A Multi-Factor Spot-Rate Model for the Pricing of Interest-rate Derivatives

Sandra Peterson² Richard C. Stapleton³ Marti G. Subrahmanyan⁴

First draft: April, 1998
This draft: October 29, 2002

¹We thank V. Acharya and P. Pasquariello for able research assistance, Q. Dai, S. Das, B. Dumas, anonymous referees, and the editor, S. Brown, for helpful comments on earlier drafts. We acknowledge comments on earlier versions of this paper by participants in seminars at the University of Cardiff, University of London, Birkbeck College, The Australian Graduate School of Management, Sydney, the Fields Institute, Toronto, UCLA and Temple University. We are also grateful for discussion of the paper at several conferences, including those of the European Finance Association, the European Financial Management Association, the Scottish Institute for Research in Investment and Finance and the Global Association of Risk Professionals.

²Scottish Institute for Research in Investment and Finance, Strathclyde University, Glasgow, UK.
Tel:(44)141-548-4958, e-mail:dhsjp@btopenworld.com

³Department of Accounting and Finance, Strathclyde University, Glasgow, UK. Tel:(44)1524-381172, e-mail:rcs@staplet.demon.co.uk and University of Melbourne, Australia

⁴Leonard N. Stern School of Business, New York University, Management Education Center, 44 West 4th Street, Suite 9–190, New York, NY10012–1126, USA. Tel: (212)998–0348, Fax: (212)995–4233, e-mail:msubahm@stern.nyu.edu
Abstract

A Multi-Factor Spot-Rate Model for the Pricing of Interest-rate Derivatives.

We propose a multi-factor model in which the spot rate, LIBOR, follows a log-normal process, with a stochastic conditional mean, under the risk-neutral measure. In addition to the spot rate factor, the second factor is related to the premium of the first futures rate over the spot LIBOR. Similarly, the third factor is related to the premium of the second futures rate over the first futures rate. We calibrate the model to the initial term structure of futures rates and to the implied volatilities of interest rate caplets. We then apply the model to price interest rate derivatives such as European-style and Bermudan-style swaptions, and yield-spread options. The model can be employed to price more complex interest rate derivatives, for example, path-dependent derivatives or multi-currency-dependent derivatives, because of its Markovian property.
I. Introduction

Satisfactory models exist for the pricing of interest-rate dependent derivatives in a single-factor context, where interest rates of various maturities are perfectly correlated. For example, assuming that the short-term interest rate follows a mean-reverting process, Jamshidian (1989) prices options on coupon bonds using an extension of the Vasicek (1977) model. Also, assuming a lognormal process, Black, Derman and Toy (1990) and Black and Karasinski (1991) use a binomial tree of interest rates to price interest-rate derivatives. However, these models, by definition, are not capable of accurately pricing derivatives, such as swaptions and yield-spread options, whose payoffs are sensitive to the shape as well as the level of the term structure. In principle, these options require at least a two-factor model of the interest rate process for pricing and hedging.\footnote{For critiques of existing methods for the valuation of swaptions, see Andersen (2000) and Longstaff, Santa-Clara and Schwartz (2001a).}

One promising approach, used extensively in recent work, has been to build no-arbitrage, multi-factor forward-rate models of the Heath, Jarrow and Morton (1992) (HJM) type. In practical applications, these usually take the form of the London Interbank Offer Rate (LIBOR) based market model of Brace, Gatarek and Musiela, (1997) (BGM) and Miltersen, Sandmann and Sondermann (1997) (MSS). However, this forward-rate approach has some drawbacks for the pricing of swaptions and American-style claims. Most tractable applications require restrictive assumptions on the volatility structure of the forward rates to ensure that the Markov property is satisfied, and for the resulting model to be computable for realistic examples. Hence, while in principle, the forward-rate approach provides a solution, in practice, it is difficult to implement except for certain special cases.\footnote{Ritchken and Sankasubramanian (1995) identify necessary and sufficient conditions on the volatility structure required in order to capture the path dependence in a single state variable. Li, Ritchken and Sankasubramanian (1995) implement this one factor, two state-variable model and price American-style interest rate claims. Alternatively, the pricing of American-style and Bermudan-style claims requires an}
In this paper, we present an alternative, spot-rate model in which \textit{LIBOR} follows a process with a stochastic central tendency. This is in line with the term structure models pioneered by Hull and White (1994), Jegadeesh and Pennacchi (1997), Balduzzi, Das and Foresi (1998) and reviewed by Dai and Singleton (2000). However, we assume that the process for \textit{LIBOR} is lognormal under the risk-neutral measure. We then derive the no-arbitrage restrictions for such a model. Since we assume that the \textit{LIBOR} rate is lognormal and mean-reverting, our model can also be seen as a multi-factor extension of the Black and Karasinski (1991) (BK) model. We illustrate the model using realistic examples with a large number of time periods. We show that it is easy to calibrate the model to the observed cap and swaption prices as well as to the current term structure of futures rates. In the two-factor case, the computational efficiency is achieved through the use of a two-dimensional recombining lattice of interest rates.\footnote{Also, since the model is calibrated to the given term structure of futures rates, we avoid the use of iterative methods normally used to calibrate models to the current term structure.}

Since recent models for the pricing of Bermudan-style and exotic options have taken the BGM-MSS market model approach, it is important to distinguish our model from this class of models. The main difference is the assumption of lognormal \textit{LIBOR}s. In the market model, \textit{LIBOR} is assumed to be lognormal under the $T+1$ period forward measure. It is not lognormal under the period-by-period risk-neutral measure. In our model, as in BK, it is \textit{assumed} that \textit{LIBOR} is lognormal under the period-by-period risk-neutral measure. Hence, out-of-the-money caplets and swaptions will have different prices in our model than in the market model, even when the models are calibrated to the same market data.\footnote{This could be an advantage of our model, since market quotes for out-of-the-money caplets suggest that the \textit{LIBOR} market model assumptions are not consistent with the data. Recent work on forward rate models has made alternative assumptions in order to try to capture the smile.} A second difference arises in the pricing of Bermudan-style claims. In order to price these claims we require the process for the spot rate. In our model this is directly

\begin{footnote}{approximation of the early exercise decision, as detailed in Anderson (2000) and Longstaff, Santa-Clara and Schwartz (2001a), and discussed in Anderson and Andreasen (2001).}

\begin{footnote}{Also, since the model is calibrated to the given term structure of futures rates, we avoid the use of iterative methods normally used to calibrate models to the current term structure.}

\begin{footnote}{This could be an advantage of our model, since market quotes for out-of-the-money caplets suggest that the \textit{LIBOR} market model assumptions are not consistent with the data. Recent work on forward rate models has made alternative assumptions in order to try to capture the smile.}

modelled. However, in the market model, the spot rate process has to be derived from the forward rate process. In doing this, simplifying assumptions are usually made, which will produce pricing differences. Further, it is clear from the work of Rebonato (1999) and Longstaff, Santa-Clara and Schwartz (2001b) that the pricing of swaptions in the market model requires an exogenous specification of the correlation matrix of forward rates. The important difference in our model is that the correlation of forward rates is restricted by the parameters of the stochastic central tendency model of the spot LIBOR. Hence, we would again expect different prices of swaptions in our spot-rate model.

In the calibration of the model, we take as given the prices (or equivalently, the implied volatilities) of European-style interest rate caplets. The problem, as in Black, Derman and Toy (1990) and Black and Karasinski (1991), is to price European-style, Bermudan-style and American-style swaptions, as well as more complex instruments such as yield-spread options, given the prices of the caplets. We also introduce an alternative calibration, where the model is fitted to both caplets and European-style swaptions. This version of the model is also used to price Bermudan-style swaptions.

The outline of the paper is as follows. Section 2 reviews the literature on term-structure models and their relationship to the model developed here. Section 3 presents the multifactor model, derives its no-arbitrage properties, and discusses its input requirements. Section 4 presents examples of the output of the two-factor model and discusses the computational efficiency of the methodology. In section 5 we show how the model can be calibrated to cap/floor and/or swaption implied volatilities. We then illustrate how the model can be used to value Bermudan-style swaptions and discuss possible extensions to other interest rate derivatives. Section 6 compares the model with alternative term-structure models and with the LIBOR Market Model. Section 7 concludes with a discussion of the remaining issues of empirical parameter estimation, and possible extensions of the research.
II. Term-structure Models

In early attempts to value interest rate options, Brennan and Schwartz (1979) and Courtadon (1982) derive equilibrium models of the term structure along the lines of the Vasicek (1977) model. However, since the contribution of Ho and Lee (1986), it has been recognized that interest rate dependent claims can be priced within a no-arbitrage model. Hull and White (1994), for example, develop an extended Vasicek model in which interest rates, under the risk-neutral measure, are Gaussian, and exactly match the current term structure. Black, Derman and Toy (1990) and Black and Karasinski (1991) (BK) develop lognormal diffusion models for the short rate that have the same no-arbitrage property. The model developed in this paper is a multifactor extension of the BK model, where the short rate follows a lognormal process with a stochastic central tendency. The lognormal models of Black, Derman and Toy (1990) and Black and Karasinski (1991) are perhaps closest to the model developed in this paper. These papers derive recombining, binomial lattices which match yield volatilities and cap-floor volatilities respectively. In a sense, our model can be viewed as a multi-factor extension of the Black and Karasinski model. In their model, the local (conditional) volatilities and the mean reversion of the short rate are given, in addition to the current term structure of zero-coupon bond prices. They build a recombining binomial tree of rates, consistent with this market information, using a technique whereby the length of the time period is changed to accommodate mean reversion and changing local volatilities. Unfortunately, as pointed out by Amin (1991), this “trick” only works, in general, for a one-factor model. In this paper, we therefore employ the changing probability technique of Nelson and Ramaswamy (1990), extended to multiple variables by HSS. We are thus able to generalise the Black-Karasinski model to two or more factors, while maintaining the recombining property.

In a no-arbitrage framework, HJM model the evolution of forward rates for various maturities. A similar approach has recently been used in the "market model" of Brace, Gatarek
and Musiela, (1997) (BGM) and Miltersen, Sandmann and Søndermann (1997) (MSS). These papers, like this one, model the LIBOR interest rate. Since spot rates and forward rates are closely related, our modelling approach can be compared to these papers. However, in contrast to models where the behaviour of forward rates is exogenous, in our model, only the processes for the short (LIBOR) rate and the premia of the first two futures rates are exogenous. Although it is possible to develop multifactor-forward rate models in the HJM framework, these often require restrictive assumptions to guarantee the Markov property, or the use of Monte-Carlo simulation. In some senses, forward-rate models can be regarded also as spot-rate models. However, except in the case of Gaussian interest rates, the relationship between the forward-rate process and the spot-rate process is complex. In contrast, we directly build a no-arbitrage, multifactor spot rate model, which has the Markov property. The model is then directly applied to the valuation of American-style and Bermudan-style interest rate derivatives.

A related paper is Heath (1998), who starts with the term structure of futures rates and then builds a no-arbitrage process for the term structure of futures rates. Having generated futures rates at each point in time, Heath proposes using a convexity adjustment to derive forward rates and bond prices. This methodology potentially avoids the non-Markov property characteristic of many forward-rate models. We also use futures LIBOR and in particular we use the property that the futures LIBOR is the expectation of the future spot rate under the risk-neutral measure. This enables us to calibrate our spot-rate model exactly to the current term structure of futures prices.

A number of authors, including Hull and White (1994), Jegedeesh and Penacchi (1996), Balduzzi, Das and Foresi (1998) and Stapleton and Subrahmanyan (2001), have developed two-factor term-structure models where the second factor is a shock to the conditional mean of the spot rate. 5 Hull and White propose a general class of two-factor models where the

\footnote{Dai and Singleton (2000) explore the properties of affine term structure models, within which broad category they consider a class of models with a 'stochastic central tendency' such as that of Balduzzi, Das}
short rate mean reverts to a deterministic mean, although they only implement certain special cases of the class, where the term structure of volatility is restricted.

Some evidence that models with a small number of factors can capture the dynamics of the term structure is provided by Driessen, Klaassen and Melenberg (2002). They consider the pricing and hedging of caps and swaptions using forward rate models with one, two and three factors. Their results show that a clear improvement in hedging performance occurs when using a two-factor model rather than a one-factor model. Further, but smaller, improvements occur when moving to a three-factor model. Also, using data on cap and swaption prices for the period 1995-1999, they show that cap implied volatilities reveal a strong hump shape on average, consistent with a model of the Hull-White class with at least two factors. This evidence is closely related to our discussion in section 6 of this paper, where we present further evidence of hump shaped volatilities using caplet data from 1999-2000. These volatility patterns again provide evidence in favor of a model of the type proposed here. The results on cap and swaption hedging go some way to countering the recent evidence from Duffee (2002) and Ahn, Dittmar and Gallant (2002) regarding the and Foresi (1998). The models proposed by Hull and White (1994) and Stapleton and Subrahmanyan (2001) are similar. Duffee (2002) provides an empirical examination of affine term structure models. In a more recent paper, Ahn, Dittmar and Gallant (2002) provide a general framework for quadratic models of the term structure. They argue that these models combine the advantage of Gaussian processes with guaranteeing positive interest rates in a tractable manner.

In the context of multi-factor models, Fan, Gupta and Ritchken (2002) examine whether there are sources of risk that affect fixed income derivatives which cannot be hedged effectively using portfolios of LIBOR bonds or swaps, due to the presence of “unspanned” stochastic volatility. They conclude that the benefits of incorporating such stochastic volatility into models is minor. Gupta and Subrahmanyan (2002) present evidence in the context of interest rate caps and floors that one-factor models provide reasonable accurate pricing, while for hedging a second factor is necessary to better represent the dynamic evolution of the term structure.

See Driessen, Klaassen and Melenberg (2002), Table 9 for cap hedging, and Table 10 for swaption hedging.

See Driessen, Klaassen and Melenberg (2002), Table 2.
empirical failings of term structure models. This evidence is discussed in an evaluation of our spot rate model in section 6.\footnote{The explanation for the somewhat contradictory evidence may lie in the fact that the hedging tests of Driessen, Klaassen and Melenberg (2002), are tests of the properties of the risk-neutral dynamics of the term structure, whereas Duffee (2002) and Ahn, Dittmar and Gallant (2002) are concerned with the actual term-structure distribution. For pricing derivatives, the focus of this paper, clearly only the risk-neutral distribution is relevant.}

Two recent papers that deal with the pricing of American-style and Bermudan-style swaptions are by Andersen (2000) and Longstaff, Santa-Clara and Schwartz (2001a). These papers emphasize the importance of including multiple factors in a pricing model for these claims. Our results support their conclusion. While our implementation only allows for two or three factors, we are able to price the contingent claims in a much faster, more efficient way, without resorting to the use of Monte-Carlo simulation.\footnote{Monte-Carlo simulation is an alternative approach to the problem of valuing options in multi-factor models. Both methods (recombining trees and Monte-carlo simulation) create their own inaccuracies due to their different ways of approximating the true distribution. See Boyle, Broadie and Glasserman (1997) for a survey of this literature. The general approach in the literature is to estimate upper and lower bounds for the American/Bermudan option prices. Alternative methods for obtaining these bounds have been proposed by Broadie and Glasserman (1997) and Andersen and Broadie (2001).} Various approximations have been proposed to circumvent the non-Markov nature of the short-rate process. Andersen compares a number of methods and suggests the computation of a lower bound for the price of a Bermudan-style swaption based on a restricted factor model assumption, used for the purpose of taking the early exercise decision. Andersen and Andreasen (2001) test whether the number of factors has a significant impact on Bermudan-style swaption prices when the model is calibrated to the price of European-style swaptions. They find very small effects, both in the case of the Hull and White (1994) Gaussian model and in the case of the LIBOR market model.

A number of recent papers have examined the relative pricing of caps, floors and swaptions. Jagannathan, Kaplin and Sun (2002) evaluate the Cox, Ingersoll and Ross (1985) (CIR)
A Multi-Factor Spot-Rate Model

model using data on LIBOR, Swap rates and caps and swaptions. With three factors, the CIR model is able to fit the term structure of LIBOR and swap rates and the hump shaped unconditional term structure of volatility. However, statistical tests indicate that the model is misspecified, since the pricing errors are related to the slope of the yield curve. Collin-Dufresne and Goldstein (2001a) propose an algorithm for pricing swaptions when the underlying term structure is affine. They use the moments of the underlying asset, which have simple closed-form solutions, to uniquely identify the cumulants of the distribution and implement their model, using a 3-factor Gaussian model and a 2-factor square root (CIR) model, for European swaption prices. In a related paper, Collin-Dufresne and Goldstein (2001b) argue that the mispricing of caps and swaptions is due to restrictions on the joint evolution of the term structure, the volatility structure and the correlation structure and propose a class of models that relax these restrictions, in particular by incorporating regime shifts in the correlation structure. Singleton and Umantsev (2001) provide an alternative method for pricing European swaptions. The method is based on the empirical observation that the joint density of an affine state process is non-zero on a small segment of the exercise boundary. Hence, the boundary can be approximated in the segments where the density of the state variables is concentrated. It should be emphasized that all these papers propose models only for European swaptions, under various assumptions regarding the interest rate process. None of them address the problem of valuation of Bermudan options, or for that matter, exploit the specific features of the multi-factor logarithmic interest rate structure to calibrate the model.

Our paper is also related to two recent contributions of Rebonato (1999) and Sidenius (2000). These papers discuss methods of calibrating multi-factor LIBOR market models to both the cap implied volatilities and the prices of European-style swaptions. Our approach provides an alternative calibration methodology. The difference in the case of spot-rate models, is that the correlation of the forward rates in the term structure is determined endogenously in these models. In the forward rate models, the calibration is to the pricing
of interest rate options and an exogenously given correlation matrix.

In summary, a number of papers have looked at the pricing of swaptions. However, the multi-factor implementations have either only valued European-style swaptions, or have used approximations for the early exercise boundary. In this paper, we use an alternative and potentially more productive approach. By constructing a recombining lognormal spot-rate lattice, we avoid many of the complications that occur in valuing Bermudan-style swaptions in forward-rate models.

III. The Multi-Factor Model

In this section, we describe our multi-factor model and investigate the implications of the no-arbitrage conditions for the model. We first discuss briefly the general approach in the lemmas and propositions that follow. Since our approach involves the calibration of the model using observable futures rates, we first establish the linkage between the spot and futures rates. The key to developing such a link is the observation that in an arbitrage-free economy, futures prices are the expectation, under the risk-neutral measure, of the future spot prices. The other relationship we use is the expression for the mean of the spot interest rate process, based on the assumption of lognormality of the spot interest rate. These restrictions allow us to re-formulate the spot rate process in terms of futures rates. Having specified the spot-rate process, we then derive the process for the one-period and two-period ahead futures rates, using similar methods.

The logic of the argument is as follows. First, we show in Lemma 1 that the futures rate is the expectation, under the risk-neutral measure, of the future spot interest rate. Since the spot rate is lognormally distributed, the futures rate can be related to the mean and variance of the (log) spot interest rate. Second, in Lemma 2, the spot interest rate process is expressed in terms of observable parameters by taking the expectation and substituting for
the futures rate expressed as the mean of the spot interest rate. Third, in Lemma 3, a cross-
sectional relation is derived between futures and spot rates. These results are combined in
Proposition 1 with the requirement that forward bond prices are the expectations, under the
risk-neutral measure, of the future bond prices. Proposition 1 summarises the no-arbitrage
requirements of the model.

A. No-arbitrage properties of the model

As several authors have noted, one way of introducing a second factor into a spot-rate model
of the term structure is to assume that the conditional mean of the spot short-term interest
rate is stochastic. Further factors may be added by then assuming that the conditional
mean of the second and subsequent factors are also modelled with stochastic conditional
means.\footnote{See, for example, Hull and White (1994), Balduzzi, Das and Foresi (1998), and Jegadeesh and Pennacchi
(1996), as well as the synthesis by Dai and Singleton (2000).} In this paper, we take a similar approach. We assume that the logarithm of
the short-term interest rate follows a discrete process with a stochastic conditional mean.
In order to avoid complexity of notation, we present the model with three factors. We
also consider a restricted two-factor version of the model, which is more practical from an
implementation viewpoint and will be used extensively in the section on calibration of the
model.

We define the short-term, m-year interest rate, on a LIBOR basis as \(r_t = [(1/B_{t,t+m}) - 1]/m \),
where \(m \) is a fixed maturity of the short rate and \(B_{t,t+m} \) is the price of a \(m \)-year, zero-
coupon bond at time \(t \). We then assume that, under the (daily) risk-neutral measure, this
rate follows the process:\footnote{The multi-factor version of the model, with slightly changed notation to accommodate \(n + 1 \) factors, is
as follows:}

\[
\begin{align*}
\ln(r_t) - \ln(r_{t-1}) & = \theta_{r_t} - b_0 \ln(r_{t-1}) + \ln(y_{t+1,t-1}) + \varepsilon_{0,t}, \\
\ln(y_{t,t}) - \ln(y_{t+1,t-1}) & = \theta_{y,s} - b_1 \ln(y_{t+1,t-1}) + \ln(y_{s,t}) + \varepsilon_{s,t},
\end{align*}
\]
A Multi-Factor Spot-Rate Model

\[
\ln(r_t) - \ln(r_{t-1}) = \theta_{r_t} - b \ln(r_{t-1}) + \ln(\pi_{t-1}) + \varepsilon_t,
\]

where

\[
\ln(\pi_t) - \ln(\pi_{t-1}) = \theta_{\pi_t} - c \ln(\pi_{t-1}) + \ln(z_t) + \nu_t,
\]

and

\[
\ln(z_t) - \ln(z_{t-1}) = \theta_z - d \ln(z_{t-1}) + \eta_t,
\]

and \(\varepsilon_t, \nu_t, \) and \(\eta_t\) are possibly correlated, normal, random variables. \(\pi\) is a shock to the conditional mean of the short-rate process, \(z_t\) is a further shock to the mean of the \(\pi_t\) process, \(\theta_{r_t}, \theta_{\pi_t}\) and \(\theta_z\) are time-dependent constants. \(b, c\) and \(d\) are the mean reversion coefficients of \(r\) and \(\pi\) and \(z\) respectively. The mean and the unconditional standard deviation of the logarithm of the factors, \(r_t, \pi_t\) and \(z_t\) are \(\mu_{r_t}, \sigma_{r_t}, \mu_{\pi_t}, \sigma_{\pi_t}, \) and \(\mu_z, \sigma_z\) respectively. We assume that the trading interval is one day, and that the LIBOR follows the process in (1) under the daily (rather than the continuous) risk-neutral measure. From here on, we refer to this “daily” risk-neutral measure as simply the risk-neutral measure. We also assume, without loss of generality, that \(E(\pi_t) = 1\) and \(E(z_t) = 1\), where the expectation is again taken under the risk-neutral measure.\(^{13}\)

\[
\ln(y_{n,t}) - \ln(y_{n,t-1}) = \theta_{y_{n,t}} - b_n \ln(y_{n,t-1}) + \varepsilon_{n,t-1}
\]

The conditional mean of each factor is stochastic, and is driven by the subsequent factor in an embedded fashion.

\(^{13}\)Note that the assumed process in equation (1) is the discrete form of the process

\[
d \ln(r) = [\theta_{r_t} - b \ln(r) + \ln(\pi)]dt + \sigma_r(t)dz_1
\]

where

\[
d \ln(\pi) = [\theta_{\pi_t} - c \ln(\pi)]dt + \sigma_\pi(t)dz_2
\]

and

\[
d \ln(z) = [\theta_z - d \ln(z)]dt + \sigma_z(t)dz_3
\]
The model in equation (1) is attractive because the second and third factors π and z turn out to be closely related to the futures rates, which are observable. In fact, as we shall show in Lemma 1, the futures LIBOR is the expectation of r_T under the risk-neutral measure. Hence, the model lends itself to calibration given market inputs. To see this, we first derive some of the implications of the process assumed in equation (1), in a no-arbitrage economy.

We first state and prove a result that is central to the paper. The result is not new, since a similar result is derived by Sundaresan (1991), and used by MSS (1997) and BGM (1997). However, since it is crucial to the model developed in this paper, we include the proof in Appendix A. The lemma states that, given the definition of the LIBOR futures contract, the futures LIBOR is the expected value of the spot rate, under the risk-neutral measure.

Lemma 1 (Futures LIBOR) In a no-arbitrage economy, the time-t futures LIBOR, for delivery at T, is the expected value, under the risk-neutral measure, of the time-T spot LIBOR, i.e.

$$f_{t,T} = E_t(r_T)$$

Also, if r_T is lognormally distributed under the risk-neutral measure, then:

$$\ln(f_{t,T}) = E_t[\ln(r_T)] + \frac{\text{var}[\ln(r_T)]}{2},$$

where the operator “var” refers to the variance under the risk-neutral measure.

Proof

In the above equations, $d \ln(r)$ is the change in the logarithm of the short rate, and $\sigma_r(t)$ is the instantaneous volatility of the short rate. The second and third factors, π and z, themselves follow a diffusion process with means θ_π, θ_z mean reversion c and d and instantaneous volatilities $\sigma_\pi(t), \sigma_z(t)$, and dz_1, dz_2 and dz_3 are standard Brownian motions. If the short rate follows the process in equation (2), it is lognormal over any discrete time period. The model above, restricted to two factors, is one of the cases considered by Hull and White (1994). Note that the continuous-time process is defined under the continuous risk-neutral measure which is slightly different from the “daily” measure used in this paper.
See Appendix A.

Lemma 1 allows us to substitute the futures rate directly for the expected value of the LIBOR in the process assumed for the spot rate. In particular, the futures rate has a zero drift, under the risk-neutral measure. We now use this result to solve for the constant parameters in our interest rate process in (1), i.e., to determine the constants $\theta_{\tau_t}, \theta_{\pi_t}$, and θ_{z_t}. We have:

Lemma 2 (Spot-LIBOR Process) Suppose that the short-term interest rate follows the process in equation (1), under the risk-neutral measure, in a no-arbitrage economy. Then, since $f_{0,t} = E_0(r_t), \forall t$, the short rate process can be specified as

$$\ln(r_t) - \ln(f_{0,t}) = \alpha_{\tau_t} + [\ln(r_{t-1}) - \ln(f_{0,t-1})](1 - b) + \ln(\pi_{t-1}) + \varepsilon_t$$

(3)

where

$$\ln(\pi_t) = \alpha_{\pi_t} + \ln(\pi_{t-1})(1 - c) + \ln(z_{t-1}) + \nu_t,$$

and

$$\ln(z_t) = \alpha_{z_t} + \ln(z_{t-1})(1 - d) + \eta_t,$$

with

$$\alpha_{\tau_t} = \frac{-\sigma_{\tau_t}^2}{2} + (1 - b)\frac{\sigma_{\tau_{t-1}}^2}{2} + \frac{\sigma_{\tau_{t-1}}^2}{2},$$

and

$$\alpha_{\pi_t} = \frac{-\sigma_{\pi_t}^2}{2} + (1 - c)\frac{\sigma_{\pi_{t-1}}^2}{2} + \frac{\sigma_{\pi_{t-1}}^2}{2},$$

$$\alpha_{z_t} = \frac{-\sigma_{z_t}^2}{2} + (1 - d)\frac{\sigma_{z_{t-1}}^2}{2}.$$

Proof

See Appendix B.
A Multi-Factor Spot-Rate Model

The result in Lemma 2 is important for the implementation of the model developed in this paper, since it defines the parameters of the three-factor interest rate process in terms of potentially observable quantities. The process for the LIBOR depends upon the current futures rates and the volatilities of the LIBOR and of the premium factors. Lemma 2 implies that if the no-arbitrage condition is to be satisfied, the drift of the spot rate process has to reflect the futures LIBOR at time 0 and the volatilities. This is analogous to the no-arbitrage requirement in the HJM model, where the absence of arbitrage implies that the drift of the forward rate depends on the volatility of the forward rates. In our spot rate lognormal model, the volatilities of the spot rate and of the premium factor play a similar role.

However, the condition used in Lemma 2, that \(E_0(r_t) = \int_0^t f_0, t \), is necessary, but not sufficient, for “no-arbitrage” in our spot-futures model. The no-arbitrage requirement is much stronger. From Lemma 1, no-arbitrage requires that the futures LIBOR equals the expected spot rate at each date and in each state. We then have the following:

Lemma 3 (Futures-LIBOR Process) Given that the conditions of Lemma 2 are satisfied, the no-arbitrage condition implies

\[
\ln(f_{t+1}) - \ln(f_0) = \alpha_{f+1} + \ln(r_t) - \ln(f_0) (1 - b) + \ln(\pi_t)
\]

where

\[
\alpha_{f+1} = \alpha_{r+1} + \text{var}_t[\ln(r_{t+1})/2.
\]

and

\[
\ln(f_{t+2}) - \ln(f_0) = \alpha_{f+2} + \ln(r_t) - \ln(f_0) (1 - b)^2
\]

\[
+ \ln(\pi_t)[(1 - b) + (1 - c)] + \ln(z_t)
\]

where

\[
\alpha_{f+2} = \alpha_{r+2} + (1 - b)\alpha_{r+1} + \alpha_{\pi+1} + \text{var}_t[\ln(r_{t+2})]/2.
\]
Proof

See Appendix C.

Lemma 3 shows that, in a no-arbitrage economy where the spot rate follows (3), the first future contract has a rate that follows a two-factor process. The futures rate moves with changes in the spot rate, and in response to the premium factor, \(\pi \). The futures rate is also affected by the degree of mean reversion in the short rate process. We can interpret the volatility of the premium factor as the part of the volatility of the first futures rate that is not explained by the spot rate.\(^{14}\)

So far, we have concentrated on the implications of the no-arbitrage condition for the spot-rate process and for futures rates. However, any term-structure model must also satisfy the condition that, under the risk-neutral measure, forward bond prices must equal the expected values of the subsequent period’s bond price. This condition is, therefore, included in the following proposition that summarises the no-arbitrage conditions of our model.

Proposition 1 (No-Arbitrage Properties of the Model) Suppose that the LIBOR rate, \(r_t \), follows the process:

\[
\ln(r_t) - \ln(r_{t-1}) = \theta r_t - b \ln(r_{t-1}) + \ln(\pi_{t-1}) + \varepsilon_t,
\]

where

\[
\ln(\pi_t) - \ln(\pi_{t-1}) = \theta_{\pi_t} - c \ln(\pi_{t-1}) + \nu_t,
\]

\(^{14}\)It is natural to concentrate on the first futures rate, i.e., the futures for delivery at time \(t+1 \), since in our spot-rate model, the first futures rate is the expected value of the subsequent spot rate, \(r_{t+1} \). However, it is possible to solve the time-series model for the \(k \)th futures rate, to obtain:

\[
\ln(f_{t,t+k}) - \ln(f_{t-t+k}) = \alpha f_{t+k} + [\ln(r_t) - \ln(f_{t+k})](1 - b)^k + \nu_t A_{t,k}
\]

where \(V_t \) is a weighted sum of the innovations in the premium factor, and \(A_{t,k} \) is a constant. Hence the \(k \)th futures LIBOR also follows a two-factor process similar to that followed by the first futures LIBOR.
and

\[\ln(z_t) - \ln(z_{t-1}) = \theta z_t - d \ln(z_{t-1}) + \eta_t, \]

under the risk-neutral measure, with \(E(\pi_t) = 1 \) and \(E(z_t) = 1 \), \(\forall t \), and \(\varepsilon_t, \nu_t, \text{ and } \eta_t \) are independently distributed, normal variables. Then, if the model is arbitrage free:

1. the spot-LIBOR process can be written as:

\[\ln(r_t) - \ln(f_{0,t}) = \alpha r_t + [\ln(r_{t-1}) - \ln(f_{0,t-1})](1 - b) + \ln(\pi_{t-1}) + \varepsilon_t, \]

2. the process for the 1-period futures-LIBOR can be written as:

\[\ln(f_{t,t+1}) - \ln(f_{0,t+1}) = \alpha_{f_{t+1}} + [\ln(r_t) - \ln(f_{0,t})](1 - b) + \ln(\pi_t), \]

3. the process for the 2-period futures-LIBOR can be written as:

\[\ln(f_{t,t+2}) - \ln(f_{0,t+2}) = \alpha_{f_{t+2}} + [\ln(r_t) - \ln(f_{0,t})](1 - b)^2 \]

\[+ \ln(\pi_t)[(1 - b) + (1 - c)] + \ln(z_t) \]

4. zero-coupon bond prices are given by the relation:

\[B_{s,t} = B_{s,s+1} E_s(B_{s+1,t}), \ 0 \leq s < t \leq T. \]

Proof

Parts 1, 2 and 3 of the proposition follow from Lemmas 2, 3. As shown by Pliska (1997), Part 4 is a requirement of any no-arbitrage model.

Proposition 1 summarises the conditions that have to be met for the spot-futures model to be arbitrage-free. Also, as noted above, the further implication of Lemma 1, is that the futures rate is a martingale, under the risk-neutral measure. Hence, we can calibrate the
model exactly to the given term structure of futures rates, and thereby guarantee that the no-arbitrage property holds.

Finally, for completeness, we should note that the process followed by the spot and futures rates in this model can be written in difference form:

Corollary 1 (The Multi-Variate Spot-Futures Process) The multi-variate process for the spot-LIBOR and the one-period and two-period ahead futures-LIBOR can be written as:

\[
\Delta \ln(r_t) = \alpha'_{r_t} - b \ln(r_{t-1}) + \ln(\pi_{t-1}) + \varepsilon_t \\
\Delta \ln(f_{t,t+1}) = \alpha'_{f_{t,1}} + [\ln(r_t) - \ln(r_{t-1})](1-b) + \ln(\pi_t) - \ln(\pi_{t-1}), \\
\Delta \ln(f_{t,t+2}) = \alpha'_{f_{t,2}} + [\ln(r_t) - \ln(r_{t-1})](1-b)^2 \\
+ [\ln(\pi_t) - \ln(\pi_{t-1})][(1-b) + (1-c)] + \varepsilon_{t+1} - \varepsilon_t,
\]

for some constants α'_{r_t}, $\alpha'_{f_{t,1}}$ and $\alpha'_{f_{t,2}}$.

Proof

Write equation (3) for r_{t+1} and for r_t and subtract the second equation from the first. Then the first part of the corollary follows with

\[
\alpha'_{r_t} = \alpha_{r_{t+1}} - \alpha_{r_t} - (1-b) \ln(f_{0,t}) + (1-b) \ln(f_{0,t-1}).
\]

Similarly, write equation (4) for $f_{t+1,t+2}$ and for $f_{t,t+1}$ and subtract the second equation from the first. Similarly, taking the first difference of the equation for the two-period ahead, the corollary follows.

The first part of the corollary shows that the spot rate follows a one dimensional mean-reverting process. The second part shows that the 1-period futures rate follows a two-dimensional process, depending partly on the change in the spot rate and partly on the
change in the premium factor. The third part shows that the 2-period futures rate follows a three-dimensional process, depending partly on the change in the spot rate and partly on the change in the first and second premium factors.

B. Regression Properties of the Model

The multi-factor model of the term structure described above has the characteristic that the conditional mean of the short rate is stochastic, as does the Hull and White (1994) model. Since the futures rate directly depends on the conditional mean, there is an imperfect correlation between the short rate and the futures rate. In this section, we establish the regression properties of the model, using the covariances of the short rate and premium process. These properties are required as inputs for the construction of a binomial approximation model of the term structure, since the tree of rates must satisfy the no-arbitrage condition. In the following proposition, we denote the covariance of the logarithm of the short rate and the premium factor as σ_{r_t, π_t}. The process assumed in Lemma 2 has the following properties:

Proposition 2 (Multiple Regression Properties) Assume that

$$
\ln(r_t) - \ln(f_{0,t}) = \alpha_r + [\ln(r_{t-1}) - \ln(f_{0,t-1})](1 - b) + \ln(\pi_{t-1}) + \varepsilon_t
$$

where

$$
\ln(\pi_t) = \alpha_{\pi} + [\ln(\pi_{t-1})(1 - c) + \ln(z_{t-1}) + \nu_t,
$$

and

$$
\ln(\pi_t) = \alpha_z + \ln(z_{t-1})(1 - d) + \eta_t,
$$

with $E_0(\pi_t) = 1$ and $E_0(z_{\pi_t})$, $\forall t$.

Then,
1. the multiple regression

\[\ln \left(\frac{r_t}{f_{0,t}} \right) = \alpha_{r_t} + \beta_{r_t} \ln \left(\frac{r_{t-1}}{f_{0,t-1}} \right) + \gamma_{r_t} \ln(\pi_{t-1}) + \varepsilon_t \quad (6) \]

has coefficients

\[\alpha_{r_t} = (-\sigma_{r_t}^2 + \beta_{r_t} \sigma_{\pi_{t-1}}^2 + \gamma_{r_t} \sigma_{\pi_{t-1}}^2) / 2 \]

\[\beta_{r_t} = (1 - b), \]

\[\gamma_{r_t} = 1, \]

2. the multiple regression

\[\ln(\pi_t) = \alpha_{\pi_t} + \beta_{\pi_t} \ln(\pi_{t-1}) + \gamma_{\pi_t} \ln(z_{t-1}) + \eta_t \quad (7) \]

has coefficients

\[\alpha_{\pi_t} = [-\sigma_{\pi_t}^2 + \beta_{\pi_t} \sigma_{\pi_{t-1}}^2 + \gamma_{\pi_t} \sigma_{z_{t-1}}^2] / 2 \]

\[\beta_{\pi_t} = (1 - c), \]

\[\gamma_{\pi_t} = 1, \]

3. the regression

\[\ln(z_t) = \alpha_{z_t} + \beta_{z_t} \ln(z_{t-1}) + \eta_t \quad (8) \]

has coefficients

\[\alpha_{z_t} = [-\sigma_{z_t}^2 + \beta_{z_t} \sigma_{z_{t-1}}^2] / 2, \]

\[\beta_{z_t} = (1 - d), \]

4. the conditional variances of \(\ln(r_t) \) and \(\ln(\pi_t) \) are given by

\[\text{var}_{t-1}(\varepsilon_t) = \sigma_{\varepsilon_{t-1}}^2 - (1 - b)^2 \sigma_{\pi_{t-1}}^2 - \sigma_{\pi_{t-1}}^2 - 2(1 - b)\sigma_{\pi_{t-1},\pi_{t-1}}, \]

\[\text{var}_{t-1}(\eta_t) = \sigma_{\eta_{t-1}}^2 - (1 - c)^2 \sigma_{\pi_{t-1}}^2 - \sigma_{\pi_{t-1}}^2 - 2(1 - c)\sigma_{\pi_{t-1},\pi_{t-1}}, \]
\[\text{var}_{l-1}(\eta_l) = \sigma_{\eta_l}^2 - (1 - d)^2 \sigma_{\eta_{l-1}}^2, \]

where \(\sigma_{\eta,\pi} \) denotes the annualized covariance of the logarithms of the short rate and the premium factor.

Proof

See Appendix D.

Note that we require the multiple regression coefficients in order to build the binomial approximation of the multi-variate process, using our modification of the method of Ho, Stapleton and Subrahmanym (1995).\(^{15}\) From the proposition, the \(\beta \) coefficients simply reflect the mean-reversion of the short rate, and the premium factors. The \(\gamma \) coefficients are all unity, reflecting the one-to-one relationship between \(\pi \), the futures premium factor and the expected spot rate and the relationship between \(z_t \) and the expected value of the premium factor. The \(\alpha \) coefficients reflect the drift of the lognormal distribution, which depends on the variances of the variables. Part 4 of the Proposition gives an expression for the conditional variance of the logarithm of the short rate, the first premium factor and the second premium factor.

\(^{15}\)In this method, each factor follows a mean-reverting, recombining process. For the two-dimensional case, the method is illustrated in Figures 1 and 2, for the two-period and three-period cases respectively. There are 9 and 16 states of the term structure after two and three periods. In Figure 1, for example, the probabilities \(q_{\alpha} \) and \(q_{\gamma} \) of moving up the futures premium tree and the short-rate tree respectively are chosen so that the expectation of the log variables are correct, as given in Proposition 2. One feature of the HSS methodology is the ability to vary the binomial density, \(n \). This determines the number of nodes of the binomial distribution over a single time step. The number of nodes for each variable is \(n + 1 \).
C. An Economic Interpretation of the Factors

In order to build the two-factor version of the model outlined above, we need the parameters of the premium process, as well as those for the short rate process itself. The result in Proposition 2, part 4 gives the relationship of the conditional volatility of the short rate to the unconditional volatilities of the short rate, the volatility of the first premium factor, and the mean reversion of the short rate. We assume that the unconditional volatilities of the short rate are given, for example, observable from caplet/floorlet volatilities, and that the mean reversion is also given. The premium process, π_t, on the other hand, determines the extent to which the first futures rate differs from the spot rate in the model. Note that it is the first futures rate that is relevant, since it is this futures rate that determines the expectation of the subsequent spot rate, in the model. Since the first premium factor is not directly observable, we need to be able to estimate the mean and volatility of the premium factor from the behavior of futures rates. In order to discuss this, we first establish the following general result:

Lemma 4 Assume that

$$\ln(r_t) - \ln(f_{0,t}) = \alpha r_t + [\ln(r_{t-1}) - \ln(f_{0,t-1})](1 - b) + \ln(\pi_{t-1}) + \varepsilon_t$$

where

$$\ln(\pi_t) - \mu_{\pi_t} = \ln(\pi_{t-1} - \mu_{\pi_{t-1}})(1 - c) + \ln(\pi_{t-1}) + \nu_t,$$

with $E_0(\pi_t) = 1, \forall t$, then the conditional volatility of π_t is given by

$$\sigma_x(t) = \left[\sigma_x^2(t) - (1 - b)^2 \sigma_t^2(t)\right]^\frac{1}{2}$$

where $x = E_t(r_{t+1})$ and $\text{var}_{t-1}[\ln(x_t)] = \sigma_x^2(t)$.

Proof
See Appendix E.

Lemma 4 relates the volatility of the premium factor to the volatility of the conditional expectation of the short rate. To apply this in the current context, we first assume that the short rate follows the process assumed in the lemma under the risk-neutral process. We then use the fact that the unconditional expectation of the $t + 1$ th rate is $f_{t,1} = E_t(r_{t+1})$, i.e., the first futures (or forward) rate is the expected value of the next period spot rate. This implication of no-arbitrage leads to

$$\ln f_{t,1} = \mu_{r_{t+1}} + [\ln \nu_t - \mu_r](1 - b) + \ln \pi_{t-1}(1 - c) + \nu_t + \sigma_f^2(t)/2. \quad (9)$$

It follows that the conditional logarithmic variance of the first futures rate is given by the relationship

$$\sigma_f^2(t) = (1 - b)^2 \sigma_r^2(t) + \sigma_f^2(t). \quad (10)$$

Hence, the volatility of the premium factor is potentially observable from the volatility of the first futures rate. This, in turn, could be estimated empirically or implied from the prices of options on the LIBOR futures rate. A similar argument can be used to derive the volatility of the second premium factor from the second futures rate.

IV. The Two-Factor Model: Examples of Inputs and Outputs

This section documents the results from several numerical examples based on the two-factor term structure model described in previous sections. First, we show that a two-factor term structure model can be implemented in a speedy and efficient manner. Then, we present the
output from running a forty-eight quarter model, including the pricing of European-style, Bermudan-style and American-style swaptions.

In the numerical examples that follow, we choose a period length of three months. This is convenient for two reasons. First, we can model three-month LIBOR and then compute the corresponding maturity bond prices up to a given horizon without the added complexity of overlapping periods. Also, it enables the computational time to be reduced compared to a daily time interval model. However, changing the time interval does introduce one approximation. Theoretically, we need to use futures prices from contracts that are marked-to-market at the same periodicity as the time interval in the model; otherwise, lemma 1 does not strictly apply. However, only daily marked-to-market prices are widely available. In calibrating the three-month period model to market data, a convexity adjustment may be required to adjust futures prices from a daily to a quarterly marked-to-market basis. In practice, this adjustment is likely to be very small, especially compared with the problems of obtaining long-maturity futures prices.\(^{16}\)

A. Computing Time

Apart from the accuracy of the model, the most important feature of the methodology for implementing a two-factor model proposed in this paper is the computation time. It goes without saying that with two stochastic factors rather than one, the computation time can easily increase dramatically. In Table 1, we illustrate the efficiency of our model by showing the time taken to compute the zero-coupon bond prices and option prices. With a binomial density of one, the 48-period model takes 4.8 seconds and the 72-period model takes 17.2 seconds. Doubling the number of periods increases the computer time by a factor of six.

\(^{16}\)The difference between daily and three-monthly marked-to-market futures LIBOR is probably less than one basis point. For long maturities, lack of liquid futures contracts means that we have to estimate forward rates and apply a convexity adjustment. In this case the convexity adjustment is far more significant. See Gupta and Subrahmanyam (2000), for empirical estimates.
A Multi-Factor Spot-Rate Model

There is clearly a trade-off between the number of periods, the binomial density of each period, and the computation time for the model. This is illustrated by the second line in the table, showing the effect of using a binomial density of two. Again, the computation time increases more than proportionately as the density increases. The time taken for the 24-period model, when the binomial density is two, is roughly the same as that for the 48-period model with a density of one.

V. Calibration of the Model to Cap and Swaption Volatilities

There are several different ways in which the two-factor version of the model can be calibrated to market prices of interest-rate caplets and or swaptions.\(^\text{17}\) In this section, we illustrate two alternative calibration methods, using actual market data from one particular day. In both methods, we assume that the model parameters are stable through time and that the local volatilities are constant. The two methods of calibration proceed by solving for the model parameters that best fit the observed data. They are:

1. A calibration of the two-factor version of the model, using only the observed caplet volatilities.

2. A calibration of the two-factor model using both the observed caplet volatilities and the European-style swaption volatilities quoted on the same day.

\(^{17}\) An alternative method of calibrating the model would be to estimate the volatilities of the spot and futures rates, \(\sigma_s\) and \(\sigma_f\), from historical data, and then use equation (10) to back out the volatility of the the premium, \(\sigma_p\).
A. Market Data Used in the Calibration Exercise

The data on the prices of US$ caplets were collected for the calendar years 1999 and 2000. On almost all days, the data reveal a term-structure of volatility for at-the-money caplets that is hump-shaped. The alternative methods of calibration are illustrated using data from a particular day, July 18, 2000. For example, for the date chosen for the calibration, the caplet quotes, in terms of Black volatilities, were as shown in Table 2. The futures LIBOR rates on the same day are shown in Table 3. The futures rates are derived by interpolation from LIBOR prices on the same day. On that day, the futures curve was rising quite steeply, from around 7% to nearly 8%. Using this information, we estimated the at-the-money caplet quotes, from 12-months to 84-months maturity. These are shown in the second column of Table 4 and reveal an inverted U-shaped curve.\(^{18}\)

Swaptions (European-style options to enter swaps) are quoted for at-the-money contracts for various maturities and for annual underlying swap tenors. As an example, the swaption price quote matrix for July 18, 2000 is reproduced as Table 5, for swap maturities of 1-year up to 5-years. Note that the swaption volatilities show a hump-shape similar to the caplets, but the hump is somewhat less pronounced. Also, the swaption volatilities are generally lower than the corresponding caplet volatilities, perhaps due to the lack of perfect correlation between forward rates.

B. Method 1: Calibration of the Two-Factor Model to Caplet Volatilities

In the first method, we calibrate the model to the caplet volatilities by running the model with the given values of the four parameters; \(\sigma_r, b, \sigma_\pi,\) and \(c.\) These are the (constant) local volatility of the LIBOR, the mean reversion of LIBOR, the (constant) local volatility

\(^{18}\)This is typical of the data. We repeated the exercise for a previous date: 24, November, 1999. The only difference on that date was that the volatility curve had a slightly higher peak, the curve rising from 13.1% to a peak of 18.6% before falling to 16.0%.
of the futures premium factor, and the mean reversion of the futures premium factor. We assume that we require the model to price the caplets accurately, when it is run for a large value of the binomial density, \(n \). After testing for the convergence of caplet prices, we used Richardson extrapolation to predict the price of each caplet for \(n \to \infty \), given the prices for \(n = 3 \) and \(n = 4 \).\(^{19}\) The parameters that best fit the caplet prices, quoted as Black volatilities, in Table 4, are as follows: \(\sigma_r = 0.099 \), \(b = 1.7 \), \(\sigma_{\pi} = 0.025 \), and \(c = 0.13 \). All parameters are annualized.\(^{20}\) The caplet prices produced by the two-factor model are shown in the third column of Table 4. The root mean square error (RMSE) from comparing the model values to market quotes is 0.21%.\(^{21}\)

An interesting question to answer is the following. Given the calibration of the two-factor model to the market caplet prices, how well does the model perform in predicting the market swaption volatility matrix? In a sense, this is a test (although only carried out with one day's data) of the cross-sectional performance of the model. The swaptions with maturities from one to five years, on swaps with a tenor of one to five years, were priced using the two-factor model, and then quoted as Black volatilities. The results are shown in Table 6. The results show clearly that the model, when calibrated to the caplet prices, overprices the European-style swaptions.\(^{22}\) The RMSE for the swaptions is 1.67%. The overpricing is greatest for the short-maturity options and for the options on relatively short-tenor swaps. The model is relatively accurate when pricing the long-maturity options on long-tenor swaps.

\(^{19}\) Richardson extrapolation can be used because the caplet prices converge uniformly from below (as shown by tests using \(n = 1 \) to \(n = 8 \). For a discussion of Richardson approximation, see Schmidt (1968).

\(^{20}\) On a quarterly basis therefore the mean reversion of \(LIBOR \) is 0.425 and the mean reversion of the second factor is 0.0325.

\(^{21}\) In a recent empirical study of two-factor term-structure models, Dai and Singleton (2000) note that evidence suggests that the short rate mean reverts relatively rapidly to a "stochastic tendency" that itself mean reverts slowly to a long run value. This is consistent with the results of the calibration reported here. It can be shown that the model used here is a lognormal version of the "stochastic tendency" class of models.

\(^{22}\) This is consistent with the results of Longstaff, Santa-Clara and Schwartz (2001b) who find that a "string" model calibrated to swaption prices underprices interest-rate caps.
A Multi-Factor Spot-Rate Model

For example, for those swaptions where the sum of the option maturity and tenor exceed seven years, the average mispricing is 0.44%. The only swaptions that are underpriced by the two-factor model are the five-year maturity options on the four-year and five-year tenor swaps.

C. The Effect of Adding a Third Factor

We now calibrate the three-factor version of the model, in order to check whether the mispricing of the swaptions can be reduced by adding a third factor. After a series of experiments it became apparent that the optimal way to introduce the third factor is to assume a white noise process for this factor. Hence, we tried various values for the volatility σ_z, with a mean reversion of 100%. In this extreme case, the caplet volatilities are unaffected by adding a white noise third factor. Hence, the calibration process is straightforward. The third factor, in effect, partially explains the second factor. We are thus able to vary the z volatility, to best fit the swaption volatility matrix, while leaving the caplet volatilities unaffected.

The model parameters which minimise the swaption volatility RMSE, while keeping the caplet RMSE at its previous minimised value of 0.21%, are $\sigma_r = 0.099$, $b = 1.7$, $\sigma_x = 0.092$, $c = 0.13$, $\sigma_z = 0.07$, and $d = 4$. The resulting swaption volatilities are shown in Table 7. Note that the introduction of the third factor reduces all the swaption volatilities. However, the effect is smaller for the swaptions with longer underlying maturities. The overall RMSE is reduced to 0.98%. Also, on average the errors are approximately zero. However some systematic biases remain. In particular, the short maturity (12-month) swaptions are overpriced and the long maturity (60-month) swaptions are now underpriced by the model. Also, the increased accuracy for the swaptions comes at the expense of a considerable increase in computing time.
D. The Pricing of Bermudan-Style Swaptions and Yield-Spread Options

We now use the calibrated model to price two contracts: a Bermudan-style swaption and a Bermudan-style yield-spread option. The results, along with the prices of comparable European-style options are shown in Tables 8 and 9 respectively. The Bermudan-style swaption is a payer swaption on a swap with a final maturity of six years, and a strike rate of 6.5%, 7.0%, or 7.5%. The two-factor model, with a binomial density of \(n = 2 \), gives a price of 414 basis points for the Bermudan-style swaption, exerciseable annually at 6.5%. This compares with the price of 365 basis points for the comparable one-year European-style option on a five-year swap. However, these prices are somewhat understated for the two-factor model, as shown by the results in the second panel of Table 8, where the model values are given for \(n = 3 \). The Bermudan swaption price of 421 indicates that a more accurate estimate using Richardson extrapolation is 428 basis points.\(^{23}\) We can now investigate the effect of adding a third factor in the model. As noted above, the third factor reduces European-style swaption prices, due to the de-correlation effect on the forward rates. The Bermudan prices are also lower. Using Richardson extrapolation, the best estimate of the Bermudan from the three-factor model is 385 basis points, 43 points less than the two-factor price. The five-year European option is worth 342 basis points, 35 points less than in the

\(^{23}\)The Richardson extrapolation estimate is given by

\[
V(n = \infty) = V(n = 2) + 2[V(n = 3) - V(n = 2)] \\
= 421 + 2(7) \\
= 435
\]
two-factor case.24,25

A second application of the model is to price options on the difference between two interest rates. These options are generally known as yield-spread options. In Table 9, we show the results of using our model to price options on the spread between the four-year and the one-year rate. The options are either European-style options with a maturity of five years or Bermudan-style options, exerciseable annually up to a final maturity of five years. The options have a strike price of either 0% or 0.5%. The results in Table 9 show that the valuation is sensitive to both the binomial density \((n)\) and the number of factors. To take account of the binomial density effect we again use Richardson extrapolation. The two-factor model then gives a European price of 20.0 basis points and the three-factor model gives a lower price of 17.6 basis points. Yield spreads are particularly sensitive to the exact model of the interest rate process, so it is not surprising that prices of options on spreads are highly sensitive to the number of factors. The Bermudan-style yield-spread options are somewhat less sensitive to the number of factors in the model. Again, using the Richardson extrapolation prices, the 0% strike option has a price of 30.8 basis points in the two-factor model and 30.0 in the three-factor model. As expected, the out of the money (strike rate of 0.50%) Bermudan is somewhat more sensitive to the number of factors.

24 The Richardson extrapolation estimates are given by

\[
\begin{align*}
389 + 2(-2) &= 385 \\
356 + 2(-7) &= 342
\end{align*}
\]

25 As a check on the model prices, we obtained quotes from an investment bank for at-the-money European-style and Bermudan-style swaptions, for the same day, July 18th, 2000. These options had a strike price of 7.36% and the 1-year European option on the 5-year swap had a price of 128 basis points and an implied volatility of 13.4%. This compared with a Bermudan-style option on a 6-year swap which had a price of 173 basis points. These option prices can be compared with the 7.5% strike options in Table 8. The European option price is similar, and the Bermudan option price is a little below our model price. The bank uses a lower implied volatility 13.1% in its Bermudan pricing.
E. Method 2: Calibration of the Two-Factor Model to Caplet and Swaption Volatilities

The calibration of the two-factor model to caplet volatilities above leads to an overvaluation of swaptions. In this section, we calibrate the model to both caplets and swaption volatilities, with differing weights placed on the two data sets. In this calibration we use a two-factor model with a binomial density of $n = 2$. We price the swaptions, observe the errors compared to the market swaption quotes, and then change the four parameters of the model to minimise the RMSE of the swaption and the caplet prices, with a weight of 0.75 was placed on the caplet RMSE and 0.25 on the swaption RMSE. The result of this procedure is the choice of $\sigma_r = 0.098$, $b = 2.65$, $\sigma_v = 0.1225$, and $c = 0.087$.

The caplet volatilities produced by this parameterisation of the model are shown in column 4 of Table 4. The RMSE for the caplets is 0.87%, compared to 0.21% in the previous calibration to the caplets alone. The short to medium term maturity caplets are overpriced by this model. The swaption volatility matrix which this resulted in is shown in Table 10. The RMSE for the swaption volatilities is 0.65%. The model obviously fits the swaptions better than in the previous calibration. However, the short-maturity swaptions are still overpriced by the model. The long-maturity (60 month) swaptions are slightly underpriced by the model. However, all the swaptions with maturities over 48 months or more are priced within at most 0.50% of the market volatility.

We now re-price a Bermudan-style swaption on a six-year underlying swap using the two-factor model calibrated to the European swaption prices. As before, the Bermudan-style option has the feature that it is exercisable at the end of each year up to the option maturity in year five. The European-style swaptions are one-year options on one-year to five-year swaps. Note that the model uses twenty-four quarterly time periods, to cover the six-year life of the underlying coupon bond. Table 11 shows the values of European and Bermudan swaptions at differing depths-in-the-money. Table 11 shows that the Bermudan option is
worth considerably more than the European one-year option on a five-year swap. Comparing the results in Table 11 with those in the first panel of Table 8 shows that calibration of the model to the swaptions and the caplets (Table 11) has only a marginal effect on the Bermudan-style swaption price, in fact only 7 basis points. This suggests that the two-factor model calibrated to caplets alone does a fairly good job of pricing the Bermudan-style claim.

VI. Performance of the Model: A Comparison with Alternative Term-Structure Models and the LIBOR Market Model.

In this section we compare our multi-factor spot-rate model with other models in the literature. We discuss the differences between the model and competing models for the pricing of interest-rate derivatives and discuss the assumptions of the model in the light of recent empirical evidence on the behaviour of the term structure.

The model proposed in this paper is quite simple in structure. In fact, the two-factor version has only four parameters: two volatilities and two coefficients of mean reversion. In contrast, a large number of parameters are usually required to calibrate the LIBOR Market Model (LMM) in its different variations. While the parsimony of our model in terms of number of parameters is one of its principal potential advantages, this raises the question of how well the two- or three-factor version of our model can perform in practice.\footnote{In comparison with the LMM, therefore, the model may well perform better out-of-sample, due to the greater likelihood of structural stability of the parameters. In contrast, one problem that may occur in the use of the LMM is over-fitting, which could affect its out-of-sample performance. Typically, the LMM is fitted to the caplet volatilities and the swaption volatilities using a large number of parameters. Thus, the discipline of choosing only a small number of parameters in the spot-rate model could lead to more consistent pricing over time.} First, we should note that, as in the case of the BK model, our spot-rate model fits the initial
term structure (of futures) rates exactly. Alternatively, it can be fitted to the current term
structure of forward rates. However, the difference here is that the cap volatilities are not
fitted exactly (as they are in the LMM). As an illustration, in section 5, our model has
been calibrated only on a single day, July 18, 2000. How well will the model perform at
other times and for other currencies? We discuss this question in light of some additional
evidence.

We obtained cap volatility data for the period 29/04/99 to 25/04/00 for the US dollar
(USD) and the Japanese Yen (JPY). For the USD caps, the volatility pattern is remarkably
stable over time. Sampling at intervals of 50 trading days, we found that on each day, the
at-the-money caplet volatility curve rises to a peak and subsequently falls. A graph of the
volatility term structures on these six dates is presented in Figure 3. In each case, the peak
of the volatility curve is reached at the fourth contract, which has a maturity of 36 months.
This suggests that a model with stable mean reversion and relative volatility parameters
will provide a reasonable fit to the data.27 For the JPY data, the model did not perform
as well. The main problem is that JPY rates were so low during this period that implied
volatilities were extremely large and unstable for short dated caplets. The consistency in
the volatility structure, at least in the case of USD caplets and swaptions, and the ability
of our model to replicate the term structures of volatilities, lead us to have confidence in
this parsimonious model, for the pricing of most interest-rate derivatives.

It has been pointed out in the literature that affine term structure models similar to our
multi-factor spot-rate model have serious deficiencies in explaining the dynamics of the term
structure. The two-factor and three-factor versions of our spot-rate model are similar to
the affine set of term structure models tested recently by Dai and Singleton (2000) (DS)
and by Alm, Dittmar and Gallant (2002) (ADG).28 The differences arise from the fact that

27 In other words, a model with the same mean reversion factors but different volatility estimates would
fit quite well, as long as the relative volatility of the first and second factors is roughly constant.

28 It should be pointed out that the term structure literature mostly models the stochastic process for
our model is log-normal rather than Gaussian and that the conditional volatility is non-
stochastic. Tests show that affine models have some problems in modelling the dynamics of
the term-structure. This has lead ADG to suggest an alternative class of models, in which
bond yields are quadratic functions of the underlying Gaussian factors. They show first
that their set of quadratic models improves on the fit of the affine models in predicting the
dynamics of the term structure. Second, they argue that, as with DS, allowing non-zero
correlation of the factors significantly improves the volatility predictions of the model.

The empirical evidence of DS and ADG suggests that improvements may be possible in
the models suggested here for the pricing of derivatives. One possibility is to include non-
zero correlation of the factors in the model. Another possibility is to price options on
term structures generated by a quadratic model. These refinements may be justified by
possible improvements in the pricing of swaptions given the cap volatilities. However, such
refinements must be left for later research.

It is evident that there is a trade-off between the different models for pricing interest rate
derivatives such as Bermudan-style swaptions. The spot rate model suggested here makes it
easy to handle early exercise, due to its Markovian property, which allows an exact definition
of the exercise boundary. However, it does not exactly match the term-structure of caplet
volatilities. On the other hand, the LMM matches exactly the caplet volatilities, but has
difficulties with pricing American-style options.

The main problem with the LMM is that it usually has to be implemented with Monte Carlo
simulation, and it is difficult to capture optimal early exercise exactly using this methodo-
logy. Recently, some progress has been made in solving these computational problems. For
example, Andersen (2000) compares various ways of modelling the early exercise decision in
the case of a Bermudan swaption, each of which gives a lower bound for the swaption price.
An alternative method, based on a least squares estimation of the continuation value of the

interest rates under the original measure, whereas we model this under the risk-neutral measure.
option, has been suggested by Longstaff and Schwartz (2001). Andersen (2000) compares a number of methods for placing a lower bound on the Bermudan price, using Monte-Carlo methods. He suggests three different exercise strategies. The optimal parameters of these strategies are determined by a prior simulation. Then, these strategies are used in a second simulation to determine the lower bounds. One problem with this simulation approach is that it is difficult to tell how close the approximation (the bounds) is to the true price. Andersen shows for a range of examples that the approximation is close, but also indicates that significant errors do occur in the case of swaptions written on long maturity swaps.

Further recent research has been directed towards determining both upper and lower bounds for the price of Bermudan-style options. Building on previous work by Broadie and Glasserman (1997) and Rogers (2001), Andersen and Broadie (2001) suggest an algorithm based on Monte Carlo simulation which establishes upper and lower bounds. Overall, they find that a simple strategy (Andersen (2000)’s strategy 1) works well for swaptions on an underlying swap of 6 years or less, but the bounds are not very tight in the case of long maturity (11 year) swaptions.

To summarise, the accuracy of Monte Carlo simulation for Bermudan-style swaptions is still an issue of current research. However, the Markov spot-rate model suggested in this paper, implemented using a binomial lattice, has the advantages both of simplicity and speed of computation over these LMM based methods. Also, in the case of longer maturity underlying swaps it may also have a significant advantage in accuracy. Our conjecture is that for lower-dimensional models (up to three factors), our binomial lattice approach may be as fast as the Monte Carlo methods and probably more accurate.

There are other advantages and disadvantages in using both the LMM and the multi-factor spot rate model developed here. We now provide a brief summary of these. First, the assumptions of the LMM are consistent with the Black model for the pricing of caplets. In the LMM, the drift of the forward rate is stochastic, and the rates are only conditionally
lognormal under the risk-neutral measures, whereas in the spot rate model, rates are both conditionally and unconditionally lognormal. The difference is increasingly important as the maturity increases. The verdict on which assumption is better must await more detailed empirical research. Second, calibration of the model, at least to caplet volatilities is somewhat easier in the case of the LMM. Also in order to price an interest-rate derivative, the term structure only needs to be modelled out to the option maturity date, rather than to the underlying swap maturity date. However, these computational advantages of the LMM are to be weighed against the computational problems caused by an exploding state space. On balance, for the pricing of Bermudan and American-style claims, we believe there is a strong case for the spot-rate models developed in this paper.

VII. Conclusions

While forward-rate models of the general HJM type are useful for the pricing of European-style claims on interest rates, these models encounter some problems both with the valuation of European-style swaptions, and with the pricing of Bermudan-style claims. In order to price European-style swaptions, a forward rate model requires the exogenous specification of the forward rate correlation matrix. In contrast, in spot-rate models like ours, the correlation of forward rates is implicit in the models themselves. Further, the valuation of Bermudan-style claims within a forward rate model requires the derivation of a process for the spot rates which is, in general, non-Markov and complex. While various methods have been suggested to overcome these problems, it appears that a more natural approach is to directly model the spot rate process.

In this paper, we have presented a model of the term structure of interest rates which can be regarded as a multi-factor extension of the Black-Karasinski lognormal-rate model. As in that model, we assume that the short-term LIBOR follows a lognormal process. However, in our model, a second factor determines the stochastic conditional mean of the short rate.
The third and subsequent factors determine the conditional mean of the previous factor in a nested fashion. This model lends itself to an intuitively appealing interpretation in terms of futures rates. The first factor is identified with the spot rate, the second factor with the premium of the first futures rate over the spot, and the third factor with the premium of the second futures rate over first futures rate. We have shown that, by calibrating to the current term structure of futures rates, the model can be made arbitrage-free in the sense of Ho and Lee (1986) and Pliska (1997).

The model has been implemented by using a variation of the multivariate-binomial tree approach of Ho, Stapleton and Subrahmanyan (1995), using a recombining tree, in multiple dimensions, which has a non-expanding number of nodes. The no-arbitrage property, that the expected value of the spot rate under the risk-neutral measure is the one-period-ahead futures rate, is captured by adjusting the conditional probabilities of moving up the tree. Richardson extrapolation is used to increase the accuracy of the option prices.

In an illustrative example, the two-factor version of the model was calibrated both to caplet and to a combination of caplet and swaption price data. The model calibrated to caplet prices, under the assumption of constant local volatilities and mean reversion coefficients, over-priced the swaptions. This is consistent with previous results reported in Rebonato and Cooper (1995) and Longstaff, Santa-Clara and Schwartz (2000). Our limited evidence suggests that a two-factor model with uncorrelated errors, calibrated to caplet prices, cannot correctly price European-style swaptions. However, introducing a third, white noise, factor considerably reduces the pricing errors.

We then applied the two-factor model to the valuation of Bermudan-style payer swaptions. The model was also applied to the valuation of a variety of exotic options on interest rates, such as options on yield spreads. The model is particularly well suited to the valuation of Bermudan-style claims, since it directly models the spot-rate process. This is in contrast to many forward rate models where the implicit spot-rate process is non-Markovian. As a
consequence, the exercise decision is often difficult to capture in those models.

Our finding that the two-factor model, with uncorrelated errors, fails to accurately fit both the caplet and swaption prices, suggests two possible extensions of our two-factor model. First, as suggested here, we could add a third factor, which itself explains the stochastic mean of the second factor. Preliminary results show that the swaption pricing errors can be considerably reduced in such a model, especially when the mean reversion of the second factor is low. An additional avenue for future research is to explore the effects of correlated errors. Such a model could help to capture the relatively low correlation of the spot and forward rates, which could again explain the swaption prices.

A possible further extension of the model would apply to the pricing of credit derivatives or derivatives on tax-exempt fixed income securities. In the case of credit derivatives, for instance, the pricing of options on defaultable bonds, for example, would ideally require the modelling of a two-factor risk-free rate process and a credit spread. Given the efficiency of the two-factor model presented here, it should be possible to approximate such a three-factor model, at least for a limited number of time periods. This is a subject for further research.
References

A Multi-Factor Spot-Rate Model

(2000).

9–21.

Table 1: Computing Time for Bond and Option Pricing (seconds)

<table>
<thead>
<tr>
<th>Number of Periods</th>
<th>8</th>
<th>12</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial Density 1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.9</td>
<td>4.8</td>
<td>17.2</td>
</tr>
<tr>
<td>Binomial Density 2</td>
<td>0.2</td>
<td>0.6</td>
<td>5.0</td>
<td>28.0</td>
<td>102.9</td>
</tr>
<tr>
<td>Binomial Density 3</td>
<td>0.6</td>
<td>1.7</td>
<td>14.8</td>
<td>87.0</td>
<td>-</td>
</tr>
</tbody>
</table>

The table shows the time taken to compute all the zero-bond prices, swaption prices, given the tree of rates for different levels of the binomial density, i.e., the number of time steps per period, for different numbers of periods. The computer speed is 550 MHZ, and the processor is Pentium III.
Table 2: Caplet Volatility Matrix on July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>5.0%</th>
<th>5.5%</th>
<th>6.0%</th>
<th>6.5%</th>
<th>7.0%</th>
<th>8.0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15.86</td>
<td>14.86</td>
<td>13.86</td>
<td>11.33</td>
<td>8.80</td>
<td>9.73</td>
</tr>
<tr>
<td>12</td>
<td>19.03</td>
<td>16.60</td>
<td>14.86</td>
<td>13.74</td>
<td>12.63</td>
<td>12.73</td>
</tr>
<tr>
<td>18</td>
<td>19.60</td>
<td>17.15</td>
<td>15.67</td>
<td>15.15</td>
<td>14.63</td>
<td>14.39</td>
</tr>
<tr>
<td>36</td>
<td>18.01</td>
<td>16.50</td>
<td>16.00</td>
<td>16.00</td>
<td>16.00</td>
<td>16.30</td>
</tr>
<tr>
<td>60</td>
<td>16.80</td>
<td>15.80</td>
<td>14.80</td>
<td>14.80</td>
<td>14.80</td>
<td>15.00</td>
</tr>
<tr>
<td>84</td>
<td>16.10</td>
<td>15.10</td>
<td>14.30</td>
<td>14.30</td>
<td>14.30</td>
<td>14.30</td>
</tr>
<tr>
<td>120</td>
<td>15.80</td>
<td>14.90</td>
<td>13.90</td>
<td>13.85</td>
<td>13.80</td>
<td>13.80</td>
</tr>
</tbody>
</table>

1. The Table shows the mid-market quotes (Black implied volatilities) for US$ caplets, for different strike rates, quoted on July 18, 2000 in per cent.

2. Source: UFJ International plc (formerly Sanwa International plc).
Table 3: Interpolated Futures Rates on July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Maturity Year</th>
<th>Jan</th>
<th>April</th>
<th>July</th>
<th>Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>7.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>6.98</td>
<td>7.11</td>
<td>7.14</td>
<td>7.18</td>
</tr>
<tr>
<td>2002</td>
<td>7.16</td>
<td>7.15</td>
<td>7.16</td>
<td>7.19</td>
</tr>
<tr>
<td>2003</td>
<td>7.18</td>
<td>7.18</td>
<td>7.20</td>
<td>7.25</td>
</tr>
<tr>
<td>2004</td>
<td>7.25</td>
<td>7.26</td>
<td>7.29</td>
<td>7.36</td>
</tr>
<tr>
<td>2005</td>
<td>7.36</td>
<td>7.37</td>
<td>7.41</td>
<td>7.47</td>
</tr>
<tr>
<td>2006</td>
<td>7.48</td>
<td>7.49</td>
<td>7.52</td>
<td>7.59</td>
</tr>
<tr>
<td>2007</td>
<td>7.60</td>
<td>7.61</td>
<td>7.64</td>
<td>7.70</td>
</tr>
<tr>
<td>2008</td>
<td>7.71</td>
<td>7.72</td>
<td>7.76</td>
<td>7.82</td>
</tr>
<tr>
<td>2009</td>
<td>7.82</td>
<td>7.83</td>
<td>7.87</td>
<td>7.93</td>
</tr>
<tr>
<td>2010</td>
<td>7.94</td>
<td>7.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The futures rates are derived by interpolation between adjacent contracts from Eurodollar futures prices. Futures rates are defined as 100-futures price in per cent.

2. Source: Bloomberg.
Table 4: At-the-money Caplet Black Volatilities on July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Market Vols</th>
<th>Model 1 Vols</th>
<th>Model 2 Vols</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8.80</td>
<td>9.3</td>
<td>9.8</td>
</tr>
<tr>
<td>12</td>
<td>12.63</td>
<td>12.7</td>
<td>14.3</td>
</tr>
<tr>
<td>18</td>
<td>14.63</td>
<td>14.6</td>
<td>15.4</td>
</tr>
<tr>
<td>36</td>
<td>16.00</td>
<td>15.9</td>
<td>15.7</td>
</tr>
<tr>
<td>60</td>
<td>14.80</td>
<td>15.1</td>
<td>15.0</td>
</tr>
<tr>
<td>84</td>
<td>14.30</td>
<td>13.9</td>
<td>14.1</td>
</tr>
<tr>
<td>RMSE(%)</td>
<td></td>
<td>0.21</td>
<td>0.87</td>
</tr>
</tbody>
</table>

1. Column 2 shows the prices of European-style caplets, quoted as Black implied volatilities.

2. Column 3 shows the corresponding prices produced by the two-factor model with parameter values $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, and $c = 0.13$. The model prices are estimated by Richardson extrapolation, using a binomial density of $n = 3$ and $n = 4$.

3. Column 4 shows the corresponding prices produced by the two-factor model with parameter values $\sigma_r = 0.098$, $b = 2.65$, $\sigma_\pi = 0.1225$, and $c = 0.087$. The model prices are computed using a binomial density of $n = 2$.
Table 5: Market Swaption Black Volatility Quotes on July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Option 12</th>
<th>Swap 24</th>
<th>Maturity 36</th>
<th>48</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>13.29</td>
<td>13.80</td>
<td>13.70</td>
<td>13.60</td>
<td>13.50</td>
</tr>
<tr>
<td>24</td>
<td>14.98</td>
<td>14.49</td>
<td>14.10</td>
<td>13.90</td>
<td>13.70</td>
</tr>
<tr>
<td>36</td>
<td>15.00</td>
<td>14.50</td>
<td>14.10</td>
<td>13.82</td>
<td>13.70</td>
</tr>
<tr>
<td>48</td>
<td>14.90</td>
<td>14.30</td>
<td>13.90</td>
<td>13.69</td>
<td>13.50</td>
</tr>
<tr>
<td>60</td>
<td>14.70</td>
<td>14.20</td>
<td>13.90</td>
<td>13.60</td>
<td>13.30</td>
</tr>
<tr>
<td>84</td>
<td>13.20</td>
<td>12.60</td>
<td>12.20</td>
<td>12.00</td>
<td>11.80</td>
</tr>
</tbody>
</table>

1. Prices of European-style at-the-money US $ swaptions quoted as Black implied volatilities on July 18, 2000 in per cent.

2. Source: UFJ International plc (formerly Sanwa International plc).
A Multi-Factor Spot-Rate Model

Table 6: Two-Factor Model Swaption Volatilities for July 18, 2000 ($)

<table>
<thead>
<tr>
<th>Maturity</th>
<th>Option</th>
<th>Swap</th>
<th>Maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>15.42</td>
<td>16.60</td>
<td>16.61</td>
</tr>
<tr>
<td></td>
<td>(2.13)</td>
<td>(2.80)</td>
<td>(2.91)</td>
</tr>
<tr>
<td>24</td>
<td>16.84</td>
<td>16.96</td>
<td>16.46</td>
</tr>
<tr>
<td></td>
<td>(1.86)</td>
<td>(2.47)</td>
<td>(2.36)</td>
</tr>
<tr>
<td>36</td>
<td>16.69</td>
<td>16.44</td>
<td>15.82</td>
</tr>
<tr>
<td></td>
<td>(1.69)</td>
<td>(1.94)</td>
<td>(1.72)</td>
</tr>
<tr>
<td>48</td>
<td>16.12</td>
<td>15.70</td>
<td>15.04</td>
</tr>
<tr>
<td></td>
<td>(1.22)</td>
<td>(1.40)</td>
<td>(1.14)</td>
</tr>
<tr>
<td>60</td>
<td>15.40</td>
<td>14.96</td>
<td>14.30</td>
</tr>
<tr>
<td></td>
<td>(0.70)</td>
<td>(0.76)</td>
<td>(0.40)</td>
</tr>
</tbody>
</table>

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swaption prices are computed using Richardson extrapolation, given model prices computed using the two-factor model with binomial densities $n = 2$ and $n = 3$.

2. The numbers in brackets are the differences between the model prices and the market quotes (i.e. model prices minus market quotes), where the market quotes are shown in Table 5.

3. The model optimal parameters are chosen to minimise the errors from fitting the model to cap volatility quotes. The parameter values are $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, and $c = 0.13$.

4. The RMSE for the swaption volatilities is 1.67%.
Table 7: Three-Factor Model Swaption Volatilities for July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Option Maturity</th>
<th>Swap 12</th>
<th>Swap 24</th>
<th>Swap 36</th>
<th>Swap 48</th>
<th>Swap 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>14.68</td>
<td>15.85</td>
<td>15.84</td>
<td>15.44</td>
<td>14.90</td>
</tr>
<tr>
<td></td>
<td>(1.39)</td>
<td>(2.05)</td>
<td>(2.14)</td>
<td>(1.84)</td>
<td>(1.40)</td>
</tr>
<tr>
<td>24</td>
<td>15.24</td>
<td>15.44</td>
<td>15.01</td>
<td>14.45</td>
<td>13.86</td>
</tr>
<tr>
<td></td>
<td>(0.26)</td>
<td>(0.95)</td>
<td>(0.91)</td>
<td>(0.55)</td>
<td>(0.16)</td>
</tr>
<tr>
<td></td>
<td>(-0.10)</td>
<td>(0.30)</td>
<td>(0.19)</td>
<td>(-0.12)</td>
<td>(-0.58)</td>
</tr>
<tr>
<td>48</td>
<td>14.36</td>
<td>14.15</td>
<td>13.63</td>
<td>13.06</td>
<td>12.49</td>
</tr>
<tr>
<td></td>
<td>(-0.50)</td>
<td>(-0.20)</td>
<td>(-0.30)</td>
<td>(-0.60)</td>
<td>(-1.00)</td>
</tr>
<tr>
<td>60</td>
<td>13.83</td>
<td>13.54</td>
<td>13.04</td>
<td>12.48</td>
<td>11.95</td>
</tr>
<tr>
<td></td>
<td>(-0.87)</td>
<td>(-0.66)</td>
<td>(-0.86)</td>
<td>(-1.12)</td>
<td>(-1.35)</td>
</tr>
</tbody>
</table>

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swaption prices are computed using Richardson extrapolation, given model prices computed using the three-factor model with binomial densities n = 2 and n = 3.

2. The numbers in brackets are the differences between the model prices and the market quotes (themselves shown in Table 5).

3. The model parameters are $\sigma_v = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, $c = 0.13$, and $\sigma_z = 0.07$.

4. The RMSE for the swaption volatilities is 0.98%.
Table 8: European and Bermudan Swaption Prices: Model Calibrated to Caplet Volatilities on July 18, 2000 (Basis Points)

<table>
<thead>
<tr>
<th>Strike Rate</th>
<th>European</th>
<th>Bermudan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One year option on (years)</td>
<td>1</td>
</tr>
<tr>
<td>2 Factor</td>
<td>6.5%</td>
<td>80 158 231 300 365</td>
</tr>
<tr>
<td>n = 2</td>
<td>7.5%</td>
<td>28 62 92 119 142</td>
</tr>
<tr>
<td></td>
<td>8.5%</td>
<td>6 17 26 34 39</td>
</tr>
<tr>
<td>2 Factor</td>
<td>6.5%</td>
<td>82 161 235 304 371</td>
</tr>
<tr>
<td>n = 3</td>
<td>7.5%</td>
<td>30 65 96 122 145</td>
</tr>
<tr>
<td></td>
<td>8.5%</td>
<td>8 19 30 36 41</td>
</tr>
<tr>
<td>2 Factor</td>
<td>6.5%</td>
<td>84 164 239 308 377</td>
</tr>
<tr>
<td>RE</td>
<td>7.5%</td>
<td>32 68 100 125 148</td>
</tr>
<tr>
<td></td>
<td>8.5%</td>
<td>10 21 34 38 43</td>
</tr>
</tbody>
</table>

3 Factor	6.5%	77 151 221 289 356	389
n = 2	7.5%	24 53 79 103 126	187
	8.5%	4 11 17 22 26	84
3 Factor	6.5%	78 154 223 287 349	387
n = 3	7.5%	27 57 83 106 126	190
	8.5%	5 14 21 26 30	90
3 Factor	6.5%	79 157 225 285 342	385
RE	7.5%	30 61 87 109 126	193
	8.5%	6 17 25 30 34	96
1. The above table shows the values of European and Bermudan payer swaptions (in basis points) at differing depths in-the-money, when the two-factor model is calibrated to the caplet and futures data in Tables 2 and 3. The European swaptions are 1-year options on 1-year to 5-year swaps. The Bermudan swaption is exercisable yearly for 5 years on a swap that terminates at the end of year 6.

2. The model parameters are $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, $c = 0.13$ in the case of the two-factor model and $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, $c = 0.13$ and $\sigma_z = 0.07$ in the case of the three-factor model.

3. RE refers to the estimate made by Richardson Extrapolation using the $n = 2$ and $n = 3$ estimates.
Table 9: Valuation of Bermudan and European Yield Spread Options: Model Calibrated to Caplet Volatilities on July 18, 2000 (Basis Points)

<table>
<thead>
<tr>
<th></th>
<th>European</th>
<th>Bermudan</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Factor Model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strike (%)</td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.50</td>
</tr>
<tr>
<td>$n = 2$</td>
<td>20.0</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>6.1</td>
</tr>
<tr>
<td>$n = 3$</td>
<td>20.0</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>31.6</td>
<td>5.2</td>
</tr>
<tr>
<td>$n = 4$</td>
<td>20.0</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>31.2</td>
<td>4.7</td>
</tr>
<tr>
<td>RE</td>
<td>20.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>30.8</td>
<td>4.1</td>
</tr>
</tbody>
</table>

3-Factor Model		
Strike (%)	0	0.50
	0	0.50
$n = 2$	20.2	2.9
	32.3	5.4
$n = 3$	18.9	2.7
	31.0	5.1
RE	17.6	2.4
	29.7	4.7

1. The table shows the price (in basis points) of European-style and Bermudan-style call options on the spread between the four-year and the one-year zero-coupon bond yields.

2. Prices are estimated using binomial densities of of $n = 2, 3, 4$. RE refers to the estimate made by Richardson Extrapolation using the $n = 3$ and $n = 4$ estimates in the case of the two-factor model, and using the $n = 2$ and $n = 3$ estimates in the case of the three-factor model.

3. The model parameters are $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, $c = 0.13$ in the case of the two-factor model and $\sigma_r = 0.099$, $b = 1.7$, $\sigma_\pi = 0.092$, $c = 0.13$ and $\sigma_z = 0.07$ in the case of the three-factor model.
Table 10: Two-Factor Model Calibrated to Cap and Swaption Volatilities for July 18, 2000 (%)

<table>
<thead>
<tr>
<th>Option Maturity</th>
<th>Swap 12</th>
<th>Swap 24</th>
<th>Swap 36</th>
<th>Swap 48</th>
<th>Swap 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>13.84</td>
<td>14.96</td>
<td>15.11</td>
<td>14.88</td>
<td>14.49</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(1.16)</td>
<td>(1.41)</td>
<td>(1.28)</td>
<td>(0.99)</td>
</tr>
<tr>
<td>24</td>
<td>14.98</td>
<td>15.28</td>
<td>15.10</td>
<td>14.71</td>
<td>14.25</td>
</tr>
<tr>
<td></td>
<td>(0.00)</td>
<td>(0.79)</td>
<td>(1.00)</td>
<td>(0.81)</td>
<td>(0.55)</td>
</tr>
<tr>
<td>36</td>
<td>15.02</td>
<td>15.04</td>
<td>14.73</td>
<td>14.28</td>
<td>13.79</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.54)</td>
<td>(0.63)</td>
<td>(0.46)</td>
<td>(0.09)</td>
</tr>
<tr>
<td></td>
<td>(-0.16)</td>
<td>(0.33)</td>
<td>(0.36)</td>
<td>(0.10)</td>
<td>(-0.20)</td>
</tr>
<tr>
<td>60</td>
<td>14.34</td>
<td>14.17</td>
<td>13.77</td>
<td>13.29</td>
<td>12.80</td>
</tr>
<tr>
<td></td>
<td>(-0.36)</td>
<td>(-0.03)</td>
<td>(-0.13)</td>
<td>(-0.31)</td>
<td>(-0.50)</td>
</tr>
</tbody>
</table>

1. Prices of European-style swaptions quoted as Black implied volatilities in per cent. All swaption prices are computed using the two-factor model with a binomial density of $n = 2$. The model parameters are chosen to minimise the difference between caplet and swaption volatilities, with a weight of 0.75 on caplets and 0.25 on swaptions. The best fit parameters are $\sigma_r = 0.098$, $b = 2.65$, $\sigma_\pi = 0.1225$, and $c = 0.087$.

2. In brackets are the differences between the model prices and the market quotes (as shown in Table 5) in per cent.

3. The RMSE of the swaption volatilities is 0.65%.
Table 11: Swaption Prices Calibrated to Market Volatilities on July 18, 2000
(Basis Points)

<table>
<thead>
<tr>
<th>Strike Rate</th>
<th>One year</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 factor</td>
<td>6.5%</td>
<td>79</td>
<td>156</td>
<td>228</td>
<td>296</td>
<td>363</td>
</tr>
<tr>
<td>7.5%</td>
<td>28</td>
<td>59</td>
<td>87</td>
<td>113</td>
<td>136</td>
<td>211</td>
</tr>
<tr>
<td>8.5%</td>
<td>6</td>
<td>15</td>
<td>23</td>
<td>30</td>
<td>36</td>
<td>107</td>
</tr>
</tbody>
</table>

1. The above table shows the values (in basis points) of European-style and Bermudan-style payer swaptions at differing depths in-the-money, when the two-factor model is calibrated to both the caplets and swaption data in Tables 2 and 5. The European swaptions are 1-year options on 1-year to 5-year swaps. The Bermudan swaption is exercisable yearly for 5 on a swap with final maturity at year 6.

2. The 2-factor model is the model where the current short rate is 7%, the futures rate curve is described in Table 3, the conditional short-rate volatility of 9.8%, with a coefficient of mean reversion of the short rate of 265%, and volatility of the premium at 12.25% with 8.7% coefficient of mean reversion. The model uses a binomial density of n = 2.
Appendices

A Proof of Lemma 1

The price of the futures LIBOR contract is by definition

\[F_{t,T} = 1 - f_{t,T} \] \hspace{1cm} (11)

and its price at maturity is

\[F_{T,T} = 1 - f_{T,T} = 1 - r_T. \] \hspace{1cm} (12)

From Cox, Ingersoll and Ross (1981), the futures price \(F_{t,T} \) is the value, at time \(t \), of an asset that pays

\[V_T = \frac{1 - r_T}{B_{t,t+1}B_{t+1,t+2}...B_{T-1,T}} \] \hspace{1cm} (13)

at time \(T \), where the time period from \(t \) to \(t + 1 \) is one day. In a no-arbitrage economy, there exists a risk-neutral measure, under which the time-\(t \) value of the payoff is

\[F_{t,T} = \mathbb{E}_t(V_T B_{t,t+1}B_{t+1,t+2}...B_{T-1,T}). \] \hspace{1cm} (14)

Substituting (13) in (14), and simplifying then yields

\[F_{t,T} = \mathbb{E}_t(1 - r_T) = 1 - \mathbb{E}_t(r_T). \] \hspace{1cm} (15)

Combining (15) with (11) yields the first statement in the lemma. The second statement in the lemma follows from the assumption of the lognormal process for \(r_T \) and the moment generating function of the normal distribution. \(\square \)

B Proof of Lemma 2

Taking the unconditional expectation of equation (1),

\[\mu_{\tau_t} - \mu_{\tau_{t-1}} = \theta_{\tau_t} - b\mu_{\tau_{t-1}} + \mu_{\tau_{t-1}}, \]
A Multi-Factor Spot-Rate Model

\[\mu_{\pi_t} - \mu_{\pi_{t-1}} = \theta_{\pi_t} - c \mu_{\pi_{t-1}} + \mu_{\pi_{t-1}},\]

\[\mu_{z_t} - \mu_{z_{t-1}} = \theta_{z_t} - d \mu_{z_{t-1}}.\]

Then, substituting for \(\theta_{\pi_t}, \theta_{\pi_t}\) and \(\theta_{z_t}\) in (1) yields

\[\ln(r_t) - \mu_{r_t} = [\ln(r_{t-1}) - \mu_{r_{t-1}}](1 - b) + \ln(\pi_{t-1}) - \mu_{\pi_{t-1}} + \varepsilon_t\]

\[\ln(\pi_t) - \mu_{\pi_t} = [\ln(\pi_{t-1}) - \mu_{\pi_{t-1}}](1 - c) + \ln(z_{t-1}) - \mu_{z_{t-1}} + \nu_t\]

\[\ln(z_t) - \mu_{z_t} = [\ln(z_{t-1}) - \mu_{z_{t-1}}](1 - d) + \eta_t\]

Since \(r_t, \pi_t\) and \(z_t\) are lognormally distributed, it follows from the moment generating function of the normal distribution that

\[E_0(r_t) = \exp(\mu_{r_t} + \sigma^2_{r_t}/2)\]

\[E_0(\pi_t) = \exp(\mu_{\pi_t} + \sigma^2_{\pi_t}/2)\]

\[E_0(z_t) = \exp(\mu_{z_t} + \sigma^2_{z_t}/2)\]

Lemma 1 then implies:

\[\ln[f_{0,t}] = \ln[E_0(r_t)] = \mu_{r_t} + \sigma^2_{r_t}/2,\]

and using \(E(\pi_t) = 1, E(z_t) = 1\), we have

\[\ln[E_0(\pi_t)] = 0 = \mu_{\pi_t} + \sigma^2_{\pi_t}/2,\]

\[\ln[E_0(z_t)] = 0 = \mu_{z_t} + \sigma^2_{z_t}/2.\]

Substitution for \(\mu_{r_t}, \mu_{\pi_t},\) and \(\mu_{z_t}\) and then yields the statement in the lemma. \(\square\)
C Proof of Lemma 3

From lemma 1, the no-arbitrage condition implies

$$f_{t,t+1} = E_t(r_{t+1})$$

in all states and for all t. From the lognormality of r_{t+1},

$$E_t(r_{t+1}) = \exp\{E_t[\ln(r_{t+1})] + \frac{\sigma(t + 1)^2}{2}\}.$$

Hence, the no-arbitrage condition requires

$$\ln(f_{t,t+1}) = E_t[\ln(r_{t+1})] + \frac{\sigma(t + 1)^2}{2}. \quad (16)$$

But, taking the expectation of equation (3), for r_{t+1} yields:

$$E_t[\ln(r_{t+1})] = \ln(f_{0,t+1}) + \alpha_{r_{t+1}} + (1 - b)[\ln(r_t) - \ln(f_{0,t})] + \ln\nu_t. \quad (17)$$

Hence, substituting (17) into (16) yields:

$$\ln(f_{t,t+1}) = \ln(f_{0,t+1}) + \alpha_{r_{t+1}} + (1 - b)[\ln(r_t) - \ln(f_{0,t})] + \ln\nu_t + \frac{\sigma(t + 1)^2}{2}.$$

The lemma follows with

$$\alpha_{f_{t+1}} = \alpha_{r_{t+1}} + \frac{\sigma(t + 1)^2}{2}.$$

This establishes the first part of the lemma. A similar argument can be used to prove the second part of the lemma.
D Proof of Proposition 2

First, we derive the following covariances from equation (3)

\[
\begin{align*}
\sigma_{r_{t+1},r_t} &= (1 - b)\sigma_{r_t}^2 + \sigma_{r_t,\pi_t}, \\
\sigma_{r_t,\pi_t} &= (1 - c)\sigma_{\pi_{t-1}}^2 + (1 - b)(1 - c)\sigma_{r_{t-1},\pi_{t-1}} + \text{cov}(\varepsilon_t, \nu_t), \\
\sigma_{\pi_{t+1},\pi_t} &= (1 - c)\sigma_{\pi_t}^2, \\
\sigma_{r_{t-1},\pi_{t-1}} &= (1 - b)\sigma_{r_{t-1},\pi_{t-1}} + \sigma_{\pi_{t-1}}^2, \\
\sigma_{r_{t-1},\pi_{t-1}} &= (1 - c)\sigma_{r_{t-1},\pi_{t-1}}.
\end{align*}
\]

Now, from the multiple regression

\[
\ln \left(\frac{r_t}{f_{0,t}} \right) = \alpha_{r_t} + \beta_{\pi_t} \ln \left(\frac{r_{t-1}}{f_{0,t-1}} \right) + \gamma_{\pi_t} \ln(\pi_{t-1}) + \varepsilon_t
\]

the regression coefficients are

\[
\beta_{\pi_t} = \frac{\sigma_{r_t,\pi_{t-1}}^2 \sigma_{\pi_{t-1}}^2 - \sigma_{r_t,\pi_{t-1}} \sigma_{r_{t-1},\pi_{t-1}}^2}{\sigma_{r_{t-1},\pi_{t-1}}^2 \sigma_{\pi_{t-1}}^2 - (\sigma_{r_{t-1},\pi_{t-1}}^2)^2},
\]

\[
\gamma_{\pi_t} = \frac{\sigma_{r_t,\pi_{t-1}}^2 \sigma_{\pi_{t-1}}^2 - \sigma_{r_t,\pi_{t-1}} \sigma_{r_{t-1},\pi_{t-1}}^2}{\sigma_{r_{t-1},\pi_{t-1}}^2 \sigma_{\pi_{t-1}}^2 - (\sigma_{r_{t-1},\pi_{t-1}}^2)^2}.
\]

Substituting the covariances and simplifying yields

\[
\beta_{\pi_t} = (1 - b)
\]

and

\[
\gamma_{\pi_t} = 1.
\]

From the lognormality of \(r_t \) and \(\pi_t \) we can write equation (3) as
\[
\ln(r_t) - \ln[f_{0,t}] + \frac{\sigma_{\pi t}^2}{2} = \{\ln(r_{t-1}) - \ln[f_{0,t-1}] + \frac{\sigma_{\pi t-1}^2}{2}\}(1 - c) + \ln(\pi_{t-1}) - \frac{\sigma_{\pi t-1}^2}{2} + \varepsilon_t.
\]

Re-arranging terms yields

\[
\ln \left[\frac{r_t}{f_{0,t}}\right] = \left[-\sigma_{\pi t}^2 + \sigma_{\pi t}^2(1 - c) + \frac{\sigma_{\pi t-1}^2}{2}\right]/2
\]

\[
+ \ln \left[\frac{r_{t-1}}{f_{0,t-1}}\right] (1 - c) + \ln(\pi_{t-1}) + \varepsilon_t.
\]

Given (18), (19), and (20), we have \(\alpha_{\pi t}\) as stated in the Proposition.

Similarly, with \(E_0(\pi_t) = 1\), we have

\[
\ln(\pi_t) = \alpha_{\pi t} + \ln(\pi_{t-1})(1 - c) + \ln(z_{t-1}) + \nu_t,
\]

and

\[
\alpha_{\pi t} = E_0[\ln(\pi_t)] - (1 - c)[E_0[\ln(\pi_{t-1})] + [E_0[\ln(z_{t-1})]]
\]

\[
\alpha_{\pi t} = \left[-\sigma_{\pi t}^2 + (1 - c)\sigma_{\pi t-1}^2 + \frac{\sigma_{z_{t-1}}^2}{2}\right].
\]

For \(z_t\) we have:

\[
\ln(z_t) = \alpha_{zt} + \ln(z_{t-1})(1 - d) + \eta_t,
\]

and

\[
\alpha_{zt} = E_0[\ln(z_t)] - (1 - d)[E_0[\ln(z_{t-1})]]
\]

\[
\alpha_{zt} = \left[-\sigma_{zt}^2 + (1 - d)\sigma_{z_{t-1}}^2\right]/2.
\]
Finally, the variance of ε_t, given t, is

$$\text{var}_{t-1}(\varepsilon_t) = \text{var}_0 \left\{ \ln \left[\frac{r_t}{f_{0,t}} \right] \right\} - \beta_{r_t}^2 \text{var}_0 \left\{ \ln \left[\frac{r_{t-1}}{f_{0,t-1}} \right] \right\} - \gamma_{r_t}^2 \text{var}_0[\ln(\pi_{t-1})] - \beta_{r_t} \gamma_{r_t} \text{cov}[\ln(r_{t-1}), \ln(\pi_{t-1})].$$

or,

$$\text{var}_{t-1}(\varepsilon_t) = \sigma_{\varepsilon_t}^2 - (1 - b)^2 \sigma_{\varepsilon_{t-1}}^2 - \sigma_{\pi_{t-1}}^2 - 2(1 - b)\sigma_{r_{t-1},\pi_{t-1}}.$$

\[\square\]

E Proof of Lemma 4

Taking the conditional expectation of equation (3) at t

$$E_t[\ln(r_{t+1})] - \ln(f_{0,t+1}) = \alpha_{r_t} + [\ln(r_t) - \ln(f_{0,t})] (1 - b) + \ln(\pi_t).$$

Given $x_t = E_t(r_{t+1})$ and using the lognormal property of $r_{t+1},$

$$\ln(x_t) = E_t[\ln(r_{t+1})] + \sigma_t^2(t + 1)/2$$

$$= \sigma_t^2(t + 1)/2 + \ln(f_{0,t+1} + [\ln(r_t) - \ln(f_{0,t})] (1 - b) + \ln(\pi_{t-1})] (1 - c) + \nu_t.$$

Hence

$$\sigma_x^2(t) = \text{var}_{t-1}[\ln(x_t)] = (1 - b)^2 \text{var}_{t-1}[\ln(r_t)] + \text{var}_{t-1}[\nu_t]$$

or

$$\sigma_x^2(t) = \sigma_{\varepsilon_t}^2(t) + (1 - b)^2 \sigma_t^2(t)$$

and the statement in the lemma follows. \[\square\]
Figure 1: A Recombining Two-factor Process for the Short-term Interest Rate (Two-period case)

\[\pi_{t} = 4 \text{ states} \quad \pi_{2} = 9 \text{ states} \]

[1] The probability of moving, for example, to \(r_{2,0} \) given \((\pi_{1,0}, r_{1,0})\) is \(q_{\pi_{2}} \), defined in Equation (11).

[2] The probability of moving, for example, to \((\pi_{1,0}, r_{1,1})\) given \(r_{1,0} \) and \(\pi_{1,0} \) is \(q_{\pi_{1}} \), defined in Equation (10).
Figure 2: A Recombining Two-factor Process for the Short-term Interest Rate (Three-period case)

\[r_{2,0}, r_{2,1}, r_{2,2} \rightarrow r_{3,0} \]

\[r_{3,0} \rightarrow \pi_{3,0}, r_{3,0}, \pi_{3,1}, r_{3,1}, \pi_{3,2}, r_{3,2}, \pi_{3,3}, r_{3,3} \]

\[r_{3,1} \rightarrow \pi_{3,0}, r_{3,0}, \pi_{3,1}, r_{3,1}, \pi_{3,2}, r_{3,2}, \pi_{3,3}, r_{3,3} \]

\[r_{3,2} \rightarrow \pi_{3,0}, r_{3,0}, \pi_{3,1}, r_{3,1}, \pi_{3,2}, r_{3,2}, \pi_{3,3}, r_{3,3} \]

\[r_{3,3} \rightarrow \pi_{3,0}, r_{3,0}, \pi_{3,1}, r_{3,1}, \pi_{3,2}, r_{3,2}, \pi_{3,3}, r_{3,3} \]

\[t = 2 : 9 \text{ states} \]

\[t = 3 : 16 \text{ states} \]

[1] The probability of moving, for example, to \(r_{3,0} \) given \((\pi_{2,0}, r_{2,0})\) is \(q_{r_{2,0}} \), defined in Equation (11).

[2] The probability of moving, for example, to \((\pi_{3,0}, r_{3,1})\) given \(r_{3,1} \) and \(\pi_{2,0} \) is \(q_{r_{3,1}} \), defined in Equation (10).
Figure 3

Caplet Volatilities: April 99-April 00

1. The cap volatility data is for the period 29/04/99 to 25/04/00 for the US dollar. Sampling is at intervals of 50 trading days. Volatilities are Black model, implied volatilities for at the money caplets.

2. Source: UFJ International plc (formerly Sanwa International plc.)