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I Setting the Medicare Budget

This appendix summarizes the process that sets the overall Medicare budget for physician services, which

equivalently determines the conversion factor, or CFt in Equation (1). We focus on the period between

the Balanced Budget Act of 1997 and the Medicare Access and CHIP Reauthorization Act of 2015. A

more extensive discussion of this process can be found elsewhere (e.g., American Medical Association,

2015; Centers for Medicare and Medicaid Services, 2014). During this period, CMS set CFt according

to the following formula:

CFt = CFt−1× (1+MEIt ) × (1+UAFt ) ×BNt,

where MEIt is the Medicare Economic Index, UAFt is the Update Adjustment Factor, and BNt is the

Budget Neutrality adjustment.

MEIt is the weighted-average price change for inputs required to operate a self-employed physician

practice in the United States. The measure indexes inflation for medical services. There are two broad

categories of inputs: the physician’s own time and his or her practice expense. The MEI Technical

Advisory Panel continually reviews and updates the index, recommending changes to ensure that MEIt
appropriately meets its statutory purpose.

UAFt is a mechanism that keeps Medicare spending at an acceptable level given real gross domestic

product per capita and year-to-year changes in fees and beneficiaries. The current year’s target expen-

ditures are equal to target expenditures in the previous year adjusted by the Sustainable Growth Rate

(SGRt ). The update also compares actual expenditures with target expenditures from April 1, 1996

through the preceding year. By federal statute, UAFt ∈ [−7%,3%], and the formula for the UAFt is

based on the following identities, relating target and actual spending:

t∑
t ′=1

Targett ′ =
t∑

t ′=1

Actualt ′;

Actualt = Actualt−1× (1+SGRt ) × (1+UAFt ) ;

Targett = Targett−1× (1+SGRt ) .

These identities yield

UAFt =
Targett−1−Actualt−1

Actualt−1
×0.75+

∑t−2
t ′=1

(
Targett ′ −Actualt ′

)
Actualt−1× (1+SGRt )

×0.33,

after being modified by “dampening” weights of 0.75 and 0.33, between components from the previous

year and all other years before that, respectively.

The Sustainable Growth Rate (SGRt ) used above is calculated according to four factors: (i) the

estimated percentage change in fees for physicians’ services, (ii) the estimated percentage change in

the average number of Medicare fee-for-service beneficiaries, (iii) the estimated 10-year average annual
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percentage change in real gross domestic product per capita, and (iv) the estimated percentage change in

expenditures due to changes in law or regulations.

The Budget Neutrality adjustment offsets expenditure changes that result from updates to the relative

value units of medical services and ensures that RVU inflation does not change the Medicare budget:

BNt =

∑
i RVUi, t−1× qi, t−1∑
i RVUi, t × qi, t−1

,

which is closely related to the condition in Equation (A.5.1), in Appendix V, that we use in simulating

counterfactual revenue in Section 4.2. Historically, BNt adjustments have been relatively minor consid-

erations in setting CFt , compared to MEIt and UAFt . Changes to the relative value of medical services

via BNt are also limited by statute to $20 million annually.

Despite scheduled reductions in the CF according to the SGR formula, the most recent year with a CF

reduction was 2002. Since then, Congress has annually overridden scheduled reductions (colloquially

known as the “doc fix”). Most recently, the Medicare Access and CHIP Reauthorization Act of 2015

removed the SGR formula used to determine the CF. In its place, the act provided a half-percent increase

in the physician fee schedule rate until 2020 (Clough and McClellan, 2016).

II Measuring Affiliation

In economics, several threads of literature have developed quantitative measures of relationships between

groups. The literature on segregation has developed measures of isolation and dissimilarity to reflect the

interaction between groups (White, 1986; Cutler et al., 1999; Gentzkow and Shapiro, 2011; Esteban et

al., 2012). A distinct literature on technological spillovers has sought to measure the likelihood that

productive entities in multiple fields may affect each other (Jaffe, 1986; Bloom et al., 2013). In our

application, we seek to measure the alignment of interests between specialties when interests are multi-

dimensional, and the effects of policies on interests are not known with certainty (Caillaud and Tirole,

2007).

II.A Euclidean Distance Metrics

We capture the multidimensional nature of specialty interests with a measure of affiliation, or the align-

ment of interests between two specialties over a distribution of potential revenue changes across services.

We argue in Section 3.3 that using the affiliation formulation instead of service-specific interests alone is

attractive for both econometric and conceptual reasons.

Our goal in this section is to rationalize our chosen affiliation measures (in Section 3.3) by showing

how we can derive these measures starting from the idea that a specialty’s objective will depend on its

total revenue. To account for uncertainty in the effects of price changes on total revenue, we consider

a specialty’s total revenue as a stochastic object under random price changes and potentially random

spillovers across services. Affiliation is our statistic to measure the degree to which the revenues of two
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specialties are linked. Two specialties with linked revenues (i.e., high affiliation) should have similar

preferences.

Specifically, starting with the formula for specialty revenue Rs =
∑

i piqis,we can write the first-order

effect of a random vector dp of price changes on Rs as

dRs

dp
=

∑
i

(
qis

dpi
dp
+ pi

dqis
dp

)
. (A.2.1)

While we observe qis and pi , dpi/dp and dqis/dp are generally unknown. Thus, to derive a measure

of similarity that captures the effects of dp on the revenue of two different specialties, as in Equation

(A.2.1), we need to make simplifying assumptions on the unknown elements. We discuss two such as-

sumptions below, both of which link a statistical comparison of specialty objectives to a specific measure

of affiliation.

II.A.1 Quantity Shares

Under the assumption of fixed quantities (i.e., quantities are completely inelastic to price), the derivative

in Equation (A.2.1) reduces to
dRs

dp
=

∑
i

qis
dpi
dp
.

Further, fixed quantities allow us to scale revenue to be per-service; we can then compare specialties of

different overall volume:
drs
dp
=

∑
i

σ
q
is

dpi
dp
,

where rs ≡ Rs/
∑

i qis is the per-service revenue, and σq
is ≡ qis/

∑
i qis is the quantity share of i relative

to other procedures that s performs.

The difference in the effect on per-service revenue between specialties A and B is

drA
dp
−

drB
dp
=

∑
i

(
σ
q
iA
−σ

q
iB

) dpi
dp
. (A.2.2)

Distances in the vector space of quantity shares, i.e.,
(
σ
q
A
,σ

q
B

)
, thus capture this difference for any

arbitrary set of price changes (i.e., any arbitrary p and the corresponding dpi/dp for all i). In addition, the

expression in Equation (A.2.2) equivalently represents differences in per-service profit due to dp, where

“profit” is price minus a concept of service-specific cost, since costs are fixed with fixed quantities.1 That

is, with fixed quantities, a specialty objective that maximizes revenue also maximizes profits.

Given some distribution of price changes dp with C×C variance-covariance matrix Ωq , we can state

1This cost can be a cost of effort, a financial cost, or an opportunity cost, such as when time used to perform service i
detracts from time performing other procedures.
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the variance of drA − drB as

V ar (drA − drB) =
(
σ
q
A
−σ

q
B

) ′
Ω

q
(
σ
q
A
−σ

q
B

)
.

Recall that our baseline affiliation metric in Equation (3) is

a (sA, sB) = −


σ
q
A
−σ

q
B



2
= −

√(
σ
q
A
−σ

q
B

) ′ (
σ
q
A
−σ

q
B

)
.

Here, if two specialties have the same utilization shares (i.e., σq
A
= σ

q
B), there will be no difference

in their per-service revenue (i.e., drA − drB = 0) for any arbitrary distribution of dp. This Euclidean

distance is equivalent to the negative standard deviation of drA − drB under the uninformative prior that

dp follows a distribution with variance-covariance matrix equal to the identity matrix, Ωq = IC . In sum,

we can rationalize this affiliation measure if specialties view alignment in interests in terms of per-service

revenue, assuming fixed service quantities.

II.A.2 Revenue Shares

Rather than assume fixed quantities as in Appendix II.A.1, we can alternatively assume that quantities

remain allocated across specialties in fixed proportion under a distribution of price changes. Under this

assumption, we can rationalize a distance metric based on vectors of revenue shares. We show that this

metric corresponds to a measure of the difference between two specialties’ percentage change in revenue

after a distribution of price changes, dp.

To see this, first consider the accounting relationship qis = wisqi , where wis is defined in Equation

(5) and qi ≡
∑

s qis . If we assume that wis is fixed, then a specialty’s percentage revenue change is

dRs/dp
Rs

=
1
Rs

∑
i

(
qis

dpi
dp
+ pi

dqis
dp

)
=

∑
i

qispi
Rs
·

qis · dpi/dp+ pi · dqis/dp
piqis

=
∑
i

σR
is ·

qi · dpi/dp+ pi · dqi/dp
piqi

,

=
∑
i

σR
is ·

d
(
piqi

)
/dp

piqi
,

where σR
is ≡

(
piqis

)
/Rs is the revenue share of i relative to other procedures that s performs, and the

third line derives from dividing the numerator and the denominator by wis . The term multiplying σR
is is

a constant for each service i; it does not depend on the identity of s.

The difference in the percentage revenue change between specialties A and B is then

dRA/dp
RA

−
dRB/dp

RB
=

∑
i

(
σR
iA −σ

R
iB

) d
(
piqi

)
/dp

piqi
.
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Distances in the vector space of revenue shares, i.e.,
(
σR
iA,σ

R
iB

)
, correspondingly capture this difference

in percentage revenue changes. Specifically, given some distribution of proportional revenue changes(
piqi

) −1 d
(
piqi

)
/dp distributed with C ×C variance-covariance matrix ΩR , we can state the variance

of the difference in proportional revenue changes between specialties A and B as

V ar
(

dRA

RA
−

dRB

RB

)
=

(
σR

A −σ
R
B

) ′
Ω

R
(
σR

A −σ
R
B

)
.

Thus, the affiliation metric based on revenue shares,

a (sA, sB) = −


σ
R
A −σ

R
B



2
= −

√(
σR

A
−σR

B

) ′ (
σR

A
−σR

B

)
, (A.2.3)

can be interpreted as the negative standard deviation of the difference in proportional revenue changes

(i.e., dRA/RA−dRB/RB) under the uninformative prior that
(
piqi

) −1 d
(
piqi

)
/dp is distributed i.i.d. un-

der ΩR = IC . Specialties with identical utilization shares (i.e., σq
A
= σ

q
B) will also have identical revenue

shares (i.e., σR
A = σ

R
B ) and no difference in proportional revenue changes (i.e., dRA/RA − dRB/RB = 0)

regardless of spillovers in ΩR . In sum, we can rationalize this affiliation measure if specialties view

alignment in interests in terms of proportional changes in revenue, and if changes in service quantities

are distributed across specialties in fixed proportion.

II.B Alternative Distance Metrics

In addition to affiliation measures detailed above, we consider several other statistical measures of affil-

iation, motivated by the large space of CPT codes.2 First, we modify our baseline Euclidean distance

measures by weighting services with greater variation in σis across s:

a (sA, sB) = −
√

(σA −σB) ′G (σA −σB),

where G is a diagonal weighting matrix, such that element (i, i) is the Gini coefficient across σis for

each service i. This Gini-weighted metric places weight on services with greater variation in σis and

will naturally result in greater variation in distances.

We also consider Manhattan distance, in L1 space:

a (sA, sB) = − ‖σA −σB ‖1 = −
∑
i

|σi A −σiB | ,

2In addition to quantity shares and revenue shares based on individual services defined by CPT codes, we also consider
quantity shares and revenue shares in 107 Berenson-Eggers Type of Service (BETOS) categories. This formulation is more
restrictive but uses prior knowledge to group services into categories that likely covary. In this sense, this vector space may
improve the characterization of affiliation if BETOS categories capture a sufficiently large amount of information about CPT
codes in terms of the price or quantity effects of p. On the other hand, if there remains substantial heterogeneity in effects
within BETOS categories, then affiliation measures based on this vector space will perform less well.
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Finally, we consider cosine similarity, given by

a (sA, sB) = cos (σA,σB) =
σA ·σB

√
σA ·σA

√
σB ·σB

.

Cosine similarity—along with related measures of angular distance and the correlation measures in the

technology-spillover literature (Jaffe, 1986; Bloom et al., 2013)—has the feature of normalizing the two

vectors under comparison to have the same length.3

In this setting, the magnitudes of elements in any vector σs represent specialty interests (i.e.,
∑

i σis =

1 for any s), while normalizing σA and σB to length 1 has no meaningful economic interpretation. On

the other hand, the cosine similarity between two specialty vectors of within-service shares, or wis as

defined in Equation (5), can be interpreted as the correlation in revenue between the specialties. To see

this, denote w̃s as the C×1 vector with ith element equal to wis .4 Consider a C×C variance-covariance

matrix Ωw,R of piqi . Then w̃AΩ
w,Rw̃′B is the covariance in revenues between specialties A and B, under

the assumption that w̃A and w̃B are fixed. The measure

a (sA, sB) = cos (w̃A, w̃B) =
w̃A · w̃B

√
w̃A · w̃A

√
w̃B · w̃B

(A.2.4)

reflects correlation in revenue between specialties A and B under the uninformative prior thatΩw,R = IC .

To differentiate cos (σA,σB) and cos (w̃A, w̃B) , we call the former σ-cosine similarity and call the latter

w-cosine similarity. In Appendix Table A.3, as with measures based on σis , we also present regression

results of Equation (6) for affiliation defined by w-cosine similarity measures based on quantity and

revenue data.5

II.C Cross-Service Spillovers

In Appendices II.A and II.B, we describe affiliation measures that assume revenue-relevant variation is

i.i.d. across services. Here, we empirically compute and evaluate alternative variance-covariance matri-

ces to represent spillovers. We compute three different matrices relevant for three respective affiliation

measures: (i) Ωq , the variance-covariance matrix of RVU changes dpi , implicit in Equation (3); (ii) ΩR ,

the variance-covariance matrix of percentage revenue changes d
(
piqi

)
/
(
piqi

)
, implicit in Equation

(A.2.3); and (iii) Ωw,R , the variance-covariance matrix of revenue d
(
piqi

)
, implicit in Equation (A.2.4).

3To see the relationship between between Euclidean distance and cosine similarity, note that ‖σA −σB ‖
2
2 =

(σA −σB ) (σA −σB ) ′ = ‖σA‖
2
2 + ‖σB ‖

2
2 − 2σA ·σB . If ‖σA‖

2
2 = ‖σB ‖

2
2 = 1, then ‖σA −σB ‖

2
2 = 2 (1− cos (σA,σB ) ).

Angular distance is defined as a (sA, sB ) = π−1 cos−1 (cos (σA,σB ) ), and correlation is defined as a (sA, sB ) = corr (σA,σB ).
We find that regressions of Equation (6) yield very similar results when using cosine similarity, angular distance, and correla-
tion. We thus omit results for angular distance and correlation from Appendix Table A.3 for brevity.

4This vector is related to wi , which is the S×1 vector with the sth element equal to wis .
5Quantity-based w

q
is

is defined in Equation (5), whereas revenue-based wR
is =

(∑
y piyqisy

)
/
(∑

y
∑

s piyqisy
)

. For a
single year y, it is obvious that wq

is
= wR

is . In general, they may not be equivalent when aggregating over years or CPT codes
within a BETOS category, but the difference between w

q
is

and wR
is will be much smaller than the difference between σq

is
and

σR
is , because price differences are much smaller within CPT code as opposed to across CPT codes.
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We compute these matrices based on observations of pi in the physician fee schedule and piqi across

years in the Medicare data.

The assumptions about cross-service spillovers in each of these matrices will imply different affilia-

tion measures. Specifically, we define

−



σ

q
A
−σ

q
B;Ωq


2

= −

√(
σ
q
A
−σ

q
B

) ′
Ωq

(
σ
q
A
−σ

q
B

)
;

−



σ

R
A −σ

R
B ;ΩR


2

= −

√(
σR

A
−σR

B

) ′
ΩR

(
σR

A
−σR

B

)
;

cos
(
w̃A, w̃B;Ωw,R

)
=

w̃AΩ
w,Rw̃′B√

w̃AΩ
w,Rw̃′

A

√
w̃BΩ

w,Rw̃′B
,

for Euclidean distance in σq , Euclidean distance in σR , and w-cosine similarity, respectively.

In principle, if spillovers are known without measurement error, these affiliation measures should

capture the alignment of specialty revenue interests more closely than a measure that ignores spillovers.

However, in practice, there are two empirical difficulties that could degrade the fidelity of these mea-

sures relative to our baseline measure. First, we lack sufficient quasi-experimental variation to estimate

spillovers across services. Second, the number of observations we have for each service is much smaller

than the number of elements in Ω, a well-known problem in the estimation of covariance structures

(Altonji and Segal, 1996).

Thus, we introduce two regularization parameters, γ1 and γ2, to enable us to “shrink” the variance-

covariance matrix Ω to a matrix Ωγ1,γ2 closer to the identity matrix IC :

Ωγ1,0 =
(
diag (Ω)

) −γ1/2
Ω

(
diag (Ω)

) −γ1/2

Ωγ1,γ2[i, j] = (1−γ2)Ωγ1,0[i, j], for all i , j .

γ1 ∈ [0,1] transforms Ωγ1,0 from a variance-covariance matrix (γ1 = 0) to a correlation matrix (γ1 = 1),

and γ2 ∈ [0,1] further transforms Ω1,γ2 from a correlation matrix (γ2 = 0) to an identity matrix (γ2 = 1).

In Appendix Figure A.1, we evaluate the performance of affiliation metrics that include spillovers,

by plotting the coefficient of each affiliation metric in the price regression of Equation (6) with respect to

the regularization parameters. We find that accounting for spillovers unambiguously reduces the linkage

between RUC price actions and our Euclidean-distance affiliation measures but improves this linkage for

w-cosine similarity over some range of (γ1, γ2).

III Mixed Strategies in Endogenous Proposals

In this appendix, we sketch a simple signaling model of proposals to provide intuition for the random

variation we observe in the endogenous decisions of specialties to propose. As in our main conceptual

framework, in Section 5.1, we assume a specialty society may be biased, but for tractability, we rule out
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any downstream communication or any potential bias of the RUC.6 The first important feature of the

model is that proposals to the RUC are costly. Second, if there is more than one proposing specialty

that would have proposed alone, then there cannot be a unique (or symmetric) pure strategy equilibrium

that determines specialty proposals. In other words, if specialty societies cannot fully coordinate, then

we will have random variation in the identities of proposing specialties. In this sketch, we ignore the

possibility that costs may quasi-randomly vary in order to clarify the latter source of random variation.

Specifically, consider specialty society utility

uS = − (θ + bS − p)2− cDS,

where θ ∈ {0,1} is the true price, bS > 0 is the specialty’s bias, p is the price recommended by the RUC

(and set by the government), c is the cost of proposing, and DS ∈ {0,1} is an indicator for the specialty

proposing. The RUC’s (and the government’s) utility is uR = − (θ − p)2. We assume that Pr (θ = 1) = 1
2 .

In a separating pure strategy equilibrium with a single specialty, the specialty will propose if and

only if θ = 1, and the government will set p = DS . The specialty must then have bias bS ∈
[
c−1

2 ,
c+1

2

]
. If

bias is too low (or cost too high), then the specialty will not want to propose even if θ = 1; if bias is too

high (or cost too low), then the specialty will want to propose even if θ = 0.7

We then consider two specialties S ∈ {1,2}, and assume that bS > c−1
2 for both specialties. Both

specialties would propose if θ = 1 had the other one not existed, yet neither would propose if it knows

that the other specialty’s strategy is to propose when θ = 1. Thus, there is no unique pure strategy

equilibrium of proposals by the two specialties. In the case that b1 = b2, this implies that there is no

symmetric pure strategy equilibrium.8 There are at least two types of mixed strategies over the range of

this bias-cost space: (i) Neither specialty proposes if θ = 0 and mix (i.e., propose with some probability

πS ∈ (0,1)) if θ = 1 , and (ii) both specialties propose if θ = 1 and mix if θ = 0.

Because the number of actual specialty-proposals relative to potential specialty-proposals is empiri-

cally low, we focus on the former type of mixed strategies.9 When specialties mix when θ = 1, the RUC

knows that θ = 1 and sets p = 1, if either D1 = 1 or D2 = 1. If D1 = D2 = 0, the RUC sets

p (π1, π2 |D1 = D2 = 0 ) =
(1− π1) (1− π2)

1+ (1− π1) (1− π2)
,

which is the probability that θ = 1 if D1 = D2 = 0. For a mixed-strategy equilibrium to exist, specialties

must be indifferent between proposing and not. Specifically, although proposing will lead to a price

6We could introduce these features, but the intuition we wish to formalize would remain the same.
7Potters and van Winden (1992) also point out that there exists a mixed strategy equilibrium, in which the specialty certainly

proposes if θ = 1 and proposes with some probability π ∈ (0,1) if θ = 0 for biases bS ∈
(
c+1

2 ,c+
1
4

)
if c > 1

2 .
8There may exist, for example, a perfect Bayesian equilibrium with two players in which both would choose to propose if

the RUC believed θ = 1 only if it observes both specialties proposing. We could rule out an equilibrium of this form by refining
the equilibrium concept such that if the RUC observes only one specialty proposing, it will nonetheless consider that specialty’s
incentives to propose and update its prior probability that the value of θ = 1 (Grossman and Helpman, 2001).

9Parallel results obtain for the latter type, which correspond to the mixed strategy in the single-player case noted by Potters
and van Winden (1992), in footnote 7.
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increase of 1− p (π1, π2 |D1 = D2 = 0 ) > 0, the utility gain by either specialty is equal to the cost of

proposing, c. In Appendix Figure A.2, fixing c = 1 for the specialties, we show whether a mixed-strategy

equilibrium exists in (b1,b2) space and, if so, the mixing probabilities for the specialties (when θ = 1)

that sustain it.

We first find that if specialty bias is sufficiently low, then there exists no mixed-strategy equilibrium.

Failure to coordinate and the temptation to free-ride results in no proposals, reducing signaling equilibria

relative to the one-specialty standard. However, if both specialties are sufficiently biased (or equivalently,

have low costs), then their equilibrium mixed strategies will involve fairly high πS , and signaling is

possible even for bS > c+1
2 , which would have prohibited signaling in the one-specialty case, where the

specialty would have proposed even if θ = 0. Finally, and intuitively, when specialty are asymmetric

in their bias, signaling occurs mostly through the lower-bias specialty. As the bias of the higher-bias

specialty approaches infinity, the equilibrium resembles a single-specialty pure-strategy equilibrium, and

signaling is possible at levels of bias (of the lower-bias specialty) close to those in the one-specialty case

(i.e., as low as c−1
2 ).

IV Quasi-Experimental Variation in Affiliation

Affiliation A (Rt,Si ) is determined as a function of specialties on the RUC at meeting t, Rt , and special-

ties on a proposal i, Si . In this appendix, we quantify and assess the exogeneity of variation in A (Rt,Si )

due to variation in Rt and variation in Si . In particular, we evaluate two potential threats to identification.

First, with respect to variation in Rt , specialties submitting proposals for procedures with intrinsically

high prices may choose to submit these proposals at meetings with more affiliated RUC members. Sec-

ond, specialties may be more likely to propose for procedures with higher potential prices, driving up the

affiliation of these proposals with the RUC.

IV.A Quasi-Experimental Variation in Rt

To evaluate variation in affiliation due to Rt we first compute the affiliation that each proposal i would

have over all possible meetings t ′ ∈ T , generating a set of counterfactual affiliations, A = {A (Rt ′,Si ) }.

We then test whether observed affiliations are statistically distinguishable from these counterfactual af-

filiations. In Panel A of Appendix Figure A.4, we show that the mean differenced statistic A (Rt ′,Si ) −

A (Rt,Si ) over all proposals and possible meeting dates (i, t ′) is not statistically different than 0. How-

ever, given relatively stable RUC specialty membership in Table I and Figure I, it is natural that the

variation in affiliation due to Rt is relatively small. If we restrict counterfactual meetings to those within

a year of the actual meeting, in Panel B, we find that the distribution of A (Rt ′,Si ) − A (Rt,Si ) is even

more concentrated around zero.

We can also quantify the variation component from Rt relative to overall quasi-experimental varia-

tion. For this decomposition, we compute A (Si ) ≡ ‖T ‖−1 ∑
t ′∈T A (Rt ′,Si ), which is the average vari-

ation across all meetings, given Si . We then compute the variation in A (Si ), conditional on wi ; we
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denote A (Si ) residualized by wi as A
∗

(Si ). Variation in A
∗

(Si ) represents quasi-experimental varia-

tion unrelated to wi . The component of the variation due to Rt is σ2
R
≡ V ar

(
A (Rt,Si ) − A (Si )

)
, and

the remaining component due to Si is σ2
S
≡ V ar

(
A
∗

(Si )
)

. We find that σ2
R
/
(
σ2
R
+σ2

S

)
≈ 0.014 when

T is the entire set of meetings, and σ2
R
/
(
σ2
R
+σ2

S

)
≈ 0.007 when T contains counterfactual meetings at

most three meetings (one year) apart from the actual meeting.

IV.B Quasi-Experimental Variation in Si

To assess quasi-experimental variation in Si empirically, we conduct four tests. First, we show that spe-

cialty participation in proposals, conditional on specialty dummies, meeting dummies Tt , and utilization

shares wi , is uncorrelated with the service’s predicted price. Second, we show that specialty proposals

are conditionally uncorrelated with time-varying affiliation with the RUC. Third, we show significant

variation in the propensity of specialty proposals, even among specialties that actually participate in a

given proposal. Fourth, we predict affiliation based on specialty-proposal propensities and show that

this prediction is forecast-unbiased (Chetty et al., 2014), while there also remains wide variation in the

distribution of actual minus predicted affiliation. We provide more detail on these tests below.

IV.B.1 Specialty-Proposal Probability

The first three tests we perform relate to specialty-proposal probabilities. First, in Appendix Figure A.5,

we show evidence that the probability a specialty participates in a proposal is conditionally uncorrelated

with the predicted price of the relevant service. We predict the RVU of a procedure by its characteris-

tics, including procedure code word descriptions, surveyed time, prior RVU, and Medicare beneficiary

characteristics, which yields an adjusted R2 of 0.88 for the RVU prediction equation. Controlling for

specialty dummies, meeting dummies Tt , and specialty utilization shares wis , as defined in Equation (5),

we find no significant relationship between specialty proposals and predictors of price.

Second, in Appendix Figure A.6, we assess whether specialty proposals are more likely when affilia-

tion with the RUC is higher. We construct a measure of whether affiliation between specialty s is higher

at meeting t (i) associated with proposal i than at other meetings

A
(
Rt (i), s

)
− A (s) ,

where A (s) ≡ ‖T ‖−1 ∑
t ′∈T A (Rt ′, s). We standardize A

(
Rt (i), s

)
−A (s) to have a distribution with mean

0 and standard deviation 1. We then evaluate whether specialty proposals, or 1(s ∈ Si ), is correlated with

A
(
Rt (i), s

)
− A (s), conditional on dummies for specialty s and for the number of proposing specialties

in Si , or ‖Si ‖ . We again find no significant relationship between time-varying affiliation between s and

Rt (i) and whether s ∈ Si . While this does not rule out strategic proposing with respect to affiliation that

is time-invariant, given the evidence in Appendix IV.A, it is intuitive that specialties do not have much

scope to respond to time-varying affiliation.

Third, we form a prediction of specialty-proposal propensities, in order to evaluate variation in this
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propensity and the predictability with which specialties actually propose. We estimate a logit propen-

sity model of specialty-proposal participation, using specialty identities, flexible functions of wi , and

the procedure’s share of specialty revenue, defined as σR
is in Appendix II.A.2. The logit model is fairly

predictive, with a pseudo-R2 of 0.73 and a log-likelihood of −8,661.35 over 248,735 observations, and

the standard deviation in specialty-proposal propensities is about 13%. Nonetheless, we find substantial

residual variation in specialty proposals. To illustrate this, in Appendix Figure A.7, we show the propen-

sities of 6,929 actual specialty-proposal pairs over 4,199 proposals. While there are many propensities

with high values, more than half of the actual specialty proposals have propensities lower than 0.8, and

about a quarter have propensities less than 0.5. Similarly, in Appendix Figure A.8, we show the first-,

second-, third-, and fourth-ranked specialty propensities for proposals with at least as many proposers.

Although there are 64 specialties to rank, propensities quickly diminish: The average first-ranked propen-

sity is 0.86, while the average second-, third-, and fourth-ranked propensities are 0.76, 0.69, and 0.54,

respectively.

IV.B.2 Affiliation Forecast

In our fourth test, we use our estimated specialty-proposal propensities, π̂is , and the known specialties

of RUC members at each meeting, Rt , to form a prediction of affiliation by simulation. We will use

this prediction to evaluate endogeneity at the affiliation level, testing whether affiliation is “forecast-

unbiased” (Chetty et al., 2014). We will also evaluate the degree of variation in affiliation that remains

conditional on this prediction, which allows for nonlinear relationships in wi and σR
is across specialties.

We proceed as follows:

1. Use estimated specialty-proposal propensities, π̂is . Drop any specialty-proposal pair with π̂is <

0.01.

2. For each proposal i, identify number of remaining specialty-proposer candidates, ni , and the num-

ber of actual specialty proposers, ki . This yields ‖Si ‖ = C (ni, ki ) as the number of potential

proposer sets Si for i, constraining the number of simulated proposers in each set to be the same as

the number of actual proposers. For example, if there remain ten specialty-proposer candidates for

a proposal with only one actual specialty proposer, there are C (10,1) = 10 (singleton) sets to draw

from. However, if there are fifteen specialty-proposer candidates for a proposal with four actual

proposers, there are C (15,4) ≈ 7.57×107 sets to draw from.

(a) For proposals i such that ‖Si ‖ ≤ 50, collect all such potential proposer sets.

(b) For the remaining proposals, randomly draw ki proposers from ni , oversampling specialty-

proposer candidates from those with higher π̂is . Specifically, generate ris ∼ U (0,1) and

subtract this from π̂is . Within each i, sort specialty-proposer candidates by π̂is − ris , and

choose the top ki candidates to include in Si . Repeat until some stopping rule (e.g., based on

the number of unique sets sampled for each i and the lack of new sets sampled for any i in a

draw).
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(c) Denote as S∗i ⊆ Si the collection of simulated sets for each proposal i. For each Si ∈ S∗i ,

calculate a simulated set affiliation A (Rt,Si ) for each Si , using known Rt and the formula

in Equation (4).

3. Given π̂is , and assuming independence of specialty proposals, the probability of drawing Si from

Si is

Pr
(
Si | S

∗
i

)
≡

∏
s∈Si π̂is

∏
s<Si (1− π̂is )∑

Si ∈S
∗
i

(∏
s∈Si π̂is

∏
s<Si (1− π̂is )

) .
This allows us to weight sets by their probability of occurrence. This also allows us to generate a

predicted set affiliation,

Â (Rt, i) =
∑
Si ∈S

∗
i

A (Rt,Si ) Pr
(
Si | S

∗
i

)
. (A.4.1)

In Appendix Figure A.9, we show the distribution of simulated set affiliations relative to the actual set

affiliation for each i, weighted by Pr
(
Si | S

∗
i

)
, or Â (Rt, i) − A (Rt,Si ). The weighted standard deviation

of the distribution is 0.242, reflecting that there exists meaningful variation in set affiliation based on the

specialty-proposal propensities. The variation in this figure is much larger than the variation in Appendix

Figure A.6, consistent with the large majority of identifying variation coming from Si rather than Rt .

Further, the weighted mean of the distribution of Â (Rt, i) − A (Rt,Si ) is −0.016, suggesting very little

forecast bias in predicted set affiliation. We use predicted set affiliation as a control, rather than linear

specialty shares of CPT utilization, wi , in a robustness check of the affiliation effect on prices, in column

(5) of Table III; we find a similar estimate of the main effect.

V Counterfactual Revenue Analysis

V.A Simulation Algorithm

We simulate counterfactual revenue in scenarios that entail counterfactual affiliations for proposals. In

each scenario, we hold fixed the service and timing of each proposal, the Medicare budget, and the

utilization of each service. Counterfactual revenue results solely from the effect of affiliation on relative

price. Prices are rationalized so that total spending meets the fixed Medicare budget. The algorithm is as

follows:

1. Starting at the first year in which the RUC’s pricing decision goes into effect, we replace the

relative price RVUiy that followed a RUC recommendation with a counterfactual IRVU iy , by

subtracting α̂
(
A (Rt,Si ) − Ãit

)
, where A (Rt,Si ) and Ãit are actual and counterfactual affilia-

tions, respectively, and α̂ is the estimated affiliation effect from Equation (6). The counterfactual

affiliation in the first scenario is an equalized affiliation across all proposals i ∈ It in the same

meeting t: Ãit = ‖ It ‖−1 ∑
i∈It A (Rt,Si ). The counterfactual affiliation in the second scenario is

Ãit = A
(
R̃,Si

)
, where R̃ is the counterfactual RUC composed of specialties in Appendix Table
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A.7. RUC decisions in meeting t map to prices in the Medicare schedule in year y (t). We repeat

for subsequent years, allowing previously set prices to continue forward.

2. We take quantities qisy of service i, by specialty s, in year y, observed in Medicare claims. We set

conversion factors CFy and C̃Fy so that the overall spending is $70 billion in 2014 dollars, which

implies that

C̃Fy

∑
i

∑
s

IRVU iy · qisy = CFy

∑
i

∑
s

RVU iy · qisy . (A.5.1)

3. The revenue reallocation for service i, specialty s, and year y is

∆risy = qisy
(
C̃Fy ·IRVU iy −CFy · RVUiy

)
.

4. We aggregate ∆risy to yearly averages for specialties s or types of service k:

∆Rs = ‖Y‖
−1

∑
y∈Y

∑
i

∆risy ;

∆Rk = ‖Y‖
−1

∑
y∈Y

∑
s

∑
i∈k

∆risy .

V.B Distribution of Counterfactual Affiliations

Our counterfactual analysis is based on a reduced-form estimate of α̂ from Equation (6). In the first

counterfactual scenario, we assume that affiliation has no effect, or that there is no difference in affiliation

across proposals in a given meeting. In the second counterfactual scenario, we consider an alternative

RUC membership, and use α̂ to impute counterfactual RVUs, as described above. To evaluate the external

validity of using α̂ in this analysis, we compare the distribution of counterfactual affiliations under this

alternative RUC with the observed distribution of actual affiliations.

In Appendix Figure A.11, we plot the distribution of counterfactual affiliations against that of actual

affiliations and find very little difference between the two distributions. The Q-Q plot of quantiles of the

two distribution essentially lie on the 45-degree line. In the same figure, we also consider the distribution

of differences between counterfactual and actual affiliation. This distribution is quite narrow, especially

compared to the distribution of the difference between actual and predicted affiliation. Thus, the differ-

ences in affiliation induced by a counterfactual RUC appear quite small relative to the quasi-experimental

variation in affiliation we observe in the data.

VI Alternative Mechanisms Behind the Price Effect

In this appendix, we consider evidence regarding alternative mechanisms of the affiliation effect on

prices, as discussed in Section 4.3. The results are summarized in Appendix Table A.4. All specifications

in Appendix Table A.4 include the same controls as in the baseline specification of the price regression,
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shown in column (4) of Table III.

First, we consider specifications relating to interests (and information) held by RUC specialties that

are specific to the proposed service. Specifically, we consider the service i’s utilization share of all

services billed by a RUC specialty s, or σq
is , as defined in Equation (2). We also consider i’s revenue share

of all Medicare revenue to s, or σR
is ≡

(
piqis

)
/Rs , as discussed in Appendix II.A.2. These measures

capture both specialty s’s interests and information about i: A specialty s with a higher σq
is or σR

is

should have interests specific to service i to raise its price, and it may also have more knowledge about

service i, outside of the proposal process. We perform variants of the regression

lnRVUit = αA (Rt,Si ) +γm (σi ;Rt ) +Xi β+Ttη +wiζ + εit, (A.6.1)

where m (σi ;Rt ) is the mean interest σis across specialties serving on the RUC, s ∈ Rt , standardized to

have mean 0 and standard deviation 1 across i.10

Columns (1) and (2) of Appendix Table A.4 show results for regressions adding standardized mean

σ
q
is and σR

is , respectively. The coefficient on standardized set affiliation remains unchanged in magnitude

and significance. The coefficients on the standardized measures of RUC-specialty interest in proposal

i are small, though statistically significant. Although we ascribe a causal interpretation to α under As-

sumption 1 in Section 3.4, the same reasoning does not apply to γ.11 With this caveat, it does not appear

that RUC specialty direct interests play a major role in explaining the RUC’s price recommendations. In

columns (3) and (4), we consider related interests, or elements σ̃q
is and σ̃R

is in vectors σ̃q
s = Ω

qσ
q
s and

σ̃R
s = Ω

RσR
s , respectively, where Ωq and ΩR are spillover matrices defined in Appendix II.C. Interest-

ingly, we find that related interests play a larger role in pricing than direct interests.

Next, we consider the possibility that affiliation could reflect signaling “buy-in.” That is, more spe-

cialties should be willing to propose for procedures that have a higher intrinsic price. As more specialties

propose, set affiliation, as defined in Equation (4), will mechanically increase through max operator in

the formula. Higher prices under this scenario are warranted and do not reflect any RUC bias. We modify

the baseline price-effect regression in Equation (6) to include proposer-count fixed effects:

lnRVUit = αA (Rt,Si ) +γn1 (‖Si ‖ = n) +Xi β+Ttη +wiζ + εit . (A.6.2)

This specification relies only on within-proposer-count variation to identify the price effect of affilia-

tion. As shown in column (5) of Appendix Table A.4, the coefficient on standardized set affiliation is

unchanged, at 0.112, and highly significant.

10We also perform a regression similar to Equation A.6.1, excluding the term A (Rt,Si ), which also yields similar estimates
of γ (omitted for brevity). This indicates that m (σi ;Rt ) is for the most part conditionally uncorrelated with A (Rt,Si ).

11For nonparametric identification of γ, we would require random variation in RUC specialty composition, Rt . In order
to interpret γ as causal, we would require parametric restrictions on the conditional independence between lnRVUit and
m (σi ;Rt )—such as the sufficiency of conditioning on the linear combination wi ζ and ln

∑
s qis . While the causal interpreta-

tion of γ is not important for this paper, we conduct balance tests similar to the test that generates Appendix Figure A.3, which
generally reject the null of quasi-random assignment, even when we control for ln

∑
s qis .
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VII Heterogeneous Effect of Affiliation by Proposal Type

We investigate heterogeneity of the affiliation effect on prices, along four binary dimensions of proposal

type: (i) whether the proposal is for a CPT code that existed or was new at the time of the proposal, (ii)

whether the proposal is for a CPT code with below- or above-median yearly volume (for the years that it

was in existence), (iii) whether the proposal is for a CPT code with below- or above-median price, and

(iv) whether the proposal occurred at an earlier or later RUC meeting.12 For each of these dimensions,

we perform the following regression:

lnRVUit =
∑

c∈{0,1}

(
α0,c +α1,c A (Rt,Si )

)
·1 (c (i, t) = c) +Xi β+Ttη +wiζ + εit, (A.7.1)

where c (i, t) ∈ {0,1} depending on CPT code i and meeting t in question.

Appendix Table A.5 shows cross-tabulations of proposals along these types. Approximately 55% of

the proposals were for existing CPT codes, while the remaining 45% were for new CPT codes. Existing

CPT codes were slightly more likely to have above-median utilization volumes, and much more likely to

have above-median prices. High-priced CPT codes were slightly more likely to have higher volumes.

Appendix Table A.6 shows results of the regression in Equation (A.7.1), along each of the four

dimensions. Strikingly, nearly all of the effect of affiliation on prices is borne by proposals for new CPT

codes. The coefficient on (interacted) set affiliation is twice as high for new CPT codes, at 0.209, while it

is small and statistically insignificant for existing CPT codes. The effect of affiliation is also much higher

for low-quantity vs. high-quantity CPT codes, and it is much higher for low-priced vs. high-priced CPT

codes. Finally, the effect of affiliation is roughly the same in earlier meetings as it is in later meetings.

Because proposal types are correlated across dimensions, these heterogeneous treatment effects are only

descriptive. However, they are consistent with a story in which affiliation has a greater relative effect for

proposals in which there is less evidence (i.e., less hard information) or less at stake for setting a service’s

price.

VIII Technical Details of the Conceptual Framework

This appendix provides additional detail behind the conceptual framework we outline in Section 5. We

start with more detail about the formula for expected “variance”, E
[
(θ + bR − p)2

]
, that represents infor-

mation loss in the standard Crawford and Sobel (1982) model. Next, we provide details of the analysis

with hard information and the optimal b∗R under hard information. Finally, we describe a mechanism of

12Although price is endogenous, when considered as an indicator variable for whether the CPT code’s price is below- or
above-median, we roughly capture intrinsic characteristics of the procedure. For example, the highest-priced CPT code (CPT
code 33935, or heart and lung transplantation) has an RVU of 100, 670 CPT codes have RVUs below 1. The mean RVU
was 10.85, and the median RVU was 5.53, shared by CPT 22585 (Anterior or Anterolateral Approach Technique Arthrodesis
Procedures on the Spine) and CPT code 33213 (Pacemaker or Pacing Cardioverter-Defibrillator Procedures). We define an
“earlier” meeting as occurring before the third meeting of 2005, whereas a “later” meeting occurred at or after the third meeting
of 2005.
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assigning intervals of expected length L such that the posterior distribution of θ remains uniform within

each realized interval.

VIII.A Canonical Crawford and Sobel (1982) Partitions

Consider θ uniformly distributed on the interval [0, L]. The sender (the specialty) has bias b, relative to

the receiver (the RUC). The formula for the number of partitions supported under b = bS − bR over the

interval is

n∗ (b) =


1
2
*
,
1+

√
1+

2L
b
+
-


. (A.8.1)

Using Equation (A.8.1), we define the limiting bias such that n∗ (b− ε) = n for any positive but arbitrarily

small ε:

b∗ (n) =
2L

(2n−1)2−1
.

b∗ (n) supports n partitions only in the limit. For example, as we show below, b = 1
4 supports only one

partition, since the first partition of technically two partitions will have a length of 0.

The first partition is bounded by x0 = 0 and

x1 =
L
n
− (n−1) 2b, (A.8.2)

Subsequent partition lengths increase by 4b, which implies

xk = 2xk−1− xk−2+4b, (A.8.3)

and Equations (A.8.2) and (A.8.3) imply that xn = L.

We will consider a number of specific examples of n, which exist for b ∈ [b∗ (n+1) ,b∗ (n) ). We

define the boundaries of the partitions in the space of [0, L], and the variance E
[
(θ + bR − p)2

]
. For

the latter object, we use the fact that the variance of a uniformly distributed random variable along an

interval of length L is L2/12. Two partitions exist if b ∈
[
L
12,

L
4

)
and are defined by

(
0, L2 −2b, L

)
. The

variance is given by

E
[
(θ + bR − p)2

]
=

L2

12



(
1
2
−2b

) 3

+

(
1
2
+2b

) 3

=
1
12

(
L2

4
+12b2

)
=

L2

48
+ b2.

16



Three partitions exist if b ∈
[
L
24,

L
12

)
and are defined by

(
0, L3 −4b, 2L

3 −4b, L
)

. The variance is given by

E
[
(θ + bR − p)2

]
=

L2

12



(
1
3
−

4b
L

) 3

+

(
1
3

) 3

+

(
1
3
+

4b
L

) 3

=
1
12

(
L2

9
+32b2

)
.

By induction, one can verify that the variance in the equilibrium with n partitions is

E
[
(θ + bR − p)2

]
=

1
12

(
L2

n2 + Anb2
)
, (A.8.4)

where A1 = 0, and An = An−1+8n−4.Note that the variance is continuous across the number of partitions

(as b changes). Also, the variance is decreasing in b, holding L fixed.

VIII.B Hard Information

Given the formula for soft information loss in Equation (A.8.4), we can write the expected utility for the

specialty and the government, respectively, as

E [uS] = −E
[
(θ + θR − p)2

]
− b2− c (L)

= −
1
12

(
L2

n2 + Anb2
)
− b2− c (L) , (A.8.5)

and as

E [uG] = −E
[
(θ + θR − p)2

]
− b2

R

= −
1
12

(
L2

n2 + Anb2
)
− b2

R . (A.8.6)

In both Equations (A.8.5) and (A.8.6), n is the number of partitions supported by b and L and is given by

Equation (A.8.1). Better information, either hard or soft, increases the utility of both the specialty and

the government.

Taking the partial derivative of expected specialty utility with respect to L, while holding b and n

fixed, yields the following condition for the agent’s choice of L:

∂

∂L
E [uS] = −

L
6n2 − c′ (L) = 0. (A.8.7)

The convexity of c (L) implies that there exists a single optimal candidate that satisfies Equation (A.8.7)

for the cheap talk equilibrium with n partitions. Denote the solution to Equation (A.8.7) for a given n,

if it exists (i.e., n∗
(
b, L∗n

)
= n), as L∗n .13 Intuitively, L∗n is increasing in n: better soft communication

13In Equation (A.8.7), L∗n is increasing in n, and in Equation (A.8.1), n∗ (b, L) is increasing in L. Since (i) L∗n ∈ (0,1] and
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(higher n) reduces the incentive to produce hard information (larger L∗n). The globally optimal L∗ is then

given by L∗ = argmaxn
(
E

[
uS ; L∗n

] )
. L∗ is decreasing in b: As the specialty and the RUC have divergent

preferences, soft communication worsens, and this increases the optimal hard information. Because the

set of L∗n comprises discrete values, L∗ (b) is a step function.

VIII.C Optimal RUC Bias

Because smaller L∗ increases government utility in Equation (A.8.6), and because L∗ is a decreasing

function of b = bR − bS , the optimal b∗R from the government’s perspective is weakly lower under the

possibility of hard information than when we fix L = 1.

However, the optimal b∗R ≥ 0. That is, an adversarial RUC is still never optimal from the govern-

ment’s perspective. In order for b∗R < 0, we need three requirements:

1. The threshold bR where the specialty is indifferent between n = 1 and n = 2 must be less than 0.

2. The expected government utility when bR = bR is higher than the maximum expected government

utility under n = 2:

max E [uG | n = 2] < E
[
uG | bR = bR

]
.

3. The expected government utility when bR = bR is higher than complete delegation when bR = bS .

Note also that convexity of c (L) implies that c′
(
L∗1

)
< c′

(
L∗2

)
. From the first order conditions that

c′
(
L∗1

)
= − 1

6 L∗1 and c′
(
L∗2

)
= − 1

24 L∗2, we must have L∗1 >
1
4 L∗2. Convexity also implies that

c
(
L∗1

)
− c

(
L∗2

)
L∗2− L∗1

∈

[
1
24

L∗2,
1
6

L∗1

]
.

The threshold bR is defined by the following condition:

E
[
uG | bR = bR,n = 1

]
= E

[
uG | bR = bR,n = 2

]
.

In other words

1
12

(
L∗1

) 2
+

(
bR − bS

) 2
+ c

(
L∗1

)
=

1
48

(
L∗2

) 2
+2

(
bR − bS

) 2
+ c

(
L∗2

)
.

The threshold is then

bS = bR +

√
1
12

(
L∗1

) 2
−

1
48

(
L∗2

) 2
+ c

(
L∗1

)
− c

(
L∗2

)
. (A.8.8)

(ii) n∗ (b, L) is bounded by n∗ (b,1), there must be at least one n ∈ {1, . . .,n∗ (b,1) } such that n∗
(
b, L∗n

)
= n.
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Condition 1 and convexity imply that

bS <

√
1
12

(
L∗1

) 2
−

1
48

(
L∗2

) 2
+

1
6

L∗1
(
L∗2− L∗1

)
. (A.8.9)

Condition 2 requires that

−
1
12

(
L∗1

) 2
− b

2
R > −

1
48

(
L∗2

) 2
−

1
2

b2
S, (A.8.10)

where the expression on the left is the expected government utility at bR and n = 1, and the expression on

the right is the expected government utility under the optimal bR =
1
2 bS conditional on n = 2. Condition

3 requires that

−
1
12

(
L∗1

) 2
− b

2
R > −b2

S . (A.8.11)

The expression on the right is the government utility under full delegation.

We show numerically that there are no values
(
L∗1, L

∗
2,bS,bR

)
that satisfy Equations (A.8.8) to

(A.8.11) simultaneously.

VIII.D Uniform Posterior Intervals

While it is convenient to work with continuous L, there is a technical complication in specifying values

of θ and θ, such that it remains that θ ∼U
(
θ, θ

)
with fixed L = θ − θ. For example, consider the case of

L = 0.9. If θ = 0, then we must have θ = 0 with probability 1, but θ = 0 with probability less than 1 if θ > 0.

Therefore, if any potential interval must have L = 0.9, and we have a realized interval
[
θ, θ

]
= [0,0.9],

then θ cannot be uniformly distributed within the realized interval.

To preserve uniform posterior distributions within the intervals revealed after hard information, we

need sets of potential intervals to be mutually exclusive and collectively exhaustive. Thus, we may have

one potential interval of length La = 0.9 and another potential interval of length Lb = 0.1. The ordering

of these intervals may be random, but so long as the intervals are not overlapping in a particular ordering,

then the posterior distribution of θ within each interval will remain uniform. We operationalize this with

the concept that L instead represents the expected length of the information interval after hard infor-

mation, under a mechanism that divides the unit interval into N intervals of length La and a remaining

weakly shorter interval of length Lb = 1−N La ≤ La .

The probability that θ falls in an interval of length La is N La , while the probability that θ falls in the

remaining interval of length Lb . Thus L = N L2
a + L2

b
= N L2

a + (1−N La )2. We can solve for La (L), as

a function of L, by using the quadratic formula and the fact that N =
⌊
L−1

⌋
:

La (L) =
1+

√
1− (1− L)

( ⌊
L−1⌋ −1

+1
)

1+
⌊
L−1⌋ ,
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which is continuous and monotonically increasing in L.

We modify our equilibrium analysis by stating expected utility E [uA] (prior to hard information) as

a function of L:

E [uA] = −E
[
(θ − p)2

]
− b2− c (L)

= −
1
12



N La
3

n2
a

+
(1−N La )3

n2
b

+ Ab2

− b2− c (L) , (A.8.12)

where na = n∗ (b, La ), nb = n∗ (b,1−N La ) ≤ na , and A= N La Ana + (1−N La ) Anb
. The expression for

the variance E
[
(θ − p)2

]
is continuous, monotonically increasing in L (and La (L)), and piecewise con-

vex in La (L). The remainder of the analysis proceeds by identifying solutions L∗n, where n = (na,nb ),

and choosing L∗ = argmaxn
(
E

[
uS ; L∗n

] )
.

IX Private Price Transmission Robustness

In Section 5.3, we show that private insurance price changes are more responsive to Medicare price

changes when the Medicare price changes originate from RUC decisions and, within RUC decisions,

when they originate from a higher-affiliation proposal. We interpret this finding as supporting the hy-

pothesis that RUC decisions, particular those from higher-affiliation proposals, contain valuable infor-

mation that private insurance follows. In this appendix, we investigate alternative mechanisms that may

generate this result.

First, affiliated proposals may result in more informative Medicare prices not because they facilitate

communication, as detailed in Section 5, but because RUC members may naturally have more informa-

tion about the procedures that their specialty societies perform. We investigate this possibility by using

proxy measures of the RUC members’ own information, based on their utilization of the service in ques-

tion. In particular, we consider a specialty s’s share of total utilization for service i, wis , as defined in

Equation (5), and the service i’s share of the total utilization for specialty s, as defined in (2), averaging

across the specialties of RUC members at the relevant meeting:

wiy =
1




Rt (i,y)





∑
s∈Rt (i,y )

wis ; (A.9.1)

σiy =
1




Rt (i,y)





∑
s∈Rt (i,y )

σis, (A.9.2)

where Rt (i,y) is the set of RUC member specialties at the meeting t (i, y) corresponding to service i and

(private) price change year y.

Second, affiliated proposals may disproportionately represent high-volume services for which both

private insurers and Medicare have interests in setting accurate prices. Strong correlation between pri-

vate insurance and Medicare price changes for high-affiliation proposals may then result from careful

20



price-setting in both private insurance and Medicare, and not because affiliation per se causes better

communication between proposing specialties and the RUC. We consider two measures of volume for

service i: private insurance volume and total (private insurance and Medicare) volume.

Third, we take an omnibus approach, agnostic to the exact forces that may drive greater price fol-

lowing from Medicare to private insurance, by fitting a predictive model of price following. We consider

changes in private insurance prices as a function of changes in Medicare prices:

∆ lnPricePi,y = α+ βiy∆ lnPriceM
i,yM (i,y) + εiy,

where the goal is to predict βiy .14 To operationalize this approach, as an approximation of βiy , we take

the ratio of demeaned ∆ lnPricePi,y and demeaned ∆ lnPriceM
i,yM (i,y) ,

Ratioiy =
∆ lnPricePi,y −∆ lnPriceP

∆ lnPriceM
i,yM (i,y) −∆ lnPriceM

,

where∆ lnPriceP and∆ lnPriceM are respective sample means of log private and Medicare price changes,

weighted by Medicare volume. We then predict this ratio as a linear function of private insurance volume

for i; total (private insurance and Medicare) volume for i; time dummies Tiy for yM (i, y), y, and RUC

meeting; and the vector of specialty shares wi . We take the predicted ratio, ERatioiy , as an index for

predicted price-following based on characteristics of (i, y).

Given each of these measures that may influence price transmission to private insurance, we assess

the robustness of our results to controlling for these measures, both directly and interacted with Medicare

prices. Specifically, for each Indexit measure (i.e., wiy , σiy , private volume of i, total volume of i, and
ERatioiy ), we assess price transmission controlling for these proxy measures directly and interacted with

Medicare prices, σis , in regressions similar to Equation (8):

lnPricePiy =
∑
c

(
αc + βc lnPriceM

i,yM (i,y)

)
·1 (c (i, y) = c) +

3∑
τ=1

(
γτ + δτ lnPriceM

i,yM (i,y)

)
·1

(
F

(
Indexiy

)
∈

(
τ−1

3
,
τ

3

) )
+

Tiyη + ξi + εiy, (A.9.3)

where τ ∈ {1,2,3} indicates the tercile, F (·) is the distribution function of the relevant measure Indexit ,

and the rest is the same as in Equation (8). Appendix Table A.9 shows results from these regressions.

The key coefficients of interest, βC , are highly stable regardless of Indexiy . Price transmission remains

greater for Medicare price changes originating from RUC decisions and, within these decisions, from

high-affiliation proposals.

14This changes-on-changes specification closely matches the fixed-effects specification in Equation (8). As shown in Ap-
pendix Figure A.14, separating Medicare price changes into high- and low-affiliation groups gives similar results.
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Table A.3: Price Effect of Alternative Affiliation Measures

(1) (2) (3) (4) (5)

Affiliation metric

Data Euclidean
Gini-

Euclidean
Manhattan σ-Cosine w-Cosine

Panel A: Mean affiliation

Medicare CPT quantity
0.101***
(0.029)

0.103***
(0.030)

0.055**
(0.021)

0.061**
(0.025)

0.033**
(0.015)

Medicare + MarketScan
CPT quantity

0.076***
(0.025)

0.079***
(0.026)

0.048**
(0.020)

0.057**
(0.025)

0.028*
(0.015)

Medicare CPT revenue
0.094***
(0.029)

0.094***
(0.029)

0.038*
(0.019)

0.037*
(0.021)

0.033**
(0.015)

Medicare BETOS
quantity

0.088***
(0.029)

0.088***
(0.030)

0.056**
(0.022)

0.052**
(0.025)

0.036**
(0.016)

Medicare BETOS
revenue

0.072***
(0.027)

0.069**
(0.028)

0.045**
(0.021)

0.032
(0.020)

0.036**
(0.015)

Panel B: 33rd percentile affiliation

Medicare CPT quantity
0.104***
(0.032)

0.111***
(0.031)

0.061**
(0.024)

0.060**
(0.026)

0.026*
(0.014)

Medicare + MarketScan
CPT quantity

0.076***
(0.024)

0.082***
(0.026)

0.062**
(0.023)

0.051**
(0.024)

0.027*
(0.013)

Medicare CPT revenue
0.089***
(0.031)

0.092***
(0.033)

0.039*
(0.021)

0.027
(0.022)

0.027*
(0.014)

Medicare BETOS
quantity

0.086**
(0.033)

0.093***
(0.034)

0.066***
(0.025)

0.054**
(0.026)

0.038**
(0.018)

Medicare BETOS
revenue

0.088***
(0.029)

0.085***
(0.029)

0.053**
(0.022)

0.043**
(0.018)

0.034**
(0.016)

Notes: This table shows results of regressions of log RVU on various measures of set affiliation. Each cell rep-
resents the coefficient on the affiliation measure in a separate regression, stated as α in Equation (6) and corre-
sponding to the preferred specification of column (4) in Table III. Further details about the regression controls
are given in the note for Table III. Rows of the table correspond to underlying data from which affiliation is cal-
culated. Columns correspond to affiliation metrics between two specialties, discussed in Appendix II. Appendix
II.A discusses the baseline metric of Euclidean distance, shown in column (1), in detail, including differences in
interpreting using quantity vs. revenue shares. The remaining affiliation metrics are described in Appendix II.B.
Panel A calculates the set affiliation measure as the mean maximized specialty-pair affiliation, which is the default
and is given in Equation (4). Panel B calculates the set affiliation measure as the 33rd percentile of the maximized
specialty-pair affiliations. Standard errors, clustered by RUC meeting, are in parentheses; *** denotes significance
at the 1% level.
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Table A.4: Alternative Mechanisms Behind Price Effect

(1) (2) (3) (4) (5)
Log RVU

Standardized set affiliation
0.098***
(0.029)

0.103***
(0.030)

0.104***
(0.029)

0.098***
(0.029)

0.112***
(0.043)

Standardized measures of
RUC-specialty interest

Mean σq
is

0.021**
(0.009)

Mean σR
is

0.031***
(0.007)

Mean σ̃q
is

0.052**
(0.012)

Mean σ̃R
is

0.048***
(0.013)

Baseline controls Y Y Y Y Y

Proposer count dummies N N N N Y

N 4,401 4,401 4,401 4,401 4,401

Adjusted R-squared 0.891 0.895 0.892 0.892 0.891

Sample mean log RVU 1.567 1.567 1.567 1.567 1.567

Notes: This table shows results of regressions of log RVU on standardized set affiliation, with the addition of
controls to test robustness to alternative mechanisms. Columns (1) to (4) relate to alternative mechanisms of
service-specific interests or ex ante information held by RUC specialties. These specifications, given in Equation
(A.6.1), control for mean direct interests (σq

is and σR
is in columns (1) and (2), respectively) or related interests

(σ̃q
is and σ̃R

is in columns (3) and (4), respectively) across RUC specialties. Measures are standardized to have
mean 0 and standard deviation 1. Column (5) tests robustness to the alternative mechanism of signaling “buy-in,”
controlling for proposer dummies, as in Equation (A.6.2). Details are given in Appendix VI. All specifications
include controls in the baseline price-effect regression, in column (4) of Table III. Standard errors, clustered by
RUC meeting, are in parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1%
level.
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Table A.5: Tabulation of Proposal Types

Quantity
Prior existence Low High Total

Existing 967 1,394 2,361

New 1,167 740 1,907

Total 2,134 2,134 4,268

Price
Prior existence Low High Total

Existing 180 2,201 2,381

New 2,026 0 2,026

Total 2,206 2,201 4,407

Price
Quantity Low High Total

Low 1,179 955 2,134

High 908 1,226 2,134

Total 2,087 2,181 4,268

Notes: This table shows counts of proposals along three binary dimensions: (i) CPT code is existing or new at the
time of the proposal, (ii) CPT code has an RVU that is below- or above-median, and (iii) CPT code has yearly
frequencies in the Medicare data that is below- or above-median, for years that the CPT code was in existence.
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Table A.6: Heterogeneous Effect of Affiliation by Proposal Type

(1) (2) (3) (4)

Log RVU
Standardized set affiliation

× existing CPT
−0.035
(0.031)

× new CPT
0.209***
(0.030)

× low-quantity CPT
0.169***
(0.033)

× high-quantity CPT
0.034

(0.034)

× low-priced CPT
0.160***
(0.027)

× high-priced CPT
−0.034
(0.028)

× early meeting
0.097*
(0.049)

× late meeting
0.104***
(0.036)

Baseline controls Y Y Y Y

N 4,401 4,262 4,401 4,401

Adjusted R-squared 0.896 0.895 0.894 0.891

Sample mean outcome 1.567 1.595 1.567 1.567

Notes: This table shows results of regressions of log RVU on standardized set affiliation interacted with indicators
of a proposal type, as stated in Equation (A.7.1). Four types of binary proposal heterogeneity are considered:
(i) whether the proposal is for an existing CPT code, in column (1), (ii) whether the proposal is for a CPT code
with below- or above-median quantity per year (in years the CPT was in existence), in column (2), (iii) whether
the proposal is for a CPT code with below- or above-median price, in column (3), and (iv) whether the proposal
occurred in an earlier (before the third meeting in 2005) or later (at or after the third meeting in 2005) RUC
meeting, column (4). Tabulations of proposals across the first three characteristics are given in Appendix Table
A.5. Baseline controls are the same as in column (5) of Table III. Standard errors, clustered by RUC meeting, are
in parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1% level.
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Table A.7: Specialty Seats on Counterfactual RUC

Specialty Seats Specialty Seats
Anesthesiology 2 Obstetrics and Gynecology 2
Cardiology 1 Oncology 1
Emergency Medicine 2 Ophthalmology 1
Family Medicine 4 Orthopedic Surgery 1
Gastroenterology 1 Pediatrics 2
General Surgery 1 Psychiatry 1
Internal Medicine 4 Radiology 1
Neurology 1

Notes: This table shows members of a counterfactual RUC, in which seats are assigned in proportion to the
population of physicians in each specialty. The number of total seats is 25, as it is in the current RUC.
This RUC accommodates the 16 largest specialties; including specialties with fewer physicians would re-
quire a larger RUC. Many smaller specialties lack a seat in this RUC; compare this to the broader range
of specialties that have some representation on the actual RUC over time in Table I. Physician pop-
ulation numbers are from Table 1.1 of Association of American Medical Colleges (2016), accessible at
https://www.aamc.org/data/workforce/reports/458480/1-1-chart.html.
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Table A.8: Affiliation Effect on Hard Information

(1) (2) (3)

Panel A: Log survey sample

Standardized set affiliation
−0.228***

(0.071)
−0.332***

(0.076)
−0.146**

(0.070)
Baseline controls Y Y Y

Utilization among proposers N Y Y

Proposer count dummies N N Y

N 4,407 4,219 4,219

Adjusted R-squared 0.329 0.332 0.348

Sample mean outcome 4.660 4.619 4.619

Panel B: Log survey respondents

Standardized set affiliation
−0.219***

(0.076)
−0.413***

(0.049)
−0.082
(0.055)

Baseline controls Y Y Y

Utilization among proposers N Y Y

Proposer count dummies N N Y

N 4,407 4,219 4,219

Adjusted R-squared 0.220 0.253 0.304

Sample mean outcome 3.067 3.071 3.071

Notes: This table shows results of regressions of survey measures of hard information on standardized set affilia-
tion, based on Equation (7). Survey sample regressions are shown in Panel A, and survey respondent regressions
are shown in Panel B. The outcomes are per-specialty measures, constructed by dividing the total survey measures
by the number of proposing specialties. Baseline controls are the same as in column (5) of Table III. Columns
(2) and (3) control for the log annual utilization of the service among all specialties and the log annual utilization
of the service among proposing specialties, dropping observations for which these values are missing. Column
(3) also includes dummies for the proposing specialty count. Standard errors, clustered by RUC meeting, are in
parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1% level.
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Figure A.1: Regularized Affiliation Measures
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Notes: Each panel in this figure plots the effect of set affiliation based on regularized spillovers matrices: Euclidean
distance in σq (Panel A), Euclidean distance in σR(Panel B), and w-cosine similarity (Panel C). The y-axis shows
coefficient α from Equation (6) (baseline specification of column (4) in Table III) on the y-axis and a regularization
parameter on the x-axis. Confidence intervals are shown as dashed lines. The left side of each panel varies a
regularization parameter (γ1) that varies Ωγ1,0 from a variance-covariance matrix (γ1 = 0) to a correlation matrix
(γ1 = 1). The right side of each panel varies a regularization parameter (γ2) that transformsΩ1,γ2 from a correlation
matrix (γ2 = 0) to an identity matrix (γ2 = 1). Results on the left side of each panel hold fixed γ2 = 0, and results
on the right side hold fixed γ1 = 1. The right-most result (γ2 = 1) matches results in Appendix Table A.3, which
are implicitly based on Ω1,1 = IC . Details are discussed in Appendix II.C.
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Figure A.2: Mixed Strategy Proposal Probabilities
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Notes: This figure shows the probability of proposal participation under θ = 1 by specialty 1 in a mixed strategy
equilibrium, in which specialties do not propose if θ = 0 and mix if θ = 1, described in Appendix III. Proposal
probabilities are depicted in the space of bias by specialties 1 and 2. No mixed strategy equilibria exist in the
region shown in pure white.
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Figure A.3: Balance of Medicare Beneficiary Characteristics across Affiliation
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Notes: This figure is a binned scatterplot of residual predicted log RVU, based on Medicare beneficiary character-
istics, on residual affiliation, where each dot represents 5% of the data, ordered by residual affiliations. Log RVU is
first predicted by Medicare beneficiary characteristics, which are listed in Table II. The R-squared of this prediction
equation is 0.249. Residuals are formed by regressing predicted log RVU and affiliation, respectively, on meeting
dummies and specialty shares wi . The line shows the best fit through the residualized data, with corresponding
coefficient and standard error clustered by meeting.
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Figure A.4: Random Timing of Proposals
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Notes: This figure show the distribution of the difference between set affiliation in pseudo-meetings and the actual
set affiliation of each proposal. All affiliation measures are standardized so that the distribution of actual set
affiliation has a standard deviation of 1. In Panel A, we include all 60 meetings for every proposal. In Panel
B, we include only meetings that were within three meetings (both earlier or later) of the actual meeting. The
mean difference is shown as a solid vertical line. The 95% confidence interval, shown in dashed vertical lines, is
calculated by a regression of the difference on a constant, clustering standard errors for meeting identifiers.
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Figure A.5: Balance of Proposal Probability on Predicted Price
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Notes: This figure is a binned scatterplot of residual proposal probability on residual predicted log RVU, where
each dot represents 5% of the data, ordered by residual predicted log RVU. Each observation is a proposal-specialty
pair, and the outcome variable of interest is an indicator for whether the specialty was part of that proposal. Log
RVU is predicted from service (CPT code) characteristics, word descriptions, and prior RVU, which are described
in Table III; the prediction equation has an adjusted R-squared of 0.88. The specialty proposal indicator and
predicted log RVU are both residualized by the following predictors of proposing: specialty dummies for s, meeting
dummies for t, Medicare utilization shares wis for specialty s out of total utilization for service i, and an indicator
for whether wis = 0. The standard deviation of the proposal propensities, detailed in Appendix IV, is 0.13 across
proposal-specialty pairs, so that the span of the y-axis is approximately 1 standard deviation above and below. The
line shows the best fit through the residualized data, with corresponding coefficient and standard error clustered by
meeting.
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Figure A.6: Random Proposals with Respect to Affiliation
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Notes: This figure is a binned scatterplot of residual proposal probability on affiliation between a specialty and
the RUC, where each dot represents 5% of the data, ordered by residual affiliation. Each observation is a
proposal-specialty pair, and the outcome variable of interest is an indicator for whether the specialty was part
of that proposal. Affiliation is calculated between each potential proposing specialty s and the set of RUC spe-
cialties Rt at the relevant meeting t, or A (Rt, s). The mean affiliation for specialty s across all meetings, or
A (s) ≡ ‖T ‖−1 ∑

t ∈T A (Rt, s), is subtracted from this affiliation, and this difference A (Rt, s) − A (s) is standard-
ized to have mean 0 and standard deviation 1. The proposal-specialty indicator and affiliation are both residualized
by indicators for the number of specialties on a given proposal and for the specialty identity. The standard de-
viation of the proposal propensities, detailed in Appendix IV, is 0.13 across proposal-specialty pairs, so that the
span of the y-axis is approximately 1 standard deviation above and below. The line shows the best fit through the
residualized data, with corresponding coefficient and standard error clustered by meeting.
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Figure A.7: Distribution of Specialty-Proposal Propensities among Proposers
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Notes: This figure shows the density of specialty-proposal propensities, estimated by a logit model of 248,735
specialty-proposal pairs as described in Appendix IV. Proposal propensities are shown for 6,929 actual specialty-
proposal pairs over 4,199 proposals.
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Figure A.8: Distribution of Highly Ranked Specialty-Proposal Propensities
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Notes: This figure shows the density of specialty-proposal propensities, estimated by a logit model of 248,735
specialty-proposal pairs as described in Appendix IV. In each panel, proposal propensities are shown only for
correspondingly ranked specialty for proposals that have at least as many actual proposers. Specifically, in Panel A,
the highest specialty propensity is shown for 4,199 proposals. In Panel B, the second-highest specialty propensity
is shown for 1,524 proposals with at least two proposers. In Panel C, the third-highest specialty propensity is
shown for 558 proposals with at least three proposers. In Panel D, the fourth-highest specialty propensity is shown
for 300 proposals with at least four proposers.
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Figure A.9: Distribution of Simulated Set Affiliation Relative to Actual Set Affiliation
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Notes: This figure shows the density of 51,763 simulated set affiliations, using actual Rt and simulated proposing
specialty sets Si for each proposal i, differenced by actual set affiliation. Simulated specialty-proposals are derived
from a logit model of specialty-proposal propensities, as illustrated in Appendix Figures A.7 and A.8. Simulated
observations are weighted by their likelihood of being drawn. The weighted standard deviation of the simulated
set affiliations is 0.242, and the weighted mean of the differenced statistic is −0.016. Details of the simulation
algorithm are described in Appendix IV.
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Figure A.10: Revenue Reallocation across Service Categories
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B: Proportional RUC Representation

Notes: This figure shows counterfactual yearly revenue reallocation across Berenson–Eggers Type of Service
(BETOS) service categories in two counterfactual scenarios. In Panel A, we consider equalizing the affiliation of
all proposals in each year. In Panel B, we consider changing the RUC membership to be constant and proportional
to the population of physician specialties in the US, as given in Appendix Table A.7. Average annual spending for
each specialty is on the x-axis, while the counterfactual reallocation setting affiliation to the mean for all proposals
is on the y-axis. Utilization quantities for each service (CPT code) is held fixed, and the annual Medicare budget
for physician work is set at $70 billion ×51% = $35.7 billion. Details are given in Section 4.2.
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Figure A.11: Counterfactual and Actual Distributions of Affiliation
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Notes: This figure compares counterfactual and actual distributions of affiliation. Affiliation is detailed in Section
3.3 and is a function of the set of proposing specialties Si for a proposal i and the set of RUC specialties Rt during
meeting t, or A (Rt,Si ). The counterfactual affiliation for proposal i is given by A

(
R̃,Si

)
, where R̃ is the set of

counterfactual RUC specialties given in Appendix Table A.7. Panel A plots the densities of counterfactual and
actual distributions of affiliation. Panel B plots the densities of (i) the difference between counterfactual and actual
affiliations for each proposal i, and (ii) the difference between actual and predicted affiliations for each proposal
i, where predicted affiliation is a linear function of meeting dummies Tt and specialty shares wi , as used in the
baseline price regression in Equation (6). Panels C and D show the Q-Q plots that correspond to Panels A and B,
respectively. These Q-Q plots display quantiles in the two distributions being compared; quantiles along 45-degree
line indicate similarity between the two distributions.

41



Fi
gu

re
A

.1
2:

Pr
in

ci
pa

lU
til

ity
an

d
In

te
rm

ed
ia

ry
B

ia
s

-.
0

9

-.
0

8

-.
0

7

-.
0

6

-.
0

5

-.
0

4

Principal utility uG

-.
1

0
.1

.2
.3

In
te

rm
e

d
ia

ry
 b

ia
s
 b

R

N
o

te
: 
b
S
 =

 .
3

; 
κ

 =
 1

A
: 
C

o
s
tl
ie

r 
H

a
rd

 I
n

fo
rm

a
ti
o

n

-.
0

9

-.
0

8

-.
0

7

-.
0

6

-.
0

5

-.
0

4

Principal utility uG

-.
1

0
.1

.2
.3

In
te

rm
e

d
ia

ry
 b

ia
s
 b

R

N
o

te
: 
b
S
 =

 .
3

; 
κ

 =
 .
1

B
: 
C

h
e

a
p

e
r 

H
a

rd
 I
n

fo
rm

a
ti
o

n

N
ot

es
:T

hi
s

fig
ur

e
sh

ow
s

th
e

go
ve

rn
m

en
tu

til
ity

(u
G

)i
n

ou
rc

on
ce

pt
ua

lm
od

el
of

ch
ea

p
ta

lk
,o

ut
lin

ed
in

Se
ct

io
n

5,
in

w
hi

ch
th

e
go

ve
rn

m
en

td
el

eg
at

es
au

th
or

ity
to

th
e

R
U

C
as

an
in

te
rm

ed
ia

ry
to

de
ci

de
on

pr
op

os
al

s
by

a
sp

ec
ia

lty
so

ci
et

y.
T

he
ke

y
pa

ra
m

et
er

is
bi

as
of

th
e

R
U

C
in

te
rm

ed
ia

ry
,b

R
,w

he
re

b R
=

0
in

di
ca

te
s

th
at

th
e

R
U

C
ha

s
th

e
sa

m
e

pr
ef

er
en

ce
s

as
th

e
go

ve
rn

m
en

t,
an

d
b R
>

0
in

di
ca

te
s

th
at

th
e

R
U

C
is

bi
as

ed
in

fa
vo

ro
ft

he
sp

ec
ia

lty
so

ci
et

y,
w

hi
ch

pr
ef

er
s

a
hi

gh
er

pr
ic

e
w

ith
bi

as
b S
>

0.
T

he
fig

ur
e

sh
ow

s
b S
=

0.
3

an
d

b R
∈

[ −
0.

1,
0.

3]
,w

he
re

b R
=

0.
3

w
ou

ld
im

pl
y

R
U

C
pr

ef
er

en
ce

s
id

en
tic

al
to

th
e

sp
ec

ia
lty

so
ci

et
y.

W
hi

le
gr

ea
te

r
b R

re
su

lts
in

m
or

e
di

st
or

te
d

de
ci

si
on

s
(g

re
at

er
bi

as
),

gr
ea

te
r

b R
al

so
im

pr
ov

es
co

m
m

un
ic

at
io

n.
b R
=

0
on

ly
su

pp
or

ts
a

ba
bb

lin
g

eq
ui

lib
ri

um
w

ith
on

ly
on

e
co

m
m

un
ic

at
io

n
pa

rt
iti

on
.

T
he

sp
ec

ia
lty

so
ci

et
y

is
ab

le
to

in
ve

st
in

ha
rd

in
fo

rm
at

io
n,

to
re

du
ce

th
e

si
ze

of
th

e
in

te
rv

al
fr

om
θ
∼

U
(0
,1

)
to
θ
∼

U
( θ,θ) ,

w
he

re
L
≡
θ
−
θ
,a

tc
os

tc
(L

)
=
κ

(1
−

L
)2 .

In
bo

th
pa

ne
ls

,u
G

is
sh

ow
n

in
th

e
ca

se
w

he
re
κ
=
∞

in
da

sh
ed

lin
es

,a
nd

sh
ow

s
th

at
th

e
op

tim
al

b∗ R
is

be
tw

ee
n

0
an

d
1

(D
es

se
in

,2
00

2)
.

C
om

pa
re

d
ag

ai
ns

tt
hi

s
be

nc
hm

ar
k,

in
so

lid
lin

es
,P

an
el

A
sh

ow
s

co
st

lie
r

ha
rd

in
fo

rm
at

io
n

(κ
=

1)
,a

nd
Pa

ne
lB

sh
ow

s
ch

ea
pe

r
ha

rd
in

fo
rm

at
io

n
(κ
=

0.
1)

.

42



Figure A.13: Distribution of Normalized Log Medicare Price Changes
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Notes: This figure shows the density of Medicare price changes associated with a RUC decision (solid line) or not
(dashed line). Medicare prices are defined as the total payments divided by the total volume of claims for each
CPT code and year pair observed in the 100% sample of Medicare claims. The figure excludes any pair with fewer
than 10 claims. Log prices are then normalized by subtracting the average log Medicare price across CPT codes
in a given year, weighted by frequency of claims. The figure plots the difference between the normalized log price
for a CPT code in a year and the price for the same CPT code in the previous year.
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Figure A.14: Private Price Changes on Medicare Price Changes
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B: Low Affiliation

Notes: This figure is a binned scatterplot of log private price changes on log Medicare price changes arising from
high-affiliation RUC proposals (Panel A) and low-affiliation RUC proposals (Panel B), where each dot represents
5% of the data, ordered by Medicare price change. Lines show the best fit through the data, and the line slopes
correspond to coefficients on log Medicare price change in a univariate regression of log private price change.
Coefficients are robust to regression controls similar to those in Table IV. For consistency with Table IV, obser-
vations are weighted by frequency of Medicare claims for a given service (CPT code). Unweighted observations
yield higher coefficients of approximately 1.5 for high-affiliation RUC proposals and 1 for low-affiliation RUC
proposals.
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