
Copyright (©) 2002 Manuel Arriaga 1

Going beyond the hierarchical file system: a new
approach to document storage and retrieval

Author: Manuel Arriaga
Email: manuelarriaga@fastmail.fm
Copyright 2003 Manuel Arriaga

Introduction

Back in the early days of computing, someone decided that the "natural" way to organize
documents stored in electronic format was in folders. Users would create a tree of directories and
subdirectories, and documents would go into those folders. The combination of a document's "path"
and its file name uniquely identified a document, and constituted the only practical way to store that
document's metadata1.

After more than three decades, the single most important aspect of computing – if you regard
computers as machines essentially intended for document creation, manipulation, storage and access –
remains unchanged. What was originally a useful analogy ("let us organize electronic documents like
we did in paper-based offices, putting documents into folders") became the universal system to store
and retrieve documents in electronic format: the hierarchical file system (HFS) has been the way to
organize documents in a computer throughout computing history2, and virtually no computer users
have ever stored a document using an alternative method.

The supremacy of the HFS is only more surprising if you pause for a second to consider the
number of limitations which it imposes on the user. In its attempt to reproduce the familiar paper-based
office, the HFS imported a major restriction which is inherent to the real, physical world but which
becomes utterly artificial when it is translated into the digital realm: why can't a document (or a
subfolder) be stored in more than one folder3?

Two other important problems arise from the fact that the user can only store document
metadata in one place: the file's path and name. For that reason we end up "encoding" all kinds of
unlabeled information into the file's path. Consider, e.g., the path

/articles/NYT/2002/Friedman/Stiglitz.html

When storing this document the user meant that its document type was "article", that it had
been published on the "New York Times", that it had been printed on the year 2002, that its author was
called Friedman, that it was about Stiglitz and that it was stored in the file format HTML. However, an
important part of that information was lost when it was "encoded" into a path: just as "articles/NYT"
might mean both "articles about the New York Times" as well as "articles published on the New York
Times", it certainly isn't clear whether this is an article on Stiglitz written by Friedman or the other way
around (or possibly an article about both of them written by a third party). Similarly, "2002" can take
any number of meanings4. Simply put, unlabeled metadata is much less useful than labeled metadata.

1 Other than the one automatically recorded by the operating system, such as creation date, file owner, etc…
2 The only exception being corporate-level content management systems.
3 Although all major operating systems offer some kind of soft link ("symbolic links" in Unix and GNU/Linux, "aliases" in
MacOS and "shortcuts" in MS Windows), it seems rather unlikely that a significative number of computer users makes extensive
use of this feature for the purpose of systematic document organization. I would venture saying that, if these soft links are used at
all, they are created with the purpose of making often-accessed documents easily accessible from the "desktop". Not only is the
operation of populating a HFS with multiple soft links to a given document awkward, but the result isn't very robust, either:
simply renaming a parent directory results in a "dangling" link. So, the question remains: why can't a document/subfolder be
(easily) stored in multiple folders?
4 It can be argued that users might just as well encode the metadata labels into the path. However, just as soft links are rarely if
ever used to systematically organize collections of documents, I don't believe many humans create paths such as

/type:articles/published:NYT/year:2002/about:Afghanistan-Iraq.kwd

on a daily basis.

Copyright (©) 2002 Manuel Arriaga 2

The fact that all sorts of metadata go into a file's path and name has got another undesirable
consequence: the hierarchical "parent -> child" relationships become meaningless. No longer can you
look at a path /A/B/C/D and say that D will still have any logical connection with A. (Think of the
example above: why is "Friedman" a subdirectory of "articles", or why is "Friedman" a subdirectory of
"2002"? From a conceptual point of view this doesn't make any sense: we expect hierarchical
relationships to be "transitive".) As a result, whenever a user descends a directory tree she must be
permanently trying to guess how to interpret the "parent -> child" relationships at the next level, and
that makes HFS browsing unnecessarily difficult.

Finally, storing documents in a HFS according to a certain criterion makes it extremely
difficult to later on retrieve them using a different one. Suppose that the user in the example above had
initially decided that the first thing to record about each document was its type, the second its source
and only then its subject. She would divide them into "/articles", "/photos", etc..., and then at a second
level into /(...)/NYT, /(...)/Washington Post, etc... Later on, however, if the user needed to retrieve all
documents (irrespective of type and source) that somehow dealt with Joseph Stiglitz she would have to
manually browse her entire document collection, going through all subdirectories, to identify the
matching documents5. The HFS "ties" the future behavior of the user to her original decision on how to
lay out the directory tree.

So what is Newdocms?

Figure 1: A traditional "Save as" dialog box and the one used in Newdocms

Newdocms aims to do away with these artificial restrictions by insulating the user (as far as
possible) from the HFS and allowing her to store document metadata as (attribute,value) pairs. But the
importance of hierarchical relationships between concepts has not been forgotten, and its usefulness is
now greater than ever.

Newdocms allows the user to set any number of attributes for each document (see Figure 1).
These attributes can be of two distinct types: they can be either concept or text attributes. The latter can
hold any text string (or number) as a value; typical cases would be "comment", "description" and
"color depth". Concept attributes are much more interesting, and they allow the user to define a
relationship between the document in question and a given concept.

The easiest example probably is that of the "about" attribute: a document can be "about cats",
or "about politics", e.g. (In these cases the concepts would be "cats" and "politics"). In a similar way, a
(document that is a) short story can be described as "taking place in India", or "written by Rudyard
Kipling". (Here the relevant concepts would be "India" and "Rudyard Kipling"). Of course, the user
only needs to set a certain attribute for a given document if it makes sense: she probably wouldn't care
about the "color depth" of a text document.

The most interesting part is that the user can organize all concepts into a category tree. This is
just a typical hierarchical structure, but since there isn't any need to put any document metadata into the

5 Again, some will argue that it is possible to use software tools to search a HFS for files with certain expressions in their
paths/names. However, like I said before, the fact that it is possible to do so means neither that (i) doing so is practical nor that
(ii) it is useful to the average computer user.

Copyright (©) 2002 Manuel Arriaga 3

hierarchy (unlike what happened when using the HFS) the "parent -> child" relationships can be read
as "(child) is a (parent)". This allows Newdocms to gain a basic form of ontological intelligence: it
"knows" that, if both "dogs" and "cats" are subcategories of "animals", then any reference to "animals"
should be interpreted as referring not only to "animals" in general but should also encompass specific
references to "dogs" and "cats". The result is that you can be as specific as you wish to when describing
a document ("this document is about black, friendly dogs") because you know that later on searching
for a higher level concept ("show me all documents about animals") will bring you all relevant
matches, even if those documents weren't specifically defined as relating to that (higher level) concept.

Another powerful feature of this system lies in the fact that the same concept can be
represented by multiple categories. Since our conceptual representation of reality isn't unidimensional
(we are able to sort things by different criteria; e.g., a person is not only of "British nationality" but also
"a good friend" and "relatively short"), the possibility of arriving at the same concept by taking
different logical paths can be very useful: e.g., asking for documents "written by North-Americans"
and asking for documents "written by professors of literature" would both lead to a list of matching
documents which included texts by Harold Bloom (assuming that you had catalogued Harold Bloom
both as a North-American (nationality) as well as a professor of literature (occupation))6.

My goal with Newdocms is to make large (personal) collections of electronic documents
manageable and to allow for powerful and easy document retrieval. In addition to serving this "long-
term archival" objective, Newdocms also includes a handy feature intended to make the daily retrieval
of often-accessed documents easier. That feature consists in the definition of document "shortcuts":
simple text strings which, when entered into the appropriate text field, bring up the associated
document(s) in an easy and immediate way. The query results are always sorted by last access time,
meaning that the most recently viewed matching document will come at the top of the list, and will,
therefore, be easier to select.

A third alternative when retrieving a document is to simply press "Open" on the dialog
without entering any attribute (nor shortcut): in that case you will simply get a list of all documents
sorted chronologically.

When saving you don't need to specify any attributes: if you are in a hurry simply press
"Save" and the document will be saved and marked as "uncatalogued" (you can always access it
through the chronological list of documents described in the previous paragraph). Later on, when you
have more time, you can come back to it and catalogue it.

It is important to notice that Newdocms doesn't require “more work” (when saving
documents) than the traditional HFS: you tell Newdocms as much (or as little) as you wish to about the
documents you save – as you have just seen, you can even provide zero information about a document
and still save it! (Of course, the more information you provide when saving documents the more
accurate the query results will be.) The only absolutely necessary information when saving is a file
format; if the application doesn't specify one you will be requested to enter it manually in a text line
edit, either as a MIME type or as a file name pattern (e.g., "*.txt").

Another feature of Newdocms is its support for what I call "collections": these are sets of files
which share the same attributes, and are regarded by Newdocms as a single document. This might be
useful, e.g., for digital photos: you can have 50 pictures taken at the beach in July featuring your girl-
friend, her dog and some friends. You probably wouldn't feel like manually defining those same
attributes 50 times, so you can simply create a new collection (called "Photos at the beach 2002/07")
for which you define those attributes only once, and then insert the pictures into the collection. When
inserting a file into a collection you can either provide a file name or simply point Newdocms to a
directory holding your pictures and tell it to “import” all those files into the collection.

When a collection matches the attributes you defined, it is identified as a collection in the
"Matching documents" window. Only collections which (i) match the attributes you specified and (ii)
hold files which the application is able to read are listed there. If the file you are looking for is inside
one of the matching collections, simply select that collection and you will be given the opportunity to
(through a traditional "Open" dialog pointed at the contents of that collection) select the desired file.

If things go wrong, Newdocms will always try to present to the user a traditional (HFS)
"Open" or "Save as" dialog so that the file can be safely saved somewhere. Or, if you need to open or
save a document outside of Newdocms simply hit the "Traditional" button and the familiar file dialog
will appear. By installing Newdocms you are not forcing yourself to use it every time you open/save a
file.

6 This is the purpose of conceptless (or "null concept") categories: they act simply as container categories which specify the
criterion used by its subcategories. Examples of conceptless categories would be "People -> By nationality" and "People -> By
occupation". Of course, the children categories of conceptless categories can (and should!) be associated to concepts.

Copyright (©) 2002 Manuel Arriaga 4

So where do your documents go when you save them with Newdocms? As you might have
noticed (if you looked at the window titles after saving something), they are stored as ~/Docs/{numeric
id}.{ext}7. All the metadata is stored in a file called ~/newdocms.db. In that file each document's
attributes are associated with its unique numeric id (the one which is used as a file name).

Notice that the category tree, although being a hierarchy just like the traditional HFS, doesn't
exist as a directory tree on disk: it only exists as a data structure inside the database file. All documents
are saved in a "flat store" (under ~/Docs/), and they are associated to the relevant concepts inside the
database file.

In order to provide a meaningful path to your documents (chiefly so that looking at window
titles allows you to know which document that window is displaying – this feature is not meant to have
you browsing your home directory in the traditional way), when you open a document an artificial path
(formed by a concatenation of the concepts to which that document is associated) is created in ~/View
and “symlinked” to the real file (which resides in ~/Docs). It is advisable that before running
Newdocms for the first time you make sure that no directories with those names exist in your home
directory.

A step-by-step example of how it works

First you save a document, defining its attributes and specifying its file format. In Figure 2 I
am saving a Salon article on Joe Strummer, the leader of the British punk band The Clash.

 Figure 2: Saving a document in Newdocms

When specifying the attributes of a new document you might need to define new
concepts/categories. Simply press the "Edit category tree" button in the "Save as" dialog and then – as
seen in Figure 3 – create new categories by right-clicking and choosing "Add category" from the pop-
up menu.

7 Collections are simply stored as directories called ~/Docs/{numeric id}.

Copyright (©) 2002 Manuel Arriaga 5

 Figure 3: Adding categories to the category tree

Suppose that later you wish to open a document about that band, irrespective of the file
format it is stored in. By specifying those two attributes in the dialog box displayed in Figure 4, you
perform a query on the Newdocms database.

 Figure 4: Dialog box used when making queries

The result of that query is a list of matching documents. In that dialog you select the document
which interests you, click "Ok" and that document will be opened by the application. That is done in
Figure 5.

Copyright (©) 2002 Manuel Arriaga 6

 Figure 5: A dialog box listing the matching documents

Conclusion

This is a very early preview version of Newdocms, a project I have been working on for two
years8. I honestly think that this is a truly innovative system, and that something both powerful and
useful can be made out of this. At the time being it only works with KDE, but I would also like to
modify the GNOME and OpenOffice.org libraries (any volunteers?9). As time permits, I will create a
stand-alone application (a sort of document "browser") that will allow access to the documents from
outside specific applications.

The user interface, in its current form, is neither friendly nor "sexy": using a line edit (with
auto-completion) to specify the concept is just an idea I had (and personally like), but it would be very
easy to radically change the user interface. The system is completely modular and the way in which the
user defines document attributes depends on a single class; nothing else would need to be changed.

The possibilities are endless: one could select concepts directly from the category tree instead,
or be presented with an iconic representation of concepts and their relationships... All this would
require minimum effort, because the rest of the system would remain unaltered.

I am not sure most people (even among those who deal with free software) have grasped the
huge number of possibilities which this software ecosystem presents us with: starting with the work
already done by thousands of coders world-wide, we can, with a little bit of imagination and some
work, create amazing things.

In a sense, Newdocms is a tribute to the free software nature of the underlying systems (KDE,
GNOME, OpenOffice.org and, more generally, GNU/Linux): I had an ambitious idea, but I would have
never been able to write from scratch a complete desktop environment with dozens of fully-developed
applications to implement it in a usable way. Because these systems are free software, it was possible
for me – from both a legal and technical point of view – to modify them and to make something truly
original that otherwise would never exist. The next time you hear someone comment how "free
software is killing innovation" you might wish to tell him this story.

8 You might notice, besides many other things I hope you will tell me about, that selecting "Save link as" in Konqueror when the
pointer is over a link to a Perl CGI-generated web page will make Newdocms tell you that that document will be catalogued as
"Perl source code”… Just use the traditional file dialog for now, save it with a name ending in ".html", reopen it in Konqueror
and choose "Save as". Other minor problems include the unusual tab order in the dialogs and the keyboard shortcuts in the main
dialog.
9 Very little work would be involved: only the file selector of the underlying system would need to be reimplemented. The core
of Newdocms would remain unchanged. If you feel like giving it a try, don't hesitate to contact me for any additional
information.

