The (Unintended?) Consequences of the Largest Liquidity Injection Ever

Matteo Crosignani
NYU Stern

Miguel Faria-e-Castro
NYU

Luís Fonseca
LBS

16 April 2016

Third International Conference on Sovereign Bond Markets
Real and Financial Externalities of Non-Traditional Monetary Policy Tools

The opinions expressed are those of the authors and do not necessarily reflect the views of Bank of Portugal or of the Eurosystem.
Research Question

- Unintended consequences of central bank liquidity provisions/lender-of-last-resort interventions
 ▶ Credit supply contraction in bad times
 ▶ Borrowers affected (cannot easily switch lenders)
 ▶ Central bank liquidity increase bank credit supply

- The intervention
 ▶ European Central Bank Dec11 intervention (LTRO)
 ▶ Largest liquidity provision in history: > 1.6$ tn
 ▶ Turning point of the Eurozone crisis
 ▶ Goal: “support bank lending and money market activity”

- Our laboratory is the Portuguese financial system
 ▶ Peripheral country under sovereign stress
 ▶ Bank-based financial system
 ▶ Unique dataset from the Portuguese Central Bank
- Banks purchased Portuguese govt debt after the LTRO announcement, *before* the allotment
 - Pledge them at the ECB, collateral trade
 - Purchased mostly short-term bonds

- Equilibrium effects
 - Sovereign yield curve steepens
 - Debt agency takes advantage of the steepening to resume issuance

- Main result: LTRO boosted demand for public debt
 - Short-Term: 12 to 17 p.p. of amounts outstanding
 - Long-Term: 1 to 2 p.p. of amounts outstanding
Relation to Literature

1) **Sovereign-bank risk feedback loops**

2) **Transmission of central bank liquidity**

3) **Banking sector demand for domestic sovereign debt**

4) **Interaction of fiscal and monetary policy during crises**
 Greenwood et al. (2014), Greenwood et al. (2015)
Outline

1) Two Stylized Facts
2) Our Story
3) Empirical Findings
4) Discussion
Outline

1) Two Stylized Facts
2) Our Story
3) Empirical Findings
4) Discussion
The LTRO

- Announced in December 2011 at the peak of Euro crisis
- Unlimited provision of collateralized cash loans
 - 3-year maturity
 - many assets eligible, govt bonds security pledged the most
 - ∼ 1% rate for all banks, but haircut is security-specific
 - Two allotment dates
The LTRO

- Announced in December 2011 at the peak of Euro crisis
- Unlimited provision of collateralized cash loans
 - 3-year maturity
 - many assets eligible, govt bonds security pledged the most
 - 1% rate for all banks, but haircut is security-specific
 - Two allotment dates

Intra-allotment period

<table>
<thead>
<tr>
<th>Announcement</th>
<th>1^{st} allotment (LTRO1)</th>
<th>2^{nd} allotment (LTRO2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8Dec2011</td>
<td>21Dec2011</td>
<td>29Feb2012</td>
</tr>
</tbody>
</table>
The LTRO

- Announced in December 2011 at the peak of Euro crisis
- Unlimited provision of collateralized cash loans
 ▶ 3-year maturity
 ▶ many assets eligible, govt bonds security pledged the most
 ▶ ∼ 1% rate for all banks, but haircut is security-specific
 ▶ Two allotment dates

- Attractive compared to private market
 ▶ Haircuts and rate favorable compared to private market
 ▶ 800 eurozone banks tapped for > 1.6$ trillion
 (> 2/3 total uptake by GIIPS banks)
Data

Proprietary data from the Bank of Portugal

1) *All* financial institutions
 - Security-level holdings of domestic government bonds
 - > 98% holdings matched with Bloomberg
 - 606 entities (e.g., insurance companies, hedge funds)

2) Commercial banks
 - 82 commercial banks
 - Standard balance sheet characteristics
1. Banks Buy Govt Bonds Between Announcement and Allotment

Domestic Government Bond Holdings

- Access to ECB
- No Access to ECB

<table>
<thead>
<tr>
<th>Year</th>
<th>Access to ECB</th>
<th>No Access to ECB</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011m6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011m12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012m6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Banks Increase *Total* Borrowing at ECB
Outline

1) Two Stylized Facts
2) Our Story
3) Empirical Findings
4) Discussion
The “Collateral Trade”

- Banks seek to minimize funding liquidity risk
 ▶ External borrowing is costly (as in Dec 2011)
 ▶ Insurance motives induce banks to hold liquid reserves vs. high yield assets, (e.g., govt debt)
The “Collateral Trade”

- Banks seek to minimize funding liquidity risk
 ▶ External borrowing is costly (as in Dec 2011)
 ▶ Insurance motives induce banks to hold liquid reserves vs. high yield assets, (e.g., govt debt)

- “Collateral Trade”
 ▶ Use cash reserves to purchase high yield govt debt
 ▶ Use ECB funding facilities to replenish cash reserves
 ▶ Risk diminished buying maturity shorter than loan
The “Collateral Trade”

- Banks seek to minimize funding liquidity risk
 ▶ External borrowing is costly (as in Dec 2011)
 ▶ Insurance motives induce banks to hold liquid reserves vs. high yield assets, (e.g., govt debt)

- “Collateral Trade”
 ▶ Use cash reserves to purchase high yield govt debt
 ▶ Use ECB funding facilities to replenish cash reserves
 ▶ Risk diminished buying maturity shorter than loan

- Why LTRO?
 ▶ Normal times: ECB funding is too short-term
 ▶ Longer-term ECB funding makes this trade safer for all assets with shorter maturity
Anecdotal Evidence

Banco Carregosa Annual Report, 2012:

[Carregosa] invested essentially in short-term deposits with other financial institutions and in Portuguese public debt, in most cases, with maturities up to 2015. Stable financial sources were used with the Clients’ 2 to 3 year term deposits and transforming the short-term financing with the ECB into 3 years (…)
Four Empirical Implications

1) Bank buy-and-pledge
2) LTRO \Rightarrow ↑ demand for short-term bonds
3) Yield curve steepens
4) Debt agency reacts
Outline

1) Two Stylized Facts
2) Our Story
3) Empirical Findings
4) Discussion
1) Banks Buy-and-Pledge

\[\Delta \text{Total ECB Borrowing}_i = \alpha + \beta_1 \Delta \text{Govt}^{PT}_i + \beta_2 X_i + \epsilon_i \]

<table>
<thead>
<tr>
<th></th>
<th>(\Delta \text{Govt}^{PT}_i)</th>
<th>(0.369^{***})</th>
<th>(0.241^{***})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>((0.064))</td>
<td>((0.067))</td>
</tr>
<tr>
<td>Price controls</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Other collateral</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sample</td>
<td>Full</td>
<td>Domestic</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>71</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>adj. (R^2)</td>
<td>0.915</td>
<td>0.699</td>
<td></td>
</tr>
</tbody>
</table>
2) LTRO ⇒ ↑ Demand for Short-Term Govt Bonds

- Explore three sources of variation
 ▶ *Time*: Before and after announcement
 ▶ *Entity*: Banks with access to ECB vs. no access
 ▶ *Security*: Maturity < LTRO vs. longer term

- Triple difference approach

- **Our Goal**: Show that institutions with *Access* purchased more *Short-Term* securities *after* the announcement.

\[
\frac{\text{GovPT}_{i,j,t}}{\text{Amount Outstanding}_{j,t}} = \beta_{\text{LTRO}} t \times \text{Short-Term}_j \times \text{Access}_i + X_{i,j,t} + \epsilon_{i,j,t}
\]

Institution *i*, security *j*, month *t*
2) LTRO ⇒ ↑ Demand for Short-Term Govt Bonds

<table>
<thead>
<tr>
<th></th>
<th>All Bonds</th>
<th>No Issuance After Dec2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTRO<sub>t</sub> × Short<sub>j</sub> × Access<sub>i</sub></td>
<td>0.00220***</td>
<td>0.00018**</td>
</tr>
<tr>
<td></td>
<td>(0.00005)</td>
<td>(0.00006)</td>
</tr>
<tr>
<td>LTRO<sub>t</sub> × Short<sub>j</sub></td>
<td>-0.00006</td>
<td>0.00016</td>
</tr>
<tr>
<td></td>
<td>(0.00011)</td>
<td>(0.00014)</td>
</tr>
<tr>
<td>LTRO<sub>t</sub> × Access<sub>i</sub></td>
<td>0.00029***</td>
<td>0.00029***</td>
</tr>
<tr>
<td></td>
<td>(0.00006)</td>
<td>(0.00006)</td>
</tr>
<tr>
<td>Short<sub>j</sub> × Access<sub>i</sub></td>
<td>0.00353***</td>
<td>0.00353***</td>
</tr>
<tr>
<td></td>
<td>(0.00039)</td>
<td>(0.00039)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>✓</th>
<th>✓</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period FE</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Security FE</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Entity FE</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>259,272</td>
<td>242,589</td>
<td></td>
</tr>
<tr>
<td>adj. R<sup>2</sup></td>
<td>0.126</td>
<td>0.127</td>
<td></td>
</tr>
</tbody>
</table>

Sample: +- 6 months around announcement, June 2011 - May 2012. SE clustered at investor sector.
3) Yield Curve Steepens

PT Yield curve – before and after vLTRO

Maturity, Years

%
4) Public Debt Issuance Volume
Public Debt Maturing Volume

Public Debt Maturing Amount

Amount Maturing (billion euros)

2010m6 2010m12 2011m6 2011m12 2012m6 2012m12 2013m6 2013m12
Outline

1) Two Stylized Facts
2) Our Story
3) Empirical Findings
4) Discussion
Who Engages in the Collateral Trade the Most?

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Below Median</th>
<th>Above Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Assets</td>
<td>billion Euro</td>
<td>16.10</td>
<td>12.96</td>
</tr>
<tr>
<td>Cash Reserves</td>
<td>% Assets</td>
<td>0.36%</td>
<td>0.24%</td>
</tr>
<tr>
<td>Leverage</td>
<td>A/E</td>
<td>20.53</td>
<td>11.25</td>
</tr>
<tr>
<td>Securities</td>
<td>% Assets</td>
<td>17.47%</td>
<td>21.11%</td>
</tr>
<tr>
<td>Total Govt Bonds</td>
<td>% Assets</td>
<td>8.11%</td>
<td>4.46%</td>
</tr>
<tr>
<td>Dom Govt Bonds</td>
<td>% Assets</td>
<td>7.80%</td>
<td>3.56%</td>
</tr>
<tr>
<td>IIGS Govt Bonds</td>
<td>% Assets</td>
<td>0.17%</td>
<td>0.79%</td>
</tr>
<tr>
<td>Lending</td>
<td>% Assets</td>
<td>70.76%</td>
<td>67.52%</td>
</tr>
<tr>
<td>Lending to HH</td>
<td>% Assets</td>
<td>18.63%</td>
<td>20.34%</td>
</tr>
<tr>
<td>Lending to Firms</td>
<td>% Assets</td>
<td>13.22%</td>
<td>16.97%</td>
</tr>
<tr>
<td>Lending to MFIs</td>
<td>% Assets</td>
<td>24.27%</td>
<td>17.24%</td>
</tr>
<tr>
<td>Deposits</td>
<td>% Assets</td>
<td>84.76%</td>
<td>73.57%</td>
</tr>
<tr>
<td>ST Funding</td>
<td>% Assets</td>
<td>72.41%</td>
<td>59.48%</td>
</tr>
</tbody>
</table>
Why Not Use LTRO1?

Bank Behavior at LTRO1

Change Short-Term ECB Borrowing / Assets vs. LTRO1 Uptake / Assets

Two outliers are excluded from the scatter plot, but still included in the regression line.
Why Domestic Government Bonds?

- Why government bonds?
 ▶ Euro denominated government bonds have a zero capital requirement

- Why domestic government bonds?
 ▶ Moral Suasion
 ▶ Risk-shifting
 ▶ Financial entanglement
Final Thoughts

LTRO and QE are identical in most macro models but...

- LTRO

- QE
Final Thoughts

LTRO and QE are identical in most macro models but...

- LTRO
 - relies on indirect purchases of ST debt

- QE
 - relies on direct purchases of LT debt
Final Thoughts

LTRO and QE are identical in most macro models but...

- LTRO
 - relies on indirect purchases of ST debt
 - yield curve steepens

- QE
 - relies on direct purchases of LT debt
 - yield curve flattens
Final Thoughts

LTRO and QE are identical in most macro models but...

- **LTRO**
 - relies on *indirect* purchases of ST debt
 - yield curve *steepens*
 - govt reacts by *shortening* the maturity of public debt

- **QE**
 - relies on *direct* purchases of LT debt
 - yield curve *flattens*
 - govt reacts by *increasing* the maturity of public debt
Thank you
A Simple Model of the “Collateral Trade”
Model Setup

- Agents: government, (domestic) banks, intl investors
- Three dates: \(t = 0, t = 1, t = 2 \)
Model Setup

- Agents: government, (domestic) banks, intl investors
- Three dates: $t = 0$, $t = 1$, $t = 2$

\[
\begin{align*}
&t = 0 \\
&\quad \circ \text{ Govt issues ST and LT debt} \\
&\quad \circ \text{ Banks choose portfolio} \\
&t = 1 \\
&\quad \circ \text{ Govt repays ST debt} \\
&\quad \circ \text{ Secondary markets open} \\
&\quad \circ \text{ Banks may access funding markets} \\
&t = 2 \\
&\quad \circ \text{ Govt repays LT debt} \\
&\quad \circ \text{ Payoffs realized}
\end{align*}
\]
Banks Choose at $t = 0$ and Obtain Utility at $t = 2$

$$U = E_0[\pi_2]$$
Banks Choose at $t = 0$ and Obtain Utility at $t = 2$

$$\mathcal{U} = \mathbb{E}_0[\pi_2]$$

- At $t = 2$, profits from LT govt bonds and (costly) storage

$$\pi_2 = b'_L + d\{1_{d \geq 0} + k1_{d < 0}\}$$
Banks Choose at \(t = 0 \) and Obtain Utility at \(t = 2 \)

\[
\mathcal{U} = \mathbb{E}_0[\pi_2]
\]

- At \(t = 2 \), profits from LT govt bonds and (costly) storage

\[
\pi_2 = b'_L + d\{1_{d \geq 0} + k1_{d < 0}\}
\]

- At \(t = 1 \), rebalance LT bonds, ST bonds mature

\[
q_1b'_L + d = W_1
\]

\[
W_1 = b_s + q_1b_L + c - R\epsilon
\]

- At \(t = 0 \), choose ST/LT bonds and borrow from ECB

\[
W_0 + \epsilon = q_s b_s + q_L b_L + c
\]

\[
\epsilon \leq (1 - h_L)q_L b_L + (1 - h_S)q_s b_S
\]
Banks Choose at $t = 0$ and Obtain Utility at $t = 2$

$$U = \mathbb{E}_0[\pi_2]$$

- At $t = 2$, profits from LT govt bonds and (costly) storage
$$\pi_2 = b'_L + d\{1_{d\geq0} + k1_{d<0}\}$$

- At $t = 1$, rebalance LT bonds, ST bonds mature
$$q_1b'_L + d = W_1$$
$$W_1 = b_s + q_1b_L + c - R\varepsilon$$

- At $t = 0$, choose ST/LT bonds and borrow from ECB
$$w_0 + \varepsilon = q_s b_s + q_L b_L + c$$
$$\varepsilon \leq (1 - h_L)q_L b_L + (1 - h_S)q_S b_S$$
International Investors, Government and Equilibrium

- International Investors
 ▶ Risk-neutral, deep pocketed traders
 ▶ Operate at $t = 1$ in the LT bond market
 ▶ Willing to purchase any amount (perfectly elastic demand)
 ▶ Uncertainty regarding their outside option
 Unique source of uncertainty in the model

$$a \sim F \text{ on } [q_1, \bar{q}_1] \Rightarrow \text{purchase if } q_1 \leq a$$

- Government/Treasury
 ▶ Wants to issue B at $t = 0$
 ▶ Exogenous (for the moment) fraction γ using ST bonds

Equilibrium: Prices (q_S, q_L), bank policies $(b_L, b_S, c, \infty, b'_L(q_1), d(q_1))$ such that agents maximize and all markets clear
IV Approach
2) High Demand for ST Securities (IV)

Intensity should also matter for the collateral trade.

\[
\frac{\text{GovPT}_{i,j,t}}{\text{Amt Outst}_{j,t}} = \beta \times \text{LTRO}_t \times \text{Short-Term}_j \times \text{Intensity}_i + X_{i,j,t} + \epsilon_{i,j,t}
\]

where

\[
\text{Intensity}_i = \frac{\text{LTRO Borrowing}_i}{\text{Assets}_i}
\]
2) High Demand for ST Securities (IV)

Intensity should also matter for the collateral trade.

\[
\frac{\text{GovPT}_{i,j,t}}{\text{Amt Outst}_{j,t}} = \beta \times \text{LTRO}_t \times \text{Short-Term}_j \times \text{Intensity}_i + X_{i,j,t} + \epsilon_{i,j,t}
\]

where

\[
\text{Intensity}_i = \frac{\text{LTRO Borrowing}_i}{\text{Assets}_i}
\]

- Intensity is endogenous
- Exploit the fact that a significant component of LTRO is rollover
- IV: ECB borrowing before the announcement
2) High Demand for ST Securities (IV)

\[
\frac{\text{GovPT}_{i,j,t}}{\text{Amt Outst}_{j,t}} = \beta \times \text{LTRO}_t \times \text{Short-Term}_j \times \text{Intensity}_i + X_{i,j,t} + \epsilon_{i,j,t}
\]

<table>
<thead>
<tr>
<th></th>
<th>All Bonds</th>
<th>No Issuance After Dec2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{LTRO}_t \times \text{Short}_j \times \text{Intensity}_i)</td>
<td>0.0370***</td>
<td>0.0140***</td>
</tr>
<tr>
<td></td>
<td>(0.0012)</td>
<td>(0.0010)</td>
</tr>
<tr>
<td>(\text{LTRO}_t \times \text{Short}_j)</td>
<td>0.0000295</td>
<td>0.000120</td>
</tr>
<tr>
<td></td>
<td>(0.0000446)</td>
<td>(0.0000982)</td>
</tr>
<tr>
<td>(\text{LTRO}_t \times \text{Intensity}_i)</td>
<td>-0.0240***</td>
<td>-0.0080***</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0001)</td>
</tr>
<tr>
<td>(\text{Short}_j \times \text{Intensity}_i)</td>
<td>0.0252***</td>
<td>0.0511***</td>
</tr>
<tr>
<td></td>
<td>(0.0029)</td>
<td>(0.0001)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>All Bonds</th>
<th>No Issuance After Dec2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ISIN FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Entity FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>(N)</td>
<td>259,272</td>
<td>242,589</td>
</tr>
<tr>
<td>adj. (R^2)</td>
<td>0.124</td>
<td>0.125</td>
</tr>
</tbody>
</table>

Sample: +- 6 months around announcement, June 2011 - May 2012. SE clustered at investor sector.