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Abstract

We analyze an infinite horizon, single product, periodic review model in which pricing and
production/inventory decisions are made simultaneously. Demands in different periods are iden-
tically distributed random variables that are independent of each other and their distributions
depend on the product price. Pricing and ordering decisions are made at the beginning of each
period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable
cost proportional to the amount ordered. The objective is to maximize expected discounted, or
expected average profit over the infinite planning horizon. We show that a stationary (s, S, p)
policy is optimal for both the discounted and average profit models with general demand func-
tions. In such a policy, the period inventory is managed based on the classical (s, S) policy and
price is determined based on the inventory position at the beginning of each period.

1 Introduction

In recent years, scores of retail and manufacturing companies have started exploring innovative
pricing strategies in an effort to improve their operations and ultimately the bottom line. Firms
are employing methods such as dynamically adjusting price over time based on inventory levels or
production schedules as well as segmenting customers based on their sensitivity to price and lead
time.

For instance, no company underscores the impact of the Internet on product pricing strategies
more than Dell Computers. The exact same product is sold at different prices on Dell’s Web site,
depending on whether the purchase is made by a private consumer, a small, medium or large business,
the federal government, an education or health care provider. A more careful review of Dell’s strategy,
see [1], suggests that even the price of the same product for the same industry is not fixed; it may
change significantly over time.

Dell is not alone in its use of a sophisticated pricing strategy. Consider:

• Boise Cascade Office Products sells many products on-line. Boise Cascade states that prices
for the 12,000 items ordered most frequently on-line might change as often as daily. [11].

• Ford Motor Co. uses pricing strategies to match supply and demand and target particular
customer segments. Ford executives credit the effort with $3 billion in growth between 1995
and 1999. [12].

These developments call for models that integrate production decisions, inventory control and
pricing strategies. Such models and strategies have the potential to radically improve supply chain

1Research supported in part by the Center of eBusiness at MIT, ONR Contracts N00014-95-1-0232 and N00014-01-
1-0146, and by NSF Contracts DMI-9732795 and DMI-0085683.
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efficiencies in much the same way as revenue management has changed the airline industry, see
Belobaba [2] or McGill and van Ryzin [13]. Indeed, in the airline industry, revenue management
provided growth and increased revenue by 5%, see Belobaba. In fact, if it were not for the combined
contributions of revenue management and airline schedule planning systems, American Airlines (Cook
[5]) would have been profitable only one year in the decade beginning in 1990. In the retail industry,
to name another example, dynamically pricing commodities can provide significant improvements in
profitability, as shown by Gallego and van Ryzin [8].

The coordination of replenishment strategies and pricing policies has been the focus of many
papers, starting with the work of Whitin [18] who analyzed the celebrated newsvendor problem with
price dependent demand. For a review, the reader is referred to Eliashberg and Steinberg [6], Petruzzi
and Dada [14], Federgruen and Heching [7] or Chan, Simchi-Levi and Swann [3].

Recently, Chen and Simchi-Levi [4] considered a finite horizon, periodic review, single product
model with stochastic demand. Demands in different periods are independent of each other and their
distributions depend on the product price. Pricing and ordering decisions are made at the beginning
of each period, and all shortages are backlogged. The ordering cost includes both a fixed cost and a
variable cost proportional to the amount ordered. Inventory holding and shortage costs are convex
functions of the inventory level carried over from one period to the next. The objective is to find an
inventory policy and pricing strategy maximizing expected profit over the finite horizon.

Chen and Simchi-Levi proved that when the demand process is additive, i.e., the demand process
has two components, a deterministic part which is a function of the price and an additive random
perturbation, an (s, S, p) policy is optimal. In such a policy the inventory strategy is an (s, S) policy:
If the inventory level at the beginning of period t is below the reorder point, st, an order is placed to
raise the inventory level to the order-up-to level, St. Otherwise, no order is placed. Price depends on
the initial inventory level at the beginning of the period. Unfortunately, for general demand models,
including multiplicative demand processes, Chen and Simchi-Levi showed that the (s, S, p) policy
is not necessarily optimal. To characterize the optimal policy in this case, Chen and Simchi-Levi
developed a new concept, the symmetric k-convexity, and employed it to prove that for general
demand processes, an (s, S,A, p) policy is optimal. In such a policy, the optimal inventory strategy
at period t is characterized by two parameters (st, St) and a set At ∈ [st, (st +St)/2], possibly empty
depending on the problem instance. When the inventory level xt at the beginning of period t is less
than st or xt ∈ At, an order of size St− xt is made. Otherwise, no order is placed. Price depends on
the initial inventory level at the beginning of the period.

In this paper we analyze the corresponding infinite horizon models under both the discounted and
average profit criteria. We make similar assumptions as in Chen and Simchi-Levi [4] except that here
all input parameters, i.e., demand processes, costs and revenue functions, are assumed to be time
independent. Surprisingly, by employing the symmetric k-convexity concept developed in Chen and
Simchi-Levi [4], we establish that a stationary (s, S, p) policy is optimal for both additive demand
and general demand processes under the discounted and average profit criteria. Our approach is
motivated by the classic papers by Iglehart [9, 10], Veinott [19] and Zheng [20].

The paper is organized as follows. In Section 2 we review the main assumptions of our model
and the concepts of k-convexity and symmetric k-convexity. We start in Section 3 by identifying
properties of the best (s, S) inventory policy for both the discounted and average profit cases. These
properties, together with the concept of symmetric k-convexity, enable us to construct solutions for
the optimality equations of the discounted and average profit problems. In Section 4, we prove some
useful bounds on the reorder level and order-up-to level for a corresponding finite horizon problem. In
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Section 5 and Section 6, we apply these bounds and the optimality equations to prove the optimality
of a stationary (s, S, p) policy for the infinite horizon problems with the discounted and average profit
criteria, respectively. Finally, in Section 7 we provide concluding remarks.

2 The Model

Consider a firm that has to make production and pricing decisions over an infinite time horizon with
stationary demand process, costs and revenue functions. For each period t, let

dt = demand in period t
pt = selling price in period t
p, p̄ are the common lower and upper bounds on pt, respectively.

Throughout this paper, we concentrate on demand functions similar to those considered in Chen
and Simchi-Levi [4]. These demand functions are of the following form:

Assumption 1 For any t, the demand function satisfies

dt = Dt(p, εt) := αtD(pt) + βt, (1)

where εt = (αt, βt), and αt, βt are two random variables with αt ≥ 0, E{αt} = 1 and E{βt} = 0.
The random perturbations, εt, are identically distributed with the same distribution as ε = (α, β) and
are independent across time. Furthermore, the inverse function of D, denoted by D−1, is continuous
and strictly decreasing.

As observe in [4], by scaling and shifting, the assumptions E{αt} = 1 and E{βt} = 0 can be made
without loss of generality. A special case of this demand function is the additive demand function,
where the demand function is of the form dt = D(p) + βt. This implies that only βt is a random
variable while αt = 1. Another special case is a model with the multiplicative demand function.
In this case, the demand function is of the form dt = αtD(p), where αt is a random variable.

Let xt be the inventory level at the beginning of period t, just before placing an order. Similarly,
yt is the inventory level at the beginning of period t after placing an order. Lead time is assumed to
be zero and hence an order placed at the beginning of period t arrives immediately before demand
for the period is realized. The ordering cost function includes both a fixed cost and a variable cost
and is calculated for every t, t = 1, 2, . . ., as

kδ(yt − xt) + c(yt − xt),

where

δ(u) :=

{
1, if u > 0,
0, otherwise.

Unsatisfied demand is backlogged. Let x be the inventory level carried over from period t to the
next period. Since we allow backlogging, x may be positive or negative. A cost h(x) is incurred at
the end of period t which represents inventory holding cost when x > 0 and shortage cost if x < 0.
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Given a discount factor γ with 0 < γ ≤ 1, an initial inventory level, x1 = x, and a pricing and
replenishment policy, let

V γ
T (x) = E{

T∑
t=1

γt−1(−kδ(yt − xt)− c(yt − xt)− h(xt+1) + ptDt(pt, εt))}, (2)

be the T -period total expected discounted profit, where xt+1 = yt −Dt(pt, εt).
In the infinite horizon expected discounted profit model the objective is to decide on ordering

and pricing policies so as to maximize
lim sup
T→∞

V γ
T (x),

for 0 < γ < 1 and any initial inventory level x. Similarly, in the infinite horizon expected average
profit model the objective is to maximize

lim sup
T→∞

1
T
V γ

T (x),

for γ = 1 and any initial inventory level x.
To find the optimal strategy that maximizes (2), let vγ

t (x) be the maximum total expected
discounted profit over a t-period planning horizon when we start with an initial inventory level x.
A natural dynamic program that can be applied to find the policy maximizing (2) is as follows. For
t = 1, 2, . . . , T,

vγ
t (x) = cx+ max

y≥x,p̄t≥p≥p
t

−kδ(y − x) + fγ
t (y, p) (3)

with vγ
0 (x) = 0 for any x, where

fγ
t (y, p) := −cy + E{pDt(p, εt)− h(y −Dt(p, εt)) + γvγ

t−1(y −Dt(p, εt))}.

For the general demand functions (1), we can present the formulation (3) only with respect to
expected demand rather than with respect to price. Note that there is a one-to-one correspondence
between the selling price pt ∈ [p, p̄] and the expected demand D(pt) ∈ [d, d̄], where

d = D(p̄) and d̄ = D(p).

We denote the expected demand at period t by d = D(p). Also let

φγ
t (x) = vγ

t (x)− cx, hγ(y) = h(y) + (1− γ)cy, and R̂(d) = R(d)− cd,

where R is the expected revenue function with

R(d) = dD−1(d),

which is a function of expected demand d. These functions, φγ
t (x), hγ(y) and R̂(d), allow us to

transform the original problem to a problem with zero variable ordering cost.
Specifically, the dynamic program (3) can be written as

φγ
t (x) = max

y≥x
−kδ(y − x) + gγ

t (y, dγ
t (y)) (4)
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with φγ
0(x) = −cx for any x, where

gγ
t (y, d) = Hγ(y, d) + γE{φγ

t−1(y − αtd− βt)}, (5)

Hγ(y, d) := −E{hγ(y − αd− β)}+ R̂(d),

and
dγ

t (y) ∈ argmaxd̄≥d≥dg
γ
t (y, d). (6)

Thus, most of our focus is on the transformed problem (4) which has a similar structure to problem
(3). In this transformed problem one can think of hγ as being the holding and shortage cost func-
tion, R̂ as being the revenue function, the variable ordering cost is equal to zero, and φγ

t (x) is the
maximum total expected discounted profit over a t-period planning horizon when starting with an
initial inventory level x.

Define
Qγ(x) := max

d̄≥d≥d
Hγ(x, d). (7)

For technical reasons, we need the following assumptions on the revenue function and the holding
and shortage cost function.

Assumption 2 R and −h are concave. The function Qγ(x) is finite for any x. As a consequence
Qγ(x) is concave. Furthermore, we assume that,

lim
|x|→∞

Qγ(x) = lim
|x|→∞

Q0(x) = −∞.

The following two concepts, k-convexity and symmetric k-convexity, are important in the analysis
of our model. Of course, k-convexity is not a new concept; it was introduced and applied by Scarf
[17] for the finite horizon, single product stochastic inventory problem. Here we use the definition
of k-convexity, introduced2 in Chen and Simchi-Levi [4], which is shown to be equivalent to the
traditional definition given in [17].

Definition 2.1 A real-valued function f is called k-convex for k ≥ 0, if for any x0 ≤ x1 and
λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + λk. (8)

A function f is called k-concave if −f is k-convex.

The symmetric k-convexity is a new concept introduced in Chen and Simchi-Levi [4].

Definition 2.2 A real-valued function f is called sym-k-convex for k ≥ 0, if for any x0, x1 and
λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) + max{λ, 1− λ}k. (9)

A function f is called sym-k-concave if −f is sym-k-convex.

Observe that k-convexity is a special case of symmetric k-convexity. The following lemma de-
scribes properties of symmetric k-convex functions, which are introduced and proved in [4].

2While completing this paper, Professor Paul Zipkin pointed out to us that this equivalent characterization of
k-convexity has appeared in Porteus [15].
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Lemma 1 (a) A real-valued convex function is also sym-0-convex and hence sym-k-convex for all
k ≥ 0. A sym-k1-convex function is also a sym-k2-convex function for k1 ≤ k2.

(b) If g1(y) and g2(y) are sym-k1-convex and sym-k2-convex respectively, then for α, β ≥ 0, αg1(y)+
βg2(y) is sym-(αk1 + βk2)-convex.

(c) If g(y) is sym-k-convex and w is a random variable, then E{g(y − w)} is also sym-k-convex,
provided E{|g(y − w)|} <∞ for all y.

(d) Assume that g is a continuous sym-k-convex function and g(y) → ∞ as |y| → ∞. Let S be a
global minimizer of g and s be any element from the set

X := {x|x ≤ S, g(x) = g(S) + k and g(x′) ≥ g(x) for any x′ ≤ x}.

Then we have the following results.

(i) g(s) = g(S) + k and g(y) ≥ g(s) for all y ≤ s.

(ii) g(y) ≤ g(z) + k for all y, z with (s+ S)/2 ≤ y ≤ z.

3 Preliminaries

Consider a stationary (s, S, p) policy defined by the reorder point s, the order-up-to level S and a
price p(x) which is a function of the inventory level x. As pointed out earlier, there is a one-to-one
correspondence between price and expected demand through the mapping d = D(p). Hence, from
now on we use (s, S,d) and (s, S, p) interchangeably.

Given the stationary (s, S,d) policy chosen above, let Iγ(s, x,d) be the expected γ-discounted
profit incurred during a horizon that starts with initial inventory level x and ends, at this period or
a later period, with an inventory level no more than s. Let Mγ(s, x,d) be the expected γ-discounted
time to drop from initial inventory level x to or below s. Observe that whenever x ≤ s, we have
Iγ(s, x,d) = 0 and Mγ(s, x,d) = 0. On the other hand when x > s we have

Iγ(s, x,d) = Hγ(x,d(x)) + γE{Iγ(s, x− αd(x)− β,d)}, (10)

and
Mγ(s, x,d) = 1 + γE{Mγ(s, x− αd(x)− β,d)}. (11)

Let
cγ(s, S,d) =

−k + Iγ(s, S,d)
Mγ(s, S,d)

. (12)

The definitions of Iγ(s, x,d),Mγ(s, x,d) and cγ(s, S,d) imply the following properties.

Lemma 2 Given an (s, S,d) policy,

(i) for γ = 1 cγ(s, S,d) is the long-run average profit;

(ii) for 0 < γ < 1 the function

cγ(s, S,d)/(1− γ) + Iγ(s, x,d)− cγ(s, S,d)Mγ(s, x,d)

is the infinite horizon expected discounted profit starting with an initial inventory level x.
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Proof. Part (i) follows directly from the elementary renewal reward theory (see Ross [16]), and so
does the case x ≤ s for part (ii). In order to prove part (ii) for x > s, define τ(s, x,d) to be the
number of periods it takes to drop the inventory level from x to or below s. Therefore, we have
τ(s, x,d) = 0 for x ≤ s and

τ(s, x,d) = 1 + τ(s, x− αd(x)− β,d), for x > s.

The infinite horizon expected discounted profit starting with initial inventory level x is

Iγ(s, x,d) + E{γτ(s,x,d)}cγ(s, S,d)/(1− γ),

which implies that it suffices to argue that

Mγ(s, x,d) = (1− E{γτ(s,x,d)})/(1− γ). (13)

For this purpose observe that from the recursion for τ(s, x,d),

(1− E{γτ(s,x,d)})/(1− γ) =

{
0, for x ≤ s,

1 + γ(1− E{γτ(s,x−αd(x)−β,d)})/(1− γ), for x > s,

which is exactly the same recursion for Mγ(s, x,d) (11). Therefore, (13) holds and hence part (ii) is
true.

To provide intuition about (ii) observe that cγ(s, S,d) is the expected discounted profit per period
for the infinite horizon expected discounted profit problem starting with an initial inventory level no
more than s. Therefore, cγ(s, S,d)/(1 − γ) is the infinite horizon expected discounted profit if we
start with an initial inventory level, x, no more than s and this implies that (ii) holds since in this
case both Iγ(s, x,d) and Mγ(s, x,d) are equal to zero. For x ≥ s, observe that cγ(s, S,d)Mγ(s, x,d)
is the expected discounted profit incurred during the expected discounted time Mγ(s, x,d) if we
start with an initial inventory level no more than s. Thus, the difference between the infinite horizon
expected discounted profit starting with an initial inventory level no more than s and the infinite
horizon expected discounted profit starting with the initial inventory level x equals

Iγ(s, x,d)− cγ(s, S,d)Mγ(s, x,d).

Hence (ii) follows.
We continue by assuming that the period demand is positive. Formally, this assumption says

that for any realization of the random variables ε = (α, β), αd+ β ≥ αd+ β ≥ η > 0 for some η and
any d ∈ [d, d̄]. This assumption will be relaxed by perturbing d = D−1(p̄) and α and analyzing the
limiting behavior of the best (s, S) inventory policy.

For any given (s, S), let cγ(s, S) be the optimal value of problem

max
d:d̄≥d(x)≥d

cγ(s, S,d). (14)

Define

φγ(x, s, S, s′) =

{
0, for x ≤ s′,
maxd̄≥d≥d g

γ(x, s, S, s′, d), for x > s′,
(15)
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where
gγ(x, s, S, s′, d) = Hγ(x, d)− cγ(s, S) + γE{φγ(x− αd− β, s, S, s′)}.

Let φγ(x, s, S) = φγ(x, s, S, s). For any feasible expected demand function d, let

ψγ(x, s, S,d) = Iγ(s, x,d)− cγ(s, S)Mγ(s, x,d). (16)

Then from the recursions for Iγ (10) and Mγ (11), we have that

ψγ(x, s, S,d) =

{
0, for x ≤ s,
Hγ(x,d(x))− cγ(s, S) + γE{ψγ(x− αd(x)− β, s, S,d)}, for x > s.

(17)

Lemma 3 For any x,
lim sup

d: d̄≥d(x)≥d

ψγ(x, s, S,d) = φγ(x, s, S).

In particular, φγ(S, s, S) = k.

Proof. We argue by induction that ψγ(x, s, S,d) ≤ φγ(x, s, S) for any feasible function d and any
x. It is clearly true for x ≤ s since in this case both functions equal zero. Assume that it is true for
any x with x ≤ y for some y. We prove that it is also true for x ≤ y + η. In fact, for x > s,

ψγ(x, s, S,d) = Hγ(x,d(x))− cγ(s, S) + γE{ψγ(x− αd(x)− β, s, S,d)}
≤ Hγ(x,d(x))− cγ(s, S) + γE{φγ(x− αd(x)− β, s, S)}
≤ maxd̄≥d≥dH

γ(x, d)− cγ(s, S) + γE{φγ(x− αd− β, s, S)}
= φγ(x, s, S),

where the first inequality is justified by the induction assumption. On the other hand, for any given
ε > 0, choose a function dε such that for any x > s

gγ(x, s, S, s,dε(x)) ≥ φγ(x, s, S)− ε.

We have that ψγ(x, s, S,dε) converges to φγ(x, s, S) uniformly over any bounded set as ε ↓ 0. Thus
for any x,

lim sup
d: d̄≥d(x)≥d

ψγ(x, s, S,d) = φγ(x, s, S).

From the definitions of cγ(s, S,d) and cγ(s, S), we have that for any d,

ψγ(S, s, S,d) ≤ k and lim sup
d

ψγ(S, s, S,d) = k,

where for the equality, we use the fact that Mγ(S, s,d) is bounded since αd+ β ≥ η for any feasible
d. Therefore, φγ(S, s, S) = k.

Let cγ be the optimal value of problem

max
(s,S)

cγ(s, S). (18)

Define

F γ := {(s, S)|cγ(s, S) ≥ maxQγ(x)− k,Qγ(s) = cγ(s, S) and Qγ(S) ≥ cγ(s, S)}.
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Proposition 1 cγ = max(s,S)∈F γ cγ(s, S).

Proof. In order to prove this result, we make the following observations.

(i) cγ ≥ maxQγ(x) − k. In fact, let xγ be any maximum point of Qγ(x). Then cγ(xγ − η, xγ) =
Qγ(xγ)− k, since Iγ(xγ − η, xγ , d) = Hγ(x,d(x)) and Mγ(xγ − η, xγ , d) = 1 for any expected
demand function d. Hence,

cγ ≥ cγ(xγ − η, xγ) = maxQγ(x)− k.

(ii) (a) If Qγ(s) < cγ(s, S), let s1 be the smallest element in the set

{x|x > s,Qγ(x) = cγ(s, S)}.

It is easy to see that the set is nonempty and s1 < S since φγ(S, s, S) = k ≥ 0. From the
recursive definition of φγ(x, s, S, s1) we have that for any x,

φγ(x, s, S, s1) ≥ φγ(x, s, S),

since φγ(x, s, S) ≤ 0 for x ∈ [s, s1]. In particular, φγ(S, s, S, s1) ≥ k. We claim cγ(s1, S) ≥
cγ(s, S). In fact, for any given ε > 0, choose a function dε(x) such that for any x > s1,

gγ(x, s, S, s1,dε(x)) ≥ φγ(x, s, S, s1)− ε.

One can see that for any x,

lim sup
ε↓0

ψγ(x, s, S,dε, s1) ≥ φγ(x, s, S, s1).

The above inequality, together with (16) and the fact that φγ(S, s, S, s1) ≥ k, implies that

cγ(s1, S) ≥ lim sup
ε↓0

cγ(s1, S,dε) ≥ cγ(s, S) = Qγ(s1).

If cγ(s1, S) > Qγ(s1), we repeat this process and end up with a sequence s1 < s2 < . . . < S
with cγ(s, S) = Qγ(s1) < cγ(s1, S) = Qγ(s2) < . . .. If the process stops in finite steps,
say n steps, then cγ(s, S) ≤ cγ(sn, S) = Qγ(sn). Otherwise, let s∗ be the limit of this
sequence {sn, n = 1, 2, . . .} and c̃γ(s∗, S) be the limit of cγ(sn, S). From the continuity
of Qγ as implied by its concavity, we have that Qγ(s∗) = c̃γ(s∗, S). We argue that
c̃γ(s∗, S) = cγ(s∗, S). Define

φ̃γ(x, s∗, S) =

{
0, for x ≤ s∗,

maxd̄≥d≥dH
γ(x, d)− c̃γ(s∗, S) + γE{φ̃γ(x− αd− β, s∗, S)}, for x > s∗.

One can see that φγ(x, sn, S) converges to φ̃γ(x, s∗, S) uniformly for x over any bounded
set. Furthermore, we have that φ̃γ(S, s∗, S) = k since φγ(S, sn, S) = k. Hence, from the
definition (15) of φγ(x, s∗, S) and the fact that φγ(S, s∗, S) = k, we have that cγ(s∗, S) =
c̃γ(s∗, S) and φ̃γ(x, s∗, S) is identical to φγ(x, s∗, S). Therefore, Qγ(s∗) = cγ(s∗, S) ≥
cγ(s, S).
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(b) If Qγ(s) > cγ(s, S), let s1 be the largest element in the set

{x|x < s,Qγ(x) = cγ(s, S)}.

Then from the recursions of Iγ (10) and Mγ (11), we have that for any x,

φγ(x, s, S, s1) ≥ φγ(x, s, S),

since φγ(x, s, S, s1) ≥ 0 for x ∈ [s1, s]. Following a similar argument to part (a), we can
show that there exists a point s∗ such that Qγ(s∗) = cγ(s∗, S) ≥ cγ(s, S).

(iii) If Qγ(S) < cγ(s, S), then from the recursive definition of φγ (15) we have that

k = φγ(S, s, S) < max
d̄≥d≥d

γE{φγ(S − αd− β, s, S)} ≤ max
x≤S−η

φγ(x, s, S) = φγ(S1, s, S),

where S1 is a maximum point of φγ(x, s, S) for x ≤ S − η. From (16), we have cγ(s, S1) ≥
cγ(s, S1, d

γ
(s,S)) > cγ(s, S). If Qγ(S1) < cγ(s, S1) we can repeat the argument and find Si+1 ≤

Si−η, i = 1, 2, . . ., such that cγ(s, Si+1) > cγ(s, Si) for i = 1, 2, . . .. This process has to be finite
since we have Si+1 ≤ Si − η. Assume we end up with Sn. Then Qγ(Sn) ≥ cγ(s, Sn) ≥ cγ(s, S).

Observations (i)-(iii) imply that, for the maximization problem (18), it suffices to restrict the
feasible set of (s, S) policies to the set F γ .

For any (s, S) ∈ F γ , since Qγ(s) = cγ(s, S), one can show that φγ(x, s, S) is continuous in x and

φγ(x, s, S) =

{
0, for x ≤ s,
maxd̄≥d≥d g

γ(x, s, S, s, d), for x ≥ s,

Furthermore, for x ≥ s, the following function

dγ
(s,S)(x) ∈ argmaxd̄≥d≥dg

γ(x, s, S, s, d),

is well-defined and by (16), (17) and Lemma 3 solves problem (14).
In the following lemma, we characterize the properties of the best (s, S) inventory policy. This

lemma is key to our analysis of the discounted and average profit problems.

Lemma 4 There exists an optimal solution (sγ , Sγ) to problem (18) such that the functions φγ(x) :=
φγ(x, sγ , Sγ) and Qγ(x) (see (7) for the definition of this function), satisfy the following properties.

(a) φγ(x) ≤ k for any x and φγ(Sγ) = k.

(b) Qγ(sγ) = cγ.

(c) Qγ(x) ≥ cγ for x ∈ [sγ , Sγ ].

(d) φγ(x) ≥ 0 for any x ≤ Sγ.

(e) sγ ≤ xγ for any maximum point xγ of Qγ(x).

(f) yγ ≤ Sγ for any minimum point yγ of hγ(y).

10



Proof. Proposition 1 implies that for problem (18), we can focus on (s, S) in the set F γ . Observe
that F γ is a bounded set. We now prove that it is also closed and hence compact. For this purpose
assume (s, S) is the limit of a sequence (sn, Sn) ∈ F γ . We claim that cγ(sn, Sn) converges to cγ(s, S).
In fact, let c̃γ(s, S) be the limit of a subsequence cγ(sni , Sni). Then from the continuity of Qγ ,
Qγ(S) ≥ Qγ(s) = c̃γ(s, S). Define

φ̃γ(x, s, S) =

{
0, for x ≤ s,

maxd̄≥d≥dH
γ(x, d)− c̃γ(s, S) + γE{φ̃γ(x− αd− β, s, S)}, for x ≥ s.

One can see that φγ(x, sni , Sni) converges to φ̃γ(x, s, S) uniformly for x over any bounded set. Fur-
thermore, we have that φ̃γ(S, s, S) = k since φγ(Sni , sni , Sni) = k. Hence, from the definition (15)
of φγ(x, s, S) and the fact that φγ(S, s, S) = k, we have that cγ(s, S) = c̃γ(s, S) and φ̃γ(x, s, S) is
identical to φγ(x, s, S). Therefore, cγ(sn, Sn) converges to cγ(s, S) and as a consequence, F γ is closed
and hence compact.

We are ready to prove the existence of the best (s, S,d) policy. Assume that cγ is the limit
of cγ(sn, Sn) for a sequence (sn, Sn) ∈ F γ . From the compactness of F γ there is a subsequence
(sni , Sni), such that

lim
i→∞

(sni , Sni) = (sγ , Sγ)

for some (sγ , Sγ) ∈ F γ . As proved in the previous paragraph, we have

cγ(sγ , Sγ) = lim
i→∞

cγ(sni , Sni) = cγ ,

and thus (sγ , Sγ) is the best (s, S) inventory policy.
Hence,

• Part (a) follows from (16) and the fact that (sγ , Sγ) solves problem (18).

• Part (b) and (c) hold since (sγ , Sγ) ∈ F γ and Qγ is concave.

• Part (d) follows from part (c) and the recursive definition of φγ in (15).

• From the argument of Observation (ii) in the proof of Proposition 1, it is easy to see that sγ

can be chosen as the smallest element in the set {x|Qγ(x) = cγ}. Therefore part (c) implies
that sγ ≤ xγ for any maximum point xγ of Qγ(x) and hence part (e) holds.

We now prove part (f). For any minimum point yγ of hγ(x), we prove by induction that φγ(x)
is non-decreasing for x ≤ yγ and consequently we can choose Sγ such that yγ ≤ Sγ . Without loss of
generality, assume that sγ ≤ yγ . First, φγ(x) is non-decreasing for x ≤ sγ . Now assume it is true for
any x with x ≤ y for some y ≤ yγ . Then for x and x′ such that sγ ≤ x ≤ x′ ≤ min{y + η, yγ}, we
have

φγ(x) = maxd̄≥d≥dH
γ(x, d)− cγ + λE{φγ(x− αd− β)}

≤ maxd̄≥d≥dH
γ(x′, d)− cγ + λE{φγ(x′ − αd− β)}

= φγ(x′),

where the inequality holds since x ≤ x′ ≤ yγ , hγ(x) is convex and φγ(x) is non-decreasing for x ≤ y
by induction assumption. Therefore φγ(x) is non-decreasing for x ≤ yγ . Thus part (f) follows.
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To provide some intuition, we point out that Qγ(x) is the single period maximum expected profit
when we start with an inventory level x; cγ(s, S) can be viewed as the average discounted profit per
period for a given (s, S) policy and its associated best price strategy. Thus, if (b) does not hold, one
can change the reorder point, sγ , and improve the average discounted profit per period. If (c) does
not hold, one can decrease Sγ and increase average discounted profit per period.

Lemma 4 allows us to show that φγ is symmetric k-concave.

Lemma 5 φγ is symmetric k-concave for the general demand model.

Proof. We prove, by induction, that φγ satisfies

φγ(xλ) ≥ (1− λ)φγ(x0) + λφγ(x1)−max{λ, 1− λ}k, (19)

for any x0 < x1 and λ ∈ [0, 1], where xλ = (1− λ)x0 + λx1.
Since φγ(x) = 0 for x ≤ sγ , it is obvious that (19) holds for x1 ≤ sγ . Now assume that (19) holds

for any x0 and x1 with x0 < x1 ≤ y for some y. We show that (19) also holds for any x0 and x1 with
x0 < x1 ≤ y + η. We distinguish between three cases.
Case 1: x0 > sγ . Letting dλ = (1− λ)dγ

(sγ ,Sγ)(x0) + λdγ
(sγ ,Sγ)(x1), we have that

φγ(xλ) ≥ Hγ(xλ, dλ)− cγ + γE{φγ(xλ − αdλ − β)}
≥ (1− λ)(Hγ(x0, d

γ
(sγ ,Sγ)(x0))− cγ + γE{φγ(x0 − αdγ

(sγ ,Sγ)(x0)− β)})
+ λ(Hγ(x1, d

γ
(sγ ,Sγ)(x1))− cγ + γE{φγ(x1 − αdγ

(sγ ,Sγ)(x1)− β)})− γmax{λ, 1− λ}k
≥ (1− λ)φγ(x0) + λφγ(x1)−max{λ, 1− λ}k,

where the second inequality follows from the concavity of Hγ , the fact that for any feasible d,
x0 − αd− β ≤ x1 − αd− β ≤ y and the induction assumption.
Case 2: x0 ≤ sγ and xλ ≤ Sγ . (19) holds since, by Lemma 4 parts (a) and (d), φγ(x1) ≤ k and
φγ(xλ) ≥ 0.
Case 3: x0 ≤ sγ ≤ Sγ ≤ xλ.

φγ(xλ) ≥ (1− µ)φγ(Sγ) + µφγ(x1)−max{µ, 1− µ}k
≥ µ(φγ(x1)− k)
≥ λ(φγ(x1)− k)
≥ (1− λ)φγ(x0) + λφγ(x)−max{λ, 1− λ}k,

where µ is chosen such that xλ = (1− µ)Sγ + µx1 with 0 ≤ µ ≤ λ. The first inequality follows from
Case 1, the second inequality holds since φγ(Sγ) = k by Lemma 4 part (a), the third inequality holds
since 0 ≤ µ ≤ λ and, by Lemma 4 part (a), φγ(x1) ≤ k, and the last inequality follows from the fact
that φγ(x0) = 0 since x0 ≤ sγ .

Therefore, by induction φγ is symmetric k-concave.

In the special case of additive demand functions, we show that φγ is k-concave. Define

gγ(x, d) := Hγ(x, d)− cγ + γE{φγ(x− d− β)}, for x ≥ sγ .

We need the following result, which basically implies that the higher the inventory level at the
beginning of one period after placing an order, the higher the expected inventory level at the end of
this period. A similar result was proven in [4] for the finite horizon case.
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Lemma 6 For the model with additive demand processes, there exists an optimal solution dγ(x) for
problem maxd̄≥d≥d g

γ(x, d) such that x− dγ(x) is non-decreasing for x ≥ sγ.

Proof. For x ≥ sγ , let
dγ(x) = max

{
argmaxd̄≥d≥dg

γ(x, d)
}
.

We claim that x − dγ(x) is non-decreasing for x ≥ sγ . If not, there exists x and x′ such that
sγ ≤ x < x′ and x− dγ(x) > x′ − dγ(x′). Then by letting

d := dγ(x′)− (x′ − x) > dγ(x) and d′ = dγ(x) + (x′ − x) < dγ(x′),

we have
gγ(x, dγ(x)) > gγ(x, d), and gγ(x′, dγ(x′)) ≥ gγ(x′, d′).

Adding the above two inequalities together, we have that

R̂(dγ(x)) + R̂(dγ(x′)) > R̂(d) + R̂(d′),

which cannot be true since R̂ is assumed to be concave. Therefore, x − dγ(x) is non-decreasing for
x ≥ sγ .

Lemma 7 φγ is k-concave for the additive demand model.

Proof. We show, by induction, that φγ satisfies

φγ(xλ) ≥ (1− λ)φγ(x0) + λφγ(x1)− λk, (20)

for any x0 < x1 and λ ∈ [0, 1], where xλ = (1− λ)x0 + λx1.
Since φγ(x) = 0 for x ≤ sγ , it is obvious that (20) holds for x1 ≤ sγ . Now assume that (20) holds

for any x0 and x1 with x0 < x1 ≤ y for some y. We show that (20) also holds for any x0 and x1 with
x0 < x1 ≤ y + η. We distinguish between three cases.
Case 1: x0 ≥ sγ . In fact, letting dλ = (1− λ)dγ

(sγ ,Sγ)(x0) + λdγ
(sγ ,Sγ)(x1), we have that

φγ(xλ) ≥ Hγ(xλ, dλ)− cγ + γE{φγ(xλ − dλ − β)}
≥ (1− λ)(Hγ(x0, d

γ
(sγ ,Sγ)(x0))− cγ + γE{φγ(x0 − dγ

(sγ ,Sγ)(x0)− β)})
+ λ(Hγ(x1, d

γ
(sγ ,Sγ)(x1))− cγ + γE{φγ(x1 − dγ

(sγ ,Sγ)(x1)− β)})− γλk

≥ (1− λ)φγ(x0) + λφγ(x1)− λk,

where the second inequality follows from the concavity of Hγ , Lemma 4 part (b), the fact that by
Lemma 6, x0 − dγ

(sγ ,Sγ)(x0)− β ≤ x1 − dγ
(sγ ,Sγ)(x1)− β ≤ y and the induction assumption.

Case 2: xλ ≤ sγ . (20) holds for x0, x1 and any λ ∈ [0, 1], since φγ(x) ≤ k for any x by Lemma 4 part
(a).
Case 3: x0 ≤ sγ ≤ xλ. Select µ, 0 ≤ µ ≤ λ such that xλ = (1− µ)sγ + µx1. We have that

φγ(xλ) ≥ (1− µ)φγ(sγ) + µφγ(x1)− µk
= µ(φγ(x1)− k)
≥ λ(φγ(x1)− k)
= (1− λ)φγ(x0) + λφγ(x1)− λk,
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where the first inequality follows from Case 1 and Lemma 4 part (b), the second inequality from
Lemma 4 part (a) which states that φγ(x) ≤ k for any x, and the last equality from φγ(x0) = 0 since
x0 ≤ sγ .

Therefore, by induction φγ is k-concave.

We are ready to prove that (φγ , cγ) satisfies the equation:

φγ(x) + cγ = max
y≥x

{
max

d̄≥d≥d
−kδ(y − x) +Hγ(y, d) + γE{φγ(y − αd− β)}

}
(21)

and that (sγ , Sγ) is the policy that attains the first maximization in equation (21).
Notice that when γ = 1, (21) is the optimality equation for the average profit problem. On the

other hand, when 0 < γ < 1, define

φ̂γ(x) = cγ/(1− γ) + φγ(x).

Then (21) implies that

φ̂γ(x) = max
y≥x,d̄≥d≥d

−kδ(y − x) +Hγ(y, d) + γE{φ̂γ(y − αd− β)},

which is the optimality equation for the γ-discounted profit problem for 0 < γ < 1, i.e. problem (4).

Theorem 3.1 (φγ , cγ) satisfies equation (21) and (sγ , Sγ) attains the first maximization in equation
(21).

Proof. For any x, define

Oγ(x) := max
d̄≥d≥d

Hγ(x, d)− cγ + γE{φγ(x− αd− β)}.

From (15) and Lemma 4 part (b), one can see that Oγ(x) = Qγ(x)− cγ for x ≤ sγ and Oγ(x) =
φγ(x) for x ≥ sγ . We have the following observations.

(a) Oγ(x) ≤ Oγ(sγ) = 0 for x ≤ sγ . This follows from Lemma 4 parts (b) and (e), the concavity
of Qγ and the fact that Oγ(x) = Qγ(x)− cγ for x ≤ sγ .

(b) Oγ(x) ≤ Oγ(Sγ) = k for any x. This result follows from part (a) and Lemma 4 part (a) since
Oγ(x) = φγ(x) for x ≥ sγ .

(c) Oγ(y) ≥ Oγ(z) − k, for any y, z with sγ ≤ y ≤ z. Since Oγ(x) = φγ(x) for x ≥ sγ , we only
need to show that φγ(y) ≥ φγ(z)− k. For y ≤ Sγ , we have

φγ(y) ≥ 0 ≥ φγ(z)− k

by Lemma 4 parts (a) and (d). For y ≥ Sγ , φγ(y) ≥ φγ(z)− k follows from Lemma 4 part (a),
Lemma 5 and Lemma 1 part (d).
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Observations (a), (b) and (c) imply that the optimal y in equation (21) follows the (sγ , Sγ) policy:
if x ≤ sγ then y = Sγ , otherwise y = x. Thus, (φγ , cγ) satisfies (21).

The above results are proven under the assumption that αd + β ≥ η > 0. Now we relax this
assumption and prove that all the results in this section hold even when the assumption is not
satisfied.

To do that we are going to construct a sequence of random variables αη such that

(Ra) E{αη} = 1.

(Rb) αη is bounded below by a positive constant.

(Rc) αη converges to α in distribution as η ↓ 0.

Let F (x) be the cumulative probability distribution of α. For any η < 1, let

qη =
1− F (η)∫∞

η (x− η)dF (x)

∫ η
0 (η − x)dF (x)

F (η)
,

and
pη =

qηF (η)
1− F (η)

.

Without loss of generality, assume that
∫∞
1 xdF (x) > 0. We have qη = O(η) and pη = O(η).

Furthermore,
F (η)(1 + qη) + (1− pη)(1− F (η)) = 1, (22)

and
ηF (η)(1 + qη) + (1− pη)

∫ ∞

η
xdF (x) =

∫ ∞

0
xdF (x) = 1. (23)

Define a function Fη such that

Fη(x) =

{
0, for x < η
(1 + qη)F (η) + (1− pη)(F (x)− F (η)), for x ≥ η.

Equation (22) implies that Fη is a distribution function. Let αη be a random variable with distribu-
tion Fη. Then by (23) E{αη} = 1 and the requirements (Ra), (Rb) and (Rc) are satisfied.

We are ready to relax the assumption that αd + β is bounded below by a positive constant.
For this purpose, consider a similar model with α and d replaced by αη and d + η respectively for
d̄ − d ≥ η̄ ≥ η > 0. We refer to this model as the modified problem. Notice that if d̄ = d, it is well
known that an (s, S) policy is optimal for both the average and discounted profit models (see [9, 10]).

In the modified problem, αη(d + η) + β is bounded below by a positive constant. Let cγη(s, S)
be the average discounted profit per period for the stationary (s, S) policy associated with the best
price under this modified model. Define

F γ
η := {(s, S)|cγη(s, S) ≥ −k + maxQγ

η(x), Qγ
η(s) = cγη(s, S) and Qγ

η(S) ≥ cγη(s, S)},

where Qγ
η(x) = maxd̄≥d≥d+η H

γ
η (x, d) and Hγ

η (x, d) = R̂(d) − E{hγ(x − αηd − β)}. From the con-
struction of αη, one can see that Qγ

η converges to Qγ uniformly over any bounded set. Therefore, by
Assumption 2, F γ

η is uniformly bounded for 0 < η ≤ η̄.
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Let (sγ
η , S

γ
η ) be the best (s, S) policy under the modified model with parameter η, and let cγη =

cγη(sγ
η , S

γ
η ). Define

φγ
η(x) =

{
0, for x ≤ sγ

η ,

maxd̄≥d≥d+η H
γ
η (x, d)− cγη + γE{φγ

η(x− αηd− β)}, for x ≥ sγ
η .

(24)

Since F γ
η is uniformly bounded for 0 < η ≤ η̄, there exists a limit point for some subsequence

(sγ
ηi
, Sγ

ηi
), where ηi → 0 as i→∞. Let (sγ

0 , S
γ
0 ) be this limit point.

Lemma 4 part (b), together with the fact that Qγ
η converges to Qγ uniformly over a bounded

set, implies that cγηi
converges to a point cγ0 . Hence φγ

ηi
converges to a function φγ

0 uniformly over
any bounded set as i → ∞. Furthermore, this convergence property implies that φγ

0 satisfies the
recursion (24) with η = 0, where Hγ

0 (x, d) = Hγ(x, d) and α0 = α. Since φγ
η(Sγ

η ) = k, φγ
0(Sγ

0 ) = k
and hence cγ0 = cγ(sγ

0 , S
γ
0 ). Therefore Lemma 4 and Lemma 5 hold and (φγ

0 , c
γ
0) satisfies (21). Thus,

all the results in this section hold even if αd+ β ≥ 0.

4 Bounds

The convergence results proven in Section 5 and Section 6 for the discounted and average profit cases,
respectively, require bounds on some of the parameters of the optimal policy for the finite horizon
model. Our approach in this section is motivated by the classical work of Veinott, [19].

Consider the dynamic program (4). A straight-forward extension of the analysis in [4] shows that
an (s, S,A, p) policy is optimal for this problem.

For every t, t = 1, . . ., let (sγ
t , S

γ
t , A

γ
t , p

γ
t ) be the parameters of the optimal policy. We show that

sγ
t and Sγ

t are uniformly bounded. Specifically, define

Sγ = min
d̄≥d≥d

{
argmaxxH

γ(x, d), argmaxxH
0(x, d)

}
, and s̄γ = max

d̄≥d≥d

{
argmaxxH

γ(x, d)
}
,

sγ = max{x|x ≤ Sγ ,Hµ(Sγ , d) ≥ Hµ(x, d) + k, for µ = 0, γ and all feasible d},

and
S̄γ = min{x|x ≥ s̄γ ,Hγ(s̄γ , d) ≥ Hγ(x, d) + k, for all feasible d}.

The existence of sγ and S̄γ follows from Assumption 2.

Lemma 8 For t ≥ 1,
φγ

t (x) ≥ φγ
t (x′)− k, for x ≤ x′, (25)

gγ
t (y′, d)− gγ

t (y, d) ≤ Hγ(y′, d)−Hγ(y, d) + k, for y ≤ y′, (26)

and
gγ
t (y′, dγ

t (y′)) ≤ gγ
t (y, dγ

t (y)) + k, for y′ ≥ y ≥ s̄γ . (27)

Proof. By induction. For t = 0, φγ
t (x) = −cx is non-increasing since the variable ordering cost

c ≥ 0. Hence (25) holds for t = 0. For t ≥ 1, (25) follows directly from (4). (26) follows from (5)
and (25) for period t− 1. (27) follows from (26), the definition of s̄γ and the concavity of Hγ .
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Lemma 9
gγ
1 (y′, d)− gγ

1 (y, d) = H0(y′, d)−H0(y, d) ≥ 0, for y ≤ y′ ≤ Sγ , (28)

gγ
t (y′, d)− gγ

t (y, d) ≥ Hγ(y′, d)−Hγ(y, d) ≥ 0, for y ≤ y′ ≤ Sγ and t > 1, (29)

gγ
t (y′, dγ

t (y′)) ≥ gγ
t (y, dγ

t (y)), for y ≤ y′ ≤ Sγ and t ≥ 1, (30)

and
φγ

t (x′) ≥ φγ
t (x), for x ≤ x′ ≤ Sγ and t ≥ 1. (31)

Proof. (28) follows from the definition of Sγ and the fact that gγ
1 (y, d) = H0(y, d). We prove the

remaining three inequalities by induction. Assume that (29) holds for some t > 1. (30) follows
directly from (28) (if t = 1) or (29) (if t > 1). Furthermore, for any x ≤ x′ ≤ Sγ ,

φγ
t (x′) = max{gγ

t (x′, dγ
t (x′)),−k + maxy>x′ gγ

t (y, dγ
t (y))}

≥ max{gγ
t (x, dγ

t (x)),−k + maxy>x g
γ
t (y, dγ

t (y))}
= φγ

t (x),

where the inequality follows from (30). This proves inequality (31). Finally, (5), (31), and the
definition of Sγ , imply that (29) holds for t+ 1 and any feasible d, since Hγ is concave.

We are ready to present our bounds on sγ
t and Sγ

t .

Lemma 10 For every t, sγ
t ∈ [sγ , s̄γ ] and Sγ

t ∈ [Sγ , S̄γ ].

Proof. We first show that for every t and y ≤ sγ ,

gγ
t (y, dγ

t (y)) ≤ −k + gγ
t (Sγ , dγ

t (Sγ))

which implies that an order is placed for this level of inventory, y, and hence sγ
t ≥ sγ .

For t > 1, we have that for y ≤ sγ ,

gγ
t (y, dγ

t (y)) = Hγ(y, dγ
t (y)) + γE{φγ

t−1(y − αtd
γ
t (y)− βt)}

≤ −k +Hγ(Sγ , dγ
t (y)) + γE{φγ

t−1(S
γ − αtd

γ
t (y)− βt)}

≤ −k +Hγ(Sγ , dγ
t (Sγ)) + γE{φγ

t−1(S
γ − αtd

γ
t (Sγ)− βt)}

= −k + gγ
t (Sγ , dγ

t (Sγ)),

where the first inequality follows from the definition of sγ and (31), and the second inequality from
the definition of dγ

t .
Consider now t = 1. Using the fact that gγ

t (y, d) = H0(y, d) and the definition of dγ
t (x), sγ and

Sγ , we have gγ
t (y, dγ

t (y)) ≤ −k + gγ
t (Sγ

t , dt(S
γ
t )) for y ≤ sγ .

To show that sγ
t ≤ s̄γ , we apply inequality (27) which implies that no order is placed when y ≥ s̄γ .

Hence, sγ
t ∈ [sγ , s̄γ ].

To show that Sγ
t ≤ S̄γ , it suffices to show that for y ≥ S̄γ we have

gγ
t (s̄γ , dγ

t (s̄γ)) ≥ gγ
t (y, dγ

t (y)).
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In fact, for y ≥ S̄γ ,

gγ
t (s̄γ , dγ

t (s̄γ)) = Hγ(s̄γ , dγ
t (s̄γ)) + γE{φγ

t−1(s̄
γ − αtd

γ
t (s̄γ)− βt)}

≥ Hγ(s̄γ , dγ
t (y)) + γE{φγ

t−1(s̄
γ − αtd

γ
t (y)− βt)}

≥ k +Hγ(y, dγ
t (y)) + γE{φγ

t−1(y − αtd
γ
t (y)− βt)} − γk

≥ gγ
t (y, dγ

t (y)),

where the first inequality follows from the definition of dγ
t , the second inequality from the definition

of S̄γ and (25) and the last inequality from definition (5).
Finally, inequality (30) implies that the function gγ

t (y, dγ
t (y)) is non-decreasing for y ≤ Sγ . Hence,

Sγ
t ≥ Sγ and as a result Sγ

t ∈ [Sγ , S̄γ ].

5 Discounted Profit Case

Consider the discounted profit case with a discount factor 0 < γ < 1 and recall the definition
of φ̂γ(x). Lemma 2 tells us that φ̂γ(x) is the infinite horizon expected discounted profit for the
stationary (sγ , Sγ , dγ

(sγ ,Sγ)) policy when starting with an initial inventory level x.
The following convergence result relates the t-period maximum total expected discounted profit

function, φγ
t (x), and φ̂γ(x).

Theorem 5.1 For any M ≥ max{S̄γ , Sγ} and any t ≥ 1, we have that

max
x≤M

|φγ
t (x)− φ̂γ(x)| ≤ γt−1 max

x≤M
|φγ

1(x)− φ̂γ(x)|. (32)

Proof. By induction. For t = 1 inequality (32) holds as equality. Consider t > 1. From (4) and
(21), we have that for any x ≤M ,

φγ
t (x)− φ̂γ(x) = maxM≥y≥x,d̄≥d≥d−kδ(y − x) +Hγ(y, d) + γE{φγ

t−1(y − αd− β)}
− maxM≥y≥x,d̄≥d≥d−kδ(y − x) +Hγ(y, d) + γE{φ̂γ(y − αd− β)}
≤ maxM≥y≥x−kδ(y − x) +Hγ(y, dγ

t (x)) + γE{φγ
t−1(y − αdγ

t (x)− β)}
− (−kδ(y − x) +Hγ(y, dγ

t (x)) + γE{φ̂γ(y − αdγ
t (x)− β)})

= γmaxM≥y≥xE{φγ
t−1(y − αdγ

t (x)− β)− φ̂γ(y − αdγ
t (x)− β)}

≤ γt−1 maxx≤M |φγ
1(x)− φ̂γ(x)|,

where the first equation follows from Theorem 3.1, Lemma 10 and the assumption that M ≥
max{S̄γ , Sγ}, the first inequality from the definition of dγ

t (see (6)), and the last inequality from
the induction assumption.

By employing a similar approach, we can prove that for x ≤M ,

φ̂γ(x)− φγ
t (x) ≤ γt−1 max

x≤M
|φγ

1(x)− φ̂γ(x)|.

Hence (32) holds for all t.

The theorem thus implies that the t-period maximum total expected discounted profit function,
φγ

t (x), converges to the infinite horizon expected discounted profit function, φ̂γ(x), associated with
the stationary (sγ , Sγ , dγ

(sγ ,Sγ)) policy and as a consequence, this policy is optimal for the infinite
horizon expected discounted profit problem.
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6 Average Profit Case

In this section we analyze the average profit case and hence assume that γ = 1. To prove that a
stationary (s, S,d) policy is optimal for the average profit case, we apply a similar approach to the
one used by Iglehart [10] for the traditional stochastic inventory model. Speciffically, we show that
the long-run average profit of the best (s, S,d) policy, c1, is the limit of the maximum average profit
per period over a t-period planning horizon.

Theorem 6.1 For any x,
φ1

t (x)/t− c1 → 0, as t→∞.

Proof. We prove by induction that for any given M ≥ max{S̄1, S1}, there exist r and R such that

tc1 + φ1(x) + r ≤ φ1
t (x) ≤ tc1 + φ1(x) +R, for x ≤M and any t. (33)

First, for x ≤ min{s1, s1}, φ1(x) and φ1
t (x) are constants. Hence, for t = 1, there exist two

parameters r and R such that (33) holds for x ≤M .
Second, assume (33) is true for t− 1. Since S1

t ≤ S̄1 ≤M , for x ≤M we have

φ1
t (x) = max

M≥y≥x,d̄≥d≥d
−kδ(y − x) +H1(y, d) + E{φ1

t−1(y − αd− β)},

and hence
φ1

t (x) ≤ maxM≥y≥x,d̄≥d≥d−kδ(y − x) +H1(y, d) + E{φ1(y − αd− β)}+ (t− 1)c1 +R

≤ maxy≥x,d̄≥d≥d−kδ(y − x) +H1(y, d)− c1 + E{φ1(y − αd− β)}+ tc1 +R

= φ1(x) + tc1 +R,

where the first inequality follows from the induction assumption (33), the second inequality holds
since we removed the constraint M ≥ y and the equality follows from the optimality equation, (21).

The left hand side inequality (i.e., the lower bound) of (33) can be established in a similar fashion.
By choosing M arbitrarily large, (33) implies that

φ1
t (x)/t− c1 → 0, as t→∞,

for any x.

The theorem thus suggests that starting with any initial inventory level, the maximum average
profit per period over a t-period planning horizon converges to a constant c1, the long-run average
profit of the best (s, S,d) policy. Therefore, the best (s, S,d) policy, the stationary (sγ , Sγ , dγ

(sγ ,Sγ))
policy, is optimal for the infinite horizon average profit problem.

7 Concluding Remarks

In this section we summarize our main results. Recall that for the finite horizon case Chen and Simchi-
Levi [4] proved that an (s, S, p) policy is not necessarily optimal for general demand processes. Indeed
by developing and employing the concept of symmetric k-convex functions, Chen and Simchi-Levi
showed that in this case an (s, S,A, p) policy is optimal.

Surprisingly, in the current paper we show, using the concept of symmetric k-convexity, that a
stationary (s, S, p) policy is optimal in the infinite horizon case for both the discounted and average
profit criteria. This result holds for the general demand process defined by Assumption 1 which
includes additive and multiplicative demand functions; both are common in the economics literature.
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