Problem 1: (Convexity and Euler’s Equation)

Let \mathcal{V} be a linear vector space and \mathcal{D} a subset of \mathcal{V}. A real-valued function f defined on \mathcal{D} is said to be [strictly] convex on \mathcal{D} if

$$f(y + v) - f(y) \geq \delta f(y; v)$$

for all $y, y + v \in \mathcal{D}$,

[with equality if and only if $v = 0$]. Where $\delta f(y; v)$ is the first Gateau variation of f at y on the direction v.

a) Prove the following: If f is [strictly] convex on \mathcal{D} then each $x^* \in \mathcal{D}$ for which $\delta f(x^*; y) = 0$ for all $x^* + y \in \mathcal{D}$ minimizes f on \mathcal{D} [uniquely].

Let $f = f(x, y, z)$ be a real value function on $[a, b] \times \mathbb{R}^2$. Assume that f and the partial derivatives f_y and f_z are defined and continuous on S. For all $y \in C^1[a, b]$ we define the integral function

$$F(y) = \int_a^b f(x, y(x), y'(x)) \, dx := \int_a^b f[y(x)] \, dx,$$

where $f[y(x)] = f(x, y(x), y'(x))$.

b) Prove that the first Gateau variation of F is given by

$$\delta F(y; v) = \int_a^b \left(f_y[y(x)] v(x) + f_z[y(x)] v'(x) \right) \, dx.$$

c) Let D be a domain in \mathbb{R}^2. For two arbitrary real numbers α and β define

$$D^{\alpha, \beta}[a, b] = \{ y \in C^1[a, b] : y(a) = \alpha, y(b) = \beta, \text{ and } (y(x), y'(x)) \in D \forall x \in [a, b] \}.$$

Prove that if $f(x, y, z)$ is convex on $[a, b] \times D$ then

1. $F(y)$ defined above is convex on D and
2. each $y \in D$ for which

$$\frac{d}{dx} f_z[y(x)] = f_y[y(x)]$$

on (a, b) satisfies $\delta F(y, v) = 0$ for all $y + v \in D$.

Conclude that such a $y \in D$ that satisfies [*] minimizes F on D. That is, extremal solutions are minimizers.

Problem 2: (du Bois-Reymond’s Lemma)

The proof of Euler’s equation uses du Bois-Reymond’s Lemma:
If $h \in C[a, b]$ and $\int_a^b h(x)v'(x) \, dx = 0$

for all $v \in D_0 = \{ v \in C^1[a, b] : v(a) = v(b) = 0 \}$
then \(h = \text{constant on } [a, b] \). Using this lemma prove the more general results.

a) If \(g, h \in C[a, b] \) and \(\int_a^b [g(x)v(x) + h(x)v'(x)] \, dx = 0 \)
for all \(v \in D_0 = \{ v \in C^1[a, b] : v(a) = v(b) = 0 \} \)
then \(h \in C^1[a, b] \) and \(h' = g \).

b) If \(h \in C[a, b] \) and for some \(m = 1, 2, \ldots \) we have \(\int_a^b h(x)v^{(m)}(x) \, dx = 0 \)
for all \(v \in D_0^{(m)} = \{ v \in C^m[a, b] : v^{(k)}(a) = v^{(k)}(b) = 0, k = 0, 1, 2, \ldots, m - 1 \} \)
then on \([a, b]\), \(h \) is a polynomial of degree \(\leq m - 1 \).

Problem 3:

Suppose you have inherited a large sum \(S \) and plan to spend it so as to maximize your discounted cumulative utility for the next \(T \) units of time. Let \(u(t) \) be the amount that you expend on period \(t \) and let \(\sqrt{u(t)} \) the the instantaneous utility rate that you receive at time \(t \). Let \(\beta \) be the discount factor that you use to discount future utility, i.e., the discounted value of expending \(u \) at time \(t \) is equal to \(\exp(-\beta t) \sqrt{u} \). Let \(\alpha \) be the risk-free interest rate available on the market, i.e., one dollar today is equivalent to \(\exp(\alpha t) \) dollars \(t \) units of time in the future.

a) Formulate the control problem that maximizes the discounted cumulative utility given all necessary constraints.

b) Find the optimal expenditure rate \(\{u(t)\} \) for all \(t \in [0, T] \).

Problem 4: (Production-Inventory Problem)

Consider a make-to-stock manufacturing facility producing a single type of product. Initial inventory at time \(t = 0 \) is \(I_0 \). Demand rate for the next selling season \([0, T]\) is know and equal to \(\lambda(t) \) \(t \in [0, T] \). We denote by \(\mu(t) \) the production rate and by \(I(t) \) the inventory position. Suppose that due to poor inventory management there is a fixed proportion \(\alpha \) of inventory that is lost per unit time. Thus, at time \(t \) the inventory \(I(t) \) increases at a rate \(\mu(t) \) and decreases at a rate \(\lambda(t) + \alpha I(t) \). Suppose the company has set target values for the inventory and production rate during \([0, T]\). Let \(\bar{I} \) and \(\bar{P} \) be these target values, respectively. Deviation from these values are costly, and the company uses the following cost function \(C(I, P) \) to evaluate a production-inventory strategy \((P, I) \):

\[
C(I, P) = \int_0^T \left[\beta^2 (\bar{I} - I(t))^2 + (\bar{P} - P(t))^2 \right] \, dt.
\]

The objective of the company is to find and optimal production-inventory strategy that minimizes the cost function subject to the additional condition that \(I(T) = \bar{I} \).

a) Rewrite the cost function \(C(I, P) \) as a function of the inventory position and its first derivative only.

b) Find the optimal production-inventory strategy.