second, the total amount 
 of shares and the investor
positions, θo and θn, imply the same fraction s = 0.8 of the population
holding large positions, using (12). The investor positions that we adopt
for this calibration are realistic in light of the positions adopted by high-
and low-type investors in the associated Walrasian (perfect) market with
unconstrained trade sizes, which, following calculations performed in
Appendix B, has an equilibrium large-owner position size of 17,818 shares
and a small-owner position size of −2182 shares.

Third, the certainty-equivalent dividend-rate per share, (κ(θo) −
κ(θn))/(θo − θn) = 1, is the same as that of the baseline model. Finally, the
mean parameter μD = 1 and volatility parameter σD = 0.5 of the asset’s
risky dividend implies that the standard deviation of yearly returns on the
bond is approximately σD/P = 2.75%.

Figure 1 shows how prices increase with liquidity, as measured by the
search intensity λ.

The graph reflects the fact that, as the search intensity λ becomes large,
the allocation and price converge to their perfect-market counterparts
(Propositions 1 and 3).

Figures 2 and 3 show how prices are discounted for illiquidity, relative
to the perfect-markets price, by an amount that depends on risk aversion
and volatility. As we vary the parameters in these figures, we compute both
the equilibrium solution of the risk-aversion model and the solution of the
associated baseline risk-neutral model that is obtained by the linearization
(25), taking δ from (21) case by case.

We see that the illiquidity discount increases with risk aversion and
volatility, and that both effects are large for our benchmark parameters.
The illiquidity discount ranges between 1% and 40%, depending on the
risk and risk aversion.

These figures also show that the equilibrium price of the OTC market
model with risk aversion is generally well approximated by our closed-form
expression (25).
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Figure 1
Search and illiquidity discounts in asset prices
The graph shows how the proportional price reduction relative to the perfect-market price decreases as
a function of the search intensity λ. The solid line plots this illiquidity discount when investors are risk
neutral and may face holding costs, where the holding costs are calibrated to match to utility costs in a
model with risk-averse investors and time-varying hedging demands as illustrated by the dashed line.

risk neutral
risk averse

0

10

10

30

40

25

15

15

35

20

20

5

5

P
ric

e 
di

sc
ou

nt
 (

%
)

Risk aversion γ (scaled by 103)

Figure 2
Risk aversion and illiquidity discounts
The graph shows the proportional price reduction relative to the perfect-market price, as a function of the
investor risk aversion γ . The dashed line corresponds to the model with risk-averse agents [Equations (19)
–(22)], while the solid line corresponds to the linearized model [Equation (25)], in which agents are risk
neutral and the holding cost δ and dividend rate κ change with γ .
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Figure 3
Volatility and illiquidity discounts
The graph shows the proportional price reduction relative to the perfect-market price, as a function of a
volatility scaling factor that multiplies of both endowment volatility ση and dividend volatility σD . The
dashed line corresponds to the model with risk-averse agents [Equations (19)–(22)], while the solid line
corresponds to the linearized model [Equation (25)], in which the parameters δ and κ change with ση

and σD .

3. Aggregate Liquidity Shocks

So far, we have studied how search frictions affect steady-state prices and
returns in a setting in which agents receive idiosyncratic liquidity shocks,
with no macro-uncertainty.

Search frictions affect not only the average levels of asset prices but
also the asset market’s resilience to aggregate shocks. We examine this by
characterizing the impact of aggregate liquidity shocks that simultaneously
affect many agents. We are interested in the shock’s immediate effect on
prices, the time-pattern of the price recovery, the ex-ante price effect due
to the risk of future shocks, and the change in equilibrium search times.

While highly stylized, our model of periods of abnormal expected returns
and price momentum following supply shocks also provides additional
microeconomic foundations for prior asset-pricing research on ‘‘limits
to arbitrage,’’ or ‘‘good deals,’’ such as Shleifer and Vishny (1997) and
Cochrane and Saa-Requejo (2001).

We adjust the baseline model of Section 1 (or, as explained, the linearized
version of the risk-premium model of Section 2) by introducing occasional,
randomly timed, aggregate liquidity shocks. At each such shock, a fraction
of the agents, randomly chosen, suffer a sudden ‘‘reduction in liquidity,’’
in the sense that their intrinsic types simultaneously jump to the low state.
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The shocks are timed according to a Poisson arrival process, independent
of all other random variables, with mean arrival rate ζ .

Again appealing to the Law of Large Numbers, at each aggregate
liquidity shock, the distribution of agents’ intrinsic types becomes μ = μ,
where the post-shock distribution μ is in [0, 1]4, satisfies (1)–(2), and
has an abnormally elevated quantity of illiquid agents, both owners and
non-owners. Specifically, μlo > μlo(t) and μln > μln(t). Each high-type
owner remains a high type with probability 1 − πho(t) = μho/μho(t), and
becomes a low type with probability πho. Similarly, a high-type non-owner
remains high type with probability 1 − πhn(t) = μhn/μhn(t) and becomes
low type with probability πhn. Conditional on π(t), the changes in types are
pairwise independent across the space of agents. This aggregate ‘‘liquidity
shock’’ does not directly affect low-type agents. Of course, it affects them
indirectly because of the change to the demographics of the market in
which they live. By virtue of this specification, the post-shock distribution
of agents does not depend on any residual ‘‘aftereffects’’ of prior shocks,
a simplification without which the model would be relatively intractable.

In order to solve the equilibrium with an aggregate liquidity shock, it
is helpful to use the ‘‘trick’’ of measuring time in terms of the passage of
time t since the last shock, rather than absolute calendar time. Knowledge
of the time at which this shock occurred enables an immediate translation
of the solution into calendar time.

We first solve the equilibrium fractions μ(t) ∈ R
4 of agents of the four

different types. At the time of an aggregate liquidity shock, this type distri-
bution is equal to the post-shock distribution μ(0) = μ (where, to repeat,
‘‘0’’ means zero time units after the shock). After an aggregate liquidity
shock, the cross-sectional distribution of agent types evolves according to
the ODE (3), converging (conditional on no additional shocks) to a steady
state as the time since last shock increases. Given this time-varying equilib-
rium solution of the investor type distribution, we turn to the agents’ value
functions. The value Vσ (t) depends on the agent’s type σ and the time t

since the last aggregate liquidity shock. The values evolve according to

V̇lo(t) = rVlo(t) − λu(Vho(t) − Vlo(t)) − 2λμhn(P (t) + Vln(t) − Vlo(t))

−ζ (Vlo(0) − Vlo(t)) − (1 − δ)

V̇ln(t) = rVln(t) − λu(Vhn(t) − Vln(t)) − ζ (Vln(0) − Vln(t))

V̇ho(t) = rVho(t) − λd(Vlo(t) − Vho(t))

−ζ ((1 − πho(t))Vho(0) + πho(t)Vlo(0) − Vho(t)) − 1 (26)

V̇hn(t) = rVhn − λd(Vln − Vhn) − 2λμho(Vho − Vhn − P )

−ζ ((1 − πhn(t))Vhn(0) + πhn(t)Vln(0) − Vhn),

P (t) = (Vlo(t) − Vln(t))(1 − q) + (Vho(t) − Vhn(t))q,
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where the terms involving ζ capture the risk of an aggregate liquidity
shock. This differential equation is linear in the vector V (t), depends on
the deterministic evolution of μ(t), and has the somewhat unusual feature
that it depends on the initial value function V (0). To solve this system, it
is useful to express it in the vector form:

V̇ (t) = A1(μ(t))V (t) − A2 − A3(μ(t))V (0), (27)

where A1, A3 ∈ R
4×4 and A2 ∈ R

4×1 are the coefficient matrices. Treating
V (0) as a fixed parameter, the unique solution to the linear ODE that
satisfies the appropriate transversality condition is

V (t) =
∫ ∞

t

e− ∫ s
t A1(μ(u)) du (A2 + A3(μ(s))V (0)) ds. (28)

At t = 0, this gives

V (0) =
∫ ∞

0
e− ∫ s

0 A1(μ(u)) du (A2 + A3(μ(s))V (0)) ds, (29)

and we can then derive the initial value function V (0) as the fixed point:

V (0) =
(
I4 − ∫ ∞

0 e− ∫ s
0 A1(μ(u)) duA3(μ(s)) ds

)−1 × (30)
(∫ ∞

0 e− ∫ s
0 A1(μ(u)) duA2 ds

)
,

where I4 ∈ R
4×4 is the identity matrix. Equations (28) and (30) together

represent the solution. One notes that we take the bargaining power q as
exogenous for simplicity, rather than incorporating the effects of delay
during negotiation that stem from interim changes in the value functions.

3.1 Numerical examples
We will illustrate some of the most noteworthy effects of a liquidity
shock using a numerical example, and then state some general properties.
We suppose that the search intensity is λ = 125, that types change
idiosyncratically with intensities λu = 2 and λd = 0.2, that the fraction
of owners is s = 0.75, that the riskless return is r = 10%, that buyers and
sellers have equal bargaining powers (that is, q = 0.5), that the illiquidity
loss rate is δ = 2.5, that the intensity of an aggregate liquidity shock
is ζ = 0.1, and that the postshock distribution of types is determined by
μlo = 0.377 and μln = 0.169. These parameters are consistent with a shock
from steady state10 at which high types become low types with probability
0.5.

10 The steady-state masses, absent new shocks, are μlo = 0.004 and μln = 0.087.
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In order to motivate the results, one could imagine that an aggregate
liquidity shock is associated with an event at which a large fraction of
investors incur a significant loss of risk-bearing capacity, and thus have
a higher shadow price for bearing risk. For example, at the default of
Russia in 1998, those asset managers specializing in emerging market debt
who had had positions in Russian issues would have had a substantially
reduced appetite for holding Argentinian sovereign debt issues (the asset
of concern), despite the lack of any material direct connection between
the Russian and Argentinian economies, because of the asset managers’
direct losses of capital due to the Russian default, and perhaps indirectly
through demands for liquidation by relatively unsophisticated clients. Or,
for example, when Hurricane Andrews struck, reinsurers with exposure to
that event would have had a sudden reduction in capital available to cover
monoline insurers facing, say, earthquake risk. While one could use the
model of aversion to correlated endowment risk of Section 2 to compute
the illiquidity loss rate δ associated with an aggregate shock, we would
prefer to discuss the implications of the aggregate shock in more general
terms, abstracting from the determination of the illiquidity loss rate δ.

So, thinking of the aggregate shock as a simultaneous loss in capital
to many investors that causes a reduced appetite by them for owning the
asset in question, we may view an investor affected by the shock as having
the intensity λu for a ‘‘recapitalizing’’ event, after which that investor no
longer has an elevated ‘‘distress cost’’ δ for owning the asset.

The price and return dynamics associated with these parameters are
shown in Figure 4. The top panel of the figure shows prices and the bottom
panel shows realized instantaneous returns for average dividends, both as
functions of calendar time for a specific state of nature.

The annualized realized instantaneous returns are computed as the
price appreciation Ṗ plus the dividend rate of 1, divided by the price,
(Ṗ (t) + 1)/P (t). At time t = 0.4, the economy experiences an aggregate
liquidity shock, causing the asset price to drop suddenly by about 15%.
Notably, it takes more than a year for the asset price to recover to a
roughly normal level. A buyer who was able to locate a seller immediately
after the shock realized an annualized return of roughly 30% for several
months. While one is led to think in terms of the value to this ‘‘vulture’’
buyer of having retained ‘‘excess’’ liquidity so as to profit at times of
aggregate liquidity shocks, our model has only one type of buyer, and is
therefore too simple to address this sort of vulture specialization.

The large illustrated price impact of a shock is due to the large number of
sellers and the relatively low number of potential buyers that are available
immediately after a shock. The roughly 50% reduction in potential buyers
that occurred at the illustrated shock increased a seller’s expected time to
find a potential buyer from 6.2 days immediately before the shock to 12.4
days immediately after the shock. Further, once a seller finds a buyer, the
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Figure 4
Aggregate liquidity shocks: effects on prices and returns
The top panel shows the price as a function of time when an aggregate liquidity shock occurs at time 0.4.
The bottom panel shows the corresponding annualized realized returns. The liquidity shock leads to a
significant price drop followed by a rebound associated with high expected returns.

seller’s bargaining position is poor because of his reduced outside search
options and the buyer’s favorable outside options.

Naturally, high-type owners who become low-type owners experience
the largest utility loss from a shock.11 The utility loss for low-type owners
is also large, since their prospects of selling worsen significantly. High-type
owners who do not themselves become low-type during the shock are not
affected much since they expect the market to recover to normal conditions
before they need to make a sale (given that the expected time until one
becomes a low type, 1/λd = 5, is large relative to the length of the recovery
period). The agents who don’t hold the asset when the shock hits are
positively affected since they stand a good chance of being able to benefit
from the selling pressure.

The prospect of future aggregate liquidity shocks affects prices. For
this, we compare the price a ‘‘long time after’’ the last shock (that is,
limt→∞ P (t)) with the steady-state asset price, P ζ=0 = 9.25 associated
with an economy with no aggregate shocks (ζ = 0), but otherwise the
same parameters. The presence of aggregate liquidity shocks reduces the
price, in this sense, by 12.5%.

11 The utilities of the owners drop from Vho = 9.29 and Vlo = 9.14, respectively, to Vho = 9.24 and Vlo = 8.47,
while the values of the nonowners increase from Vhn = 1.13 and Vln = 1.10 to Vhn = 2.22 and Vln = 1.51.
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The slow price recovery after a shock is the result of two factors: (1)
search-based trading illiquidity (captured by λ), and (2) the recovery of
individual investors from the shock itself, which can be thought of as ‘‘slow
refinancing’’ (captured by λu and λd ).

To see the importance of the refinancing channel, we note that it takes
approximately 0.48 years for the mass of high-type agents to become again
larger than s = 0.75. This means that with delayed refinancing and perfect
markets it would take 0.48 years for the price to revert to its ‘‘normal’’
level. Hence, the additional price sluggishness observed in Figure 4 is due
to the search friction.

In order to further disentangle the effects of trading illiquidity from
the effects of the slow refinancing, we change the numerical example so
as to have more high-type investors than assets at all times, even after a
shock. With perfectly liquid trading (λ = ∞), therefore, the price would
be unaffected by the aggregate liquidity shock. Specifically, we adjust the
parameters used to create Figure 4 by reducing the probability that an
individual agent is adversely affected by an aggregate shock from 0.5 to
0.17, so that μlo = 0.128 and μln = 0.115. Figure 5 illustrates the time
signature of the price reaction to an aggregate shock of this relatively
benign variety, for two different values of the search intensity λ. Although
the perfect-market price would be unaffected, search frictions cause an
immediate negative return, followed by a price recovery over time that is
accelerated by increasing the search intensity.

The features of these numerical examples are relatively general.
An adverse liquidity shock causes an instantaneous price drop, price
momentum during a relatively long recovery period, a reduced long-run
price recovery level (due to the risk of future shocks), and an increase in
expected selling times. The ‘‘time signature’’ of the price response reflects
both the expected time for an adversely affected agent to recover (for
example, for a distressed investor to find new financing), as captured by
the parameter λu, and the time required for the assets to move from
adversely affected sellers to potential buyers, in light of search frictions
captured by the parameter λ. The latter effect incorporates both the trading
delay due to search and the implications of temporarily superior outside
options for potential buyers during negotiation with distressed sellers.

After an aggregate liquidity shock, the dynamics of agents’ value
functions and the price depend on the demography-induced time patterns
of search times. In particular, a shock reduces the quantity of buyers
and increases the quantity of sellers, which motivates part a) of the
following proposition. For cases in which the masses of these agents
evolve monotonically following a shock, then so do the value functions
and the price. It is possible, however, for the quantity of buyers to continue
to decrease for some period after a shock before rebounding toward the
steady-state value, owing to the potentially large proportional increase in
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Figure 5
A ‘‘small’’ aggregate liquidity shock with pure liquidity effects
The top panel shows the price as a function of time when an aggregate liquidity shock happens at time
0.4. The shock is chosen small enough that there would be no price effect in a perfect market with infinite
search intensity. We see that the price effects are largest for when the search intensity is low λ = 125 (solid
line, left axis), and smaller when the search intensity is high λ = 625 (dashed lined, right axis). The bottom
panel shows the annualized realized returns, again both for a low λ (solid line) and a high λ (dashed line).

the quantity of sellers. The following proposition accounts for this and
related effects.

Proposition 4. There exist a sufficiently large time T and a sufficiently small
strictly positive mean arrival rate ζ such that:

(a) For any mean arrival rate ζ of aggregate shocks less than ζ and time
T larger than T , if an aggregate shock arrives at T : (i) the jumps at
T in the value functions of the owners (Vho and Vlo) are downward,
(ii) the jumps at T in the value functions of the non-owners (Vhn and
Vln) are upward, and (iii) the jump at T in the price is downward.

(b) For any mean arrival rate ζ of aggregate shocks less than ζ and any
time t larger than T : (i) the value functions of the owners (Vho and
Vlo) are increasing at t , (ii) the value functions of the non-owners
(Vhn and Vln) are decreasing at t , and (iii) the price is increasing
at t .

Moreover, if μ is such that μ̇hn(0) ≥ 0 and μ̇lo(0) ≤ 0, then12 one can take
T = 0.

12 The equivalent conditions are that the mass dynamics due to trading are dominated by those due to the
change in intrinsic types, namely λdμho − λuμlo ≤ 2λμhnμlo, respectively 2λμhnμlo ≤ λuμln − λdμhn.

1887



The Review of Financial Studies / v 20 n 5 2007

4. Market Implications

We turn to a discussion of the implications of search-delayed trade for
asset pricing, particularly in OTC markets.

Most major corporate debt and credit derivative markets are OTC.
Search problems are prevalent. Exemplifying the imperfect ability to
match buyers and sellers in OTC markets, traders in the market for
European corporate loans ironically describe13 trade in that market as ‘‘by
appointment.’’ Consistent with our Propositions 1 and 2, more illiquid
bonds tend to have higher yield spreads [Chen, Lesmond, and Wei (2007)].

Even in the most liquid OTC markets, relatively small price effects
arising from search frictions receive significant attention by economists.
For example, the market for US Treasury securities, an OTC market
considered to be a benchmark for high liquidity, has widely noted liquidity
effects that differentiate the yields of on-the-run (latest-issue) securities
from those of off-the-run securities. Positions in on-the-run securities are
normally available in large amounts from relatively easily found traders
such as hedge funds and government bond dealers. Because on-the-run
issues can be more quickly located by short-term investors such as hedgers
and speculators, they command a price premium, even over a package
of off-the-run securities of identical cash flows. Ironically, episodically
large on-the-run premia could actually be partly due to ‘‘scarcity premia,’’
in the sense of Section 1. That is, because their superior liquidity causes
some on-the-run issues to be such a dominant vehicle for trade, the
extremely high velocity of circulation demanded by market participants
can at times stretch the limits of the OTC search technology. Small but
notable price premia can arise. The importance ascribed to these relatively
small premia is explained by the exceptionally high volume of trade in this
market, and by the importance of disentangling the illiquidity impact on
measured Treasury interest rates for informational purposes elsewhere in
the economy.

Part of the spread between on-the-run and off-the-run treasuries is due
to a premium in the effective lending fees for on-the-run issues that is
larger when on-the-run issues are harder to find. In the OTC market for
equity security lending, traders use terminology such as ‘‘getting a locate’’
of lendable shares. A search-based theory of securities lending is developed
in Duffie, Gârleanu, and Pedersen (2002) and extended to multiple assets
in Vayanos and Weill (2005). Empirical evidence of the impact on treasury
prices and securities-lending premia (‘‘repo specials’’) can be found in
Duffie (1996), Jordan and Jordan (1997), and Krishnamurthy (2002),
who estimates that much of the on-the-run price premia in 30-year issues
has been due, on average, to repo specials. Lending ‘‘specials’’ in equity

13 See, for example, The Financial Times, November 19, 2003.
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markets are measured by Geczy, Musto, and Reed (2002), D’Avolio
(2002), and Jones and Lamont (2002). Difficulties in locating lenders of
shares sometimes cause dramatic price imperfections, as was the case
with the spinoff of Palm Incorporated, one of a number of such cases
documented by Mitchell, Pulvino, and Stafford (2002). Fleming and
Garbade (2003) document a new US Government program to improve
liquidity in treasury markets by allowing alternative types of treasury
securities to be deliverable in settlement of a given repurchase agreement,
mitigating the costs of search for a particular issue. More recently, the
idea of a backstop government lending facility for US treasuries has been
proposed to alleviate the difficulty of finding securities that are in especially
high demand.

Consistent with the results of Section 2, that search frictions exacerbate
risk premia stemming from hedging motives, Graveline and McBrady
(2005) find that Treasury repo specials are empirically linked to hedging,
particularly by financial firms exposed to inventories of mortgage-backed
securities and corporate bonds. In particular, repo specials are higher when
the inventories to be hedged are larger and when interest-rate volatility is
higher.

Section 3 shows how our model can be used to characterize the
implications of a widespread shock to the abilities or incentives of traders
to take asset positions. An increase in the number of would-be sellers and
a reduction in the number of potential buyers result in a price drop, in part
because of the higher fraction of assets held by distressed traders, and also
because of the worsened bargaining position of sellers. Over time, the price
recovers as distressed sellers recover from the adverse effects of the shock
itself, and as trading, limited by search frictions, reallocates the asset from
distressed sellers to potential buyers.

One finds this sort of time signature of price reactions to supply
or demand shocks in several markets. For instance, in corporate bond
markets, one observes large price drops and delayed recovery in connection
with major downgrades or defaults [Hradsky and Long (1989)], when
certain classes of investors have an incentive (or a contractual requirement)
to sell their holdings. Also, when convertible bond hedge funds had
large capital redemptions in 2005, convertible bond prices dropped and
rebounded over several months, and a similar drop-and-rebound pattern
was observed in connection was the LTCM collapse in 1998 [Mitchell,
Pedersen, and Pulvino (2007)]. Anecdotally, similar reactions in the prices
of emerging-market sovereign debt frequently occur, for example, during a
major debt crisis (though it is hard to measure ‘‘fundamentals’’ in this case).
Newman and Rierson (2003) use our approach in a search-based model
of corporate bond pricing, in which large issues of credit-risky bonds
temporarily raise credit spreads throughout the issuer’s sector, because
providers of liquidity such as underwriters and hedge funds bear extra risk
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as they search for long-term investors. They provide empirical evidence
of temporary bulges in credit spreads across the European Telecom debt
market during 1999–2002 in response to large issues by individual firms in
this sector.

The market for catastrophe risk reinsurance provides another prominent
example of price reactions to supply shocks that could be attributed
to search for capital providers. Sudden price surges, then multiyear
price declines, follow sudden large aggregate claims against providers
of insurance at times of major natural disasters, as documented by Froot
and O’Connell (1999).

Although specialist and electronic limit-order-book markets are distinct
from OTC markets, price responses in such markets to outside order
imbalances could reflect delays in reaching trading decisions and in
mobilizing capital that might be well approximated for modeling purposes
with search frictions. Relevant empirical studies include Coval and Stafford
(2007), Andrade, Chang, and Seasholes (2005), and, with respect to index
recomposition events, Shleifer (1986), Harris and Gurel (1986), Kaul,
Mehrotra, and Morck (2000), Chen, Noronha, and Singhal (2004), and
Greenwood (2005).14

Extreme price discounts are common in OTC markets for restricted
shares. For example, Chen and Xiong (2001) show that certain Chinese
companies have two classes of shares, one exchange traded, the other
consisting of ‘‘restricted institutional shares’’ (RIS), which can be traded
only privately. The two classes of shares are identical in every other
respect, including their cash flows. Chen and Xiong (2001) find that RIS
shares trade at an average discount of about 80% to the corresponding
exchange-traded shares. Similarly, in a study involving US equities, Silber
(1991) compares the prices of ‘‘restricted stock’’—which, for two years,
can be traded only in private among a restricted class of sophisticated
investors—with the prices of unrestricted shares of the same companies.
Silber (1991) finds that restricted stocks trade at an average discount of
30%, and that the discount for restricted stock is increasing in the relative
size of the issue. These prices would be difficult to explain using standard
models based on asymmetric information, given that the two classes of
shares are claims to the same dividend streams, and given that the publicly
traded share prices are easily observable.

The implications of relative search frictions across different asset markets
are characterized by Weill (2002) and Vayanos and Wang (2007), who
extended our baseline model to treat multiple assets. They show, among
other results, that securities with a larger free float (shares available
for trade) are more liquid and have lower expected returns and that

14 A large literature, surveyed by Amihud, Mendelson, and Pedersen (2005), addresses liquidity premia in
equity markets, focusing mainly on nonsearch sources of illiquidity.
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concentrations of trade in a favored security may explain some of the price
difference between on-the-run and off-the-run Treasury securities.

Duffie, Gârleanu, and Pedersen (2005) study the implications of search
frictions for marketmakers.15 Here, outside investors remain able to
find other outside investors with some search intensity λ, but can also
find marketmakers with some intensity ρ. This framework captures the
feature that investors bargain sequentially with marketmakers. The price
negotiation between a marketmaker and an investor reflects the investor’s
outside options, including in particular the investor’s ability to meet and
trade with other investors or marketmakers. A marketmaker’s bid-ask
spread is shown to be lower if the investor can find other investors
on his own more easily. Further, the spread is lower if an investor
can approach other marketmakers more easily. In other words, more
‘‘sophisticated’’ investors are quoted tighter spreads by marketmakers.
Examples can be found in the typical hub-and-spoke structure of contact
among marketmakers and their customers in OTC derivative markets.
This distinguishes our search-based theory from traditional information-
based theories that predict that more sophisticated (in this setting, more
informed) investors are quoted wider spreads by marketmakers [Glosten
and Milgrom (1985)].

In OTC markets for interest-rate derivatives, a ‘‘sales trader’’ and an
outside customer negotiate a price, implicitly including a dealer profit
margin that is based in part on the customer’s (perceived) outside option.
The risk that customers have superior information about future interest
rates is normally regarded as small. The customer’s outside option depends
on how easily he can find a counterparty himself and how easily he can
access other dealers. As explained by Commissioner of Internal Revenue
(2001) (page 13) in recent litigation regarding the portion of dealer margins
on interest-rate swaps that can be ascribed to dealer profit, dealers typically
negotiate prices with outside customers that reflect the customer’s relative
lack of access to other market participants. In order to trade OTC
derivatives with a bank, for example, a customer must have, among other
arrangements, an account and a credit clearance. Smaller customers often
have an account with only one, or perhaps a few, banks, and therefore
have fewer search options. Hence, a testable implication of a version of this
model with investors of heterogeneous search intensities is that investors
with fewer search options (typically, small unsophisticated investors)
receive less competitive prices. We note that these ‘‘small’’ investors
are less likely to be informed, so that models based on informational
asymmetries alone would reach the opposite prediction.

15 Other search-based models of intermediation include Rubinstein and Wolinsky (1987), Bhattacharya and
Hagerty (1987), Moresi (1991), Gehrig (1993), and Yavaş (1996).
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Weill (2007) studies how marketmakers who ‘‘lean against the wind’’
can help alleviate an aggregate liquidity shock in a search framework,
and the role of marketmaker capital. A simple model of immediacy by
specialists is presented by Grossman and Miller (1988) and extended by
Brunnermeier and Pedersen (2006) who study how liquidity shocks affect,
and are affected by, marketmakers’ capital and margin requirements.

Using bilateral trading data from the over-the-counter Federal Funds
market, Ashcraft and Duffie (2007) find extensive evidence of search
frictions, both in terms of inefficient matching of counterparties as well as
prices that reflect time pressure and the outside search opportunities of the
borrower and the lender.

Appendix A:

A. Explicit bargaining game
The setting considered here is that of Section 1, with two exceptions. First, agents can interact
only at discrete moments in time, �t apart. Later, we return to continuous time by letting �t

go to zero. Second, the bargaining game is modeled explicitly.
We follow Rubinstein and Wolinsky (1985) and others in modeling an alternating-offers

bargaining game, making the adjustments required by the specifics of our setup. When two
agents are matched, one of them is chosen randomly—the seller with probability q̂, the buyer
with probability 1 − q̂ —to suggest a trading price. The other either rejects or accepts the
offer, immediately. If the offer is rejected, the owner receives the dividend from the asset
during the current period. At the next period, �t later, one of the two agents is chosen at
random, independently, to make a new offer. The bargaining may, however, break down
before a counteroffer is made. A breakdown may occur because either of the agents changes
valuation type, whence there are no longer gains from trade. A breakdown may also occur
if one of the agents meets yet another agent, and leaves his current trading partner. The
latter reason for breakdown is only relevant if agents are allowed to search while engaged in
negotiation.

We consider first the case in which agents can search while bargaining. We assume that,
given contact with an alternative partner, they leave the present partner in order to negotiate
with the newly found one. The offerer suggests the price that leaves the other agent indifferent
between accepting and rejecting it. In the unique subgame perfect equilibrium, the offer is
accepted immediately [Rubinstein (1982)]. The value from rejecting is associated with the
equilibrium strategies being played from then onwards. Letting Pσ be the price suggested by
the agent of type σ with σ ∈ {lo, hn}, letting P = q̂Plo + (1 − q̂)Phn, and making use of the
motion laws of Vlo and Vhn, we have

Phn − �Vl = e−(r+λd+λu+2λμlo+2λμhn)�t (P − �Vl) + O(�2
t ) (A.1)

−Plo + �Vh = e−(r+λd+λu+2λμlo+2λμhn)�t (−P + �Vh) + O(�2
t ) . (A.2)

These prices, Phn and Plo, have the same limit P = lim�t →0 Phn = lim�t →0 Plo. The two
equations above readily imply that the limit price and limit value functions satisfy

P = �Vl (1 − q) + �Vh q, (A.3)

with

q = q̂. (A.4)
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This result is interesting because it shows that the seller’s bargaining power, q, does not
depend on the parameters—only on the likelihood that the seller is chosen to make an offer.
In particular, an agent’s intensity of meeting other trading partners does not influence q.
This is because one’s own ability to meet an alternative trading partner: (i) makes oneself
more impatient, and (ii) also increases the partner’s risk of breakdown, and these two effects
cancel out.

This analysis shows that the bargaining outcome used in our model can be justified by an
explicit bargaining procedure. We note, however, that other bargaining procedures lead to
other outcomes. For instance, if agents cannot search for alternative trading partners during
negotiations, then the same price formula (A.3) applies with

q = q̂(r + λu + λd + 2λμlo)

q̂(r + λu + λd + 2λμlo) + (1 − q̂)(r + λu + λd + 2λμhn)
. (A.5)

This bargaining outcome would lead to a similar solution for prices, but the comparative-
static results would change, since the bargaining power q would depend on the other
parameters.

B. Walrasian Equilibrium with Risk Aversion

This section derives the competitive equilibrium with risk-averse agents (as in Section 2) who
can immediately trade any number of risky securities. We note that this is different from a
competitive market with fixed exogenous position sizes, that is, it is different from the limit
considered in Proposition 3.

Suppose that the Walrasian price is constant at P , that is, agents can trade instantly at
this price. An agent’s total wealth—cash plus the value of his position in risky assets—is
denoted by W . If an agent chooses to hold θ(t) shares at any time t , then the wealth-dynamics
equation is

dWt = (rWt − rθ tP − ct ) dt + θt dDt + dηt . (B.1)

The HJB equation for an agent of intrinsic type σ ∈ {h, l} is

0 = sup
c,θ

{Jw(w, σ)(rw − c + θ(mD − rP ) + mη)

+ 1
2
Jww(w, σ )(θ2σ 2

D + σ 2
η + 2ρσ θσDση) (B.2)

+ λ(σ , σ ′)[J (w, σ) − J (w, σ ′)] − e−γ c − βJ (w, σ)},

where λ(σ, σ ′) is the intensity of change of intrinsic type from σ to σ ′. Conjecturing the value
function J (w, σ) = −e−rγ (w+aσ +a), optimization over θ yields

θσ = mD − rP − rγ ρσ σDση

rγ σ 2
D

. (B.3)

Market clearing requires

μhθh + μlθl = 
, (B.4)

with μh = 1 − μl = λu/(λu + λd), which gives the price

P = mD

r
− γ

(

σ 2

D + σDση [ρlλd + ρhλu]
λu + λd

)
. (B.5)
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Inserting this price into (B.3) gives the quantity choices

θh = 
 + σηλd [ρl − ρh]
σD(λu + λd)

(B.6)

θ l = 
 − σηλu [ρl − ρh]
σD(λu + λd)

. (B.7)

C. Proofs

Proof of Proposition 1. The dependence on δ and q is seen immediately, given that no
other variable entering Equation (7) depends on either δ or q.

Viewing P and μσ as functions of the parameters λd and s, a simple differentiation exercise
shows that the derivative of the price P with respect to λd is a positive multiple of

(rq + λu + 2λμhnq)

(
1 + 2λ

∂μlo

∂λd

(1 − q)

)

− (r(1 − q) + λd + 2λμlo(1 − q))

(
2λ

∂μhn

∂λd

q

)
,

which is positive if ∂μlo
∂λd

is positive and ∂μhn
∂λd

is negative.
These two facts are seen as follows. From Equations (1)–(3) and the fact that

μlo + μln = λd(λd + λu)
−1 = 1 − y, where

y = λu

λu + λd

,

it follows that μlo solves the equation

2λμ2
lo + (2λ(y − s) + λu + λd)μlo − λds = 0. (C.1)

This quadratic equation has a negative root and a root in the interval (0, 1), and this latter
root is μlo.

Differentiating (C.1) with respect to λd , one finds that

∂μlo

∂λd

=
s − μlo − 2λ

∂y

∂λd
μlo

2λμlo + 2λ(y − s) + λu + λd

> 0,

since ∂y

∂λd
< 0. Similar calculations show that

∂μhn

∂λd

=
−λd + 2λ

∂y

∂λd
μhn

2λμlo + λu + λd

< 0,

which ends the proof of the claim that the price decreases with λd . Like arguments can be
used to show that ∂μlo

∂λu
< 0 and that ∂μhn

∂λu
> 0, which implies that P increases with λu.

Finally,

∂μlo

∂s
= λd + 2λμlo

2λμlo + 2λ(y − s) + λu + λd

> 0

and

∂μhn

∂s
= −λu − 2λμhn

2λμlo + λu + λd

< 0,

showing that the price decreases with the supply s.
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In order to prove that the price increases with λ for λ large enough, it is sufficient to show
that the derivative of the price with respect to λ changes sign at most a finite number of times,
and that the price tends to its upper bound, 1/r , as λ tends to infinity. The first statement is
obvious, while the second one follows from Equation (7), given that, under the assumption
s < λu/(λu + λd), λμlo stays bounded and λμhn goes to infinity with λ. �

Proof of Proposition 2. We impose on investors’ choices of consumption and trading
strategies the transversality condition that, for any initial agent type σ 0, e−βT E0[e−rγWT ] → 0
as T goes to infinity. Intuitively, the condition means that agents cannot consume large
amounts forever by increasing their debt without restriction. We must show that our
candidate optimal consumption and trading strategy satisfies that condition.

We conjecture that, for our candidate optimal strategy, E0[J (WT , σ T )] = e(β−r)T ×
J (W0, σ 0). Clearly, this implies that the transversality condition is satisfied, since

e−βT E0[e−rγWT ] = −e−βT E0

[
J (WT , σT )e

rγ (a+aσT
)
]

≤ − sup
σ

erγ (a+aσ )e−rT J (W0, σ 0)

→ 0.

This conjecture is based on the insights that (i) the marginal utility, u′(c0), of time-0
consumption must be equal to the marginal utility, e(r−β)T E0[u′(cT )], of time T consumption;
and (ii) the marginal utility is proportional to the value function in our (CARA) framework.
[See Wang (2002) for a similar result.]

To prove our conjecture, we consider, for our candidate optimal policy, the wealth
dynamics

dW =
(

log r

γ
− raσ − ra + θσ mD + mη

)
dt + θσ σD dB + ση dBi − P dθσ

=
(

−raσ + θσ mD + 1
2
rγ σ 2

η + r − β

rγ

)
dt + θσ σD dB + ση dBi − P dθσ

= M(σ) dt +
√

�(σ) dB̂ − P dθσ ,

where M, � and the standard Brownian motion B̂ are defined by the last equation.
Define f by

f (Wt , σ t , t) = Et [J (WT , σT )] = −Et [e
−rγ (WT +aσT +a)].

Then, by Ito’s Formula,

0 = ft + fwM(σ) + 1
2
fww�(σ) (C.2)

+
∑

{σ ′ : σ ′ 
=σ }
λ(σ , σ ′)

(
f (w + z(σ , σ ′)P, σ ′, t) − f (w, σ , t)

)
,

where λ(σ, σ ′) is the intensity of transition from σ to σ ′ and z(σ , σ ′) is −1, 1, or 0, depending
on whether the transition is, respectively, a buy, a sell, or an intrinsic-type change. The
boundary condition is f (w, σ , T ) = −e−rγ (w+aσ +a).

The fact that f (w, σ , t) = e(β−r)(T −t)J (w, σ) now follows from the facts that (i) this
function clearly satisfies the boundary condition, and (ii) it solves (C.2), which is confirmed
directly using (19) for aσ . �

Proof of Proposition 3. This result follows from Equations (19)–(22) as well as the
fact that λμhn → ∞ and λμlo is bounded. �
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Proof of Proposition 4. We start by considering two versions of the system (26),
characterized by masses μi

hn(t) and μi
lo(t), i ∈ {1, 2}, such that μ1

hn(t) ≥ μ2
hn(t), μ1

lo(t) ≤
μ2

lo(t), π1
ho ≥ π2

ho, and π1
hn ≥ π2

hn. We show that, if ζ is small enough, the following
relationships hold at all times t :

V 1
lo ≥ V 2

lo

V 1
ho ≥ V 2

ho

V 1
hn ≤ V 2

hn (C.3)

V 1
ln ≤ V 2

ln

P 1 ≥ P 2.

We then use this result to prove the Proposition.
Letting �Vo = Vho − Vlo, �Vn = Vhn − Vln, and φ = �Vo − �Vn, the motion

equations (26) for ζ = 0, for any of the two mass configurations, are

V̇lo = (r + ζ )Vlo − λu�Vo − 2λμhnqφ − ζVlo(0) − (1 − δ) (C.4)

V̇ln = (r + ζ )Vln − λu�Vn − ζVln(0) (C.5)

V̇ho = (r + ζ )Vho + λd�Vo − ζVho(0) + ζπho�Vo(0) − 1 (C.6)

V̇hn = (r + ζ )Vhn + λd�Vn − 2λμho(1 − q) − ζVhn(0) (C.7)

+ ζπho�Vn(0)φ

�V̇o = (r + λd + λu + ζ )�Vo + 2λμhnqφ (C.8)

− ζ (1 − πho)�Vo(0) − δ

�V̇n = (r + λd + λu + ζ )�Vn − 2λμlo(1 − q)φ (C.9)

− ζ (1 − πhn)�Vn(0)

φ̇ = (r + λd + λu + 2λμhnq + 2λμlo(1 − q) + ζ )φ − δ (C.10)

− ζ (1 − πho)�Vo(0) + ζ (1 − πhn)�Vn(0)

Letting ψ = (�Vo,�Vn)
�, Equations (C.8)–(C.9) can be further written as

ψ̇ = Aψ + B, (C.11)

with

A =
[
r + λd + λu + ζ + 2λμhnq −2λμhnq

−2λμlo(1 − q) r + λd + λu + ζ + 2λμlo(1 − q)

]

and

B = −
[
ζ (1 − πho)�Vo(0) + δ

ζ (1 − πhn)�Vn(0)

]
.

We are going to show that, given the way in which the entries of A1 and B1 compare with
those of A2, respectively B2, ψ1 ≤ ψ2 for all t . To that end, consider a continuum of systems
defined by Aα(t) = αA1(t) + (1 − α)A2(t) and Bα(t) = αB1(t) + (1 − α)B2(t), and consider
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the derivative of (C.11) with respect to α,

∂

∂t

(
∂ψα

∂α

)
= ∂Aα

∂α
ψ + Aα

∂ψα

∂α
+ ∂Bα

∂α
. (C.12)

The solution is

∂ψα

∂α
(t) = −

∫ ∞

t

e− ∫ s
t Aα(u) du

(
∂Aα

∂α
+ ∂Bα

∂α

)
ds. (C.13)

Note that

∂Aα

∂α
+ ∂Bα

∂α
= 2λφα

[
q

(
μ1

hn − μ2
hn

)
(1 − q)

(
μ2

lo − μ1
lo

)
]

+ ζ

[
(π1

ho − π2
ho)�Vo(0)

(π1
hn − π2

hn)�Vn(0)

]

is positive, so it suffices to sign the elements of the matrix eM , where the matrix M is of the
form

M =
[
c − a a

b c − b

]

with a > 0 and b > 0. It is immediate that the signs of the elements of eM are the same as for
the matrix eKeM for any scalar K —in particular, for K large enough to make all entries of
K + M positive. We conclude that ∂ψ/∂α ≤ 0, so that ψ1 ≤ ψ2.

It now follows from (C.5) that V 1
ln ≤ V 2

ln, which, together with �V 1
n ≤ �V 2

n , implies that
V 1

hn ≤ V 2
hn. Matters are not as simple with the owner value functions, since the fact that a

positive ζ makes the chances of being hit by a shock lower for parameter set 2 works against
our desired conclusion. This is why we need ζ small enough.

In order to conclude that V 1
ho ≥ V 2

ho, we need that

λd

(
�V 2

o − �V 1
o

)
− ζ

(
π1

ho − π2
ho

)
�Vo(0) ≥ 0

for all t. Since the inequality holds for ζ = 0, it suffices to show that

lim
t→∞

�V 2
o − �V 1

o

π1
ho − π2

ho

> 0

and make use of continuity. Equation (C.13) provides a desired lower bound on �V 2
o − �V 1

o

of at least ε
(
π1

ho − π2
ho

)
for t large enough and ε > 0 small enough.

Having obtained that V 1
ho ≥ V 2

ho, it immediately follows from the definition of �Vo that
V 1

lo ≥ V 2
lo. Finally, it is clear that P 1 ≥ P 2.

We use the comparison result just proved to prove the Proposition. We start with part
a). By letting μ2(t) = μ(t), i.e., the economy under consideration, and μ1 = μ(∞), i.e., a
steady-state economy without shocks, it follows that the values of owners and the price are
strictly lower at any point following the shock—in particular, at 0—than their eventual
value. The opposite is true for the values of the non-owners. To complete the proof of this
statement, we need to show that, for all t , μhn(t) < μhn(∞) and μlo(t) > μlo(∞).

To that end, consider the dynamics of μlo:

μ̇lo(t) = −2λμlo(t)
2 − (

2λ
(
μh(t) − s

) + λu + λd

)
μlo(t) + λds.

Since μh(t) < μh(∞), μlo(0) > μlo(∞), and μlo(t) > 0 a simple comparison theorem [e.g.,
Birkhoff and Rota (1969), page 25] shows that μlo(t) > μlo(∞) for all t . Likewise,
μhn(t) < μhn(∞).

For part (b) let μ2(t) = μ(t) and μ1(t) = μ(t + dt) for an arbitrary dt > 0 and
monotonicity of the value functions and price with respect to time follows, provided
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that the masses are monotonic. The masses, however, need not be monotonic. In general,
only one of μlo and μhn is monotonic, while the other may move away from its steady-state
value for a while before its derivative changes sign. Both masses are therefore monotonic
for all t if μ̇hn(0) ≥ 0 and μ̇lo(0) ≤ 0, which proves the last assertion of the Proposition.
Otherwise, they are monotonic for t ≥ T2 for some T2 > 0.

�
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