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I Setting the Medicare Budget

This appendix summarizes the process that sets the overall Medicare budget for physician services, which
equivalently determines the conversion factor, or CF; in Equation (1). We focus on the period between
the Balanced Budget Act of 1997 and the Medicare Access and CHIP Reauthorization Act of 2015. A
more extensive discussion of this process can be found elsewhere (e.g., American Medical Association,
2015; Centers for Medicare and Medicaid Services, 2014). During this period, CMS set CF; according

to the following formula:
CF; =CF,;_; x (1+MEIl) x (1 + UAF;) x BN,

where MEI, is the Medicare Economic Index, UAF, is the Update Adjustment Factor, and BN, is the
Budget Neutrality adjustment.

ME], is the weighted-average price change for inputs required to operate a self-employed physician
practice in the United States. The measure indexes inflation for medical services. There are two broad
categories of inputs: the physician’s own time and his or her practice expense. The MEI Technical
Advisory Panel continually reviews and updates the index, recommending changes to ensure that MEI,
appropriately meets its statutory purpose.

UAF; is a mechanism that keeps Medicare spending at an acceptable level given real gross domestic
product per capita and year-to-year changes in fees and beneficiaries. The current year’s target expen-
ditures are equal to target expenditures in the previous year adjusted by the Sustainable Growth Rate
(SGR;). The update also compares actual expenditures with target expenditures from April 1, 1996
through the preceding year. By federal statute, UAF; € [-7%,3%], and the formula for the UAF; is
based on the following identities, relating target and actual spending:

t t
Z Target,, Z Actualy;
r'=1 t'=1

Actual, Actual;_1 X (1+SGR;) X (1+UAF,);
Target,_; X (1+SGR;) .

Target,

These identities yield

Target,_; — Actual;_; <0.75 + Zﬁ;zl (Target,, — Actual,) ©0.33

Actual;_; Actual;_1 X (1+SGR;)

UAF t =

after being modified by “dampening” weights of 0.75 and 0.33, between components from the previous
year and all other years before that, respectively.

The Sustainable Growth Rate (SGR;) used above is calculated according to four factors: (i) the
estimated percentage change in fees for physicians’ services, (ii) the estimated percentage change in

the average number of Medicare fee-for-service beneficiaries, (iii) the estimated 10-year average annual



percentage change in real gross domestic product per capita, and (iv) the estimated percentage change in
expenditures due to changes in law or regulations.
The Budget Neutrality adjustment offsets expenditure changes that result from updates to the relative

value units of medical services and ensures that RVU inflation does not change the Medicare budget:

_2iRVUi -1 Xqi -1
YiRVU 1 Xqi1

BN;

which is closely related to the condition in Equation (A.5.1), in Appendix V, that we use in simulating
counterfactual revenue in Section 4.2. Historically, BN, adjustments have been relatively minor consid-
erations in setting CF;, compared to MEI, and UAF,. Changes to the relative value of medical services
via BN; are also limited by statute to $20 million annually.

Despite scheduled reductions in the CF according to the SGR formula, the most recent year with a CF
reduction was 2002. Since then, Congress has annually overridden scheduled reductions (colloquially
known as the “doc fix”’). Most recently, the Medicare Access and CHIP Reauthorization Act of 2015
removed the SGR formula used to determine the CF. In its place, the act provided a half-percent increase
in the physician fee schedule rate until 2020 (Clough and McClellan, 2016).

IT Measuring Affiliation

In economics, several threads of literature have developed quantitative measures of relationships between
groups. The literature on segregation has developed measures of isolation and dissimilarity to reflect the
interaction between groups (White, 1986; Cutler et al., 1999; Gentzkow and Shapiro, 2011; Esteban et
al., 2012). A distinct literature on technological spillovers has sought to measure the likelihood that
productive entities in multiple fields may affect each other (Jaffe, 1986; Bloom et al., 2013). In our
application, we seek to measure the alignment of interests between specialties when interests are multi-
dimensional, and the effects of policies on interests are not known with certainty (Caillaud and Tirole,
2007).

II.A Euclidean Distance Metrics

We capture the multidimensional nature of specialty interests with a measure of affiliation, or the align-
ment of interests between two specialties over a distribution of potential revenue changes across services.
We argue in Section 3.3 that using the affiliation formulation instead of service-specific interests alone is
attractive for both econometric and conceptual reasons.

Our goal in this section is to rationalize our chosen affiliation measures (in Section 3.3) by showing
how we can derive these measures starting from the idea that a specialty’s objective will depend on its
total revenue. To account for uncertainty in the effects of price changes on total revenue, we consider
a specialty’s total revenue as a stochastic object under random price changes and potentially random

spillovers across services. Affiliation is our statistic to measure the degree to which the revenues of two



specialties are linked. Two specialties with linked revenues (i.e., high affiliation) should have similar
preferences.
Specifically, starting with the formula for specialty revenue R = }’; p; gis, we can write the first-order

effect of a random vector dp of price changes on R; as

dRs dpi dqis
= is i— . A2.1
0 Z(q.dpw dp) (A2.1)

While we observe ¢g;s and p; , dp;/dp and dq;s/dp are generally unknown. Thus, to derive a measure

of similarity that captures the effects of dp on the revenue of two different specialties, as in Equation
(A.2.1), we need to make simplifying assumptions on the unknown elements. We discuss two such as-
sumptions below, both of which link a statistical comparison of specialty objectives to a specific measure

of affiliation.

II.A.1 Quantity Shares

Under the assumption of fixed quantities (i.e., quantities are completely inelastic to price), the derivative

dRs d, i
= Z qis i
dp - dp

Further, fixed quantities allow us to scale revenue to be per-service; we can then compare specialties of

drs :ZO_q @’
dp i is dp

where rg = Ry/ Y.; gis is the per-service revenue, and o-l.qs =¢q;s/ Xi qgis 1S the quantity share of i relative

in Equation (A.2.1) reduces to

different overall volume:

to other procedures that s performs.

The difference in the effect on per-service revenue between specialties A and B is

dra drp ( q q dpi
—L-=2= (ol -al) . (A.2.2)
dp dp Z ! 27 dp

Distances in the vector space of quantity shares, i.e., (O'Z, 0'%), thus capture this difference for any

arbitrary set of price changes (i.e., any arbitrary p and the corresponding dp; /dp for all i). In addition, the
expression in Equation (A.2.2) equivalently represents differences in per-service profit due to dp, where
“profit” is price minus a concept of service-specific cost, since costs are fixed with fixed quantities.! That
is, with fixed quantities, a specialty objective that maximizes revenue also maximizes profits.

Given some distribution of price changes dp with C X C variance-covariance matrix Q9, we can state

IThis cost can be a cost of effort, a financial cost, or an opportunity cost, such as when time used to perform service i
detracts from time performing other procedures.



the variance of drs —drpg as
Var (drap—drp) = (O'Z - 0'%) "Qa (O'qA — 0'%) .

Recall that our baseline affiliation metric in Equation (3) is

Gsnsn) =~ - bl = (o4 -5 (o5 -h)

q
A

in their per-service revenue (i.e., dry —drp = 0) for any arbitrary distribution of dp. This Euclidean

Here, if two specialties have the same utilization shares (i.e., o = 0';13), there will be no difference
distance is equivalent to the negative standard deviation of dr 4 — drp under the uninformative prior that
dp follows a distribution with variance-covariance matrix equal to the identity matrix, Q7 = I¢. In sum,
we can rationalize this affiliation measure if specialties view alignment in interests in terms of per-service

revenue, assuming fixed service quantities.

II.A.2 Revenue Shares

Rather than assume fixed quantities as in Appendix II.A.1, we can alternatively assume that quantities
remain allocated across specialties in fixed proportion under a distribution of price changes. Under this
assumption, we can rationalize a distance metric based on vectors of revenue shares. We show that this
metric corresponds to a measure of the difference between two specialties’ percentage change in revenue
after a distribution of price changes, dp.

To see this, first consider the accounting relationship ¢;s = w;sq;, where w; is defined in Equation

(5) and ¢q; = Y ¢ gis. If we assume that w; is fixed, then a specialty’s percentage revenue change is

dRy/d 1 dpi  dgis
L R—S;(%ﬁm o |
_ Z qisPi qis " dpi/dp +pi - dqis/dp
7 R Piqis
_ Zo_lgt;‘qi'dpi/dp‘kpi'd%/dp’
i Piqi
_ Zo'fi'd(pi%)/dp,
7 Piqi

where a-fi = (piqis) /Ry is the revenue share of i relative to other procedures that s performs, and the
third line derives from dividing the numerator and the denominator by w;;. The term multiplying a'f; is
a constant for each service i; it does not depend on the identity of s.

The difference in the percentage revenue change between specialties A and B is then

dRa/dp _dRp/dp _ Z (O'R _oR ) d(pigi) /dp
Ra Rp AT Piqi



Distances in the vector space of revenue shares, i.e., (a’fA, O'ERB

in percentage revenue changes. Specifically, given some distribution of proportional revenue changes

) , correspondingly capture this difference

(pigi) "' d (piq;) /dp distributed with C x C variance-covariance matrix QR we can state the variance

of the difference in proportional revenue changes between specialties A and B as

Var(%—c%f) = (0’§—O’§),QR (o-ﬁ—crg) .

Thus, the affiliation metric based on revenue shares,

nsn) = ot~k =~k -8 (7K —%), w23

can be interpreted as the negative standard deviation of the difference in proportional revenue changes
(i.e., dRa/Ra —dRg/Rp) under the uninformative prior that (p;q;) "' d (piq:) /dp is distributed i.i.d. un-
der QR =1, Specialties with identical utilization shares (i.e., O'Z
shares (i.e., O'ﬁ = a'g) and no difference in proportional revenue changes (i.e., dR4/Ra —dRp/Rp = 0)

= a’%) will also have identical revenue

regardless of spillovers in QR. In sum, we can rationalize this affiliation measure if specialties view
alignment in interests in terms of proportional changes in revenue, and if changes in service quantities

are distributed across specialties in fixed proportion.

II.B Alternative Distance Metrics

In addition to affiliation measures detailed above, we consider several other statistical measures of affil-
iation, motivated by the large space of CPT codes.? First, we modify our baseline Euclidean distance

measures by weighting services with greater variation in o5 across s:

a(sa,sg) =—(oa—0p) G(oa—0p),

where G is a diagonal weighting matrix, such that element (i,7) is the Gini coefficient across o for
each service i. This Gini-weighted metric places weight on services with greater variation in o5 and
will naturally result in greater variation in distances.

We also consider Manhattan distance, in L space:

a(sasp) =—loa—oslly == loia-cisl,

i

2In addition to quantity shares and revenue shares based on individual services defined by CPT codes, we also consider
quantity shares and revenue shares in 107 Berenson-Eggers Type of Service (BETOS) categories. This formulation is more
restrictive but uses prior knowledge to group services into categories that likely covary. In this sense, this vector space may
improve the characterization of affiliation if BETOS categories capture a sufficiently large amount of information about CPT
codes in terms of the price or quantity effects of p. On the other hand, if there remains substantial heterogeneity in effects
within BETOS categories, then affiliation measures based on this vector space will perform less well.



Finally, we consider cosine similarity, given by

OA°OB

\NTA TANTE OB

a(sa,sp) =cos(oa,0B) =

Cosine similarity—along with related measures of angular distance and the correlation measures in the
technology-spillover literature (Jaffe, 1986; Bloom et al., 2013)—has the feature of normalizing the two
vectors under comparison to have the same length.’
In this setting, the magnitudes of elements in any vector o represent specialty interests (i.e., ),; 07j5 =
1 for any s), while normalizing o4 and o p to length 1 has no meaningful economic interpretation. On
the other hand, the cosine similarity between two specialty vectors of within-service shares, or w; as
defined in Equation (5), can be interpreted as the correlation in revenue between the specialties. To see
this, denote W, as the C X 1 vector with ith element equal to w; .4 Consider a C x C variance-covariance
matrix Q"R of piqi- Then w4 QW’RWEg is the covariance in revenues between specialties A and B, under
the assumption that W4 and wp are fixed. The measure
a(sa,sp) =cos(Wu,Wg) = WA W5 (A.2.4)
VWA - WaAVWE - Wg

reflects correlation in revenue between specialties A and B under the uninformative prior that Q"R =1I.
To differentiate cos (04,0 p) and cos (W4, Wg) , we call the former o-cosine similarity and call the latter
w-cosine similarity. In Appendix Table A.3, as with measures based on o5, we also present regression
results of Equation (6) for affiliation defined by w-cosine similarity measures based on quantity and

revenue data.’

II.C Cross-Service Spillovers

In Appendices II.A and II.B, we describe affiliation measures that assume revenue-relevant variation is
i.i.d. across services. Here, we empirically compute and evaluate alternative variance-covariance matri-
ces to represent spillovers. We compute three different matrices relevant for three respective affiliation
measures: (i) 9, the variance-covariance matrix of RVU changes dp;, implicit in Equation (3); (ii) QR,
the variance-covariance matrix of percentage revenue changes d (p;q;) / (pigi), implicit in Equation

(A.2.3); and (iii) Q" R, the variance-covariance matrix of revenue d (piqi) , implicit in Equation (A.2.4).

3To see the relationship between between Euclidean distance and cosine similarity, note that ||os—op ||% =
(ca-0B)(a—op) =lloal3+llopll3 —204-p. If |oall = llogll3 = 1, then [lo g -0 gll3 = 2(1—cos (c4,08)).
Angular distance is defined as a (s 4,5p) = alcos™! (cos(o 4,0 B)), and correlation is defined as a (s 4,5p) =corr (04,0 B).
We find that regressions of Equation (6) yield very similar results when using cosine similarity, angular distance, and correla-
tion. We thus omit results for angular distance and correlation from Appendix Table A.3 for brevity.

4This vector is related to w;, which is the S X 1 vector with the sth element equal to w; .

5Quantity-based w?s is defined in Equation (5), whereas revenue-based wl.RS = (Zy Piy4i Sy) / (Zy s Piydi Sy). For a
single year y, it is obvious that w?x = w[.RS . In general, they may not be equivalent when aggregating over years or CPT codes
within a BETOS category, but the difference between wl.qs and wfY will be much smaller than the difference between o-?s
o-ﬁ , because price differences are much smaller within CPT code as opposed to across CPT codes.

and



We compute these matrices based on observations of p; in the physician fee schedule and p;g; across
years in the Medicare data.
The assumptions about cross-service spillovers in each of these matrices will imply different affilia-

tion measures. Specifically, we define

N+ _ +9-04a _ a_ __q qa _ _q
“o-A o-B,Q ”2 \/(O'A o-B) Qa (O’A O'B),
_|l-R _ _R.OR _ R R R (R R
“o-A 0p5:Q ”2 \/(O'A o-B) Q (o-A O'B),

L R
cos(wA,wB;Qw’ ) = ,
JFaQ R, [ QR

for Euclidean distance in 04, Euclidean distance in o, and w-cosine similarity, respectively.

In principle, if spillovers are known without measurement error, these affiliation measures should
capture the alignment of specialty revenue interests more closely than a measure that ignores spillovers.
However, in practice, there are two empirical difficulties that could degrade the fidelity of these mea-
sures relative to our baseline measure. First, we lack sufficient quasi-experimental variation to estimate
spillovers across services. Second, the number of observations we have for each service is much smaller
than the number of elements in Q, a well-known problem in the estimation of covariance structures
(Altonji and Segal, 1996).

Thus, we introduce two regularization parameters, y; and y;, to enable us to “shrink™ the variance-

covariance matrix € to a matrix Q,, ,, closer to the identity matrix Ic:

Q.0 (diag () "> Q (diag (Q)) />

Q’yl,’yz[i’j] (1_’)/2) Q’)’],O[iaj]’ for alll?&]

Y1 € [0, 1] transforms €, o from a variance-covariance matrix (y; = 0) to a correlation matrix (y; = 1),
and vy, € [0, 1] further transforms Q; ,, from a correlation matrix (y, = 0) to an identity matrix (y, = 1).

In Appendix Figure A.1, we evaluate the performance of affiliation metrics that include spillovers,
by plotting the coefficient of each affiliation metric in the price regression of Equation (6) with respect to
the regularization parameters. We find that accounting for spillovers unambiguously reduces the linkage
between RUC price actions and our Euclidean-distance affiliation measures but improves this linkage for

w-cosine similarity over some range of (y1,y2).

III Mixed Strategies in Endogenous Proposals

In this appendix, we sketch a simple signaling model of proposals to provide intuition for the random
variation we observe in the endogenous decisions of specialties to propose. As in our main conceptual

framework, in Section 5.1, we assume a specialty society may be biased, but for tractability, we rule out



any downstream communication or any potential bias of the RUC.® The first important feature of the
model is that proposals to the RUC are costly. Second, if there is more than one proposing specialty
that would have proposed alone, then there cannot be a unique (or symmetric) pure strategy equilibrium
that determines specialty proposals. In other words, if specialty societies cannot fully coordinate, then
we will have random variation in the identities of proposing specialties. In this sketch, we ignore the
possibility that costs may quasi-randomly vary in order to clarify the latter source of random variation.

Specifically, consider specialty society utility
us = —(9+bs—p)2—CDs,

where 6 € {0, 1} is the true price, bs > 0 is the specialty’s bias, p is the price recommended by the RUC
(and set by the government), c is the cost of proposing, and Dg € {0, 1} is an indicator for the specialty
proposing. The RUC’s (and the government’s) utility is ug = — (6 — p)>. We assume that Pr(6 = 1) = %

In a separating pure strategy equilibrium with a single specialty, the specialty will propose if and
only if 6 = 1, and the government will set p = Ds. The specialty must then have bias bg € [% %] If
bias is too low (or cost too high), then the specialty will not want to propose even if 6 = 1; if bias is too
high (or cost too low), then the specialty will want to propose even if = 0.’

We then consider two specialties S € {1,2}, and assume that bg > CT_I for both specialties. Both
specialties would propose if 8 = 1 had the other one not existed, yet neither would propose if it knows
that the other specialty’s strategy is to propose when 8 = 1. Thus, there is no unique pure strategy
equilibrium of proposals by the two specialties. In the case that b; = b, this implies that there is no
symmetric pure strategy equilibrium.® There are at least two types of mixed strategies over the range of
this bias-cost space: (i) Neither specialty proposes if 6§ = 0 and mix (i.e., propose with some probability
s € (0,1)) if 8 = 1, and (ii) both specialties propose if # = 1 and mix if 6 = 0.

Because the number of actual specialty-proposals relative to potential specialty-proposals is empiri-
cally low, we focus on the former type of mixed strategies.” When specialties mix when 6 = 1, the RUC
knows that = 1 and sets p = 1, if either Dy =1 or D, = 1. If D| = D, =0, the RUC sets

(1-m) (I1-m)

s Di=D>=0) = s
p(r,m|Dy =Dy =0) Tt (-m)(-m)

which is the probability that 8 = 1 if D| = D, = 0. For a mixed-strategy equilibrium to exist, specialties

must be indifferent between proposing and not. Specifically, although proposing will lead to a price

©We could introduce these features, but the intuition we wish to formalize would remain the same.

7Potters and van Winden (1992) also point out that there exists a mixed strategy equilibrium, in which the specialty certainly
proposes if 6 = 1 and proposes with some probability 7 € (0,1) if 8 = 0 for biases bg € (C—gl,c + 711) if ¢ > %

8There may exist, for example, a perfect Bayesian equilibrium with two players in which both would choose to propose if
the RUC believed 6 = 1 only if it observes both specialties proposing. We could rule out an equilibrium of this form by refining
the equilibrium concept such that if the RUC observes only one specialty proposing, it will nonetheless consider that specialty’s
incentives to propose and update its prior probability that the value of 6 = 1 (Grossman and Helpman, 2001).

9Parallel results obtain for the latter type, which correspond to the mixed strategy in the single-player case noted by Potters
and van Winden (1992), in footnote 7.



increase of 1 —p (my,m|D1 = Dy =0) > 0, the utility gain by either specialty is equal to the cost of
proposing, c. In Appendix Figure A.2, fixing ¢ = 1 for the specialties, we show whether a mixed-strategy
equilibrium exists in (by, by) space and, if so, the mixing probabilities for the specialties (when 6 = 1)
that sustain it.

We first find that if specialty bias is sufficiently low, then there exists no mixed-strategy equilibrium.
Failure to coordinate and the temptation to free-ride results in no proposals, reducing signaling equilibria
relative to the one-specialty standard. However, if both specialties are sufficiently biased (or equivalently,
have low costs), then their equilibrium mixed strategies will involve fairly high ng, and signaling is
possible even for bg > %, which would have prohibited signaling in the one-specialty case, where the
specialty would have proposed even if 6 = 0. Finally, and intuitively, when specialty are asymmetric
in their bias, signaling occurs mostly through the lower-bias specialty. As the bias of the higher-bias
specialty approaches infinity, the equilibrium resembles a single-specialty pure-strategy equilibrium, and
signaling is possible at levels of bias (of the lower-bias specialty) close to those in the one-specialty case

(i.e., as low as %).

IV Quasi-Experimental Variation in Affiliation

Affiliation A (R, S;) is determined as a function of specialties on the RUC at meeting ¢, R;, and special-
ties on a proposal i, S;. In this appendix, we quantify and assess the exogeneity of variation in A (R;,S;)
due to variation in R, and variation in S;. In particular, we evaluate two potential threats to identification.
First, with respect to variation in R;, specialties submitting proposals for procedures with intrinsically
high prices may choose to submit these proposals at meetings with more affiliated RUC members. Sec-
ond, specialties may be more likely to propose for procedures with higher potential prices, driving up the
affiliation of these proposals with the RUC.

IV.A'  Quasi-Experimental Variation in R,

To evaluate variation in affiliation due to R; we first compute the affiliation that each proposal i would
have over all possible meetings ¢’ € T, generating a set of counterfactual affiliations, A = {A (R, S;)}.
We then test whether observed affiliations are statistically distinguishable from these counterfactual af-
filiations. In Panel A of Appendix Figure A.4, we show that the mean differenced statistic A (Ry,S;) —
A (R;,S;) over all proposals and possible meeting dates (i,#”) is not statistically different than 0. How-
ever, given relatively stable RUC specialty membership in Table I and Figure I, it is natural that the
variation in affiliation due to R, is relatively small. If we restrict counterfactual meetings to those within
a year of the actual meeting, in Panel B, we find that the distribution of A (R, S;) — A(R;,S;) is even
more concentrated around zero.

We can also quantify the variation component from R; relative to overall quasi-experimental varia-
tion. For this decomposition, we compute AS) =TI~} et ARy, Si), which is the average vari-

ation across all meetings, given S;. We then compute the variation in A(S;), conditional on w;; we



denote Z(Si) residualized by w; as A (S;). Variation in A (8;) represents quasi-experimental varia-
tion unrelated to w;. The component of the variation due to R; is a'% =Var (A R:,S)) —Z(Sl-)) , and
the remaining component due to S; is 0'%9 =Var (Z* (Si)) . We find that 0'%/ (0'% + 0'%) ~ 0.014 when
T is the entire set of meetings, and a'% / (0'%a + o%) ~ 0.007 when T contains counterfactual meetings at

most three meetings (one year) apart from the actual meeting.

IV.B Quasi-Experimental Variation in S;

To assess quasi-experimental variation in S; empirically, we conduct four tests. First, we show that spe-
cialty participation in proposals, conditional on specialty dummies, meeting dummies T, and utilization
shares w;, is uncorrelated with the service’s predicted price. Second, we show that specialty proposals
are conditionally uncorrelated with time-varying affiliation with the RUC. Third, we show significant
variation in the propensity of specialty proposals, even among specialties that actually participate in a
given proposal. Fourth, we predict affiliation based on specialty-proposal propensities and show that
this prediction is forecast-unbiased (Chetty et al., 2014), while there also remains wide variation in the

distribution of actual minus predicted affiliation. We provide more detail on these tests below.

IV.B.1 Specialty-Proposal Probability

The first three tests we perform relate to specialty-proposal probabilities. First, in Appendix Figure A.5,
we show evidence that the probability a specialty participates in a proposal is conditionally uncorrelated
with the predicted price of the relevant service. We predict the RVU of a procedure by its characteris-
tics, including procedure code word descriptions, surveyed time, prior RVU, and Medicare beneficiary
characteristics, which yields an adjusted R? of 0.88 for the RVU prediction equation. Controlling for
specialty dummies, meeting dummies T, and specialty utilization shares w;, as defined in Equation (5),
we find no significant relationship between specialty proposals and predictors of price.

Second, in Appendix Figure A.6, we assess whether specialty proposals are more likely when affilia-
tion with the RUC is higher. We construct a measure of whether affiliation between specialty s is higher

at meeting ¢ (i) associated with proposal i than at other meetings
A(Ri(i)5) —A(s),

where A (s) = |T)| 7! 2y er A (Ry, s). We standardize A (Reciy> 8) —A(s) to have a distribution with mean
0 and standard deviation 1. We then evaluate whether specialty proposals, or 1(s € S;), is correlated with
A (Rei),S) — A(s), conditional on dummies for specialty s and for the number of proposing specialties
in S;, or ||S;||. We again find no significant relationship between time-varying affiliation between s and
R: (i) and whether s € S;. While this does not rule out strategic proposing with respect to affiliation that
is time-invariant, given the evidence in Appendix IV.A, it is intuitive that specialties do not have much
scope to respond to time-varying affiliation.

Third, we form a prediction of specialty-proposal propensities, in order to evaluate variation in this

10



propensity and the predictability with which specialties actually propose. We estimate a logit propen-
sity model of specialty-proposal participation, using specialty identities, flexible functions of w;, and
the procedure’s share of specialty revenue, defined as O'iRS in Appendix II.A.2. The logit model is fairly
predictive, with a pseudo-R? of 0.73 and a log-likelihood of —8,661.35 over 248,735 observations, and
the standard deviation in specialty-proposal propensities is about 13%. Nonetheless, we find substantial
residual variation in specialty proposals. To illustrate this, in Appendix Figure A.7, we show the propen-
sities of 6,929 actual specialty-proposal pairs over 4,199 proposals. While there are many propensities
with high values, more than half of the actual specialty proposals have propensities lower than 0.8, and
about a quarter have propensities less than 0.5. Similarly, in Appendix Figure A.8, we show the first-,
second-, third-, and fourth-ranked specialty propensities for proposals with at least as many proposers.
Although there are 64 specialties to rank, propensities quickly diminish: The average first-ranked propen-
sity is 0.86, while the average second-, third-, and fourth-ranked propensities are 0.76, 0.69, and 0.54,

respectively.

IV.B.2 Affiliation Forecast

In our fourth test, we use our estimated specialty-proposal propensities, 7;5, and the known specialties
of RUC members at each meeting, R;, to form a prediction of affiliation by simulation. We will use
this prediction to evaluate endogeneity at the affiliation level, testing whether affiliation is “forecast-
unbiased” (Chetty et al., 2014). We will also evaluate the degree of variation in affiliation that remains
conditional on this prediction, which allows for nonlinear relationships in w; and o{i across specialties.

We proceed as follows:

1. Use estimated specialty-proposal propensities, ;5. Drop any specialty-proposal pair with 7;5 <
0.01.

2. For each proposal i, identify number of remaining specialty-proposer candidates, n;, and the num-
ber of actual specialty proposers, k;. This yields ||S;|| = C(n;, k;) as the number of potential
proposer sets S; for i, constraining the number of simulated proposers in each set to be the same as
the number of actual proposers. For example, if there remain ten specialty-proposer candidates for
a proposal with only one actual specialty proposer, there are C (10, 1) = 10 (singleton) sets to draw
from. However, if there are fifteen specialty-proposer candidates for a proposal with four actual

proposers, there are C (15,4) ~ 7.57 x 107 sets to draw from.

(a) For proposals i such that ||S;|| < 50, collect all such potential proposer sets.

(b) For the remaining proposals, randomly draw k; proposers from 7n;, oversampling specialty-
proposer candidates from those with higher #;;. Specifically, generate r;s ~ U (0,1) and
subtract this from 7;5. Within each i, sort specialty-proposer candidates by 7;5 — r;s, and
choose the top k; candidates to include in S;. Repeat until some stopping rule (e.g., based on
the number of unique sets sampled for each i and the lack of new sets sampled for any i in a

draw).
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(c) Denote as S: C S; the collection of simulated sets for each proposal i. For each S; € S,
calculate a simulated set affiliation A (R;,S;) for each S;, using known R; and the formula

in Equation (4).

3. Given 7;, and assuming independence of specialty proposals, the probability of drawing S; from
Si 18
[Tses, tis [1ses; (1 —7Ais)

Sses: (ses, is [Togs, (1= 7is) )

This allows us to weight sets by their probability of occurrence. This also allows us to generate a

predicted set affiliation,

AR, = ) AR,S)HPr(Sils]). (A4.1)
S; €S

In Appendix Figure A.9, we show the distribution of simulated set affiliations relative to the actual set
affiliation for each i, weighted by Pr (S,-l S:‘) ,or A(R,,i) —A(R,,S;). The weighted standard deviation
of the distribution is 0.242, reflecting that there exists meaningful variation in set affiliation based on the
specialty-proposal propensities. The variation in this figure is much larger than the variation in Appendix
Figure A.6, consistent with the large majority of identifying variation coming from S; rather than R;.
Further, the weighted mean of the distribution of A(R.i) —AR,S;) is =0.016, suggesting very little
forecast bias in predicted set affiliation. We use predicted set affiliation as a control, rather than linear
specialty shares of CPT utilization, w;, in a robustness check of the affiliation effect on prices, in column

(5) of Table III; we find a similar estimate of the main effect.

V Counterfactual Revenue Analysis

V.A Simulation Algorithm

We simulate counterfactual revenue in scenarios that entail counterfactual affiliations for proposals. In
each scenario, we hold fixed the service and timing of each proposal, the Medicare budget, and the
utilization of each service. Counterfactual revenue results solely from the effect of affiliation on relative
price. Prices are rationalized so that total spending meets the fixed Medicare budget. The algorithm is as

follows:

1. Starting at the first year in which the RUC’s pricing decision goes into effect, we replace the
relative price RVU;, that followed a RUC recommendation with a counterfactual RVU iy» by
subtracting & (A(R,,S,-) —A,-,), where A (R;,S;) and A;; are actual and counterfactual affilia-
tions, respectively, and & is the estimated affiliation effect from Equation (6). The counterfactual
affiliation in the first scenario is an equalized affiliation across all proposals i € I, in the same
meeting t: A = 1LII7! Yier, A(R:,Si). The counterfactual affiliation in the second scenario is

A=A (7? Si), where R is the counterfactual RUC composed of specialties in Appendix Table
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A.7. RUC decisions in meeting ¢t map to prices in the Medicare schedule in year y (). We repeat

for subsequent years, allowing previously set prices to continue forward.

2. We take quantities g;, of service i, by specialty s, in year y, observed in Medicare claims. We set

conversion factors CF, and Eiy so that the overall spending is $70 billion in 2014 dollars, which

CFy > > RVUiy-qisy =CFy )" 3" RVUjy - gisy. (A5.1)
i s [

implies that

3. The revenue reallocation for service i, specialty s, and year y is
Arisy = sy (CFy - RVU;y —CFy - RVUyy) .

4. We aggregate Ar;, to yearly averages for specialties s or types of service k:

ARy = Y17 D) > Arigy;
yey i

ARy = 1YY Y Arigy.
yeY s i€k

V.B Distribution of Counterfactual Affiliations

Our counterfactual analysis is based on a reduced-form estimate of @ from Equation (6). In the first
counterfactual scenario, we assume that affiliation has no effect, or that there is no difference in affiliation
across proposals in a given meeting. In the second counterfactual scenario, we consider an alternative
RUC membership, and use & to impute counterfactual RVUs, as described above. To evaluate the external
validity of using & in this analysis, we compare the distribution of counterfactual affiliations under this
alternative RUC with the observed distribution of actual affiliations.

In Appendix Figure A.11, we plot the distribution of counterfactual affiliations against that of actual
affiliations and find very little difference between the two distributions. The Q-Q plot of quantiles of the
two distribution essentially lie on the 45-degree line. In the same figure, we also consider the distribution
of differences between counterfactual and actual affiliation. This distribution is quite narrow, especially
compared to the distribution of the difference between actual and predicted affiliation. Thus, the differ-
ences in affiliation induced by a counterfactual RUC appear quite small relative to the quasi-experimental

variation in affiliation we observe in the data.

VI Alternative Mechanisms Behind the Price Effect

In this appendix, we consider evidence regarding alternative mechanisms of the affiliation effect on
prices, as discussed in Section 4.3. The results are summarized in Appendix Table A.4. All specifications

in Appendix Table A.4 include the same controls as in the baseline specification of the price regression,
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shown in column (4) of Table III.

First, we consider specifications relating to interests (and information) held by RUC specialties that
are specific to the proposed service. Specifically, we consider the service i’s utilization share of all
services billed by a RUC specialty s, or O'?S, as defined in Equation (2). We also consider i’s revenue share
of all Medicare revenue to s, or O'I.Rs = (piqis) /Ry, as discussed in Appendix II.A.2. These measures
capture both specialty s’s interests and information about i: A specialty s with a higher O'?S or O'fi
should have interests specific to service i to raise its price, and it may also have more knowledge about

service i, outside of the proposal process. We perform variants of the regression
ll’lRVUit =aA (ﬂt,Sl‘) +vym (O'i;Rt) + X,,B + Tﬂ] + Wi§ + &y, (A61)

where m (0;;R,) is the mean interest o; ¢ across specialties serving on the RUC, s € R;, standardized to
have mean 0 and standard deviation 1 across i.!°

Columns (1) and (2) of Appendix Table A.4 show results for regressions adding standardized mean
a'l‘.’s and O'iRS , respectively. The coefficient on standardized set affiliation remains unchanged in magnitude
and significance. The coefficients on the standardized measures of RUC-specialty interest in proposal
i are small, though statistically significant. Although we ascribe a causal interpretation to @ under As-
sumption 1 in Section 3.4, the same reasoning does not apply to y.!! With this caveat, it does not appear
that RUC specialty direct interests play a major role in explaining the RUC’s price recommendations. In
columns (3) and (4), we consider related interests, or elements &gg and &iRS in vectors &7 = Q407 and
FR = QRa R, respectively, where Q9 and QR are spillover matrices defined in Appendix II.C. Interest-
ingly, we find that related interests play a larger role in pricing than direct interests.

Next, we consider the possibility that affiliation could reflect signaling “buy-in.” That is, more spe-
cialties should be willing to propose for procedures that have a higher intrinsic price. As more specialties
propose, set affiliation, as defined in Equation (4), will mechanically increase through max operator in
the formula. Higher prices under this scenario are warranted and do not reflect any RUC bias. We modify

the baseline price-effect regression in Equation (6) to include proposer-count fixed effects:
InRVU;; = AR, Si) +yn1(ISill =n) + Xi B+ Tin+w;{ + 4. (A.6.2)

This specification relies only on within-proposer-count variation to identify the price effect of affilia-
tion. As shown in column (5) of Appendix Table A.4, the coefficient on standardized set affiliation is

unchanged, at 0.112, and highly significant.

10We also perform a regression similar to Equation A.6.1, excluding the term A (R;,S;), which also yields similar estimates
of y (omitted for brevity). This indicates that m (o;; R;) is for the most part conditionally uncorrelated with A (R;,S;).

TEor nonparametric identification of y, we would require random variation in RUC specialty composition, R;. In order
to interpret y as causal, we would require parametric restrictions on the conditional independence between InRVU;; and
m (o ;;R:)—such as the sufficiency of conditioning on the linear combination w;{ and In ) g ¢;5. While the causal interpreta-
tion of 7y is not important for this paper, we conduct balance tests similar to the test that generates Appendix Figure A.3, which
generally reject the null of quasi-random assignment, even when we control for In} ¢ g; .
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VII Heterogeneous Effect of Affiliation by Proposal Type

We investigate heterogeneity of the affiliation effect on prices, along four binary dimensions of proposal
type: (i) whether the proposal is for a CPT code that existed or was new at the time of the proposal, (ii)
whether the proposal is for a CPT code with below- or above-median yearly volume (for the years that it
was in existence), (iii) whether the proposal is for a CPT code with below- or above-median price, and
(iv) whether the proposal occurred at an earlier or later RUC meeting.!? For each of these dimensions,

we perform the following regression:

InRVU;; = Z (@o,c +@1,c AR, Si)) -1(c (i) =) +X; B+ T +w;{ + &y, (A7.1)
cef{0,1}

where ¢ (i,1) € {0, 1} depending on CPT code i and meeting ¢ in question.

Appendix Table A.5 shows cross-tabulations of proposals along these types. Approximately 55% of
the proposals were for existing CPT codes, while the remaining 45% were for new CPT codes. Existing
CPT codes were slightly more likely to have above-median utilization volumes, and much more likely to
have above-median prices. High-priced CPT codes were slightly more likely to have higher volumes.

Appendix Table A.6 shows results of the regression in Equation (A.7.1), along each of the four
dimensions. Strikingly, nearly all of the effect of affiliation on prices is borne by proposals for new CPT
codes. The coefficient on (interacted) set affiliation is twice as high for new CPT codes, at 0.209, while it
is small and statistically insignificant for existing CPT codes. The effect of affiliation is also much higher
for low-quantity vs. high-quantity CPT codes, and it is much higher for low-priced vs. high-priced CPT
codes. Finally, the effect of affiliation is roughly the same in earlier meetings as it is in later meetings.
Because proposal types are correlated across dimensions, these heterogeneous treatment effects are only
descriptive. However, they are consistent with a story in which affiliation has a greater relative effect for
proposals in which there is less evidence (i.e., less hard information) or less at stake for setting a service’s

price.

VIII Technical Details of the Conceptual Framework

This appendix provides additional detail behind the conceptual framework we outline in Section 5. We
start with more detail about the formula for expected “variance”, E [(6 +bgr— p)z] , that represents infor-
mation loss in the standard Crawford and Sobel (1982) model. Next, we provide details of the analysis

with hard information and the optimal b}, under hard information. Finally, we describe a mechanism of

12 Although price is endogenous, when considered as an indicator variable for whether the CPT code’s price is below- or
above-median, we roughly capture intrinsic characteristics of the procedure. For example, the highest-priced CPT code (CPT
code 33935, or heart and lung transplantation) has an RVU of 100, 670 CPT codes have RVUs below 1. The mean RVU
was 10.85, and the median RVU was 5.53, shared by CPT 22585 (Anterior or Anterolateral Approach Technique Arthrodesis
Procedures on the Spine) and CPT code 33213 (Pacemaker or Pacing Cardioverter-Defibrillator Procedures). We define an
“earlier” meeting as occurring before the third meeting of 2005, whereas a “later” meeting occurred at or after the third meeting
of 2005.
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assigning intervals of expected length L such that the posterior distribution of 8 remains uniform within

each realized interval.

VIII.LA Canonical Crawford and Sobel (1982) Partitions

Consider 6 uniformly distributed on the interval [0, L]. The sender (the specialty) has bias b, relative to

the receiver (the RUC). The formula for the number of partitions supported under b = bs — bg over the

1 2L
—[1+4/1+—]].

Using Equation (A.8.1), we define the limiting bias such that n* (b — ) = n for any positive but arbitrarily

interval is

n*(b) = (A.8.1)

small ¢:
2L

b*(n) = ———.
2n-1)2-1

b* (n) supports n partitions only in the limit. For example, as we show below, b = % supports only one
partition, since the first partition of technically two partitions will have a length of 0.

The first partition is bounded by x¢ = 0 and
L
x1=——(n-1)2b, (A.8.2)
n
Subsequent partition lengths increase by 4b, which implies
Xk =2Xp_1 —Xp_2+4b, (A.8.3)

and Equations (A.8.2) and (A.8.3) imply that x,, = L.

We will consider a number of specific examples of n, which exist for b € [b* (n+1),b* (n)). We
define the boundaries of the partitions in the space of [0, L], and the variance E [(9+bR - p)z] . For
the latter object, we use the fact that the variance of a uniformly distributed random variable along an
interval of length L is L?/12. Two partitions exist if b € [ﬁ, %) and are defined by (0, % -2b, L). The
variance is given by

L* /(1 | 3

E[(0+br-p)°] = 5 (5—219) +(§+2b)
1(L? \ L2,

B E(T”zb)‘T”’
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Three partitions exist if b € [2L—4 %) and are defined by (O —4b, ZTL —4b, L) . The variance is given by

L2

1 40\ (1)\° (1 4b)\°
—Il==-= +[=z] +|z+—
37 L 3 371

12

2
_ (L— +32b2)

E[(0+br-p)?]

1219

By induction, one can verify that the variance in the equilibrium with n partitions is

1 (L? )
E[(0+br-p)*] = E(—+Ab) (A.8.4)

where A; =0, and A,, = A,,_1 +8n—4. Note that the variance is continuous across the number of partitions

(as b changes). Also, the variance is decreasing in b, holding L fixed.

VIII.B Hard Information

Given the formula for soft information loss in Equation (A.8.4), we can write the expected utility for the

specialty and the government, respectively, as

Elus] = -E[(0+0r—p)*| -b"-c(L)
1 (L2 2)
- + AL - —c(L), (A8.5)
12
and as
Elugl = ~E[(0+0r-p)*| ~b%
_ e Anb?) ~ b, A8.6
—E ﬁ-i- ( 0. )

In both Equations (A.8.5) and (A.8.6), n is the number of partitions supported by » and L and is given by
Equation (A.8.1). Better information, either hard or soft, increases the utility of both the specialty and
the government.

Taking the partial derivative of expected specialty utility with respect to L, while holding b and n

fixed, yields the following condition for the agent’s choice of L:

L
Elusl=-—-c'(L) = (A.8.7)

AL 6n?

The convexity of ¢ (L) implies that there exists a single optimal candidate that satisfies Equation (A.8.7)
for the cheap talk equilibrium with »n partitions. Denote the solution to Equation (A.8.7) for a given n,

if it exists (i.e., n* (b, L}) = n), as L’.!3 Intuitively, L is increasing in n: better soft communication

1310 Equation (A.8.7), L;, is increasing in n, and in Equation (A.8.1), n* (b, L) is increasing in L. Since (i) Lj, € (0,1] and
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(higher n) reduces the incentive to produce hard information (larger L},). The globally optimal L* is then
given by L* =argmax, (E [us;L}]). L* is decreasing in b: As the specialty and the RUC have divergent
preferences, soft communication worsens, and this increases the optimal hard information. Because the
set of L}, comprises discrete values, L* (b) is a step function.

VIII.C Optimal RUC Bias

Because smaller L* increases government utility in Equation (A.8.6), and because L* is a decreasing
function of b = bg — b, the optimal b} from the government’s perspective is weakly lower under the
possibility of hard information than when we fix L = 1.

However, the optimal b}, > 0. That is, an adversarial RUC is still never optimal from the govern-

ment’s perspective. In order for by < 0, we need three requirements:
1. The threshold bz where the specialty is indifferent between 7 = 1 and n = 2 must be less than 0.

2. The expected government utility when bg = bg is higher than the maximum expected government
utility under n = 2:
max E[ug|n=2] < E [ug| br = br| -

3. The expected government utility when bgr = bg is higher than complete delegation when bg = bg.

Note also that convexity of ¢ (L) implies that ¢’ (L*[) <c (L;) From the first order conditions that

¢’ (L’l‘) = —%L‘l‘ and ¢’ (L;) = —ﬁL;, we must have L] > }LL;. Convexity also implies that

e(£i) —e(L3) _ [ !

* 1 *
Ly-L ﬁLz’ELl] '
The threshold by is defined by the following condition:
E|ug|br =br.n=1| = E|ug|bg =br.n =2].
In other words
% (L) + (r—bs)*+c(1}) = % (£3) +2 (br—bs) +c(L3).

The threshold is then

_ 1 s
bS=bR+\/E( )45 (1) e (1)) —e(1y). (A8.8)

(i) n* (b, L) is bounded by n* (b, 1), there must be at least one n € {1,...,n* (b,1)} such that n* (b,L},) =n.
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Condition 1 and convexity imply that

1 1 1
bs<\/E (£3) - 55 (1) + < Li (13- 17). (A8.9)
Condition 2 requires that
_11_2(L’f)2—5§3 >—%(L;)2—%b§, (A8.10)

where the expression on the left is the expected government utility at br and n =1, and the expression on
the right is the expected government utility under the optimal bg = %bs conditional on n = 2. Condition

3 requires that

1
12

The expression on the right is the government utility under full delegation.

(L3) ~Bg > -B2. (AS.11)

We show numerically that there are no values (LIL; bS,ZR) that satisfy Equations (A.8.8) to
(A.8.11) simultaneously.

VIII.D Uniform Posterior Intervals

While it is convenient to work with continuous L, there is a technical complication in specifying values
of § and 6, such that it remains that 6 ~ U (Q, 5) with fixed L = 6 — 6. For example, consider the case of
L =0.9. If § =0, then we must have 6 = 0 with probability 1, but § = 0 with probability less than 1 if 6 > 0.
Therefore, if any potential interval must have L = 0.9, and we have a realized interval [Q, 5] =[0,0.9],
then 6 cannot be uniformly distributed within the realized interval.

To preserve uniform posterior distributions within the intervals revealed after hard information, we
need sets of potential intervals to be mutually exclusive and collectively exhaustive. Thus, we may have
one potential interval of length L, = 0.9 and another potential interval of length L; = 0.1. The ordering
of these intervals may be random, but so long as the intervals are not overlapping in a particular ordering,
then the posterior distribution of 6 within each interval will remain uniform. We operationalize this with
the concept that L instead represents the expected length of the information interval after hard infor-
mation, under a mechanism that divides the unit interval into N intervals of length L, and a remaining
weakly shorter interval of length L, =1-NL, < L,.

The probability that ¢ falls in an interval of length L, is NL,, while the probability that 6 falls in the
remaining interval of length L. Thus L = NL% + Li = NLﬁ +(1- NLa)Z. We can solve for L, (L), as
a function of L, by using the quadratic formula and the fact that N = [L‘IJ :

1+\/1—(1—L)([L—1J_1+1)
1+ L]

’

L,(L) =
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which is continuous and monotonically increasing in L.
We modify our equilibrium analysis by stating expected utility E [u4] (prior to hard information) as

a function of L:

Elual = -E[(0-p)?|-p*-c(L)
1 |NL,® (1-NL,)® -
- L NL U=NEDT 2ol 2 p, (A.8.12)
12| n2 ny

where n, =n* (b,L,), np =n* (b1 = NL,) <n,,and A = NL4A,,+(1-NL,) Ay, . The expression for
the variance E [(9 - p)z] is continuous, monotonically increasing in L (and L, (L)), and piecewise con-
vex in L, (L). The remainder of the analysis proceeds by identifying solutions L;,, where n = (ng,,np),

and choosing L* = argmaxy (E [us; L] ).

IX Private Price Transmission Robustness

In Section 5.3, we show that private insurance price changes are more responsive to Medicare price
changes when the Medicare price changes originate from RUC decisions and, within RUC decisions,
when they originate from a higher-affiliation proposal. We interpret this finding as supporting the hy-
pothesis that RUC decisions, particular those from higher-affiliation proposals, contain valuable infor-
mation that private insurance follows. In this appendix, we investigate alternative mechanisms that may
generate this result.

First, affiliated proposals may result in more informative Medicare prices not because they facilitate
communication, as detailed in Section 5, but because RUC members may naturally have more informa-
tion about the procedures that their specialty societies perform. We investigate this possibility by using
proxy measures of the RUC members’ own information, based on their utilization of the service in ques-
tion. In particular, we consider a specialty s’s share of total utilization for service i, w;s, as defined in
Equation (5), and the service i’s share of the total utilization for specialty s, as defined in (2), averaging

across the specialties of RUC members at the relevant meeting:

1
Wiy - Wis: (A.9.1)
”Rt(i,y) SERt(i’y)
— 1
Tiy Tiss (A92)

”Rt(i,y)” SER(i,y)

where R;(;,y) is the set of RUC member specialties at the meeting 7 (i, y) corresponding to service i and
(private) price change year y.

Second, affiliated proposals may disproportionately represent high-volume services for which both
private insurers and Medicare have interests in setting accurate prices. Strong correlation between pri-

vate insurance and Medicare price changes for high-affiliation proposals may then result from careful
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price-setting in both private insurance and Medicare, and not because affiliation per se causes better
communication between proposing specialties and the RUC. We consider two measures of volume for
service i: private insurance volume and total (private insurance and Medicare) volume.

Third, we take an omnibus approach, agnostic to the exact forces that may drive greater price fol-
lowing from Medicare to private insurance, by fitting a predictive model of price following. We consider

changes in private insurance prices as a function of changes in Medicare prices:
.. P _ ) .M )
AlnPrlcei’y =a+ ﬁlyAlnPrlcei’yM(i’y) +&iy,

where the goal is to predict S3; y.14 To operationalize this approach, as an approximation of §;,, we take

the ratio of demeaned Aln Pricef y and demeaned Aln Pricef"’y M (i y)

Aln PricelP v AlnPrice”
Ratio,-y = - p—
AlnPrice™ ,, . —AlnPriceM

YM(,y)

i

where AlnPrice” and AlnPrice™ are respective sample means of log private and Medicare price changes,
weighted by Medicare volume. We then predict this ratio as a linear function of private insurance volume
for i; total (private insurance and Medicare) volume for 7; time dummies T;, for yM (i,y), y, and RUC
meeting; and the vector of specialty shares w;. We take the predicted ratio, miy, as an index for
predicted price-following based on characteristics of (i, y).

Given each of these measures that may influence price transmission to private insurance, we assess
the robustness of our results to controlling for these measures, both directly and interacted with Medicare
prices. Specifically, for each Index;; measure (i.e., W;y, 0y, private volume of i, total volume of i, and
m)iy), we assess price transmission controlling for these proxy measures directly and interacted with
Medicare prices, 0, in regressions similar to Equation (8):

lnPricefy = Z (ac + B lnPrice?’/[yM(i,y)) A(c(i,y)=c)+

c
3

2 el ) 1 [ (miess) £(51.5))

=1

Tin]-i-fl' + &iy, (A9.3)

where 7 € {1,2,3} indicates the tercile, F (-) is the distribution function of the relevant measure Index;,,
and the rest is the same as in Equation (8). Appendix Table A.9 shows results from these regressions.
The key coefficients of interest, Sc, are highly stable regardless of Index;y. Price transmission remains
greater for Medicare price changes originating from RUC decisions and, within these decisions, from

high-affiliation proposals.

14This changes-on-changes specification closely matches the fixed-effects specification in Equation (8). As shown in Ap-
pendix Figure A.14, separating Medicare price changes into high- and low-affiliation groups gives similar results.
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Table A.3: Price Effect of Alternative Affiliation Measures

(D () 3) 4) (5)
Affiliation metric
Data Euclidean Gl.n - Manhattan o-Cosine w-Cosine
Euclidean
Panel A: Mean affiliation
. . 0.101%#%  (.103%** 0.055%* 0.061 % 0.033%*
Medicare CPT quantity (0.029) (0.030) (0.021) (0.025) (0.015)
Medicare + MarketScan 0.076%%%  (.079%** 0.048%* 0.057% 0.028*
CPT quantity (0.025) (0.026) (0.020) (0.025) (0.015)
Medicare CPT revenue 0.094%#%  (),094%%:* 0.038% 0.037* 0.033%*
(0.029) (0.029) (0.019) (0.021) (0.015)
Medicare BETOS 0.088%#%  (0.088*** 0.056%* 0.0527% 0.036%*
quantity (0.029) (0.030) (0.022) (0.025) (0.016)
Medicare BETOS 0.072%%% 0.069%* 0.045%* 0.032 0.036%*
revenue 0.027) (0.028) (0.021) (0.020) (0.015)
Panel B: 33rd percentile affiliation

. . 0.104%#%  (.111%** 0.061%* 0.060%* 0.026%*
Medicare CPT quantity (0.032) (0.031) (0.024) (0.026) 0.014)
Medicare + MarketScan 0.076%%% (0,082 0.062%* 0.051%x 0.027*
CPT quantity (0.024) (0.026) (0.023) (0.024) (0.013)
. 0.089%#% (0,092 0.039* 0.027 0.027*
Medicare CPT revenue (0.031) (0.033) (0.021) (0.022) 0.014)
Medicare BETOS 0.086%* 0.093:%x 0.066%* 0.054% 0.038%*
quantity (0.033) (0.034) (0.025) (0.026) (0.018)
Medicare BETOS 0.088%#%  (0.085%** 0.053%* 0.043%x 0.034#
revenue (0.029) (0.029) (0.022) (0.018) (0.016)

Notes: This table shows results of regressions of log RVU on various measures of set affiliation. Each cell rep-
resents the coefficient on the affiliation measure in a separate regression, stated as « in Equation (6) and corre-
sponding to the preferred specification of column (4) in Table III. Further details about the regression controls
are given in the note for Table III. Rows of the table correspond to underlying data from which affiliation is cal-
culated. Columns correspond to affiliation metrics between two specialties, discussed in Appendix II. Appendix
IL.A discusses the baseline metric of Euclidean distance, shown in column (1), in detail, including differences in
interpreting using quantity vs. revenue shares. The remaining affiliation metrics are described in Appendix IL.B.
Panel A calculates the set affiliation measure as the mean maximized specialty-pair affiliation, which is the default
and is given in Equation (4). Panel B calculates the set affiliation measure as the 33rd percentile of the maximized
specialty-pair affiliations. Standard errors, clustered by RUC meeting, are in parentheses; *** denotes significance
at the 1% level.
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Table A.4: Alternative Mechanisms Behind Price Effect
(1) (2) (3) 4) (5)
Log RVU
Standardized filiati 0.098:*#:* 0.103 % 0.104 %3 0.098:*#:* 0.112%%*
tandardized set atfiliation 0029  (0.030)  (0.029)  (0.029)  (0.043)
Standardized measures of
RUC-specialty interest
0.021**
q
Mean 7, (0.009)
0.03]**=*
R
Mean o, (0.007)
0.052%*
~q
Mean 7 (0.012)
0.048***
~ R
Mean 7 (0.013)
Baseline controls Y Y Y Y Y
Proposer count dummies N N N N Y
N 4,401 4,401 4,401 4,401 4,401
Adjusted R-squared 0.891 0.895 0.892 0.892 0.891
Sample mean log RVU 1.567 1.567 1.567 1.567 1.567

Notes: This table shows results of regressions of log RVU on standardized set affiliation, with the addition of
controls to test robustness to alternative mechanisms. Columns (1) to (4) relate to alternative mechanisms of
service-specific interests or ex ante information held by RUC specialties. These specifications, given in Equation
(A.6.1), control for mean direct interests (o-l.qs and o-iRs in columns (1) and (2), respectively) or related interests
(5'?3, and 5'5; in columns (3) and (4), respectively) across RUC specialties. Measures are standardized to have
mean 0 and standard deviation 1. Column (5) tests robustness to the alternative mechanism of signaling “buy-in,”
controlling for proposer dummies, as in Equation (A.6.2). Details are given in Appendix VI. All specifications
include controls in the baseline price-effect regression, in column (4) of Table III. Standard errors, clustered by
RUC meeting, are in parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1%

level.
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Table A.5: Tabulation of Proposal Types

Quantity
Prior existence Low High Total
Existing 967 1,394 2,361
New 1,167 740 1,907
Total 2,134 2,134 4,268
Price
Prior existence Low High Total
Existing 180 2,201 2,381
New 2,026 0 2,026
Total 2,206 2,201 4,407
Price
Quantity Low High Total
Low 1,179 955 2,134
High 908 1,226 2,134
Total 2,087 2,181 4,268

Notes: This table shows counts of proposals along three binary dimensions: (i) CPT code is existing or new at the
time of the proposal, (ii) CPT code has an RVU that is below- or above-median, and (iii) CPT code has yearly
frequencies in the Medicare data that is below- or above-median, for years that the CPT code was in existence.
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Table A.6: Heterogeneous Effect of Affiliation by Proposal Type

(1 2 3) “)
Log RVU
Standardized set affiliation
. -0.035
x existing CPT (0.031)
0.209%*%*
x new CPT (0.030)
. 0.169%*%*
X low-quantity CPT (0.033)
. . 0.034
X high-quantity CPT (0.034)
. 0.160%**
X low-priced CPT (0.027)
. . —-0.034
X high-priced CPT (0.028)
k
X early meeting 0.097
(0.049)
skskeok
X late meeting 0-104
(0.036)
Baseline controls Y Y Y Y
N 4,401 4,262 4,401 4,401
Adjusted R-squared 0.896 0.895 0.894 0.891
Sample mean outcome 1.567 1.595 1.567 1.567

Notes: This table shows results of regressions of log RVU on standardized set affiliation interacted with indicators
of a proposal type, as stated in Equation (A.7.1). Four types of binary proposal heterogeneity are considered:
(i) whether the proposal is for an existing CPT code, in column (1), (ii) whether the proposal is for a CPT code
with below- or above-median quantity per year (in years the CPT was in existence), in column (2), (iii) whether
the proposal is for a CPT code with below- or above-median price, in column (3), and (iv) whether the proposal
occurred in an earlier (before the third meeting in 2005) or later (at or after the third meeting in 2005) RUC
meeting, column (4). Tabulations of proposals across the first three characteristics are given in Appendix Table
A.5. Baseline controls are the same as in column (5) of Table III. Standard errors, clustered by RUC meeting, are
in parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1% level.
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Table A.7: Specialty Seats on Counterfactual RUC

Specialty Seats Specialty Seats
Anesthesiology 2 Obstetrics and Gynecology 2
Cardiology 1 Oncology 1
Emergency Medicine 2 Ophthalmology 1
Family Medicine 4 Orthopedic Surgery 1
Gastroenterology 1 Pediatrics 2
General Surgery 1 Psychiatry 1
Internal Medicine 4 Radiology 1
Neurology 1

Notes: This table shows members of a counterfactual RUC, in which seats are assigned in proportion to the
population of physicians in each specialty. The number of total seats is 25, as it is in the current RUC.
This RUC accommodates the 16 largest specialties; including specialties with fewer physicians would re-
quire a larger RUC. Many smaller specialties lack a seat in this RUC; compare this to the broader range
of specialties that have some representation on the actual RUC over time in Table I.
ulation numbers are from Table 1.1 of Association of American Medical Colleges (2016), accessible at

https://www.aamc.org/data/workforce/reports/458480/1-1-chart.html.
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Table A.8: Affiliation Effect on Hard Information

(1) ) 3)
Panel A: Log survey sample
—0.228*#*  —(0.332%**  —(0.146%*

Standardized set affiliation

(0.071) (0.076) (0.070)
Baseline controls Y Y Y
Utilization among proposers N Y Y
Proposer count dummies N N Y
N 4,407 4,219 4,219
Adjusted R-squared 0.329 0.332 0.348
Sample mean outcome 4.660 4.619 4.619

Panel B: Log survey respondents

Standardized set affiliation _(202579;* . _(30452;; ’ (_()00?52)
Baseline controls Y Y Y
Utilization among proposers N Y Y
Proposer count dummies N N Y
N 4,407 4,219 4,219
Adjusted R-squared 0.220 0.253 0.304
Sample mean outcome 3.067 3.071 3.071

Notes: This table shows results of regressions of survey measures of hard information on standardized set affilia-
tion, based on Equation (7). Survey sample regressions are shown in Panel A, and survey respondent regressions
are shown in Panel B. The outcomes are per-specialty measures, constructed by dividing the total survey measures
by the number of proposing specialties. Baseline controls are the same as in column (5) of Table III. Columns
(2) and (3) control for the log annual utilization of the service among all specialties and the log annual utilization
of the service among proposing specialties, dropping observations for which these values are missing. Column
(3) also includes dummies for the proposing specialty count. Standard errors, clustered by RUC meeting, are in
parentheses; ** denotes significance at the 5% level, and *** denotes significance at the 1% level.
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Coefficient (o) Coefficient (o)

Coefficient (o)

Notes: Each panel in this figure plots the effect of set affiliation based on regularized spillovers matrices: Euclidean
distance in 09 (Panel A), Euclidean distance in o-® (Panel B), and w-cosine similarity (Panel C). The y-axis shows
coefficient @ from Equation (6) (baseline specification of column (4) in Table III) on the y-axis and a regularization
parameter on the x-axis. Confidence intervals are shown as dashed lines. The left side of each panel varies a
regularization parameter () that varies Q,, o from a variance-covariance matrix (y; = 0) to a correlation matrix
(y1 =1). The right side of each panel varies a regularization parameter () that transforms € ,,, from a correlation
matrix (y; = 0) to an identity matrix (y, = 1). Results on the left side of each panel hold fixed y, = 0, and results
on the right side hold fixed y; = 1. The right-most result (y, = 1) matches results in Appendix Table A.3, which

Figure A.1: Regularized Affiliation Measures

A: Quantity Euclidean Distance
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B: Revenue Euclidean Distance
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C: Cosine Similarity
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are implicitly based on Q| = I¢. Details are discussed in Appendix IL.C.



Figure A.2: Mixed Strategy Proposal Probabilities
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Notes: This figure shows the probability of proposal participation under 6 = 1 by specialty 1 in a mixed strategy
equilibrium, in which specialties do not propose if § = 0 and mix if § = 1, described in Appendix III. Proposal
probabilities are depicted in the space of bias by specialties 1 and 2. No mixed strategy equilibria exist in the
region shown in pure white.
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Figure A.3: Balance of Medicare Beneficiary Characteristics across Affiliation
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Notes: This figure is a binned scatterplot of residual predicted log RVU, based on Medicare beneficiary character-
istics, on residual affiliation, where each dot represents 5% of the data, ordered by residual affiliations. Log RVU is
first predicted by Medicare beneficiary characteristics, which are listed in Table II. The R-squared of this prediction
equation is 0.249. Residuals are formed by regressing predicted log RVU and affiliation, respectively, on meeting
dummies and specialty shares w;. The line shows the best fit through the residualized data, with corresponding
coefficient and standard error clustered by meeting.
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Figure A.4: Random Timing of Proposals

A: All Meetings
8 {1
|
|
|

-4 -2 0 .2 4
Pseudo-affiliation difference

B: Adjacent Meetings

Density

_4 _2 0 2 4
Pseudo-affiliation difference

Notes: This figure show the distribution of the difference between set affiliation in pseudo-meetings and the actual
set affiliation of each proposal. All affiliation measures are standardized so that the distribution of actual set
affiliation has a standard deviation of 1. In Panel A, we include all 60 meetings for every proposal. In Panel
B, we include only meetings that were within three meetings (both earlier or later) of the actual meeting. The
mean difference is shown as a solid vertical line. The 95% confidence interval, shown in dashed vertical lines, is
calculated by a regression of the difference on a constant, clustering standard errors for meeting identifiers.
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Figure A.5: Balance of Proposal Probability on Predicted Price
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Notes: This figure is a binned scatterplot of residual proposal probability on residual predicted log RVU, where
each dot represents 5% of the data, ordered by residual predicted log RVU. Each observation is a proposal-specialty
pair, and the outcome variable of interest is an indicator for whether the specialty was part of that proposal. Log
RVU is predicted from service (CPT code) characteristics, word descriptions, and prior RVU, which are described
in Table III; the prediction equation has an adjusted R-squared of 0.88. The specialty proposal indicator and
predicted log RVU are both residualized by the following predictors of proposing: specialty dummies for s, meeting
dummies for ¢, Medicare utilization shares w; for specialty s out of total utilization for service i, and an indicator
for whether w;s = 0. The standard deviation of the proposal propensities, detailed in Appendix IV, is 0.13 across
proposal-specialty pairs, so that the span of the y-axis is approximately 1 standard deviation above and below. The
line shows the best fit through the residualized data, with corresponding coefficient and standard error clustered by
meeting.
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Figure A.6: Random Proposals with Respect to Affiliation
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Notes: This figure is a binned scatterplot of residual proposal probability on affiliation between a specialty and
the RUC, where each dot represents 5% of the data, ordered by residual affiliation. Each observation is a
proposal-specialty pair, and the outcome variable of interest is an indicator for whether the specialty was part
of that proposal. Affiliation is calculated between each potential proposing specialty s and the set of RUC spe-
cialties R, at the relevant meeting ¢, or A(R;,s). The mean affiliation for specialty s across all meetings, or
A(s) = |ITI7" X, er A(Ry,s), is subtracted from this affiliation, and this difference A (R;,s) — A (s) is standard-
ized to have mean 0 and standard deviation 1. The proposal-specialty indicator and affiliation are both residualized
by indicators for the number of specialties on a given proposal and for the specialty identity. The standard de-
viation of the proposal propensities, detailed in Appendix IV, is 0.13 across proposal-specialty pairs, so that the
span of the y-axis is approximately 1 standard deviation above and below. The line shows the best fit through the
residualized data, with corresponding coefficient and standard error clustered by meeting.
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Figure A.7: Distribution of Specialty-Proposal Propensities among Proposers
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Notes: This figure shows the density of specialty-proposal propensities, estimated by a logit model of 248,735
specialty-proposal pairs as described in Appendix IV. Proposal propensities are shown for 6,929 actual specialty-

proposal pairs over 4,199 proposals.
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Figure A.8: Distribution of Highly Ranked Specialty-Proposal Propensities
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Notes: This figure shows the density of specialty-proposal propensities, estimated by a logit model of 248,735
specialty-proposal pairs as described in Appendix IV. In each panel, proposal propensities are shown only for
correspondingly ranked specialty for proposals that have at least as many actual proposers. Specifically, in Panel A,
the highest specialty propensity is shown for 4,199 proposals. In Panel B, the second-highest specialty propensity
is shown for 1,524 proposals with at least two proposers. In Panel C, the third-highest specialty propensity is
shown for 558 proposals with at least three proposers. In Panel D, the fourth-highest specialty propensity is shown

for 300 proposals with at least four proposers.
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Figure A.9: Distribution of Simulated Set Affiliation Relative to Actual Set Affiliation
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Notes: This figure shows the density of 51,763 simulated set affiliations, using actual R, and simulated proposing
specialty sets S; for each proposal i, differenced by actual set affiliation. Simulated specialty-proposals are derived
from a logit model of specialty-proposal propensities, as illustrated in Appendix Figures A.7 and A.8. Simulated
observations are weighted by their likelihood of being drawn. The weighted standard deviation of the simulated
set affiliations is 0.242, and the weighted mean of the differenced statistic is —0.016. Details of the simulation

algorithm are described in Appendix IV.
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Figure A.10: Revenue Reallocation across Service Categories

A: Equal Affiliation

400
@ Emergency room visits
%] [ ]
g ® Minor procedure
E 200
.5 Eye s.urgery
© ® @ Ambulatory procedure
;‘3 0 ‘.3. @ Specialist / consultant
8
E
2 200
R
o}
g @ Hospital visits
o -400+
O
Office visits ®
T T T T T
0 2000 4000 6000 8000
Spending (millions $)
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Notes: This figure shows counterfactual yearly revenue reallocation across Berenson—Eggers Type of Service
(BETOS) service categories in two counterfactual scenarios. In Panel A, we consider equalizing the affiliation of
all proposals in each year. In Panel B, we consider changing the RUC membership to be constant and proportional
to the population of physician specialties in the US, as given in Appendix Table A.7. Average annual spending for
each specialty is on the x-axis, while the counterfactual reallocation setting affiliation to the mean for all proposals
is on the y-axis. Utilization quantities for each service (CPT code) is held fixed, and the annual Medicare budget
for physician work is set at $70 billion x51% = $35.7 billion. Details are given in Section 4.2.
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Figure A.11: Counterfactual and Actual Distributions of Affiliation

A: Counterfactual Density
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Notes: This figure compares counterfactual and actual distributions of affiliation. Affiliation is detailed in Section
3.3 and is a function of the set of proposing specialties S; for a proposal i and the set of RUC specialties R; during
meeting ¢, or A(R;,S;). The counterfactual affiliation for proposal i is given by A (7?, Si), where R is the set of
counterfactual RUC specialties given in Appendix Table A.7. Panel A plots the densities of counterfactual and
actual distributions of affiliation. Panel B plots the densities of (i) the difference between counterfactual and actual
affiliations for each proposal i, and (ii) the difference between actual and predicted affiliations for each proposal
i, where predicted affiliation is a linear function of meeting dummies T, and specialty shares w;, as used in the
baseline price regression in Equation (6). Panels C and D show the Q-Q plots that correspond to Panels A and B,
respectively. These Q-Q plots display quantiles in the two distributions being compared; quantiles along 45-degree

line indicate similarity between the two distributions.
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Figure A.13: Distribution of Normalized Log Medicare Price Changes
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Notes: This figure shows the density of Medicare price changes associated with a RUC decision (solid line) or not
(dashed line). Medicare prices are defined as the total payments divided by the total volume of claims for each
CPT code and year pair observed in the 100% sample of Medicare claims. The figure excludes any pair with fewer
than 10 claims. Log prices are then normalized by subtracting the average log Medicare price across CPT codes
in a given year, weighted by frequency of claims. The figure plots the difference between the normalized log price
for a CPT code in a year and the price for the same CPT code in the previous year.
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Figure A.14: Private Price Changes on Medicare Price Changes

A: High Affiliation
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Notes: This figure is a binned scatterplot of log private price changes on log Medicare price changes arising from
high-affiliation RUC proposals (Panel A) and low-affiliation RUC proposals (Panel B), where each dot represents
5% of the data, ordered by Medicare price change. Lines show the best fit through the data, and the line slopes
correspond to coefficients on log Medicare price change in a univariate regression of log private price change.
Coefficients are robust to regression controls similar to those in Table IV. For consistency with Table IV, obser-
vations are weighted by frequency of Medicare claims for a given service (CPT code). Unweighted observations
yield higher coefficients of approximately 1.5 for high-affiliation RUC proposals and 1 for low-affiliation RUC
proposals.
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