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Abstract. Sales promotions are important in the fast-moving consumer goods (FMCG)
industry due to the significant spending on promotions and the fact that a large pro-
portion of FMCG products are sold on promotion. This paper considers the problem of
planning sales promotions for an FMCG product in a grocery retail setting. The cate-
gory manager has to solve the promotion optimization problem (POP) for each product,
i.e., how to select a posted price for each period in a finite horizon so as to maximize
the retailer’s profit. Through our collaboration with Oracle Retail, we developed an opti-
mization formulation for the POP that can be used by category managers in a grocery
environment. Our formulation incorporates business rules that are relevant, in practice.
We propose general classes of demand functions (including multiplicative and additive),
which incorporate the post-promotion dip effect, and can be estimated from sales data. In
general, the POP formulation has a nonlinear objective and is NP-hard. We then propose
a linear integer programming (IP) approximation of the POP. We show that the IP has an
integral feasible region, and hence can be solved efficiently as a linear program (LP). We
develop performance guarantees for the profit of the LP solution relative to the optimal
profit. Using sales data from a grocery retailer, we first show that our demand models
can be estimated with high accuracy, and then demonstrate that using the LP promotion
schedule could potentially increase the profit by 3%, with a potential profit increase of 5%
if some business constraints were to be relaxed.
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1. Introduction
Fast-moving consumer goods (FMCG) or consumer
packaged goods (CPG) are products, which are con-
sumed quickly. Examples of FCMG include processed
foods and drinks (e.g., canned food, soft drinks,
salty snacks, candy, and chocolate) as well as house-
hold products (e.g., toiletries, laundry detergent). The
FMCG industry includes some of the most widely rec-
ognized companies in the world, such as Coca-Cola,
Pepsico, Kraft, Nestle, Proctor & Gamble, Johnson &
Johnson, and Unilever. Typically, consumers do not
purchase FMCG products directly from manufactur-
ers, but rather from retailers (supermarkets and gro-
cery stores).
It is common for manufacturers and retailers in the

FMCG industry to use promotions to entice consumers
to purchase their products. The reasons why promo-
tions are used include: increasing sales and traffic,
introducing new items, bolstering customer loyalty,
competitive retaliation, and price discrimination. The
amount of money spent on promotions is significant—
it is estimated that FMCG manufacturers spend about

$1 trillion annually on promotions (Nielsen 2014).
In addition, promotions play an important role in
the FMCG industry as a significant proportion of
sales are made on promotion. For example, Nielsen
(Nielsen 2014) found that 12%–25% of supermarket
sales in five European countries (Great Britain, Spain,
Italy, Germany, and France) were made on promotion
(Gedenk et al. 2006). Not all retailers use promotions—
some retailers (e.g., Walmart) employ an everyday low
price policy. In this paper, we focus on retailers that use
price promotions.

A promotion tactic that is commonly used by retail-
ers is temporary price reductions. We illustrate the effec-
tiveness of temporary price reductions in boosting
sales using real data. In Figure 1, we plot the weekly
(normalized) prices and sales for a particular brand
of ground coffee in a supermarket over 35 weeks. We
observe that this brand was promoted during 8 out of
35 weeks (i.e., 23% of the time); and that promotional
sales accounted for 41% of the total sales volume. In
this paper, we focus on temporary price reductions by
grocery retailers that we simply refer to as promotions.
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Figure 1. Prices and sales for a particular brand of coffee at a
supermarket over a span of 35 weeks
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Promotions can have a significant impact on a
retailer’s profitability. Using a demand model esti-
mated from sales data (see Section 7.3 for details),
we estimate that the promotions set by the retailer
achieved a profit gain of 3% compared to using only
the regular price (i.e., no promotions). A paper pub-
lished by the Community Development Financial Insti-
tutions Fund reports that the average profit margin for
the supermarket industry was 1.9% in 2010. Accord-
ing to an analysis performedwith Yahoo! Finance data,
the average net profit margin for publicly traded U.S.-
based grocery stores for 2012 is close to 2010’s 1.9%
average. As a result, this suggests that promotions
can have a significant impact on the retailer’s profits.
Furthermore, this motivates us to build a model that
answers the following question: How much money
does the retailer leave on the table by using the
implemented prices relative to “optimal” promotional
prices?

Given the importance of promotions in the grocery
industry, it is not surprising that supermarkets pay
great attention to design promotion schedules. The
promotion planning process is complex and challeng-
ing for multiple reasons. First, demand is affected by
a post-promotion dip effect, i.e., for certain categories of
products, promotions lead to reduced future demand.
Second, promotions are constrained by a set of busi-
ness rules specified by the supermarket and/or prod-
uct manufacturers. Example of business rules include
prices chosen from a discrete set, limited number of
promotions, and separating successive promotions (for
more details, see Section 3.2). Finally, the problem is
difficult even for a single retail store because of its large
scale. For instance, a typical supermarket in the United
States carries about 40,000 SKUs, with approximately
2,000 SKUs on promotion at any point in time, which
leads to a very large number of decisions variables.

Despite the complexity of the promotion planning
process, it is still to this day, performed manually in
most supermarkets. This motivates us to design and
study promotion optimization models that can make

promotion planning more efficient (reducing man-
hours), and at the same time, more profitable (increas-
ing profits and revenues) for retailers.

To accomplish this, we introduce a promotion opti-
mization problem (POP) formulation and propose how
to solve it efficiently. We introduce and study classes of
demand functions that incorporate the features we dis-
cussed above as well as constraints that model impor-
tant business rules. The output will provide optimized
prices together with performance guarantees. In addi-
tion, because our formulation can be solved quickly, a
manager can test various what-if scenarios to study the
robustness of the solution.

Our proposed POP formulation is a nonlinear inte-
ger programming (IP). For general demand functions,
the formulation is NP-hard (see Cohen et al. 2016). An
important business rule for retailers, in practice, is that
the price of the product must be selected from a price
ladder, i.e., a discrete set of permissible prices. In addi-
tion, due to the post-promotion dip effect, for general
demand functions, the objective is neither concave nor
convex. We therefore propose a linear IP approxima-
tion and show that the problem can be solved effi-
ciently as an LP. This new formulation approximates
the POP problem for a general demand. In addition,
we derive analytical lower and upper bounds relative
to the optimal objective that rely on the structure of
the POP objective with respect to promotions. In par-
ticular, we show that when past prices have a multi-
plicative effect on current demand, for a certain subset
of promotions, the profits are submodular in pro-
motions, whereas when past prices have an additive
effect, the profits are supermodular in promotions. In
this context, submodular (supermodular) means that
the marginal effect on an additional promotion has a
smaller (larger) impact when we already have many
promotions in the selling season. These results allow
us to derive guarantees on the performance of the LP
approximation relative to the optimal POP objective.
We also extend our analysis to the case of a combined
demand model where both structures of past prices
are simultaneously considered. Finally, we show using
actual data that the models run fast, in practice, and
can yield increased profits for the retailer.

The impact of our models can be also significant
for supermarkets, in practice. One of the goals of this
research has been to develop data-driven optimization
models that can guide the promotion planning pro-
cess for grocery retailers, including the clients of Oracle
Retail. They span the range of midmarket (annual rev-
enue below $1 billion) as well as Tier 1 (annual revenue
exceeding $5 billion and/or 250+ stores) retailers all
over the world. One key challenge for implementing
our models into software is the large-scale nature of
this industry. For example, a typical Tier 1 retailer has
approximately 1,000 stores, with 200 categories each
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containing 50–600 items. An important criterion for our
models to be adopted by grocery retailers, is that the
software tool needs to run in a few seconds up to a
minute. This motivated us to reformulate our model as
an LP.
Preliminary tests using supermarket sales data sug-

gest that our model can increase profits by 3% just by
optimizing the promotion schedule, and up to 5% by
slightly increasing the number of promotions allowed.
If we assume that implementing the promotions rec-
ommended by our models does not require additional
fixed costs (this seems to be reasonable as we only vary
prices), then a 3% increase in profits for a retailer with
annual profits of $100 million translates into a $3 mil-
lion increase. As we previously discussed, profit mar-
gins in this industry are thin, and therefore 3% profit
improvement is significant.

Contributions
This research was conducted in collaboration with our
coauthors and industry practitioners from the Oracle
Retail Science group, which is a business unit of Oracle
Corporation. One of the end outcomes of this work is
the development of sales promotion analytics that will
be integrated into enterprise resource planning soft-
ware for supermarket retailers.

• We propose a POP formulation motivated by real-
world retail environments. We introduce a nonlinear IP
formulation for the single-item POP. Unfortunately,
this model is not computationally tractable, in gen-
eral. An important requirement from our industry
collaborators is that an executive of a medium-sized
supermarket (100 stores, ∼200 categories, ∼100 items
per category) can run a software tool embedding the
model and algorithms in this paper and obtain a high-
quality solution in a few seconds. This motivates us to
propose an LP approximation.

• We propose an LP reformulation that allows us to
solve the problem efficiently. We first introduce a linear
IP approximation of the POP. We then show that the
constraint matrix is totally unimodular, and therefore
the IP can be solved efficiently as an LP.

• We introduce general classes of demand functions that
model the post-promotion dip effect. An important feature
of the application domain is the post-promotion dip
in demand observed, in practice. We propose general
classes of demand functions inwhich past prices have a
multiplicative or an additive effect on current demand.
These classes are generalizations of models commonly
used in the literature, provide modeling flexibility and
can be estimated from data.

• We develop tight bounds on performance guarantees for
multiplicative and additive demand functions. We derive
upper and lower guarantees on the quality of the LP
approximation relative to the optimal (but computa-
tionally intractable) POP solution, and characterize the

bounds as a function of the problem parameters. We
show that for multiplicative demand, promotions have
a submodular effect (for some relevant subsets of pro-
motions). This leads to the LP approximation being an
upper bound of the POP objective.

• We validate our results using actual data and demon-
strate the added value of our model. Our industry part-
ners provided us with a collection of sales data from
several product categories. We apply our analysis to a
few selected categories (ground coffee, tea, chocolate,
and yogurt). We first estimate the demand parameters
and then quantify the value of our LP approximation
relative to the optimal POP solution. After extensive
numerical testing with the clients’ data, we show that
the approximation error is, in practice, even smaller
than the analytical bounds we developed. Our model
provides supermarket managers recommendations for
promotion planning with running times in the order
of seconds. As the model runs fast and can be imple-
mented on a platform like Excel, it allows managers
to test and compare various strategies easily. By com-
paring the predicted profit under the actual prices to
the predicted profit under our LP optimized prices, we
quantify the added value of our model.

• We demonstrate that our results are robust with respect
to demand uncertainty. We propose a way to address
the case where the estimated demand parameters are
uncertain. We then validate the robustness of our solu-
tion using actual data. In particular, extensive testing
suggests that the profit gain dominates the forecasting
error.

2. Literature Review
Our work is related to four streams of literature: opti-
mization, marketing, dynamic pricing, and retail oper-
ations.We formulate the POP for a single item as a non-
linear mixed-integer program (NMIP). To give users
flexibility in the choice of demand functions, our POP
formulation imposes very mild assumptions on the
demand. Due to the general classes of demand func-
tions, we consider the objective is typically nonconcave.
In general, NMIPs are difficult from a computational
complexity standpoint. Under certain special struc-
tural conditions (e.g., see Hemmecke et al. 2010 and
references therein), there exist polynomial-time algo-
rithms for solving NMIPs. However, many NMIPs do
not satisfy these special conditions and are solved
using techniques such as branch and bound, outer-
approximation, generalized benders, and extended
cutting plane methods (Grossmann 2002).

In a special instance of the POP when demand is a
linear function of current and past prices andwhen dis-
crete prices are relaxed to be continuous, one can for-
mulate the POP as a cardinality-constrained quadratic
optimization (CCQO) problem. It has been shown in
Bienstock (1996) that a quadratic optimization problem
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with a similar feasible region as the CCQO is NP-hard.
Thus, tailored heuristics have been developed (see, e.g.,
Bertsimas and Shioda 2009, Bienstock 1996).
Our solution approach is based on linearizing the

objective function by exploiting the discrete nature of
the problem, and then solving the POP as an LP. We
note that due to the general nature of the demand func-
tions, we consider it is not possible to use linearization
approaches such as in Sherali and Adams (1998) or
Fletcher and Leyffer (1994). We refer the reader to the
books by Nemhauser andWolsey (1988) and Bertsimas
andWeismantel (2005) for IP reformulation techniques
to potentially address the nonconvexities. However, we
observe that most of them are not directly applicable
to our problem since the objective of interest is a time
dependent neither convex nor concave function.

Our work is related to linearization techniques for
nonlinear IP problems. One common procedure in
this field is to add additional constraints, and possi-
bly introduce new variables, to produce tight (usually
linear) relaxations. It is, of course, necessary to prove
that the new problem is equivalent to the initial one.
We briefly describe two important works in this area.
In Adams et al. (2004), the authors present a strategy
for finding a tighter linear relaxation of a mixed 0-1
quadratic program. In Chaovalitwongse et al. (2004),
the authors propose a new linearization method for
quadratic 0-1 programming problems with linear and
quadratic constraints, which requires only O(kn) addi-
tional continuous variables where k denotes the num-
ber of quadratic constraints.
In this paper, we formulate the POP as a nonlin-

ear binary IP problem. Due to the general nature of
the demand functions, to the best of our knowledge,
none of the existing approaches in the literature apply
directly to our formulation. Instead of solving the non-
linear problem exactly, we consider an approximation
based on linearizing the nonlinear objective function.
The linearization uses the sum of the marginal contri-
butions of a single promotion, and can be viewed as
a first-order Taylor approximation of the total profits
around the regular prices. By showing that the con-
straint matrix of the integer program is totally unimod-
ular, solving the linear relaxation yields the optimal
IP solution. By exploiting the structure of the demand
functions, we derive provable performance guarantees
for our solution method.

As we show later in this paper, the POP for the two
classes of demand functions we introduce is related to
submodular and supermodular maximization. Maxi-
mizing an unconstrained supermodular function was
shown to be a strongly polynomial-time problem (see,
e.g., Schrĳver 2000). In our case, we have several
constraints on the promotions, and as a result, it is
not guaranteed that one can solve the problem effi-
ciently to optimality. In addition, most of the pro-
posed methods to maximize supermodular functions

are not easy to implement and are often not very prac-
tical in terms of running time. Indeed, our industry
collaborators request solving the POP in at most few
seconds and using an available platform like Excel.
Unlike supermodular objectives, maximizing a sub-
modular function is generally NP-hard (see, for exam-
ple, McCormick 2005). Several common problems,
such as max cut and the maximum coverage problem,
can be cast as special cases of this general submodu-
lar maximization problem under suitable constraints.
Typically, the approximation algorithms are based on
either greedy methods or local search algorithms.
The problem of maximizing an arbitrary nonmono-
tone submodular function subject to no constraints
admits a 1/2 approximation algorithm (see, for exam-
ple, Buchbinder et al. 2012, Feige et al. 2011). In addi-
tion, the problem of maximizing a monotone submod-
ular function subject to a cardinality constraint admits
a 1 − 1/e approximation algorithm (e.g., Nemhauser
et al. 1978). In our case, we propose an LP approxi-
mation that does not request any monotonicity or any
structure on the objective. This LP approximation also
provides a guarantee relative to the optimal profit for
two classes of demand. Nevertheless, these bounds are
parametric and not uniform. To compare them to the
existing methods, we compute in Section 7, the values
of these bounds on different demand functions esti-
mated with actual data.

Sales promotions are well studied in marketing (see
Blattberg and Neslin 1990, and the references therein).
The marketing community has observed that for many
FMCG products, temporary price reductions lead to
a future demand reduction, a phenomenon that is
referred to as the post-promotion dip effect. Marketing
researchers typically focus on developing and estimat-
ing demand models, e.g., linear regression or choice
models, to derive managerial insights on promotions
(Cooper et al. 1999, Foekens et al. 1998). For example,
Foekens et al. (1998) study parametric econometrics
models based on scanner data to examine the dynamic
effects of sales promotions. One of the methods used in
the marketing literature to capture the post-promotion
dip effect is to use a demand function that depends
not only on the current price, but also on the prices at
the most recent periods (Mela et al. 1998, Heerde et al.
2000, Macé and Neslin 2004, Ailawadi et al. 2007).

Our work is also related to the field of dynamic
pricing (see, e.g., Talluri and van Ryzin 2005 and the
references therein). More specifically, in the opera-
tions management literature, researchers study sales
promotions from the angle of how to optimize the
dynamic pricing of a product given that consumer
behavior leads to post-promotion dips in demand. One
approach is to build a game-theoretic model of con-
sumers. In Assunção and Meyer (1993), the authors
consider the problem faced by a rational consumer
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regarding optimal purchasing and consumption of a
storable good. In their model, the price in the next
period is assumed to be random (drawn from a sta-
tionary distribution of prices conditional on the last
observed price). In addition, the authors assume that
the seller’s pricing policy is exogenous and random.
In Su (2010), the author develops a model with mul-
tiple consumer types who may differ in their hold-
ing costs, consumption rates, and fixed shopping costs.
The author could solve the dynamic pricing model
for the rational expectation equilibrium, and draws
several managerial insights. An alternative approach
used in the dynamic pricing literature is to model con-
sumers using a reference price model (Kopalle et al.
1996, Fibich et al. 2003, Popescu and Wu 2007, Chen
et al. 2016). The reference price model posits that con-
sumers form an internal reference price for the product
based on past price observations. When the consumer
observes the current price, she compares it to the ref-
erence price as a benchmark. Prices above the refer-
ence price are perceived to be “high,” which leads
to lower demand, whereas prices below the reference
price are perceived to be “low,” leading to an increase
in demand. The papers by Kopalle et al. (1996), Fibich
et al. (2003), Popescu and Wu (2007) study an infinite-
horizon dynamic pricing problem with a reference
price model. In Chen et al. (2016), the authors ana-
lyze a periodic review stochastic inventory model in
which pricing and inventory decisions aremade simul-
taneously. Our paper differs from the models in the
dynamic pricing literature in that our dynamic pricing
problem includes business rules that are relevant, in
practice.
In Ahn et al. (2007), the authors propose a demand

model in which a proportion of customers will wait k
periods after andwill purchase once the posted price of
the product falls below their willingness to pay. Under
this assumption, their demand model depicts the post-
promotion dip effect.
In this paper, we propose two general classes of mul-

tiplicative and additive demand models. The multipli-
cative model is a generalization of the linear regres-
sion model with lagged variables used by Heerde
et al. (2000), Macé and Neslin (2004). In addition, the
demand model we propose can closely approximate
the reference price model used in Kopalle et al. (1996),
Fibich et al. (2003), Popescu and Wu (2007); as well
as the demand model in Ahn et al. (2007). Finally,
our work is related to the field of retail operations,
and more specifically, pricing problems under busi-
ness rules. One of the constraints considered in our
paper imposes the prices to lie in a discrete set. Zhao
and Zheng (2000) consider a dynamic pricing prob-
lem for a fixed inventory perishable product sold over
a finite- (continuous) time horizon. For the case of a
discrete price set, the authors solve the continuous

time dynamic program by applying a discretization
approach and a backward recursion. The computa-
tional complexity of their approach grows linearlywith
the number of discrete-time intervals. Our approach is
different in nature and is based on an LP approxima-
tion that yields a complexity polynomial in the number
of time periods. Subramanian and Sherali (2010) study
a pricing problem for grocery retailers, where prices
are subject to interitem constraints. They propose a lin-
earization technique to solve the problem. Caro and
Gallien (2012) study amarkdown pricing problem for a
fashion retailer, for which the prices are constrained to
be nonincreasing, and some set of items are restricted
to have the same prices over time.

The remainder of the paper is structured as fol-
lows. In Section 3, we describe the model, the assump-
tions, the business rules, and we formulate the POP.
In Section 4, we present an approximate formulation
based on linearizing the objective, which gives rise
to a linear IP. We then show that the IP can, in fact,
be solved as an LP. In Section 5, we consider mul-
tiplicative and additive demand models and derive
tight bounds on the LP approximation relative to the
optimal solution. In Section 6, we consider an exten-
sion of our approach for uncertain demand. Section 7
presents computational results using real data. Finally,
we present our conclusions. Several of the proofs of
the different propositions and theorems are relegated
to the appendix.

3. Model, Assumptions, and
Problem Formulation

In this section, we present a mathematical model of
the POP for an FMCG product. One of our primary
goals is to incorporate problem features that are rel-
evant, in practice. The model was developed through
a collaboration with our coauthors working at Oracle
Retail, and thus we have benefited from the expertise
of Oracle executives as well as retailers.

The manager of an FMCG category in a grocery
retailer faces the POP: for a given product, how to select
a posted price for each period in a finite sales horizon
so as to maximize the retailer’s profit. In the following,
we describe the assumptions underlying our formula-
tion (see Section 3.1) as well as the business rules (see
Section 3.2). Finally, we present a mathematical formu-
lation of the POP in Section 3.3.

3.1. Assumptions
In this paper, we focus on a single-item model of the
POP.

Assumption 1 (Cost of Inventory). At each period t, the
retailer orders inventory from the supplier at a unit cost ct .
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The above assumption holds under the conventional
wholesale price contract, which is frequently used,
in practice, and in the academic literature (see, e.g.,
Cachon and Lariviere 2005, Porteus 1990).

Assumption 2 (Demand is a Deterministic Function of
Prices). The demand in period t is a deterministic function
of the prices chosen by the retailer (p1 , p2 , . . . , pT).

Here, T denotes the length of the horizon. This
assumption is reasonable for FMCG products because
the prices can be used to accurately forecast demand.
This assumption is also supported by our experiments,
which show that a regressionmodel using past prices is
able to predict future demand with a low forecast error
(see estimation results in Section 7 and Figure 4). Since
the estimated deterministic demand functions seem to
accurately model actual demand, for this application,
we can use them as input to the optimization model
without taking into account demand uncertainty. We
also propose an extension of our approach to relax
the deterministic demand assumption, and address the
case where demand is uncertain (see Section 6).

The typical process, in practice, is to estimate a de-
mand model from data and then to compute the opti-
mal prices based on the estimated demand model. In
Section 7, we start with actual sales data from a super-
market, estimate a demand model, and compute the
optimal prices using our model. The demand models
we consider are commonly used by practitioners and
the academic literature (see Heerde et al. 2000, Macé
and Neslin 2004, Fibich et al. 2003).

Post-Promotion Dip in Demand. Aswementioned, the
demand of an FMCG product often has the post-
promotion dip property. In particular, promoting the
product in period u < t, may reduce the demand in
period t (relative to the demand value if the product
was not promoted at time u). This is illustrated in Fig-
ure 2. We model the post-promotion dip property by
assuming that the demand is a function of the current
price and the prices in the M most recent periods:

dt(pt)� ht(pt , pt−1 , . . . , pt−M). (1)

Figure 2. Illustration of the post-promotion dip effect
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Notes. A promotion in week 3 boosts the demand in week 3, but
decreases the demand in the following weeks. Demand then gradu-
ally recovers up to the no-promotion level.

It has been recognized in the marketing literature
that in some retail settings, following a promotion,
there is a decline in sales relative to what sales would
have been in the absence of a promotion. This is
referred to as a post-promotion dip in sales (see, e.g., Macé
and Neslin 2004).

There are multiple possible explanations regard-
ing the post-promotion dip effect. One explanation is
that consumers respond to promotions by purchasing
larger quantities, which they stockpile for future con-
sumption. Another explanation is related to the refer-
ence price effect. Very often, consumers form a reference
price for the product, which is a weighted average of
the recent observed prices. The current demand is then
affected not only by the current price, but also by the
reference price, through the psychological effect of feel-
ing a gain or a loss. If the current price is higher than
the reference price, consumers perceive the current
price as a loss, which decreases demand; conversely,
if the current price is lower than the reference price,
consumers perceive the current price as a gain, which
increases demand. The reference price model has been
used in dynamic pricing problems, see, e.g., Kopalle
et al. (1996), Fibich et al. (2003), Popescu andWu (2007),
Chen et al. (2016).

Alternatively, instead of looking at individual price
effects on demand, one may look at the difference be-
tween the effect of the current price pt relative to some
weighted average of past prices (e.g., pt−1 and pt−2
when M � 2). Equivalently, the consumers use some
sort of weighted average as a reference point. Then, the
two following effects may be observed.

(a) Comparison effect: Consider the case where the
current price pt is higher relative to the past prices pt−1
and pt−2. Then, compared to the possibility that the
consumers could have purchased the product at lower
prices in the past, buying the product at this time (with
the higher price pt) feels like a loss to consumers. The
greater the difference between pt and pt−1 (or pt−2) is,
the greater the sensation of loss the consumers feel for
buying now. Such a comparison induces the consumers
to become less willing to buy at pt , hence decreasing
the demand.

(b) Attachment effect: Consider now the case where
the current price pt is smaller relative to the past prices
pt−1 and pt−2. As the consumers were expecting to pay
a higher price, purchasing the product at the lower
price pt feels like a gain. In addition, the greater the
difference between pt−1 (or pt−2) and pt is, the greater
the sensation of gain the consumers feel. Therefore, the
consumers becomemore attached to the idea of buying
at this period due to this gain feeling. This attachment
effect increases the consumers’ willingness as well as
the demand.
Assumption 3 (Sufficient Inventory). The retailer has suf-
ficient inventory to meet demand in each period, i.e., sales is
equal to demand.
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Remark 1. The assumption that the retailer carries
enough inventory to meet demand does not apply to
all products and all retail settings. For example, it is
common practice in the fashion industry (e.g., Talbots
or Zara) to intentionally produce limited amounts of
inventory. By doing so, a retailer sends a signal to con-
sumers that they should buy the product now at the
regular price. If the consumers decide to wait until the
clearance season, there is a risk that the product would
be sold out. Consumers also expect products to stock
out as the seasons change (e.g., spring to summer).

Unlike fashion items, which go out of season, FMCG
products such as ground coffee or soft drinks are typi-
cally available all year round. These products typically
have shelf lives greater than six months, and customers
have been conditioned to expect that these products
would always be in stock at retail stores. Since these
products are easy to store and have a high degree of
availability, FMCG retailers typically do not use the
risk of stock out to incentivize consumers to buy now.

In addition, as we will show in our computational
experiments, the demand forecast accuracy is high and
the out-of-sample (OOS) metrics are very good (the
OOS R2 and mean absolute percentage error (MAPE)).
In the data we have, we actually observed that the
inventory was not issue and saw very few events of
stock-outs over a two-year period. This can be justified
by the fact that supermarkets have a long experience
with inventory decisions and accumulated large data
sets allowing them to develop sophisticated forecasting
demand tools to support capacity and ordering deci-
sions. Many such models were developed in the last
two decades (e.g., Cooper et al. 1999, Van Donselaar
et al. 2006). Finally, it seems reasonable that con-
sumers buying behavior is easier to predict for gro-
cery products such as ground coffee, relative to fashion
items, which are unique and have short product cycles.
Indeed, fashion involves an impulsive and occasional
purchasing behavior (and hence can be harder to pre-
dict), whereas grocery items are more routinely-based
purchases. Finally, grocery retailers are aware of the
negative effects of stocking out of promoted products
(see, e.g., Corsten and Gruen 2004, Campo et al. 2000).
For all of the above reasons, the statement in Assump-
tion 3 that the retailer carries sufficient inventory to
meet demand in each period is reasonable in the con-
text of FMCG products.

3.2. Business Rules
Business Rule 1 (Discrete Price Ladder). In each pe-
riod t, the price pt must be chosen from a price ladder,
i.e., a set of admissible prices {q0 > q1 > · · ·> qK}, where
q0 is the regular price and q1 , . . . , qK are possible pro-
motional prices.

We can model the business rule mathematically by
writing the price at time t as follows:

pt �

K∑
k�0

qkγk
t , (2)

where γk
t is a binary variable that is equal to 1 if the

price qk is selected at time t, and 0 otherwise. There-
fore, instead of using the prices pt as the set of decision
variables, we use the set of binary variables {γk

t : t �
1, . . . ,T, k � 0, . . . ,K}, which is a total of (K + 1)T vari-
ables. To ensure that a single price is selected for each
time period t, we impose the additional constraints:

K∑
k�0

γk
t � 1 ∀ t .

Business Rule 1 is in contrast to the assumption
made by other papers such as Popescu and Wu (2007),
Kopalle et al. (1996), where the retailer can choose con-
tinuous prices. Note that, in practice, the retailer can
only charge discrete prices. In the supermarket appli-
cations that we were involved in, this was an important
business rule.1 More precisely, the price for each item
at each time period is selected from a discrete set of
prices that consists of a regular price and levels of dis-
counts. In supermarket applications, for example, these
discounted prices have to end by 9 cents or sometimes
by 5 cents.

Remark 2 (Extension to Time-Dependent Price Ladder).
For clarity, in this paper, we make the simplifying
assumption that the price ladder is time independent,
i.e., one can charge pt � qk for all t and k.

One can extend the analysis and results of this paper
to the case where the price ladder is time dependent,
i.e., the price ladder for period t is given by �t

� {q0
t >

q1
t > · · · > qKt

t }. Note that the number of permissible
prices and the minimal price qKt

t can be time depen-
dent. In this case, Equation (2) becomes: pt �

∑K
k�0 qk

t γ
k
t .

Business Rule 2 (Limited Number of Promotions). The
retailer may have to limit the number of promotions for
a given product. This requirement is motivated from
the fact that retailerswish to preserve the image of their
store and not to train customers to be deal seekers. For
example, it may be required to promote a particular
product at most L � 3 times during the quarter. This
constraint can be expressed mathematically as follows:

T∑
t�1

K∑
k�1

γk
t 6 L. (3)

Business Rule 3 (Separating Periods between Consecu-
tive Promotions). A common additional requirement is
to space out two successive promotions by a minimal
number of separating periods, denoted by S. Indeed, if
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successive promotions are too close to one another, this
may hurt the store image and incentivize consumers to
behave more as deal seekers. In addition, this type of
business requirement is often dictated directly by the
manufacturer that wants to restrict the frequency of
promotions to preserve the image of the brand. Math-
ematically, we have

t+S∑
τ�t

K∑
k�1

γk
τ 6 1 ∀ t . (4)

It is important to understand why, in practice, Busi-
ness Rules 2 and 3 are commonly adopted by FMCG
retailers to limit the frequency of price promotions.
From an optimization point of view, these business
rules appear to be unnecessarily restrictive. Mathe-
matically, the larger the promotion limit L and the
smaller the separating periods S, the larger the feasible
region of the optimization problem, and therefore the
greater the optimal profit. Although relaxing or remov-
ing Business Rules 2 and 3 will increase short-term
profitability, retailers still follow these business rules
as they recognize that running promotions too fre-
quently, can hurt their long-term profit. Frequent pro-
motions can negatively affect a retailer’s brand image
by conditioning consumers to perceive regular prices
as bad deals. Finally, we note that, in some cases, Busi-
ness Rules 2 and 3 may be soft constraints. In this
case, one can perform a sensitivity analysis by solv-
ing the POP for different values of L and S (see such
an example in Section 7.3). If a slight change in the
parameters could lead to a significant increase in profit,
upper management could be convinced to relax the
constraints on L and S by renegotiatingwith the appro-
priate manufacturer.

3.3. Problem Formulation
We next present our formulation of the single-item
POProblem:

max
γk

t

T∑
t�1
(pt − ct)dt(pt)

s.t. pt �

K∑
k�0

qkγk
t

T∑
t�1

K∑
k�1

γk
t 6 L

t+S∑
τ�t

K∑
k�1

γk
τ 6 1 ∀ t

K∑
k�0

γk
t � 1 ∀ t

γk
t ∈ {0, 1} ∀ t , k ,

(POP)

where:
• T—Number of weeks in the horizon (e.g., one

quarter composed of 13 weeks).

• L—Limitation on the number of promotions.
• S—Number of separating periods (separation

time between two successive promotions).
• Q� {q0 > q1 > · · ·> qk > · · ·> qK}—Price ladder, i.e.,

the discrete set of admissible prices.
• q0—Regular (nonpromoted) price, which is the

maximum price in the price ladder.
• qK—Minimum price in the price ladder.
• ct—Unit cost of the item at time t.
Note that the only decisions are which price to

choose from the price ladder at each time (i.e.,
the binary variables γk

t ). We denote by POP(p) (or
equivalently, POP(γ)) the objective function of (POP)
evaluated at the vector p (or equivalently, γ). This for-
mulation can be applied to a general time-dependent
demand function dt(pt) that explicitly depends on the
current price pt , and on the M past prices as well as on
demand seasonality and trend. Specific examples are
presented in Section 5.

Remark 3 (End-of-Horizon Effects). The POP formula-
tion above may be affected by the end-of-horizon effect
(see, e.g., Herer and Tzur 2001). More specifically, the
post-promotion dip in demand induces the promo-
tions in periods t ∈ (T −M,T] to reduce the demand
in periods t ∈ (T,T + M]. Since the POP only consid-
ers the demand during periods t ∈ [1,T], it ignores the
demand reduction caused by promotions in periods
t ∈ (T −M,T]. As a result, it creates an artificial advan-
tage to schedule promotions at the end of the horizon.
One of the methods to eliminate the end-of-horizon
effect is to modify the formulation (POP) by extending
the time horizon from [1,T] to [1,T + M], and adding
the constraints pt � q0 for t ∈ (T,T + M]. The modi-
fied formulation takes into account the full effect of a
post-promotion dip in demand for promotions in peri-
ods t ∈ (T −M,T], thus eliminating the end-of-horizon
effect (a similar argument applies for the beginning
horizon effect). For simplicity, we focus in the remain-
der of the paper on the POP formulation above, rather
than the modified version just described. We note that
the analysis and results remain valid for the modified
formulation.

The POP is a nonlinear IP (see Figure 3) and is, in
general, hard to solve to optimality even for very spe-
cial instances. Even getting a high-quality approxima-
tion may not be an easy task. First, even if we were
able to relax the prices to take continuous values, the
objective is, in general, neither concave nor convex due
to the cross-time dependence between prices (see Fig-
ure 3). Second, even if the objective was linear, there is
no guarantee that the problem can be solved efficiently
using an LP solver because of the integer variables.
We propose in the next section an approximation based
on a linear programming reformulation of the POP.
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Figure 3. Profit function for a demand with post-promotion
dip effect
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4. IP Approximation
By looking carefully at several data sets, we observed
that for many products, the promotions often last for
one week, and that two consecutive promotions are at
least three weeks apart. If the promotions are subject
to a separating constraint as in (4), then the interaction
between successive promotions should be fairly weak.
Therefore, by ignoring the second-order interactions
between promotions and capture only the direct effect
of each promotion separately, we introduce a linear IP
formulation that yields a “good” solution. More specif-
ically, we approximate the nonlinear POP objective by
a linear approximation based on the sum of unilateral
deviations.
To derive the IP formulation of the POP, we first

introduce some additional notation. For a given price
vector p � (p1 , . . . , pT), we define the function (which
is also named POP in a slight abuse of notation) that
computes the total profit throughout the horizon:

POP(p)�
T∑

t�1
(pt − ct)dt(pt). (5)

We define the price vector pk
t (with T elements) as

follows:

(pk
t )τ �

{
qk if τ � t
q0 otherwise.

In otherwords, the vector pk
t has the promotion price qk

at time t and the regular price q0 (no promotion) is

used at all the remaining time periods. We also denote
the regular price vector by p0 � (q0 , . . . , q0), for which
the regular price is set at all times. We define the coef-
ficients bk

t as

bk
t � POP(pk

t ) −POP(p0). (6)

These coefficients represent the unilateral deviations in
total profit by applying a single promotion. One can
compute each of these TK coefficients before starting
the optimization procedure. Since one can do these cal-
culations done offline, it does not affect the optimiza-
tion complexity. We are now ready to formulate the IP
approximation of the POP:

POP(p0)+max
γk

t

T∑
t�1

K∑
k�1

bk
t γ

k
t

s.t.
T∑

t�1

K∑
k�1

γk
t 6 L

t+S∑
τ�t

K∑
k�1

γk
τ 6 1 ∀ t

K∑
k�0

γk
t � 1 ∀ t

γk
t ∈ {0, 1} ∀ t , k.

(IP)

We make the following observations about the (IP)
problem.
Observation 1. The constraints in (IP) are identical to
the constraints of the original problem (POP). Con-
sequently, the two problems have the same feasible
region.
Observation 2. The business rules from the constraint
set are modeled as linear constraints. Consequently,
the IP formulation is a linear problem with integer
variables.
Observation 3. The objective function in (IP) is a lin-
ear approximation of the objective in (POP). More pre-
cisely, it is a first-order discrete Taylor expansion of
the the (POP) objective around the point γ0

t � 1 for t �
1, 2, . . . ,T.

In a slight abuse of notation, we define a function
also named IP:

IP(p)�
T∑

t�1

K∑
k�1

bk
t γ

k
t , (7)

where γk
t is such that pt �

∑K
k�1 qk · γk

t . Note that
although the IP function is linear in the binary variable
space γk

t , in general it is not linear in the price space p.
Observation 4. The objective function in (IP) captures
the postpromotion dip effect but neglects the effect of
interactions between two or more promotions. In other
words, the POP and IP functions coincide at price vec-
tors with zero or a single promotion, but may diverge
at price vectors with two or more promotions.
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Observation 5. We next present a reformulation of (IP)
based on the following observation. Let us define the
binary decision variables γt �

∑K
k�1 γ

k
t , and the coef-

ficients b̃t � maxk�1,...,K bk
t ∀ t � 1, . . . ,T. Then, (IP) is

equivalent to the following compact formulation:

max
γk

t

T∑
t�1

b̃tγt ,

s.t.
T∑

t�1
γt 6 L,

t+S∑
τ�t
γτ 6 1, ∀ t ,

γt ∈ {0, 1}, ∀ t . (CIP)

The compact integer programming (CIP) formulation
(CIP) provides the following insight. One can separate
the two types of decisions: (i) the promotion timing
and (ii) the promotion depth. In particular, one can pre-
process and decide the best promotion depth at each
time period (i.e., if we end up deciding to promote at
time t, we will use the promotion price pk

t ) by pick-
ing the highest value of bk

t over k � 0, 1, . . . ,K at each
period t. Then, one can optimally decide the promotion
scheduling by solving problem (CIP).
As we mentioned, the IP approximation becomes

more accurate when the number of separating periods
S becomes large. In addition, the IP solution is optimal
when there is no correlation between the time periods
(i.e., when the demand at time t depends only on the
current price and not on past prices) or when the num-
ber of promotions allowed is equal to one (L � 1). The
instances where the IP is optimal are summarized in
the following proposition.
Proposition 1. Under either of the following four condi-
tions, the IP approximation coincides with the POP optimal
solution. (a) Only a single promotion is allowed, i.e., L � 1.
(b) Demand at time t depends on the current price pt and
not on past prices (i.e., M � 0). (c) The number of separat-
ing periods is at least equal to one (S > 1), and the demand
at time t depends on the current and last prices only (i.e.,
M � 1). (d) More generally, when the number of separating
periods is at least the memory (i.e., S >M).

Proof of Proposition 1. (a) When L � 1, only a single
promotion is allowed, and therefore the IP approxima-
tion is equivalent to the POP. Indeed, the IP approxi-
mation evaluates the POP objective through the sum of
unilateral deviations.
(b) In the second case, the demand at time t depends

only on the current price pt and not on past prices.
Consequently, the objective function is separable in
time (note that the periods are still tied together
through some of the constraints). In this case, the IP
approximation is exact since each promotion affects
only the profit at the time it was made.

(c) We next show that the IP approximation is exact
for the case where S > 1 and the demand at time t
depends on the current and last period prices only.

Note that, in this case, the promotions affect only the
current and next period demands, but not the demand
in periods t + 2, t + 3, . . . ,T. We consider a price vector
with two promotions at times t and u (i.e., pt � q i and
pu � q j) and no promotion at all the remaining times,
denoted by p{pt � q i , pu � q j}. From the feasibility with
respect to the separating constraints, we know that t
and u are separated by at least one time period. We
next show that the profit from having both promotions
is equal to the sum of the incremental profits from each
promotion separately; that is,

POP(p{pt � q i , pu � q j}) −POP(p0)
� POP(p{pt � q i}) −POP(p0)
+POP(p{pu � q j}) −POP(p0). (8)

(d) One can extend the previous argument to gen-
eralize the proof for the case where the number of
separating periods is larger or equal than the memory.
Indeed, if S >M, the IP approximation is not neglecting
correlations between different promotions, and hence
optimal. �

In general, solving an IP can be difficult from a com-
putational complexity standpoint. In our numerical
experiments, we observed that Gurobi solves (IP) (or
problem (CIP)) in less than a second. This follows from
the fact that (IP) solves quickly has a feasible region
that is an integral polyhedron.

Proposition 2. The optimization problem (CIP) admits an
integral feasible region.

Proof of Proposition 2. Consider the problem (CIP).
Observe that the constraint matrix of the feasible
region has the consecutive ones property, and hence
is totally unimodular. As a result, the formulation is
integral. �

Given that (CIP) has a feasible region that is an inte-
gral, we can solve (CIP) efficiently by solving the LP
relaxation:

POP(p0)+max
γk

t

T∑
t�1

b̃tγt ,

s.t.
T∑

t�1
γt 6 L,

t+S∑
τ�t
γτ 6 1, ∀ t ,

0 6 γk
t 6 1, ∀ t . (LP)
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5. Demand Models
This section is organized as follows. In Section 5.1,
we empirically motivate the post-promotion dip effect
by using supermarket data to estimate the commonly
used log–log demand model. We then propose three
classes of demand functions that capture the post-
promotion dip effect, and admit as special cases several
models used, in practice. In Section 5.2, we study a
general class of demand functions where past prices
have a multiplicative effect on current demand. In
Appendix EC.5, we consider demand functions where
past prices have additive effects on current demand.
For each class of demand functions (multiplicative and
additive), we exploit the structure of the function to
derive bounds on the quality of the LP approximation.

5.1. Empirical Motivation
In this section, we empirically study the post-promo-
tion dip effect by analyzing supermarket data. The
analysis presented here is brief—amore detailed expo-
sition on the data and estimationmethods can be found
in Section 7.
Our data set consists of 117 weeks of sales data from

a supermarket for several brands of ground coffee. We
divide our data in a training set of 82 weeks and a
testing set of 35 weeks. Our basic demand model is
the log–log demand model in (9), which is commonly
used in industry (for example, by Oracle Retail) and
in academia (see, e.g., Heerde et al. 2000, Macé and
Neslin 2004). We estimate two versions of the model
with different values of the memory parameter M.

• Model 1 is estimated with M � 0 in (9). This cor-
responds to a model without the post-promotion dip
effect, so the current demand dt depends only on the
current price pt and not on past prices.

• Model 2 is estimated with M � 2 in (9). This cor-
responds to a model with a post-promotion dip effect,
i.e., the current demand dt depends on the current
price pt and on the prices in the two prior weeks pt−1
and pt−2.
After estimating the demand model parameters

using the training set, we predict the sales for the test
set and compute the forecast accuracy metrics. The
forecast metrics for the product labeled as “Brand1”2
are shown in Table 1. The forecast metrics (MAPE,
OOS R2, and revenue bias) are formally defined in Sec-
tion 7. It can be seen from Table 1 that the forecast accu-
racy of Model 2 is significantly higher relative to the

Table 1. Forecast accuracy for “Brand1” (ground coffee)

Variable Model 1 (M � 0) Model 2 (M � 0)

MAPE 0.145 0.116
OOS R2 0.827 0.900
Revenue bias 1.069 1.059

Table 2. A subset of the estimation results for two coffee
brands

Variable Coefficient Std. error p-value

Brand1
log pt −3.277 0.231 2e−16∗∗∗
log pt−1 0.518 0.229 0.024∗
log pt−2 0.465 0.231 0.045∗

Brand2
log pt −4.434 0.427 2e−16∗∗∗
log pt−1 1.078 0.423 0.011∗
log pt−2 0.067 0.413 0.870

Brand1
MAPE 0.116
OOS R2 0.900
Revenue bias 1.059

Brand2
MAPE 0.097
OOS R2 0.903
Revenue bias 1.017

Notes. IS adjusted R2. Significance codes: ∗indicates significance
<0.05, ∗∗∗indicates significance < 0.001.

forecast accuracy of Model 1. In addition, the regres-
sion statistics for Model 2 are shown in Table 2. We
note that the predicted sales for “Brand1” is given by
the equation:

log dt � β0
+ β1t + β2 WEEKt − 3.277 log pt

+ 0.518 log pt−1 + 0.465 log pt−2 , (9)

where β0 and β1 denote the brand intercept and the
trend coefficient, respectively, and β2 � [β2

t ]; t �1, . . . , 52
is a vector of weekly seasonality coefficients. Table 2
shows that the price elasticity coefficients of pt−1 and
pt−2 for Model 2 are statistically significant. Finally,
since the coefficients of the past prices pt−1 and pt−2
are positive, we conclude that the post-promotion dip
property holds for the demand function in (9).

5.2. Multiplicative Demand
In the following, we refer to (IP) as the LP approxima-
tion and denote its optimal solution by γLP. In addition,
LP(p) (or, equivalently, LP(γ)) denotes the objective
function of (LP) evaluated at the vector p (or equiva-
lently γ).
In this section, we assume that past prices have a

multiplicative effect on current demand, so that the
demand at time t can be expressed as

dt � ft(pt) · g1(pt−1) · g2(pt−2) · . . . · gM(pt−M). (10)

Note that the current price elasticity along with the
seasonality and trend effects are captured by the func-
tion ft(pt). The function gk(pt−k) captures the effect of a
promotion k periods before the current period, i.e., the
effect of pt−k on the demand at time t. The parameter
M represents the memory of consumers with respect
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to past prices and can be estimated from data. As we
verify in Section 7 using actual data, it is reasonable to
assume the following for the functions gk( · ).

Assumption 4 (Conditions for Multiplicative Demand).
1. Past promotions have a multiplicative reduction effect

on current demand, i.e., 0 < gk(p) 6 1.
2. Deeper promotions result in larger reduction in future

demand, i.e., for p 6 q, we have: gk(p) 6 gk(q) 6 gk(q0)� 1.
3. The reduction effect is nonincreasing with time after

the promotion: gk is nondecreasing with respect to k, i.e.,
gk(p) 6 gk+1(p).

In addition, we adopt the convention that gk(p) � 1
for all k >M, so that no effects are present after M peri-
ods. We next discuss Assumption 4 in more detail. The
nominal part of the demand ft(pt) is assumed to be
nonnegative so when the factors that depend on past
prices are absent, the demand is nonnegative. The first
requirement gk(p) 6 1 follows from the fact that pro-
motions in past periods may reduce current demand
(capturing the postpromotion dip effect). For example,
the consumers can be reference dependent by look-
ing at the difference between the current price pt and
the effects of the past M prices. The second part of
Assumption 4 relates to the comparison effect of con-
sumers. In particular, by comparing the current price
pt to the fact that prices were lower in the past, it cre-
ates a feeling of loss that reduces the current demand.
In addition, this feeling of loss is larger when the past
promotion is deeper. Finally, the third partmay suggest
that the more recent promotions have a higher impact
on current demand relative to older promotions. This
implies that the consumers’ reference points are mod-
eled in a similar fashion as an exponential smoothing.

Remark 4 (General Demand Model). The demand
in (10) represents a general class of demand models,
which admits as special cases several models used, in
practice. For example, the demand model in Heerde
et al. (2000) or a special case of the model in Macé and
Neslin (2004) is of the general form:

log dt � a0 + a1 log pt +

τ∑
u�1

log βu log pt−u .

Next, we present upper and lower bounds on the
performance guarantee of the LP approximation rela-
tive to the optimal POP solution for the demandmodel
in (10).

5.2.1. Bounds on Quality of Approximation. We
bound the difference in profit between the POP and
LP solutions based on the effective maximal number
of promotions, denoted by L̃:

L̃ � min{L, Ñ}, where Ñ �

⌊
T − 1
S + 1

⌋
+ 1. (11)

We assume that L > 1 (the case of L� 0 is not interesting
as no promotions are allowed). Since Ñ > 1, we also
have L̃ > 1.

Theorem 1. Let γPOP be an optimal solution to (POP) and
let γLP be an optimal solution to (LP). Then,

1 6
POP(γPOP)
POP(γLP) 6

1
R
, (12)

where R is defined by

R �

L̃−1∏
i�1

gi(S+1)(qK), (13)

with R � 1 by convention if L̃ � 1.

Proof. Note that the lower bound follows directly from
the feasibility of γLP for the POP. We next prove
the upper bound by showing the following chain of
inequalities:

R ·LP(γLP)
(i)
6 POP(γLP)

(ii)
6 POP(γPOP)

(iii)
6 LP(γPOP)

(iv)
6 LP(γLP).

Inequality (i) follows from Proposition 3. Inequal-
ity (ii) follows from the optimality of γPOP, and
inequality (iii) follows from part 2 of Lemma 1. Finally,
inequality (iv) follows from the optimality of γLP.
Therefore we obtain:

R � R ·
POP(γPOP)
POP(γPOP) 6 R ·

LP(γLP)
POP(γPOP)

6
POP(γLP)
POP(γPOP) 6

POP(γPOP)
POP(γPOP)

� 1. �

Theorem 1 relies on Lemma 1 and Proposition 3.
Before stating Lemma 1, we first introduce the follow-
ing notation.

Let A � {(t1 , k1), . . . , (tN , kN)} with N 6 L be a set of
promotions with 1 6 t1 < t2 < · · · < tN 6 T. In other
words, at each time period tn ; ∀ n � 1, . . . ,N the pro-
motion price qkn is used, whereas at the remaining time
periods, the regular price q0 (no promotion) is set. We
define the price vector associated with the set A as

(pA)t �
{

qkn if t � tn for some n � 1, . . . ,N ;
q0 otherwise.

To further illustrate the above definition, consider the
following example.

Example. Consider Q � {q0 � 5 > q1 � 4 > q2 � 3}, and
T � 5. Suppose that the set of promotions A � {(1, 1),
(3, 2)}, i.e., we have two promotions at times 1 and 3
with prices q1 and q2, respectively. Then, pA � (q1 , q0 ,
q2 , q0 , q0)� (4, 5, , 5, 5). It is also convenient to define the
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indicator variables corresponding to the set of promo-
tions A as follows:

(γA)kt �
{

1 if (pA)t � qk ;
0 otherwise.

Note that matrix (γA)kt has dimensions (K + 1) × T. In
the previous example, we have

γA �


0 1 0 1 1
1 0 0 0 0
0 0 1 0 0

 ,
Recall that the LP objective function is given by

LP(γ)� POP(p0)+
T∑

t�1

K∑
k�1

bk
t γ

k
t ,

where bk
t is defined in (6).

Lemma 1 (Submodular Effect of the Last Promotion on
Profits). 1. Let A � {(t1 , k1), . . . , (tn , kn)} be a set of promo-
tions with t1 < t2 < · · ·< tn (n 6 L) and letB⊂A. Consider
a new promotion (t′, k′) with tn < t′. If the new promotion
(t′, k′), when added to A, yields a larger profit than pA;
that is,

POP(γA∪{(t′ , k′)}) > POP(γA), (14)

then the promotion (t′, k′) yields a larger marginal profit
increase for pB than for pA; that is,

POP(γA∪{(t′ , k′)}) −POP(γA)
6 POP(γB∪{(t′ , k′)}) −POP(γB). (15)

2. Let γPOP be an optimal solution for the POP. Then,
POP(γPOP) 6 LP(γPOP).

Note that Lemma 1 does not guarantee that the sub-
additivity property (15) holds for a general feasible
solution γ, but only if γ satisfies condition (14). For-
tunately, the required condition in (14) is always auto-
matically satisfied for the optimal POP solution. The
proof of Lemma 1 can be found in Appendix EC.1.
Lemma 1 states that for amultiplicative demandmodel
as in (10), the POP profit is submodular in promo-
tions (for certain relevant sets of promotions). Con-
sequently, it supports intuitively the fact that the LP
approximation overestimates the POP objective, i.e.,
POP(γPOP) 6 LP(γPOP).

By using Lemma 1, one can see that the POP profit is
submodular in the number of promotions. This means
that themarginal effect on an additional promotion has
a smaller impact when we already have many promo-
tions in the selling season. As a result, scheduling cor-
rectly the first few promotions is very important for the
retailer and a myopic solution (that does not take into
account the future time periods) may perform badly.

The main insight from this result is as follows. Recall
that we have shown the submodularity property for
multiplicative demand models, whereas for additive
demand, the POP profits are supermodular in promo-
tions (as we will show in Appendix EC.5). One can
naturally believe (and most of category managers we
interacted with share this intuition) that the true effect
observed, in practice, is closer to submodular. This fol-
lows from the fact that, if there are many promotions,
the effect on profit is not as large as for the first few
promotions, where many consumers will switch and
buy the product. Consequently, to capture this feature,
one should consider a multiplicative demand model.
In particular, the linear demand model (that is com-
monly used in many applications) is not appropriate in
this setting. Interestingly, most of the additive demand
models we tried did not fit the data as well as mul-
tiplicative demand models. One possible explanation
(that the additive models do not yield a good fit to the
data) may come from the fact that the POP profit is
supermodular, whereas, in practice, it is submodular
(and hence, a multiplicative model is more suitable).

Proposition 3. For any feasible vector γ, we have POP(γ)
> R ·LP(γ).
The proof of Proposition 3 can be found in Ap-

pendix EC.2. It provides a lower bound for the POP
objective by applying the linearization and compensat-
ing by the worst-case aggregate factor R.
Using Theorem 1, one can solve the LP approxima-

tion (efficiently) and obtain a guarantee relative to the
optimal POP solution. These bounds are parametric
and can be applied to any general demand model in
the form of (10). In addition, as we illustrate in Sec-
tion 5.2.2, these bounds perform well, in practice, for
a wide range of parameters. We next show that the
bounds of Theorem 1 are tight.

Proposition 4 (Tightness of the Bounds for Multiplicative
Demand). 1. The lower bound in Theorem 1 is tight. More
precisely, for any given price ladder, L, S, and functions gk ,
there exist T, costs ct , and functions ft such that

POP(γPOP)� POP(γLP).

2. The upper bound in Theorem 1 is asymptotically
tight. For any given price ladder, S, and functions gk ,
there exists a sequence of POPs {POPn}∞n�1, each with a
corresponding LP solution γLP

n and optimal POP solu-
tion γPOP

n such that

lim
n→∞

POPn(γPOP
n )

POPn(γLP
n )

�
1

R∞
,

where we denote the bound with n promotions by:
Rn �

∏n−1
i�1 gi(S+1)(qK), with R0 � 1 by convention. We

then define the following limit: R∞ � limn→∞ Rn .
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The proof of Proposition 4 can be found in Ap-
pendix EC.3.

Note that our analytical bound R from Equa-
tion EC.3 depends only on the minimal element of the
price ladder qK . As a result, it provides a guarantee
that does not depend on the (unknown) optimal pric-
ing policy. One advantage is that one can evaluate the
bound very easily. The drawback is that this guaran-
tee can potentially be far from the attained profit (even
though the bound is tight, as we show in Proposi-
tion 4). If we happen to have further knowledge about
the optimal solution, one can then improve the bound.
For example, if we know that the minimal price will
be used at most twice, one can incorporate this infor-
mation and obtain a better refined bound. However, in
most cases, it is very hard to have some trustful infor-
mation about the optimal pricing policy. Consequently,
our bound provides a performance guarantee that does
not depend on the optimal policy. This observation also
supports the fact that the actual performance, i.e., the
actual profit ratio POP(γLP)/POP(γPOP) is most of the
time closer to 1 relative to R, as we illustrate next.
5.2.2. Discussing the Bounds. We summarize the
main findings regarding the behavior and quality of
the bounds we have developed in the previous section.
Recall that solving the POP can be hard, in practice, and
one can instead implement the LP solution. The result-
ing profit is equal to POP(γLP), whereas in theory, we
could have obtained a maximum profit of POP(γPOP).
In our computational experiments, we examine the
gap between POP(γLP) and POP(γPOP) as a function of
the various problem parameters. In addition, we com-
pare the ratio between POP(γPOP) and POP(γLP) rela-
tive to the upper bound in Theorem 1 equal to 1/R.
As we previously noted, the bounds depend on four
different parameters: the number of separating peri-
ods S, the number of promotions allowed L, the effect
of past prices (i.e., the value of the memory parame-
ter M as well as the magnitude of the functions gk( · )),
and the minimal price qK . Below, we summarize the
effect of each of these factors for the following demand:
log dt(p) � log(10) − 4 log pt + 0.5 log pt−1 + 0.3 log pt−2 +

0.2 log pt−3 + 0.1 log pt−4, with T � 9.
The details of the tests are presented in Appendix

EC.4 and are summarized here: (a) In most cases, the
LP solution achieves a profit that is very close to opti-
mal. In particular, the actual optimality gap (between
the POP objective at optimality versus evaluated at
the LP solution) seems to be of the order of 1%–2%
and is much smaller than the upper bound in The-
orem 1. (b) The upper bound 1/R varies between 1
and 1.33 depending on the values of the parameters.
(c) As S increases, the upper bound 1/R improves.
Indeed, the promotions are further apart in time,
reducing the interaction between promotions, and
improving the quality of the LP approximation. For

values of S > 1, the upper bound is at most 1.11 in this
example. In practice, typically the number of separat-
ing periods is at least 1 but often two to four weeks.
(d) For values of L between 1 and 8, the upper bound
is at most 1.23 in this example. (e) The upper bound
decreases with qK and is at most 1.32, when a 50%
promotion is allowed. If we restrict to a maximum of
30% promotion price, the bound becomes 1.14. (f) The
upper bound increases with the memory parameter M
and is at most 1.23 in this example.

In each of our experiments, the profit of the LP solu-
tion is close to the profit of the optimal solution. The
maximum observed theoretical bound on the profit
ratio was below 1.35, whereas the maximum observed
actual profit ratiowas below 1.02. Equivalently, the the-
oretical bound predicts that the LP solution will attain
82% of the profit of the optimal POP solution in the
worst case, whereas, in practice, the LP solution attains
approximately 99% of the optimal profit. We observed
that in many cases, the actual profit ratio was signifi-
cantly better relative to the theoretical bound.

To explain why the LP solution provides such a good
profit ratio, we next consider two different scenarios
characterized by the strength of the post-promotion
dip effect. Recall that the LP approximation can be
viewed as a first-order Taylor expansion around the
regular price. Therefore the LP objective captures
exactly the effect of any single promotion, but neglects
the higher-order terms, which capture the interaction
of multiple promotions.

1. In the first scenario, the post-promotion dip effect
is weak, i.e., the memory parameter M is small and/or
the functions gk( · ) are close to 1. It is clear that for such
cases, the LP approximation performswell, because the
interaction between multiple promotions is weak.

2. In the second scenario, the post-promotion dip
effect is strong, i.e., the memory parameter M is large
and/or the functions gk( · ) are not close to 1. In
this case, the terms we neglect (interactions between
promotions) can be significant. However, due to a
strong post-promotion dip effect, it becomes optimal to
space out the promotions in time, as a promotion will
reduce future demand. Consequently, the strong post-
promotion dip effect drives the optimal solution to
automatically space out the promotions.When the pro-
motions are far from each other, our LP approximation
performs well; this is because the further two promo-
tions are apart from each other, the weaker their inter-
actions through the functions gk( · ) (seeAssumption 4).

In conclusion, the LP approximation performs well
in both regimes due to the nature of the post-
promotion dip effect that drives the optimal solution
in a good direction (i.e., to space out promotions). In
addition, this LP approximation gives rise to interest-
ing insights, which are discussed in Section 7.
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6. Extension to Uncertain Demand
In this section, we extend our solution approach for the
case where the demand is uncertain. We next discuss
the analysis and results.
We assume that the demand function at time t,

dt(pt , pt−1 , . . . , pt−M) can be one of J different scenar-
ios (e.g., different functional forms or a single function
with different parameters values). We denote each sce-
nario by d j

t ( · ); ∀ j � 1, . . . , J. For example, one can fit
several structural forms to the data (e.g., log–log and
linear). Alternatively, one can consider a single form
(such as log–log), estimate the model parameters, and
then assume that each estimated parameter lies within
some given confidence interval (see a concrete exam-
ple in Section 7.4). Our goal is to solve the POP for this
setting. We consider two different types of objectives:
(i) a robust formulation that maximizes the worst-case
scenario over the J instances and (ii) an expectation
formulation, where we maximize the expected profit
weighted by the probability of each demand scenario.
The robust formulation is given by

POPR
� max

p1 ,p2 ,...,pT

min
j�1,..., J

POP j(p1 , p2 , . . . , pT), (16)

subject to the usual constraints. Here, POP j(p1 , p2 ,
. . . , pT) corresponds to the total profit over the hori-
zon T, where one uses the demand function from sce-
nario j. Note that the constraint set is not affected by
the scenario and is the same for all j � 1, . . . , J.

We propose the following method to solve prob-
lem (16). First, solve the POP problem for each scenario
j � 1, . . . , J separately to obtain J solutions, denoted
by p∗j . Since each scenario is solved by the LP approx-
imation, this can be done efficiently. Second, evaluate
each objective POPk at each solution p∗j . Consequently,
we have J2 such evaluations. Third, identify the min-
imal value of the J2 evaluations. The solution p∗` that
attains this minimal value is called the robust solution
and the corresponding objective is denoted by POPR.
This way, one can obtain a solution that is robust for
any of the J scenarios and will account for demand
uncertainty. Note that this method of solving prob-
lem (16) is not always optimal, but rather an efficient
heuristic (since the objective is not linear, one cannot
directly use robust optimization techniques to solve a
single LP). Note also that one can extend the analytical
bound fromTheorem 1 to this setting. In particular, one
can compute the bound for each scenario j � 1, . . . , J
separately, denoted by R j . Then, the minimal bound
over all the J scenarios yields a bound for problem (16).

One concern with the above method is that it may
be too conservative. We address this concern in Sec-
tion 7.4, where we test this approach using sales data
from a supermarket retailer.

The expectation formulation is given by

POPA
� max

p1 ,p2 ,...,pT

J∑
j�1

prob j POP j(p1 , p2 , . . . , pT), (17)

subject to the usual constraints. Here, prob j corre-
sponds to the probability (or relative confidence) of
scenario j (∑J

j�1 prob j � 1). For example, the probability
prob j can be computed by using the relative values of
some forecast metrics such as R2 and MAPE for each
scenario. Note that when prob j � 1 for a particular sce-
nario, problem (17) reduces to the basic problem with-
out any demand uncertainty. Note also that one can
show that POPA > POPR for any given probability dis-
tribution vector prob j ; ∀ j � 1, . . . , J. Finally, one can see
that problem (17) is equivalent to the POP when the
demand function is replaced by the expected demand
given by ∑J

j�1 prob j d
J
t ( · ). Consequently, one can apply

the LP approximation method to solve problem (17)
and derive the analytical bound on the quality of the
approximation.

In conclusion, we proposed two methods (that re-
quire to solve a small number of LPs) that allow us
to handle demand uncertainty for our problem. We
will test and compare the two methods using our real-
world example in Section 7.4 and demonstrate that our
solution is robust to demand forecast errors.

7. Case Study
To quantify the value of our promotion optimization
model, we perform an end-to-end experiment where
we start with data from an actual retailer, estimate
the demand model we introduce, validate it, compute
the optimized prices from our LP approximation, and
finally compare them with actual prices implemented
by the retailer. In this section, following the recom-
mendation of our industry collaborators, we perform
detailed computational experiments for the log–log
demand, which is a special case of the multiplicative
model (10) and often used, in practice.

7.1. Estimation Method
We obtained customer transaction data from a grocery
retailer. The structure of the raw data is the customer
loyalty card ID (if applicable), a time stamp, and the
purchased items during that transaction. In this paper,
we focus on the coffee category at a particular store.
For the purposes of demand estimation, we first aggre-
gated the sales at the brand week level. It seems natu-
ral to aggregate the sales data at the week level as we
observe that typically, a promotion starts on a Monday
and ends on the following Sunday. Our data consists of
117 weeks from 2009 to 2011. For ease of interpretation
and to keep the prices confidential, we normalize the
regular price of each product to 1.
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To predict demand as a function of prices, we
estimate a log–log (power function) demand model
incorporating seasonality and trend effects (similarly,
as in (9)):

log dit � β0 BRANDi + β
1t + β2 WEEKt

+

M∑
m�0

β3
im log pi , t−m + εt , (18)

where i and t denote the brand and time indices, dit
denotes the sales (which are equal to the demand,
as we discussed in Section 3) of brand i in week t,
BRANDi and WEEKt denote brand and week indi-
cators, and pit corresponds to the average per unit
selling price of brand i in week t. β0 and β2 are vec-
tors with components for each brand and each week,
respectively, whereas β1 is a scalar that captures the
trend. Note that the seasonality parameters β2 for each
week of the year are jointly estimated across all the
brands in the category. The additive noises εt ; ∀ t �
1, . . . ,T account for the unobserved discrepancies and
are assumed to be normally distributed and i.i.d. Sim-
ilar demand models have been used in the literature,
e.g., Heerde et al. (2000), Macé and Neslin (2004).

The demand in (18) is a multiplicative model, which
assumes that the brands share a common multiplica-
tive seasonality; but each brand depends only on its
own current and past prices; and the independent vari-
ables are assumed to have multiplicative effects on
demand. In particular, the model incorporates a trend
effect β1, weekly seasonality β2, and price effects β3.
When the memory parameter M � 0, only the cur-
rent price affects the demand in week t. When the
memory parameter M � 2, then the demand in week t
depends on the current price pt , and also on the price
of the two previous weeks pt−1 and pt−2. The memory
parameter M is estimated from data as follows.We first
incorporate all the past prices (i.e., pt−1 , pt−2 , . . . , pt−T)
in the regression model and observe that only the M
first ones (depending on the type of product and the
specific store, M was between 1 and 4) were statisti-
cally significant, i.e., the p-value was less than 0.05 (see
Table 2). We then remove the nonsignificant observ-
able variables and re-estimate the model parameters.
We note that our model does not account explicitly for
cross-brand effects, i.e., we assume that the demand
for brand i depends only on the prices of brand i. This
assumption is reasonable for certain products such as
coffee because people are loyal about the brand they
consume, and do not easily switch between brands. In
addition, the high predictive accuracy of our model
validates this assumption.
For ease of notation, from this point, we drop the

brand index i since we estimate and optimize for a
single-item model. Observe that one can define

ft(pt)� exp
(
β0

+ β1t + β2 WEEKt + β
3
0 log pt

)
,

gm(pt−m)� (pt−m)β
3
m , m � 1, . . . ,M,

and therefore Equation (18) is a special case of the mul-
tiplicative model in (10).

Based on our intuition, one expects to find the fol-
lowing from the estimation:

1. Since demand decreases as the current price in-
creases, we would expect that the self-elasticity param-
eter is negative, i.e., β3

0 < 0.
2. Since a deeper past promotion leads to a greater

reduction in current demand, wewould expect that the
past elasticity parameters are positive, i.e., β3

m > 0 for
m > 0.
3. Holding the depth of promotion constant, a more

recent promotion leads to a greater reduction in cur-
rent demand than the same promotion earlier in time.
Therefore we would expect that the past elasticity
parameters are decreasing in time, i.e., β3

m > β
3
m+1 for

m � 1, . . . ,M − 1.
We note that the conditions above are a special case

of Assumption 4 for the log–log demand.
We divide the data into a training set, which com-

prises the first 82 weeks, and a test set, which com-
prises the second 35 weeks. We use the training set to
estimate the demand model and then predict the sales
using the test set. To measure the forecast accuracy, we
use the following forecast metrics. In the sequel, we
use the notation dt for the actual sales (or equivalently
demand) and d̂t be the forecasted values.

• The MAPE is given by

MAPE�
1
T

T∑
t�1

|dt − d̂t |
dt

.

The MAPE captures the average relative forecast error
in absolute value.

• The R2 is given by

R2
� 1− SSres

SStot
,

where d̄ �
∑T

t�1 dt/T, SStot �
∑T

t�1(dt − d̄)2, and SSres �∑T
t�1(dt − d̂t)2. We distinguish between in-sample (IS)

and OOS R2. In addition, we consider the adjusted R2

to account for the number of explanatory variables

R2
adj � 1− (1−R2) · n − 1

n − p − 1 ,

where p is the total number of independent variables
(not counting the constant term), and n is the sample
size.

• The revenue bias is measured as the ratio of the
forecasted to actual revenue, and is given by

revenue bias�
∑T

t�1 pt d̂t∑T
t�1 pt dt

.
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7.2. Estimation Results and Discussion
7.2.1. Coffee Category. The coffee category is an ap-
propriate candidate to test our model as it is common
in promotion applications (see, e.g., Gupta 1988 and
Villas-Boas 1995). We use a linear regression to esti-
mate the parameters of the demand model in (18) for
five different coffee brands. For conciseness, we only
present a subset of the estimation results for two cof-
fee brands in Table 2. We compare the actual and pre-
dicted sales for the test set in Figure 4. Remember that
our data consists of 117 weeks, which we split into 82
weeks on training and 35 weeks of testing.
On one hand, Brand1 is a private label coffee brand,

which has frequent promotions (approximately once
every four weeks). The price elasticity coefficients for
the current price and two previous prices are statis-
tically significant suggesting that for this brand, the
memory parameter is M � 2. In contrast, Brand2 is a
premium coffee brand, which has also frequent pro-
motions (approximately once every five weeks). The
price elasticity coefficients for the current price and
the price in the prior week are statistically significant,
but the coefficient for the price two weeks ago is not.
This suggests that, for this brand, the memory param-
eter is M � 1. By looking at the statistically significant
price coefficients, one can see that they agree with the
expected findings mentioned previously. Furthermore,
given the high accuracy as measured by low MAPEs,
we expect that cross-brand effects are minimal.
7.2.2. Four Categories. In the same spirit, we estimate
the log–log demand model for several brands in the
chocolate, tea, and yogurt categories. The results are
summarized in Table 3. We do not report the individ-
ual product coefficients but we note that they follow
our expectations in terms of sign and ordering. We
highlight that the forecast error is low as evidenced by
the high IS and OOS R2, the low MAPE values, and a
revenue bias being close to 1.

We next observe the following regarding the effect of
the memory parameter:

1. The memory parameter differs across products
within a category. In general, basic products have

Figure 4. Actual vs. forecasted sales over the 35 test weeks
for Brand1
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Table 3. Summary of the estimation results for four product
categories

IS adj. Revenue Product
Category R2 MAPE OOS R2 bias memories

Coffee 0.974 0.115 0.963 1.000 0, 1, 2
Chocolate 0.951 0.185 0.872 0.990 0, 1, 2
Tea 0.984 0.187 0.759 1.006 0, 1
Yogurt 0.983 0.115 0.964 1.073 0, 1

Note. The column for product memories indicates all values of the
memory parameter that we found for the products in that category.

higher memory (M � 1 or 2), whereas premium items
have lower memory (M � 0).
2. The memory parameters are estimated from data,

and differ depending on the category. Products in the
yogurt and tea categories have memory of zero or
one; whereas products in the coffee and chocolate cat-
egories have memory of zero, one, or two. This agrees
with our intuition that for perishable goods (such as
yogurt), consumers do not stockpile, and therefore the
memory parameter is zero. However, coffee is clearly a
less perishable product, and hence stockpiling is more
significant.

7.3. Optimization Results and Discussion
Having validated the forecasting demand model, we
next compute and test the optimized promotion prices.
We assume that the demand forecast is the true
demandmodel, and use it as an input to our promotion
optimization formulation (POP).
Experimental setup. We compute the optimal LP
prices for Brand1 over the test set, i.e., T � 35 weeks.
During the planning horizon, the retailer used L � 8
promotions with at most S � 1 separating weeks (i.e.,
consecutive promotions are separated by at least one
week). As stated earlier, the regular price is nor-
malized to be 1. Due to confidentiality, we do not
reveal the exact costs of the product, i.e., the param-
eters ct in (POP). For the purpose of this experiment,
we assume that the cost of the product is constant,
ct � 0.4. Since the lowest price charged by the retailer
was 0.75, the set of permissible normalized prices is
chosen to be {0.75, 0.80, 0.85, . . . , 1}. The LP optimiza-
tion results are shown in Figure 5. Wemake the follow-
ing observations.

• The predicted profit using the prices implemented
by the retailer (and not chosen optimally) together with
the forecast model is $18,425. All the results will be
compared relative to this benchmark value.

• The predicted profit using only the regular price
(i.e., no promotions) is $17,890. This is a 2.9% loss rela-
tive to the benchmark. Therefore the estimated log–log
model predicts that the actual prices yield a 2.9% gain
relative to the case without promotions, even if the
actual promotions are not chosen optimally.
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Figure 5. Profits for different scenarios using a log–log
demand
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• The predicted profit using the optimized LP prices
imposing the same number of promotions as a business
requirement (L � 8 during the 35 weeks) is $19,083.
This is a 3.5% gain relative to the benchmark. Therefore
the estimated log–log model predicts that the optimal
LP prices with the same number of promotions yield
a 3.5% gain relative to the actual implemented profit.
In other words, by only carefully planning the same
number of promotions, our model suggests that the
retailer can increase its profit by 3.5% in this case.

• The predicted profit using the optimal LP prices
and allowing three additional promotions (L � 11) is
$19,362. This is a 5.1% gain relative to the bench-
mark. Therefore the estimated log–log model predicts
that optimized priceswith three additional promotions
yield a 5.1% gain relative to the actual profit. There-
fore, the retailer can easily test the impact of allowing
additional promotions.
We next compute the bound from Theorem 1 for

the actual data we have been using above. The lower
bound can be rewritten as R · POP(γPOP) 6 POP(γLP),
where R �

∏L̃−1
i�1 gi(S+1)(qK), and therefore depends on

the problem parameters. We compute R for both coffee
brands from Table 2. We have qK � 0.75, L � 8, and test
the bound, R, for various values of S. When S > 2, we
observe that R� 1, and therefore themethod is optimal
for both brands. For S � 1, we obtain that for Brand1,
R � 0.8748, whereas for Brand2, R � 1. Finally, we con-
sider S � 0 as it is the worst-possible case. In other
words, no requirement on separating two successive
promotions is imposed (not very realistic). We have for
Brand1 and Brand2, R � 0.7538 and R � 0.733, respec-
tively. We note that the above bounds outperform the
approximation guarantees from the literature on sub-
modular maximization. In particular, the problem of
maximizing an arbitrary nonmonotone submodular
function subject to no constraints admits a 1/2 approx-
imation algorithm (see, for example, Buchbinder et al.
2012, Feige et al. 2011). In addition, the problemofmax-
imizing a monotone submodular function subject to a
cardinality constraint admits a 1 − 1/e approximation
algorithm (e.g., Nemhauser et al. 1978). However, our
bounds are not constant guarantees for every instance
of the POP with multiplicative demand, as it depends

on the parameters values. Recall also that, in practice,
the LP approximation usually outperforms the bounds.

Next, we compare the running time of the LP to a
naïve approach of using an exhaustive search method
to find the optimal POP prices. Note that the POP
objective is neither convex nor concave. The experi-
ments were run using a desktop computer with an
Intel Core i5-680 processor @ 3.60 GHz CPU with
4 GB RAM. The LP formulation requires 0.01–0.05 sec-
onds to solve, regardless of the value of the promo-
tion limit L. However, the exhaustive search running
time grows exponentially in L. In addition, for a sim-
ple instance of the problem with only two prices in the
price ladder, it requires oneminute to solve when L� 8.
The running time of the exhaustive search method also
grows exponentially in the number of elements of the
price ladder. For example, with three elements in the
price ladder and L � 8, it requires three hours to solve,
whereas the LP solution solveswithinmilliseconds.We
note that since we are considering nonlinear demand
functions with integer variables, general methods to
solve this problem do not exist in commercial solvers.

The above results show that the exhaustive search
method is clearly not a viable option, in practice. Note
that the LP formulation solves very fast. An important
feature of our method relies on the fact that, in prac-
tice, one can implement it on a platform such as Excel.
For a category manager in charge of around 300 SKUs,
solving the POP for each item independently would
require only about 15 seconds. An additional advan-
tage of short running times is that it allows category
managers to perform a sensitivity analysis with respect
to the business requirements and to the model param-
eters. For example, if the optimization is embedded
into a decision support tool, category managers could
perform interactive what-if analysis. In practice, this
would not be possible in the case where the optimiza-
tion running times exceed a few minutes. In addition,
as we have shown in this paper, the LP formulation
yields a solution that is accurate relative to the opti-
mal prices, and one can compute the upper and lower
bounds as a guarantee.

Finally, we use our model to infer the following use-
ful rules for promotions:

• The less perishable the product is, the larger the
value of M is and the stronger the post-promotion dip
effect. Consequently, our model will plan the promo-
tions to bemore spaced out. This suggests that retailers
want to space out promotions for perishable products.
The same conclusion applies as the brand of the prod-
uct is less premium.

• In the data we have, we observed that seasonality
effects are not very significant. As a result, the actual
time of a promotion (for this type of products) is not
as important as the time relative to the previous or the
next promotion for the same product.
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• Carefully planning promotions can have an im-
portant impact on the retailer’s profit and on the
bottom line. In addition, the solution approach we pro-
posed in this paper is robust to the demand parame-
ters, as we have shown that the profit gain dominates
the demand forecasting error in our case study. There-
fore, retailers should carefully decide promotions and
preferably with the help of decision support tools.

• Demand functions with multiplicative (additive)
past prices effects induce the total profit to be sub-
modular (supermodular) with respect to the number
of promotions. When a retailer considers several func-
tional forms to forecast demand, knowing that a multi-
plicative function (such as the log–log demand) yields
a better fit relative to additive, this informs the retailer
to be more cautious about planning carefully the first
few promotions of the selling season.

7.4. Uncertain Demand
In Section 6, we proposed two different approaches to
address the case where the demand is uncertain and
can be one of J different functions. The first method is
based on a robust objective denoted by POPR, whereas
the second considers an expectation formulation with
objective POPA. Recall that POPA > POPR. We are inter-
ested in comparing the two objectives relative to the
nominal case where the demand is deterministic (i.e.,
a single scenario). To this end, we perform the fol-
lowing computational experiments. We begin with our
nominal log–log demand model estimated from real
data (see Table 2). More precisely, for each demand
parameter, we have access to the expected (nominal)
value, as well as its standard deviation found from
the regression. The most important parameters in our
context are the coefficients that multiply log pt , log pt−1
and log pt−2. The other estimated parameters (such as
the seasonality, the trend factor, and the intercept)
are either more certain (due to the fact that they are
estimated across multiple products/stores) or not sta-
tistically significant. Therefore, their exact values do
not affect the optimal pricing decisions significantly.
We then assume that the price sensitivity estimated
parameters (i.e., the coefficients of log pt , log pt−1, and
log pt−2) lie in some confidence interval [−A,A] around
their respective nominal values. The confidence inter-
val is chosen according to the standard deviation of
the regression results (see Table 2). Each scenario j �
1, . . . , J is generated by randomly picking the three
price sensitivity parameters (coefficients that multiply
log pt , log pt−1, and log pt−2) in their respective confi-
dence intervals. Unless otherwise specified, we assume
prob j � 1/J; ∀ j (i.e., a uniform distribution). We then
perform the following four tests:
1. Test 1. We set A � σ for each of the three parame-

ters (here, σ denotes the standard deviation of the esti-
mated parameters from the third column of Table 2),

and generate J � 10 scenarios. In other words, we
consider 10 randomly generated instances where the
nominal estimated parameters can be increased or
decreased by at most one standard deviation. Interest-
ingly, solving the nominal problem, the robust version
and the expectation formulation lead to the same opti-
mal prices. In addition, the objective functions are all
very close (within 1.9%).

2. Test 2. We repeat Test 1 for J � 100 scenarios. In
this case, we obtain that the robust and nominal solu-
tions are identical. The expectation formulation yields
a solution that is very similar to the robust and nom-
inal solutions, except that two promotion prices are
swapped. Considering these three formulations does
not significantly change the solution objective value (in
our case, by less than 0.015%).

3. Test 3. We now consider J � 10 scenarios but
A � 2σ, i.e., a larger uncertainty in the estimated
parameters. Once more, the expected and robust for-
mulations yield the same optimal solution as the nom-
inal formulation with a deterministic demand.

4. Test 4. We generate J � 100 independent sam-
ples of perturbed demand realizations, using each
one of the three distributions: uniform, Gaussian, and
exponential. Note that we use truncated distributions
between plus or minus one standard deviation to
obtain meaningful comparisons.3 Each sample corre-
sponds to a demand model where the three estimated
parameters are within one standard deviation of their
nominal values. We then solve the robust version and
the expectation formulation for each distribution. In
each case, we find the optimal vector of prices, and
evaluate the total profit on the nominal demand. The
results are summarized in Table 4. Note that all the
profits are very close to each other. In addition, the vec-
tor of prices are very similar in all the cases. Hence, this
confirms that our solution approach is indeed robust
with respect to the distribution of the parameters.

The above findings allow us to handle demand un-
certainty in our problem in an efficient way. In particu-
lar, by perturbing the estimated demandmodel, we still
obtain the same optimal prices as in the nominal deter-
ministic case (or at least a solution that is very close).
In addition, one can see that the optimal solution of
the nominal problem (when demand is assumed to be
a deterministic function) seems to be quite robust to
variations in the estimated parameters. As a result, this
further supports the deterministic demand assumption
in our problem.

Table 4. Profit for randomly perturbed demands using three
distributions

Variable Nominal Uniform Gaussian Exponential

Robust 19,083 19,086 19,080 19,086
Average 19,083 19,083 19,083 19,083
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We next perform a series of tests to demonstrate that
the profit gain dominates the forecasting error.We con-
sider the log–log demand model estimated from data
(see the demand parameters in Table 2). As before,
we assume that the true demand model is not exactly
known, so that the three estimated parameters can be
within one standard deviation from their expected val-
ues. In other words, the nominal model assumes that
the parameters are β̄, but in reality, the parameters are
β̃ ∈ [β̄− σ, β̄+ σ].
In this case, we perturb the estimated parameters

and generate J � 10,000 independent samples of per-
turbed demand realizations. Each sample corresponds
to a demand model where the three parameters (β̃)
are within one standard deviation of their nominal
values. For each sample, we compute the ratio of the
total profit evaluated at the optimized prices (using
the nominal model) Π(pLP), divided by the profit at
the implemented prices Π(pI). Here, Π is the total
profit over the 35 weeks, pI is the vector of imple-
mented prices, and pLP is the vector of suggested prices
using our approach with the (deterministic) nominal
demandmodel. Note that we do not optimize and solve
the LP for each sample. Instead, we solve the LP only
for the nominal demand model. We then plot the his-
togram of the profit ratio (see Figure 6), compute the
median and the 75th percentile. We obtained that the
suggested promotions from our model allow a pos-
itive profit gain for all the samples. The profit gain
is between 2.3% and 5.1%, with a median improve-
ment of 3.66% (equal to the nominal one with deter-
ministic demand). In addition, the 75th percentile is
equal to 4.18%. The results are summarized in Table 5.
This allows us to convey a convincing argument that
our approach is robust with respect to the estimated
demand parameters, and that the profit gain clearly
dominates the forecasting error.

Figure 6. Histogram of profit ratios for 10,000 samples of
perturbed demands
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Table 5. Profit gain (in %) for randomly perturbed demands
(using 10,000 independent samples)

25th 75th
Nominal Minimum percentile Median percentile Maximum

3.66 2.3 3.17 3.66 4.18 5.1

We next perform a different test that confirms
the fact that the profit gain dominates the demand
forecasting error, from a different perspective by
considering noisy demand functions. In these tests, we
consider that the true estimated demand is perturbed
by either an additive noise or a multiplicative noise. In
other words, we assume that we estimate the demand
from actual data as a deterministic function, and add
some noise to test the robustness of our approach. We
consider two common cases:

1. Additive noise. We assume that the demand dt has
a random additive noise that is uniformly distributed
between −500 and 500. Note that the uniform case is
the worst case, as more concentrated distributions will
improve the results of the test. Note also that the aver-
age demand for this item (from the data we used in our
case study) is around 1,000, so adding a noise between
−500 and 500 is a good test. In this case, we apply the
optimal prices suggested by solving our model with
the deterministic demand and for each sample, we
compute the profit gain. The results are summarized
in Table 6 and Figure 7(a).

2. Multiplicative noise. We assume that the demand
dt has a random multiplicative noise that is uniformly
distributed between 0.8 and 1.2. It means that we have
between −20% and plus 20% of demand variation with
respect to the forecast. In this case, we apply the opti-
mal prices suggested by solving our model with the
deterministic demand, and for each sample, we com-
pute the profit gain. The results are summarized in
Table 7 and Figure 7(b).

In both cases, one can see that the profit gain domi-
nates the demand forecasting error. This again suggests
that our approach is robust with respect to demand
forecasting errors.

In many important settings, promotions are a key
instrument for driving sales and profit. We introduce
and study an optimization formulation for the POP
that captures several important business requirements
as constraints (such as separating periods and promo-
tion limits). We propose general classes of demand

Table 6. Profit gain (in %) for randomly perturbed demands
with additive noise (using 10,000 independent samples)

25th 75th
Nominal Minimum percentile Median percentile Maximum

3.66 0.991 2.78 3.65 4.56 9.48
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Figure 7. Histogram of profit ratios for 10,000 samples of perturbed demands with (a) additive and (b) multiplicative noise
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(a) Additive noise
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(b) Multiplicative noise

functions depending on whether past prices have a
multiplicative or an additive effect on current demand.
These functions model the post-promotion dip effect
that has been observed empirically, and can be esti-
mated from data. We show that for multiplicative
demand, promotions have a supermodular effect (for
some subsets of promotions), which leads to the LP
approximation being an upper bound on the POP
objective; whereas for additive demand, promotions
have a submodular effect, which leads to the LP
approximation being a lower bound on the POP objec-
tive. The objective is neither convex nor concave and
the feasible region has linear constraints with integer
variables. Since the exact formulation is “hard,” we
propose a linear approximation that allows us to solve
the problem efficiently as an LP by showing the inte-
grality of the IP formulation. We develop analytical
results on the LP approximation accuracy relative to
the optimal solution, and characterize the bounds as
a function of the problem parameters. We also show
computationally that the formulation solves fast using
actual data from a grocery retailer, and that the accu-
racy is high. Finally, we demonstrate the robustness
of our approach with respect to demand forecasting
errors.
Together with our industry collaborators from Ora-

cle Retail, our framework allows us to develop a tool,
which can help supermarket managers to better under-
stand promotions. We test our model and solution

Table 7. Profit gain (in %) for randomly perturbed demands
with multiplicative noise (using 10,000 independent
samples)

25th 75th
Nominal Minimum percentile Median percentile Maximum

3.66 1.78 3.29 3.67 4.06 5.74

using actual sales data obtained from a supermarket
retailer. For four different product categories, we esti-
mate from transactions data the log–log and linear
demand models (the linear model is relegated to the
appendix). Our estimation results provide a good fit
and explain well the data but also reveal interesting
insights. For example, nonperishable products exhibit
longer memory in the sense that the sales are affected
not only by the current price but also by past prices.
This observation validates the hypothesis that demand
has a post-promotion dip effect for certain items. We
test our approach for solving the POP, by first esti-
mating the demand model from data. We then solve
the POP by using our LP approximation method. In
this case, using the LP optimized prices would lead
about 3.5% profit gain for the retailer, with even 5%
profit gain by slightly modifying the number of pro-
motions allowed. In addition, the running time of our
LP is short (∼0.05 seconds) making the method attrac-
tive and efficient. The naïve optimal exhaustive search
method is several orders of magnitude slower. The fast
running time allows the LP formulation to be used
interactively by a category manager who may manage
around 300 SKUs in a category. In addition, one can
conveniently run a large number of instances allowing
to perform a comprehensive sensitivity analysis trans-
lated into what-if scenarios.
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Endnotes
1Private communication with Oracle executives.
2For confidentiality reasons, the actual name of the brand cannot be
revealed.
3We also tested the hypothesis with nontruncated distributions such
as Gaussian and exponential. In this case, the expectation formu-
lation in Equation (17) yields the same optimal solution as in the
nominal case, and is quite robust. However, the robust formulation
provides a more conservative solution as expected.
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