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1 Proof of Equilibrium Uniqueness in the Beauty Contest Game

This section shows that the equilibrium of the action game in section 1 of the main text is unique.

It does that by adapting an argument first made Angeletos and Pavan (2007, propositions 1 and

3) to our environment. The idea of the proof is that there is a social planner problem such that

every equilibrium of our model is also a solution to this planning problem. The planning problem

is strictly convex, meaning that it has a unique minimum. Since the planning problem has a unique

solution and every equilibrium is a solution to the planning problem, the equilibrium of the model

must be unique.

We begin by setting up some notation for the proof. We let p̂ (·) denote the candidate equilib-

rium function characterized by equation (4) in the main text, and will make use of the fact that

s = b′ω. We let F (ω) denote the prior distribution of ω, with density f (ω). We let µ denote the

distribution of the agents’ information choices, and φ (Xz|ω) the distribution of observed signals,

conditional on the state ω. Together, µ and φ determine the distribution F (I|ω)of information

sets I = (χ,Xz), conditional on the state ω. The agents’ posterior beliefs conditional on I are

defined by the pdf

φ̂ (ω|I) =
φ (Xz|ω) f (ω)∫

ω̂ φ (Xz|ω̂) dF (ω̂)
.

Proposition 1 Let P denote the set of functions p for which

p (I) =
∫

ω

{
(1− r)b′ω + r

∫

I′
p

(I ′) dF (I|ω)
}

φ̂ (ω|I) dω
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for all but a zero measure of types. Then, p̃ ∈ P, if and only if p̃ = p̂, almost everywhere.

That is, up to a measure zero perturbation, the equilibrium strategies are uniquely characterized

by equation (4) in the main text.

Proof: Define the functional

L (p) =
∫

ω

∫

I

(
p (I)− b′ω

)2
dF (I|ω) dF (ω)− r

∫

ω

(∫

I
p (I) dF (I|ω)− b′ω

)2

dF (ω)

Step 1 shows that L (p) is strictly convex in p, which implies that if p̃1, p̃2 ∈ arg minp L (p),

p̃1 = p̃2 almost everywhere. Step 2 shows that P = arg minp L (p). But then, p̃1, p̃2 ∈ P implies

p̃1 = p̃2 almost everywhere, and the proposition then follows from noting that p̂ ∈ P.

Step 1: L (p) is strictly convex for all p. For arbitrary functions p1 and p2, and α ∈ (0, 1),

notice that αp1 + (1− α) p2 = p1 + (1− α)∆ = p2 − α∆, where ∆ = p2 − p1. After some algebra,

one obtains:

L (αp1 + (1− α) p2)− αL (p1)− (1− α)L (p2)

= α [L (p1 + (1− α)∆)− L (p1)] + (1− α) [L (p2 − α∆)− L (p2)]

= −α (1− α)
∫

ω

{∫

I
(∆ (I))2 dF (I|ω)− r

(∫

I
∆(I) dF (I|ω)

)2
}

dF (ω)

= −α (1− α)
∫

ω

{
V ar (∆ (I) |ω) + (1− r) [E (∆ (I) |ω)]2

}
dF (ω) ≤ 0,

where E (∆ (I) |ω) =
∫

I
∆(I) dF (I|ω) and V ar (∆ (I) |ω) =

∫

I
(∆ (I))2 dF (I|ω)− [E (∆ (I) |ω)]2 .

Moreover, the last inequality is strict, whenever p1 (I) 6= p2 (I) for a positive measure of I’s,

implying that for any p1, p2 ∈ arg minp L (p), p1 (I) = p2 (I) for almost every I.

Step 2: P = arg minp L (p). For arbitrary p (·) and δ (·) and a scalar t,

L (p + tδ)− L (p) = t2A (δ) + 2tB (p, δ)

where A (δ) =
∫

ω

{∫

I
(δ (I))2 dF (I|ω)− r

(∫

I
δ (I) dF (I|ω)

)2
}

dF (ω)

B (p, δ) =
∫

ω

{∫

I
δ (I)

(
p (I)− b′ω

)
dF (I|ω)

−r

∫

I
δ (I)

(∫

I′
p

(I ′) dF (I ′|ω)− b′ω
)

dF (I|ω)
}

dF (ω)
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Clearly, A (δ) > 0, for all δ (·) for which
∫
I (δ (I))2 dF (I|ω) > 0 (i.e. that are different

from zero for a positive measure of types). Then, for any pair (p, δ), L (p + tδ) is minimized at

t∗ = −B2 (p, δ) /A (δ), and L (p + t∗δ) = L (p) − B2 (p, δ) /A (δ). Therefore, p̃ ∈ arg minp L (p) if

and only if B (p̃, δ) = 0, for every δ (·).
We can rewrite B (p, δ) as

B (p, δ)

=
∫

ω

∫

I
δ (I) p (I) dF (I|ω) dF (ω)−

∫

ω

∫

I
δ (I)

[
(1− r)b′ω + r

∫

I′
p

(I ′) dF (I ′|ω)]
dF (I|ω) dF (ω)

=
∫

ω

∫

χ

∫

z
δ (I) p (I) φ (Xz|ω) dzdµ (χ) dF (ω)

−
∫

ω

∫

χ

∫

z
δ (I)

[
(1− r)b′ω + r

∫

I′
p

(I ′) dF (I ′|ω)]
φ (Xz|ω) dzdµ (χ) dF (ω)

=
∫

χ

∫

z
δ (I) p (I)

∫

ω
φ (Xz|ω) dF (ω) dzdµ (χ)

−
∫

χ

∫

z
δ (I)

∫

ω

[
(1− r)b′ω + r

∫

I′
p

(I ′) dF (I ′|ω)]
φ (Xz|ω) f (ω) dωdzdµ (χ)

Since φ̂ (ω|I) = φ (Xz|ω) f (ω) /
∫
ω̂ φ (Xz|ω̂) dF (ω̂), this last expression can be rewritten as

B (p, δ) =
∫

χ

∫

z
δ (I)

{
p (I)−

∫

ω̂

[
(1− r)b′ω̂ + r

∫

I′
p

(I ′) dF (I ′|ω̂)]
φ̂ (ω̂|I) dω̂

} ∫

ω
φ (Xz|ω) dF (ω) dzdµ (χ)

=
∫

ω

∫

χ

∫

z

{
p (I)−

∫

ω̂

[
(1− r)b′ω̂ + r

∫

I′
p

(I ′) dF (I ′|ω̂)]
φ̂ (ω̂|I) dω̂

}
dF (I|ω) dF (ω)

Therefore, p̃ ∈ P implies B (p̃, δ) = 0 for all δ, and p̃ ∈ arg minp L (p). For p̃ /∈ P, setting

δ (I) = p̃ (I)−
∫

ω

[
(1− r)b′ω + r

∫

I′
p

(I ′) dF (I ′|ω)]
φ̂ (ω|I) dω

yields B (p̃, δ) =
∫
ω

∫
I (δ (I))2 dF (I|ω) dF (ω) > 0, which implies p̃ /∈ arg minp L (p).

2 General Equilibrium Foundations for Planning Model

In this appendix, we derive micro-foundations for our dynamic planning and price adjustment model

from a fully specified dynamic general equilibrium model. On the household side, our formulation

follows the continuous time model Golosov and Lucas (2007). On the firm side however, there are

distinct differences, as Golosov and Lucas generate nominal rigidities through menu costs of price

adjustment, whereas here, they arise from the firms’ cost of planning.

Time is continuous and infinite. There is a measure 1 continuum of different intermediate

goods, indexed by i ∈ [0, 1], each produced by one monopolistic firm using labor as the unique
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input into production. There is a final consumption good, which is produced by a perfectly com-

petitive final goods sector using the continuum of intermediates according to a Dixit-Stiglitz CES

technology with constant returns to scale. On the consumption side, there is an infinitely-lived

representative household, who purchases the final consumption good and supplies labor to the in-

termediate firms. Finally, there is a complete set of markets for contingent nominal bonds. Markets

are open continuously, and firms continuously adjust prices, but they only update their information

infrequently.

Money Supply Process: The Logarithm of nominal money supply follows an exogenous

Brownian Motion with no drift, and a diffusion parameter σ:

d log Mt = µdt + σdZt

nominal money injections take the form of lump sum taxes or transfers to the representative house-

hold.

Representative Household: The representative household’s preferences are defined over the

final consumption good, labor supply, and real balances
{
Ct, nt,M

D
t /Pt

}∞
0

,

U0 = E0

{∫ ∞

0
e−ρt

[
C1−ε

t

1− ε
− δnt + log

(
MD

t

Pt

)]
dt

}
(1)

where ρ denotes the discount rate, Pt the price of the final consumption good, and Md
t the demand

for nominal balances.

Let Qt denote the process for the shadow price of nominal cash flows, so that an earnings

stream {Dt}∞0 is valued as E0

[∫∞
0 QtDtdt

]
. The household’s budget constraint is then

M0 ≥ E0

[∫ ∞

0
Qt

(
PtCt + RtM

D
t −Wtnt −Πt

)
dt

]
(2)

where Πt indicates the income from nominal profits and lump sum money transfers, and Rt

denotes the nominal interest rate, which is implicitly defined by Qt = eRtdtEt (Qt+dt). The

term RtM
d
t thus represents the opportunity cost of holding nominal balances. The household

chooses processes
{
Ct, nt,M

D
t /Pt

}∞
t=0

to maximize (1) subject to (2), taking as given the process

{Qt, Pt, Wt, Rt, Πt}∞t=0.

Final Good Producers: A large number of final goods producers uses the intermediate goods

to produce the final output according to a constant returns to scale technology, which is given by

the CES aggregator

Ct =
[∫ 1

0

(
ci
t

) θ−1
θ di

] θ
θ−1

. (3)
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Final goods producers maximize profits, taking as given the market prices of intermediate and

final goods. For a total demand Yt of the final good by the household, a final goods price Pt, and

input prices P i
t , the demand for intermediate good i by the final good sector is

ci
t = c

(
P i

t

)
= Ct

(
P i

t

Pt

)−θ

. (4)

The final goods price Pt is given by the Dixit-Stiglitz aggregator

Pt =
[∫ 1

0

(
P i

t

)1−θ
di

] 1
1−θ

. (5)

Intermediate Good Producers: Each intermediate good is produced by a single monopolist

firm, using labor lit as an input, according to

yit = Alαit , (6)

for some A > 0, and α ≤ 1. Firms’ nominal profits in period t, not including planning costs, are

their price times quantity sold, minus wages (Wt) times labor:

πit = P i
t c

(
P i

t

)−Wt

(
c
(
P i

t

)
/A

)1/α . (7)

Each firm faces a fixed labor cost F , if they decide to update their information or “plan”. The firm

then chooses its process of prices
{
P i

t

}∞
0

, and a process of planning dates Di (t), where dDi (t) = 1

if the firm decides to plan at date t, and dDi (t) = 0 otherwise, to maximize its expected discounted

profits

Ei
0

[∫ ∞

0
Qtπitdt− F

∫ ∞

0
QtWtdDi (t)

]
(8)

taking as given the processes {Qt, Pt,Wt, Yt}∞0 , and its date-0 expectations Ei
0 [·].

Market equilibrium: An equilibrium is characterized by processes
{
Qt, Pt, Wt, Rt; nt, Ct,M

D
t

}∞
0

for the aggregate variables and
{
Di (t) , P i

t

}∞
0

, for each i, that solve the firms’ and household’s op-

timization problem, and clear goods and labor markets: At every date t, MD
t = Mt, Ct = Yt (in

the firm’s problem), and labor supply nt equals the total labor demand for production and plan-

ning purposes. The following proposition summarizes the solution to the representative household

problem:

Proposition 2 There exists a market equilibrium, in which the following conditions hold:

(i) Nominal interest rates are constant: Rt = R = ρ + µ− 1/2σ2.
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(ii) The nominal wage rate is proportional to Mt: Wt = δRMt

(iii) Real demand is given by Ct =
(

RMt
Pt

)1/ε
.

(iv) The state-price process is Qt = 1/ (Rχ) · e−ρt (Mt)
−1, where χ denotes the Lagrange mul-

tiplier on the Household’s budget constraint.

Proof. The household’s first-order conditions w.r.t. Ct, Mt and nt satisfy e−ρtC−ε
t = χPtQt,

e−ρtM−1
t = RtQt and e−ρtδ = χWtQt. From these three conditions, (ii), (iii) and (iv) follow

immediately.

We therefore just need to show that the equilibrium nominal interest rate is indeed con-

stant. Rt satisfies Qt = eRtdtEt (Qt+dt). Using the FOC for Mt, we have Et (Qt+dt/Qt) =

e−ρdtEt (RtMt/ (Rt+dtMt+dt)). We conjecture (and verify) that Rt = R indeed solves this con-

dition: In that case, Et (RtMt/ (Rt+dtMt+dt)) = Et (Mt/Mt+dt) = e−µdt+1/2σ2dt. Therefore the

condition for Rt becomes 1 = eRtdte−ρdte−µdt+1/2σ2dt, or, after taking logs, Rt = ρ + µ− 1/2σ2

These properties follow from our assumptions that (i) the disutility of labor is linear, (ii)

preferences for real balances are logarithmic, and (iii) nominal spending shocks follow a Brownian

motion (without mean reversion). Since these properties do not rely in any way on the exact form

of the labor demand or individual pricing processes on the intermediate firm’s side, they directly

apply also to our model in which there are planning, instead of price adjustment costs.

¿From here on, we will assume that equilibrium nominal wages, state prices and real demand

are governed by the above processes. We focus on the intermediate firm’s pricing and planning

problem.

Pricing and Planning Decisions: The updating decisions take place as described in the

main text. In what follows, we will use the same notation for information sets and expectations.

Substituting the state price process, the real demand, and the nominal wage rate into the interme-

diate firm’s profit function, the firms’ period-t profits, not including information costs, and valued

at the price of nominal cash flows Qt, are

Qtπ
(
P i

t ;Mt, Pt

)
= e−ρt

[(
RMt

Pt

)1/ε−1 (
P i

t

Pt

)1−θ

− δ

A1/α

(
RMt

Pt

)1/(αε) (
P i

t

Pt

)−θ/α
]

. (9)

Therefore, the full model’s counterpart to the firm’s reduced form objective (equation 9 of the main

text) is given by

Ei
0

{∫ ∞

0
e−ρt

[(
RMt

Pt

)1/ε−1 (
P i

t

Pt

)1−θ

− δ

A1/α

(
RMt

Pt

)1/(αε) (
P i

t

Pt

)−θ/α
]

dt− δF

∫ ∞

0
e−ρtdDi (t)

}
.

(10)
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with the average price Pt given by (5). With this structure, our equilibrium definition from the

main text applies identically.

Full-Information Price Under full information, the optimal price in period t is

P ∗
t =

(
δ

A1/α

θ/α

θ − 1

) 1
1−θ+θ/α

· (RMt)
1−r P r

t , (11)

where r = 1− 1 + ε−1 (1− α) /α

1 + θ (1− α) /α
. (12)

We normalize A so that the initial constant term is equal to 1. Taking logarithms, we find an

expression for log P ∗ (t), which mirrors equation (10) from the main text:

log P ∗
t = (1− r) log (RMt) + r log Pt.

Moreover, (5) is approximated by log Pt =
∫ 1
0 log P i

t di.

Second-order approximation: We conclude this appendix by showing that the reduced-

form formulation considered in the main text is a second-order approximation to the full general

equilibrium formulation considered here. We take a constant (first term) and subtract from it the

firm’s objective (8). Maximizing (8) is equivalent to minimizing

Ei
0

[∫ ∞

0
Qt

(
π (P ∗ (t) ; Mt, Pt)− π

(
P i

t ; Mt, Pt

))
dt + F

∫ ∞

0
QtWtdDi (t)

]
. (13)

The last integral term represents information costs. Substituting in the formulas for Wt and Qt

from proposition 1, it becomes −δF
∫∞
0 e−ρtdDi (t).

Using a second-order Taylor expansion of (9) in the first term, we have:

eρtQt

(
π

(
P i

t ;Mt, Pt

)− π (P ∗
t ;Mt, Pt)

)

=
(

RMt

Pt

)1/ε−1 (
P ∗

t

Pt

)1−θ
[
1−

(
P i

t

P ∗
t

)1−θ
]
− δ

A1/α

(
RMt

Pt

)1/(αε) (
P ∗

t

Pt

)−θ/α
[
1−

(
P i

t

P ∗
t

)−θ/α
]

= g (Mt, Pt)

{
1−

(
P i

t

P ∗
t

)1−θ

− θ − 1
θ/α

[
1−

(
P i

t

P ∗
t

)−θ/α
]}

where

g (Mt, Pt) =
(

RMt

Pt

) 1/ε−θ
α+θ−αθ

The linearized first-order condition tells us that under full information, RtMt = Pt. Therefore,

if the shocks are small, the economy is close to the full-information economy and g (Mt, Pt) ≈ 1.
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Defining xi
t = log P i

t − log P ∗
t and using a second-order Taylor expansion around xi

t = 0, we have

1−
(

P i
t

P ∗
t

)1−θ

− θ − 1
θ/α

[
1−

(
P i

t

P ∗
t

)−θ/α
]

= 1− e(1−θ)xi
t − θ − 1

θ/α

[
1− e−θ/αxi

t

]

≈ θ − 1
2

[1− θ + θ/α]
(
xi

t

)2

Thus, the firm’s objective is approximated by

Ei
0

{∫ ∞

0
e−ρt θ − 1

2
[1− θ + θ/α]

(
log P i

t − log P ∗
t

)2
dt− δF

∫ ∞

0
e−ρtdDi (t)

}
. (14)

This mirrors the objective in the planning model (equation 4 of the paper), once we define the

planning cost as 2δF/ ((1− θ + θ/α)(θ − 1)).

Comparative Statics Finally, we examine the relationship between the structural parameters

and two key parameters in the reduced-form model of the main text that determine price rigidity

and updating frequency. One is r, the complementarity in price-setting, defined in equation (12).

There are three underlying structural parameters that determine complementarity. First, relative

risk aversion ε increases complementarity (∂r/∂ε > 0). Second, the elasticity of substitution θ

increases complementarity (∂r/∂θ > 0). Finally, the rate of diminishing marginal returns to labor

α increases complementarity iff θ > 1/ε.

The second key determinant of updating frequency is the cost of information. In this micro-

founded model, that cost is a labor cost and therefore varies over time with the wage. The planning

cost is increasing in α and decreasing in θ, as long as there are diminishing returns α < 1 and

elasticity θ > 1. Therefore, if θ > 1/ε, then increases in α increase complementarity and increase

the planning cost, both of which make updating less frequent and prices more sticky. But the

effect of changes in elasticity θ are ambiguous because they increase complementarity but decrease

planning costs.
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