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L.

INTRODUCTION

In an earlier paper [1] we outlined a column generating pro~
cedure to overcome one of the basic difficulties associated with the
cutting stock problem, the problem of too many cutting patterns, or
in linear programming terms the problem of too many columns, In
this paper we describe the adaptation and application of this method
to the specific problem of paper trim. The changes that were
required to make the application possible were of two kinds, changes
in the algeorithmn itself and changes in formulation, and are described
below. The final algorithm can be used in many other situations such
as the slitting of steel rolls, cutting of metal pipe, cellophane roll
slitting, etc.

(a) Algorithm Changes. The large size of many of the
paper indu's‘try‘r problems has required a whole series of modifications
which were needed to get the calculation done more rapidly or even
to do it at all on the small computers that are usually available in 'a
paper miil. For this purpose we evolved a new and rapid algorithm
for the knapsack problem, which proved to be markedly superior to
dynamic programming, developed ways of cutting down the size of
the knapsack problem, methods of speeding cbnvergence of the linear
programming calculation, and a reasonable cutoff. The new calcula-
tions are sufficiently rapid that real problems can now be solved and

with a considerable saving in paper. Programs written by



W, . Winansl and Darrell Mm:ffZ are being used in a routine
manner at paper mills on computers installed specifically to deal
with the paper trim problem.

{b) Changes in the Formulation. Special circumstances in
the paper industry provide limits on the number of cutting knives,
bring in machine balance considerations, and introduce a tolerance
or indeterminancy in the customers' orders. We will show how these
conditions can be dealt with as modifications of the knapsack problem,
modifications of the linear programming formulation, or by a pro-
gramming formulation involving a rational objective function.

Finally, we will give some experiments, made possible by
the completed algorithm, showing the economy that can be obtained
from the use of more than one stock length, indicating the extreme
sensitivity of the waste to the exact stock length available, and show-

ing the effect of limiting the number of cutting knives.

! IBM, Green Bay, Wiscoensin,
2

IBM, Tyler, Texas,
3

The parent program for these 1620 programs was a 7090 and 7094
FORTRAN program written by Mrs, C. 5. Wade of the T. 7.
Watson Research Center. The 7094 program was used in the tests
in this paper., We are greatly indebted to Mrs. Wade for excellent
programming and for many helpful suggestions,
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CHANGES IN THE ALGORITHM

The cutting stock problem in mathematical form is the

problem of minimizing ij, subject to
j

Za.x. > N.
g NI

where Ni’ 12 lyc..,m is the number of rolls of length ﬂi demanded,
#%, is the number of vtimes the jth cutting pattern is used, and ai,_}
is the number of rolls of length Ei produced each time the jth way
of cutting up a roll is used.

If there are different length parent rolls available to be cut
up, their costs may be different. In this case, the objective function
becomes Zc ., where ¢, is the cost of the parent roll from which

J
the jth cutting pattern is cut,

The difficulty of the problem lies in the large number of
cutting patterns (columns) that may be encountered. For example,
with a standard roll of 200" and demands for 40 different lengths
ranging from 20" to 80", the number of cutting patterns can easily
exceed ten or even 100 million. And this size problem is encountered
in practice. Thus, we are faced with a linear programming problem
involving ten or 100 million columns.

In an earlier paper [1], we outlined a column generating
procedure that in principle enables one to avoid this difficulty in the
sense that one calculates alternately with an m x m matrix (the

basis inverse} and a subroutine that produces the next column when



needed, and never with the entire list of columns.

To produce the next column, one has to find that column
whose scalar product with the current linear programming prices is
maximal. Since any string of nonnegative integers 2 i=1,...,m

is a column provided only that

where I, is the standard stock length and ﬁi the demanded lengths,
the maximization problem is
i=m

maximize X b.a,
. i
i=1

i=m
subject to & £L.a <L,
=1 7

Here the bi are the currvent linear programming prices, and the a,
must be nonnegative integers, Following Dantzig [4], we call (1) the
knapsack problem. If the maximum M in (1) is greater than the
cost ¢ of the standard stock length L, an improving column has
been found, if M < ¢, no improvement is possible and the cutting
stock problem has been solved. If there are several standard stock
lengths L]_ with costs Ci’ several problems like (1) must be solved,

In [1] we outlined a method which consisted of using a short-

cut method for a solution followed by dynamic programming in the



event the short-cut method did not produce a solution. Unfortunately,
even dynamic programming is often too ponderous for the size of
problem generated by the paper industry. Consider a problem in~
volving a 200" parent roll and orders specifying lengths to 1/8 of an
inch as is customary. The fundamental recursion of the dynamic

programming calculation is

FS+1(x) = m?x {r bs+1 + FS(X“MH,l)}"
{2)
0<r< [x/fs_l_l]

where FS 3‘(x:) has the intuitive interpretation of being the value of
the most valuable combination that can be fitted into a knapsack of
length x if only the first s + 1 lengths can be used.

In carrying out this recursion, most of the time will be spent

on the inner loop of the calculation which will involve

(1) multiplying bs+l times r,

(Z) fetching and adding Fs(x«rfs Vo to r bS

+1 +17

{3} subtracting the current maximum of the expression in
parentheses in Equation (2) from the sum in Step (2},

{4) making a conditional transfer depending on whether or not
this difference is negative,

(5) adjusting an index and returning to Step (1).

In programming this, we seem to require 10 elementary machine



orders {orders such as add), so we will allot to this calculation the
time 10T, {(Reasonable T's are for the 7090, 4.5 microseconds,
for the 7094, 4 microseconds, and for the 1620, 470 microseconds. 1)
This loop must be gone through [L/ﬂs+1] times and then repeated
8L timmes if L, is in inches and order lengths are given to 1/8" as is

customary. This provides Fs+ {x) for all x < L. This routine is

1
then repeated m times if there are m lengths, in order to solve
one knapsack problem. A reasonable average figure for [L/JZS] is
5 for paper problems that we have seen, so the time per knapsack
may be estimated as 10 x 8 x5 LanT. Withan L of 200 and m = 30,
we get 2.4 x 106T, If we find the linear programming calculation
requires Z.5 m simplex steps, which is both a conventional estim-~
ate and about what we hav:e a.ctua}.ly observed, we get a time for the
knapsack parts of one problem of 1000 LTma, For the thirty length
problem, this is 16 x 307 T.

Because of the necessity of using the tape in doing the back-

tracking part of the dynamic programming calculation, our actual

dynamic programming runs have exceeded twice this estimate.

This is a weighted average of the add and multiply times actually
nzeded for the loop.

The actual runs on the 7090 for a single dynamic programming
calculation were 18 seconds with 25 lengths and [. = 150, and 24
seconds with 40 lengths and L. = 150. In the first problem, the
tape time was about 7 seconds, in the second about 104 seconds,



However, even this estimate gives about a2 13 minute run on the 7090
and a run of 1357 minutes on the 1620 for a typical 30 length, 200
inch roll problem.

These figures show the need for a faster method for the
knapsack problem if paper industry problems are to be dealt with. A
method related to [6] and which has proved to be about five times as
fast as dynamic programming for our set of problems, is described

next.

Knapsack Method

In what follows, we will denote the maximum of the cost ¢
and of the previously defined M by M. If there are several standard
stoc?k; lengths Li, it is necessary to solve a series of knapsack
problems like (1)} with 1. replaced by Li° We will denote the cor-
responding maxima of cj and I.\,/,]J by MJ The algorithm we have
employed for the knapsack problem will first be described in a form
which permits one to calculate all the Mj simultaneously. Following
the description and justification of the algorithm, we will show how
it can be modified to calculate max {Mjmcj} with possibly less
computation.,

The steps of the calculation are as follows:



ol > >
{1} Reorder the variables al,aa,,”,am so that bilﬂlw—ba/zaw

(2)

... >b /& , and reorder the stock lengths so that L >1L_>,,.>L. .
- "m" Tm 1 P k

Introduce a variable a with coefficients b = 0 and
met] b1

Jﬂm-%’l =1

Let » and B be the m~vectors with coefficients ¢ ’£2’°"°’£

1 m

and bl’b “’bm respectively. For an s-vector (a)S of

A
nonnegative integers A8y, ees 2, where 1 <s <m, by X (oz)S
5 s

is meant Z £.,a, and by B-{a} is meant
i=1 2 5 i=1

(Oé)m is an extension of a vector (o.')s, ¢ <m, if the first s

b.a,. A vector
ii

coefficients of (az)m are just the coefficients of (a)s.
In the algorithm a sequence of vectors (ce}s, for various values
of s, satisfying Ll > K*’(Ce)s is generated in lexicographically

decreasing order, where (c:lel)5 is lexicographically larger than
. 1
&

{ o )s if and only if for some i, 1 <i < min {51’52}’

Z
1 2 1 2 . 1 2
yesesd, T a,, . >a. . i
I 5 2 a, while @y al+1 A simple test (Step {5) )

permits one to ignore many of the possible vectors. The first
vector (a)m in the sequence is the lexicographically largest

m-vector satisfying I_.j > e (a!)m, for any j. That is,

l = = - . o
et a, [Li/ﬂl], a, [(Ll Elal)/iz],,. , and a_

[(Ll—(ﬁlal +o..t+ 4 ) )/Em], et t=1 and let I\/Kj = C,

m-1%m-1 3



This vector (oz)m is then tested to determine whether for it

Be (a)m .exceeds the current best values Mj for applicable j,
and if so these current best values are redefined.

For those j, t <j <k, for which Lj > )u(oz)m and Bv(a)m > ij

redefine M, to be B-(a) .
i m

Liet s be the largest i, 1 <i <m, such that a, # 0.
—_ - i

Thus {a)s has among its coefficients all the non~zero coefficients
of (a)m and its last coefficient is non-zero, The lexicographically

largest m-vector lexicographically smaller than (a}m necessarily

has its sth coefficient one less than as; that is, it is an exten-
sion of a vector (Oll)s which differs from (o:.‘)S only in having
as-«1 as its sth coefficient. In the first part of (5), (og)S is re-
defined to be (al)s.

in the test in the second part of Step {5} below, one determines
if it is possible for any extension of (a)s to lead to an improve-
ment of at least one of the current maximums Mj' A necessary
condition for an improvement of Mj to be possible, assuming
that L} > A (Gz)s, is that an improvement result when the integer
restriction on a_ is relaxed and a set equal to

+1 s+1

(LJ,-J\' (a)s)/£s+1' Because of the ordering chosen for the vari-

ables, the condition for an improvement is that
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(5)

(6)

(7)

B {a)s + b (L. ~\" (a!)s)/ﬂs > M}., This necessary condition
J

s+ 1 +1

is tested for in (5); if it holds for some j one transfers to (7)
and calculates the lexicographically largest extension {oz)m of
(og)S which satisfies Lt >N (az)s, where t is the smallest
integer j for which the condition holds for the jth stock length;
if it-fails to hold for any j, then a successor of (oe)S in the
sequence of vectors, if there is one, is calculated in (8).

A successor to ((I)S is calculated in {6) only when s > 1. Then
the successor is the lexicographically largest (s~1)-vector which
is lexicographically smaller than (c}z)s, This successor is
chosen because fr‘om the failure of the necessary condition in (5},
one can conclude ‘chaj; it is the lexicographically largest (s-1)-
vector which may have an extension improving at least one of the
current maximums M},,

Redefine a_ to be aswl and let t be the smallest j, 1 <j <k,
such that Lj >N (a,')s and such that (I,JJ_-)\- (a)s) bs+ >

1

(Mjm[3° (a)s) JZS+1, and go to (7). If there is no such j then go to

{6).
Redefine s to be the largest i, 1 <i < s -1, such that a_ # 0,
— - i

and go to (5). If there is no such i, then the current values of

Mj, ij#l,....k, are the maximums to be found.

Let a = (Lt—x-(a} )/ 2

il 5 S+1],..,,am=[(Ltn(R'(as)+ﬂ

s+las+l

to.. Em-lam—l) )/ﬁm], and go to {3).



1.

That the final values of the maxima Mj are the desired
maxima when the algorithm terminates in Step {6) is clear from
the order in which the m-vectors are generated and then tested in
(3} for possible improvement of the Mj. For the first vector tested

in {3) is the lexicographically largest vector (a)m which can satisfy
Ll > )\e(oz)m and ﬁ’(a)m > Cj’ for some j, and each succeeding

vector tested in (3) is the lexicographically next largest m-vector

. . S e . o .
which can satisfy Ltm A (a)m and P (a)m Mj, for some j.

In order to determine the cutting patiern al, az, e e ,am
which actually maximizes Mj, it is only necessary to keep a record
for each j of how the current maximum has been obtained and update
these records each time an improvement is made in (3) in the current

maximuams,

The modification that can be brought to the algorithm to
compute max {M,—-cj} rather than Mj, j=1,...,k, can now be
J
simply described. The modification is only in Step {3), which should

be replaced with;

(3') For those j, t <j <k, for which L. > x-(a) , let AM, = B (o)
- J= m J m

and let AM = max {O,AMj/j = t,...,k}. Redefine Mj to be

M+ AM, for j= 1,2,k

~-M,
J
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Identical Prices

In our knapsack discussion so far we have tried to speed up
the calculation by using a more rapid knapsack method. Another ap-
proach is to speed up through cutting down on the size of knapsack
problem that must be solved. We have been able to do this because of
the phenomenon of identical prices,

Clearly, identical prices, if they occur, can be exploited in
the knapsack problem. For if two lengths Ei and Ej, Ei < ﬁj, receive
identical linear programming prices, then the density bi/ﬁj_L associated
with Ei is greater, and since ﬁi is shorter, it can always be sub-
stituted for Ej in (1). So it is unnecessary in the maximization to
consider £, or the variable aj at all, Thus we need deal only with-
the smaller knaps_ack problem in which, among lengths having identical
prices, conly the shortest length is considered.

Normally in linear programming one would not expect
identical prices any more than one would expect duplication of the
values of the primal variables, Nevertheless, we see from Figure i,
which gives the size of the knapsack problem actually solved, that
such duplication occurs extensively. The behavior shown in the
figure is typical of a low waste problem. Duplication is even greater
in high waste problems. In our problem set identical prices reduced
the average size of the knapsack problems from 30 to 18. 2 variables.
What happens is that lengths that are nearly the same receive exactly

the same price.
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Although we do not really understand this phenomenon, we
will advance a rather unsatisfactory partial explanation. Consider a
stage in the linear programming calculation at which the average
waste per roll is still two or three inches, This could be either early
in the calculation before a nearly optimal answer is reached, or at
any stage of a problem containing considerable irreducible waste.
Consider any cutting pattern in the basis and let us suppose it cuts

non~zZero guantities a, ,a.:.L of the lengths 4. ,f£. ,...,£, . If
1 1

1% 1 2 p
£! , etc. are lengths near the Ei . then, because of the available
i .
1 j
waste, the same pattern, but with the E]{ substituted for the Ei

] 3

will still fit in the knapsack. If the same price is given to the 125‘"
J
as to the 11’. , the new pattern will price out to zero just as the old

J
one did. This is consistent with its being in the basis and being used,

However poor the explanation, there is no doubt about the
reality of the phenomenon or of the substantial help it gives in cutting

down the calculation.

Test Problems

In the following sections, we will often have occasion fo
refer to our test problems. We had four series of test problems,

Series Al, AZ, A3 and A4, FKach series contained one 40 length, one
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35 length, one 30 length, one 25 length and cne 20 length problem. In
addition, one 50 length problem A5-1 was used in some experiments,
The results on number of pivots, running times (on the IBM 7094) and
final waste in the answer are given in Column A of Figure Z. These
results were obtained with the program containing the new knapsack
method, exploiting identicé.l prices, and using the various devices
mentioned below. In order to obtain computing times under usual
conditions, a cutting knife limitation, described in III below, was
imposed on these runs, The limitations for the Series Al to A5 are
respectively 7, B, 5, 9, and 7. Results when some of these devices
are omiited will be described in the appropriate sections,

Problem AZ2-3, a 30 length problem is exhibited in Figure 3,
together with its solution in order to give some idea of the range of
demand, range in the lengths demanded, etc. in the test probléms.
The test problems have been made up by amalgamating and selecting

from a class of paper industry problems,

Median Method

The whole purpose of the knapsack calculation is to find a
column representing a cutting pattern that will yleld an improvement;

in fact, by maximizing the knapsack calculation we find the column

that will yield the most improvement per unit increase in the associ-



ated variable xj {call this amount sj). However, this criterion pays

no attention at all to the question of how big x, will be when the pivot
]

step is completed, and the improvement in the objective function

depends on this as the improvement is the product x.s.. We have
3

found that much too often in our calculations a large Sj led only to a
small improvement, while a much smaller sj, but associated with a
large change in Xj’ led to a large improvement. Although it is com -~
putationally tedious to try and do anything about this in the general
case of linear programming, in our situation there is a simple inter-
pretation that leads to an intuitively obyvious method of improvement.
To see this we must observe that in our problems there is
often a very wide range of demand for the different lengths Ej (see
Exampie 1}). For simplicity, let us imagine that we can divide the
lengths into two groups, the high demand group and the low demand
group., Now, if in doing our knapsack calculation we pay no atiention
to this distinction (which is what we have described doing so far), we
are {with high probability) going to have some high and some low
demand lengths represented in the cutting pattern that is generated.
If the smallest demand among the lengths represented in the cutting
pattern is Ni’ then we are almost certain to have the increase in Xj
bounded by Ni, for otherwise, by the use of this one cutting pattern alone, we

will already be producing more of this ilength than is actually needed.
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Consequently, any cufting pattern involving low demand lengths can
only be used a small number of times, xj must be small, and so can-
not affect the objective function very strongly. The remedy is of

course to actually divide the lengths into a high demand and a low

demand group and sometimes do a knapsack problem restricted to the
high demand group. In this way, the cutting pattern generated will at
least have the possibility of being used a large number of times.

What we have done is to divide demands into two groups, those having
a demand above the median demand going into one group, those having
a demand below the median demand going into the other. Then at
every second pivot step, we confine the knapsack calculation to the
variables of the high demand group. (If the confined knapsack prob-
lems could yield no improvement, we would revert to the large one.)
The value of this device, which yielded a considerable improvement
both on running time and on number of pivots, can be seen by compar-
ing Columns A and B of Figure 2. On problems with long running
times, it is of considerable assistance; on problems that run quickly
anyway it does little, as one would expect from the foregoing explan~

ation. Its performance on Series A4 is particularly striking.
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Maximization

One obvious question to ask is if it is in fact worth while to
go through the maximization procedure on the knapsack problem, or
whether it is better to take the first improving column encountered in
the knapsack algorithm and use that instead. One would certainly
expect to have to take more simplex steps if this last procedure were

adopted, but since most of the time spent in the calculation is spent

doing the knapsack problem and not doing the Gaussian elimination
step, a substantial saving in time in the knapsack subroutine could

easily overbalance this. With this in mind, we omitted the maximiz~

atjon with the result shown in Column C of Figure 2, These compu-
tations seem o show a clear advantage in using the maximization

algorithm. The advantage in reducing the number of pivots is guite

large; the saving in running time is not as striking but still consider-

able, again especially on the longer run problems.

A Connection with Integer Programming

A further experimeaent was tried in which neither maximization nor
the median device was used., This was done not so much in the hope of obtaining
a faster calculation (this seemed unlikely), but rather to explore what
happens in a linear programming situation involving millions of

columns when an improving column is chosen more or less blindly.
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This is almost identical with the situation encountered in integer pro-
gramming. In integer programming [ 2 ][ 3], a dual simplex
method is used and there is a vast array of unwritten inequalities in
the problem. (These are the extra inegualities that reduce the
feasible space to the convex hull of the feasible lattice points.) No
maximization over the unwritten inequalities (rows) is possible, nor
is there anything corresponding to the median method., Since the
dual method is used, rows play the same role that columns do in a
primal method. Now, for many types of integer programming prob-
lems, there is a problem sensitivity unknown in ordinary linear
programming. Some problems run easily, others drone on and on.
We were interested in seeing if this was a character:istic of integer
programming or whether it could occur in any linear programming
situation invelving a blind choice from a vast list of rows or columns,
The data we obtained did in fact show a sensitivity similar

to integer programming data., (Figure 2, Column D.) The Al series

averaged over 20 m pivets for an m rowed problem against a con-
ventional simplex estimate of 2,5 m. The AZ series averaged less
than 4. 4 m, while the A4 series was given an average of over 27 m

pivots and only one problem of the five was complete at that point.

Also problem A5-1, a fifty-row problem, required 2,123 pivot steps

to complete.
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These results suggest that the peculiarities of integer
programming are not special to it but that they are to be expected in
large linear programming problems where there is no effective
method of choosing among the multitude of rows in the dual simplex

case or among columns in the primal case.

Cautoff
Finally, we found that the calculation tended to slow down
toward the end. Due to the large number of patterns that are implicitly
there to be considered, there can be a very long tail to the calculation
in which slightly better combinations keep being introduced but yield
very little improvement. This is something we have encountered only in
low waste problems; those with intrinsically high waste seem to stop
gquite quickly. This stage of the calculation also tends to take a long
time per pivot, for with the low remaining waste, most of the identical
prices have disappeared, and the knapsack problems to be solved are
full size. Both the low rate of decrease of waste and the growth of the
knapsack problems are shown for a typical problem in Figure 1.
Consequently, it seemed worthwhile to develop a cutoff which wouldr

halt the calculation when it became too slow and unrewarding. The

criterion used was to stop the calculation if ten pivot steps did not
produce 1/10 % reduction in waste, This criterion, which seems to

give very good results, was used in the experiment whose data appear
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in Figure 4. The reduction in running time obtained was quite striking;

the whole Al series of five problems took a total of 2. 28 minutes

instead of 13. 95 minutes with an increase in waste that averaged . 26%.
We now turn to the formulation changes required by the

special circumstances of the paper industry.
111, EXTENSIONS OF THE FORMUIL.ATION

Cutting Knife Limitation

Often the number of pieces into which a roll can be cut is
limited by the fact there are only some fixed number R of cutting
knives available {six is a typical number). This fact must be taken
into account in the knapsack subroutine so that patterns involving more
than R cuts will not be considered. The modification of the knapsack
routine for the purpose is simple and is as follows: the components
of the vectors (oz)m calculated in Steps (2) and (7) of the knapsack
algorithm are calculated as indicated in the order a_,a

173

except that after having calculated a  one determines whether the
r

T

inequality Z a, < R is satisfied. If it is, one calculates a +1’ if it
.= r
1ri -

ig not and a,i > R, one reduces a by the amount T a. -R, and
i=1 r i=] 1

stops.
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Machine Balance Problem

In this problem, we envisage several paper machines of
different lengths being available to meet the demand. However, the
demands cannot all go on one machine, even if it gives the least
paper trim, since its production during the given time period is
limited. Also, sometimes one may want to balance the production
from the available machines so that one machine does not stand idly
by while the others run, etc. These problems are all essentially
alike and can be handled by slight variations on the previous formu-~
lation. We first consider the problem where the production (number
of rolls) from each machine is limited. If there are P machines,
with the rth machine capable of producing Qr rolls of its length Lr‘
the linear programming problem becomes

min X ¢ x,
sr r J,

subject to X, a . >N,
Jor i, j, v — i

and X, < .
JJsv— T

When Cr is the cost (or length) of a roll from the rth machine,

Xj . is the number of times the jth pattern is used on the rth
machine, and a, j is the number of rolls of length £, produced by
EIN X 1

this activity. This is a matrix, which, with one row for the objective
function, has (m + P + 1} rows and, hence, a (m+ P+ 1)x{(m+ P + 1)

inverse. Its general appearance is as follows:
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Cl C}. PRV Cl Czca s e (".'.2 (:3(3,3 2 o C3

>

A A, By :
>N
il m

PR <
11 1 <9
11 ... 1 <Q,
L e e

The blocks Ar contain all cutting patterns that fit the length
Lr° The top row of the (m + ¥ + P x{m 4+ P + 1} inverse now includes
prices for the production limitation inequaii‘ties, as well as for the
ordered lengths, Again, we try to find a column whose scalar product
with this inverse top row will be positive. For columns taken from
the rth block looking for this column is the problem

maximize

“Ziﬂiai-é-?[k

“x
(3)

subject to Zii a, < Lk,

where T, is the price associated with the kth production lirmitation

k
and the ayreees a are nonnegative integers,

The desired column is produced bv taking the max over k of
the result obtained from P different knapsack problems (3). Once

the column is produced, the calculation proceeds exactly as in the

simple stock cutting case.
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Machine balance; i. e., equality between the amounts used by
various machines, or lower as well as upper bounds on the production

used from each machine, can be dealt with in the same manner.

Customer Tolerances

One of the special features of the paper industry is the fact
that customer orders often do not have to be filled exactly. If a
customer orders a guantity Ni of length Li, he will accept a quantity
within a certain range of Ni° A range of plus or minus 5% is very
cominon. With the quantities to be produced confined to ranges rather
than to exact amounts, the objective function must be changed, and
generally ends up being a rational function. We will follow through
the case where all cutting patterns {rolls) are given the same cost,
the case where roll costs are different is no more difficult, and we
will see that the column generating method can still be carried out
and still involves a knapsack problem.

Although all rolls have the same cost, it is no longer ade-
quate to take total waste as the objective function to be minimized,
for generally total waste will go up as larger quantities are produced
{to take advantage of the range inequalities), even though the per-
centage waste (which measures the efficiency of the operation) may go
down. Consequently, we must introduce percentage waste which is

no longer a linear, but rather a rational, objective function. Also,
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we must introduce a waste explicitly into the cutting pattern vector.
Formerly, we could assign the length of a roll as the cost of a cutting
pattern, and by minimizing the total number of rolls required to fill
the orders we automatically minimized waste. This is no longer
possible when we deal with ranges and with percentage waste. Instead,

we must give to the jth cutting pattern a waste wj, where
(4) w, =L~ Zoa. [l

Waste, which will enter into the new objective function, is now
inearly dependent on the entries in the cuiting pattern. In spite of
these changes, we will see that our methods still go through.

If the amount produced of length Ei is to be between Nil

and N (Ni’ < N;‘ }» the new formulation is in the notation of (1]
i

zl WK
minimize L = = el
z K,
2 j
subject to Z. a, .x, -8, = N! all 1
ij ] i i
and 0 <s, <{N'"-N,
w1 i

As far as the equations are concerned, this formulation is no
different from the earlier one except for the presence of an upper
bound Ni' - Ni on s.. As methods of handling upper bounds without
explicitly writing them are well known [ 5 ], we will not discuss this

here and will pay no further attention to the upper bound restriction,



We now turn to the rational objective function.

The rational objective function in linear programming seems
to be of some current interest. The method described here, which
we show lends itself to a column generating technique, seems to be
closest to that of Martos [7,8]. For other approaches, see Charnes
and Cooper [9], Dinkelbach [10] and Dorn [31],

it is easy to show by direct differentiation that a rational
function will have the property of uniformly increasing or decreasing
along any line not passing through a point for which the denominator
vanishes, Mofe precisely, if at a point P the derivative of a rational
function in the direction L through P is v, then the derivative in
the direction I, at any point of L will have the same va‘lue v
unless L passes through a point of denominator zero.

It follows that the ordinary simplex method can be used to
maximize a rational function (in a domain where the denominator
doesn't vanish) for all we need to do is go from vertex to vertex in
the usual way, inquiring at each vertex if any of the lines (edges)
leading from it to a neighbor is a direction which improves the ob-
jective function. If no line yields any improvement, the calculation
is finished. Only the testing for lines of improvement is different,
but we will see that in our case it can again be reduced to a knapsack

calculation,
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To prepare for the calculation, we adjoin to the matrix
representing the equations

Z.a. %, ~8, = N!
i 1] ) ] 1

two new rows and two unit columns representing two new auxiliary

objective functions z and 250

Now the column corresponding to the jth cutting pattern will have an
entry ~w, in the top row and a -1 in the second row and the usual
entries ai,j in the remaining rows,

At any point in the calculation we will have a {m+ 2) x (m + 2)
basis inverse whose top row will be of the form (1,0,{I'} with I' an
m-~vector. The scalar product of this row with the column c}. of the

dzy
jth cutting pattern gives as usual - T This is the negative of the
rate of change of 2z, along the edge that would be traced out if xj

were increased, but all other nonbasic variables kept zero. Similarly,

2 .
the second row is of the form (0,1,7T) and gives as its scalar product
dz»
T dx,
J

<

with ¢,
J



27,

“1
Since § = A
2

{5) ag i J
dx, 2

I . 2 i
I 0, s e Q% o
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z
Z
1 2 i
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Substituting the expression {4) for wj we get

at |

1 1
e PRI R USTE
“2

IT_Z-:Z
i 2 R

1
J

If this expression is negative, increasing x, will decrease
]

the objective function, otherwise not. Setting

k.: L ZZle
d 0 o= n“ .z -
an i (2,00 - 2,010~ 4,)

. . . d
we see that selecting the column that gives the most negative /1
X,
J
is the problem of minimizing over j the expression

k«Z,ﬁ.a,..
i1 4]

Since there is a column for any cutting pattern, this is equivalent to
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maximizing over nonnegative integer a_ the expression
i

=, a,
i i

subject to Zai Ei < Li.

So column choice is again a knapsack problem. The only
difference from our earlier calculation is that the Hi now involved
are a compound O.f the prices of the two auxiliary objective functions
and of their current values Zl and za,

Checking the slack variables for a possible improvement is

done using (5} directly and presents no difficulties,

IV, EXPERIMENTS

A. Effect of Stock Liength, The effect of parent stock length

on waste is a question of considerable practical importance since
companies having cutting problems can sometimes control the parent
length either through ordering rolls or by deciding upon having certain
size paper machines,

We had originally conjectured that in a larger problem with
a great variety of lengths demanded and a tremendous list of cutting
patterns available, that almost any large stock size would yield about
the same percentage waste. This, however, was not the case for the
probiem chosen for our experiment. This problem was run repeatedly

for stock lengths ranging from 168 to 260 inches, with the results
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shown in Figure 5. The percentage waste varied rapidly with stock
length, showed no particular pattern, and was sensitive to changes as
small as one inch in the parent stock size, In changing the parent
stock size from 216 inches to 217 inches, the waste dropped 1/2%.

In changing from 215 inches to 216 inches, the waste dropped 1%. In
changing from 186 inches to 187 inches, the waste dropped almost 4%,
Although there was a general downward tendency with increasing stock
length, there are many peaks. The waste minimum attained at 217
inches was not matched again beforel the 255 inch stock size.

B. Use of Multiple Stock Lengths., With the demonstrated

sensitivity to parent stock length indicating that it is probably difficult
to pick a good standard size in advance of the orders being known, one
way out Wouid seem to be to use a number of different parent lengths
in the calculation. The high waste series, problems AZ-1 through
AZ-5, were rerun with 1,2, 3, and then 4 parent lengths available,

The results can be seen in Figure g, In all cases, the waste was
sharply reduced. In fact, we have no problems that give high waste
on multiple parent stock lengths. Although human planners find the
multiple stock problem much more difficult than the single stock, the

machine computation time (Figure 6) was only very slightly increased



1 .
when compared with the single stock calculation.” This suggests that

the use of multiple parent lengths, when it is possible to have them
available, may be a very good way to cut down waste.

C. Cutting Knife Limitation. In order to see if waste was

greatly affected by the number of cutting knives, the problems were
rerun with an unrestricted number of knives (see Figure 7). This
restricted number available for the data of Figure 2 were 7 for Al,

5 for A2, 5 for A3, 9 for A4 and 7 for AB, Although cutting patterns
using more knives did show up in the solutions, the final waste
figures were unchanged with the exception of A3-5 where there was a

drastic reduction.

CONCLUSION
The methods described here have enabled us to speed up the
process described in [1] to the point where it has become an effective

procedure for real problems. Modifications in the formulation have
also allowed us to take into account many special factors of the paper-
industry situation. Experiments have shown the usefulness of mul-

tiple parent stock widths, the sensitivity of problems to the exact

The times recorded here for multiple stock lengths can probably
be improved upon, since the 7094 program did not use the knap-
sack algorithm for multiple stock lengths described carlier, but
rather the following: after M) is determined, the calculation of
M, is begun with M, set initially to (M - Cl)’“:& in Step {(2)
rather than to ¢y, and similarly with M3,... ’Mk The column
giving the largest improvement is then chosen.
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single parent length available, and the insensitivity in most cases to

the usual sort of cuiting knife limitation.
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A B C . D
No Max. No Max,
Max. Knapsack {{Max. Kgi./l gsack {{On Knapaack On Knapaack
No. of Medizn Method || Median Method iiMedian Methodil Median Mehod
Ordered % Time Time Time Time
Data |Lengths | Waste || Pivota| (Min) |iPivots (Min) ||Pivets | (Min) [| Pivots! {Min)
Al -1 40 3.0474 148 1.34 194 2,64 333 1. 47 541 2. 07
~d 35 0. 0184 233 4. 50 347 9. 24 560 6. 30 1104 §11.03
-3 30 0. 0616 161 6. 32 171 6.75 418 7.19 586 7.84
=4 25 0. 6227 101 0. 47 135 0.93 177 g, 62 || 545 1. 581
=5 20 0. 0539 90 1,32 11l 2,43 214 2.25 370 3.08
Ad-] 40 4, 7232 110 0.52 167 0, 62 122 0, 50 316 1.06
-2 35 7.8219 20 0. 31 76 0.28 93 0. 30 126 0. 42
-3 30 8. 6921 a7 0.25 71 0.22 a7 0.24 111 0.25
~4 25 9. 6407 47 0.14 73 0.15 64 0.14 76 0.17
-5 20 5.1748 2% 0.09 19 0. 06 28 0. o7 28 0. 08
Al 40 5.0845 57 0, 33 73 Q. 32 66 0,33 80 0,52
-2 35 0. 4825 14] 3. %2 157 2. 34 348 3,35 450 | 3.83
«3 30 0.4114 83 0.59 144 .78 371 1.97 518 1.69
4 25 0.1484 90 0.54 25 G.58 259 0. 81 380G 0.92
=5 at 2. 7297 24 0.1e 27 ¢, 07 173 0. 30 476 0.93
Ad~1 40 0. 3869 138 5.53 210 41.58% 637 10, 65 27 15, BT*
-2 35 0. 4326 125 4. 20 2¢8 7.79 648 4. 58% 878 17.75%
-3 30 0. 4494 gz 1.24 140 4,52 489 3,62 817 ]19.23=
-4 25 0.1415 28 2. 51 141 6.30 || 415 3. 66 878 9.19
-5 20 0. 5499 67 1.74 77 1.57 536 5.13 786 [18.10%
A5-1 50 0. 4862 291 14,51 540 16; 97 % 980 1Z,51% ({2123 19, 87

Figure 2 - Data on runs to test methods of computation. * indicates a
problem that was not run to completion. The percentage waste
for these runs are given in the supplemental table,
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PERCENT WASTE

Variation of Percentage Waste and Knapsack
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Supplemental Table of % Waste

for Incomplete Runs

Data B C D
Ad-1 0. 3918 0. 3921 0.9355
-2 0.4353 1.0887
-3 0. 9747
-5 1.1868
AB~1 0. 5459 0. 4927
Figure 2 - (Supplement)




Stock Liength
418.00000

Cost
218, 00000

Order Length

31.
70,
68.
67.
66.
66.
64.
63.
63.
60,
56.
56.
52.
52.
51.
51.
50.
49.
46,
45,
44,
41,
38,
38,
35,
33,
33,
32.
31.
21,

00000
00060
25000
50000
75000
00000
00000
75000
0go00
00000
25000
00000
50000
00000
75000
006000
00000
50000
50000
50000
50000
45000
50000
¢o000
00000
50000
0¢000
00000
50000
50000

Figure 3 -

Cuiting I.imit

Quantitz

4415,
291.
4765,
4827,
90.
691.
263
141.
133,
390.
459,
343,
766,
58.

T 27736,

212,
720,
133,
529.
185.
94.
393,
47.
95,
411.
36.
273,
56.
171.
140,

00000
00600
00000
00000
00000
00000

. 00000

00000
00000
00000
00000
00000
00000
00000
00000
00000
00000
QG000
23000
00000
00400
00000
00000
00000
00000
00000
00000
a0000
00000
00000

20. 00000

Typical Test Problem

{Sheet 1)
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Na, of Times No. of l.engths Ordered
Cutting Pattern Used to be Cut Liengths
Z382.50000 i 81. 00000
2 68. 25000

302. 55552 2 81.00000
1 56. 00000

36. 00000 1 §1.00000

2 51.75000

1 33.50000

1194, 38860 1 81. 00000
' 2 67. 506000
94.99999 1 67.50000

1 60. 00000

1 54.50000

i 38. 00000

141.00000 1 67. 50000
1 63.75000

1 51.75000

1 35, 00000

86. 40738 1 67.50000

I3 66. 00000

I 63. 00000

1 21.50000

T7. 48144 1 60. 00000

3 52.50000

26, 40740 2 67.50000

13 51. 00000

1 31. 50000

529. 00000 i 67.50000
: 2 51.75000

i 46, 50000

133. 00000 1 67. 50000
I 66. 00000

1 49. 50000

1 35, 00000

Figure 3 ~ Typical Test Problem
(Sheet 2}
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No. of Times No. of L.engths Ordered
Cutting Pattern Used to be Cut Lengths
19.59259 1 63. 00000
2 51.75000

1 51. 00000

56. 00000 2 67.50000
1 51. 00000

I 32. 00000

144. 24070 2 56.25000
2 52. 50000

145.25922 1 67. 50000
2 51.75000

1 45. 50000

5. 50000 1 67, 50000
52.00000

1 45, 50000

272.99999 2 67.50000
1 50, 00000

1 33, 00000

94. 00000 i 70. 00000
P 51.75000

1 44, 50000

53.59262 3 51.75000
X | 41.25000

I 21.50000

34, 24078 L 67.50000
2 52.50000

I 45, 50000

170, 51850 1 60, 00000
1 56.25000

1 51. 75000

1 50. 00000

Figure 3 ~ Typical Test Problem
(Sheet 3)
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No. of Times No, of Liengths Ordered
Cutting Pattern Used to be Cut Lengths
169.70368 2 67.50000
2 41.25000

109.99999 4 66. 00000
i 51. 00000

1 35. 00000

27,00001 1 67. 50000
1 63. 00000

1 52.50000

1 35.00000

90. 80000 1 67.50000
1 66.75000

i 51.75000

i 31.50000

13.48148 3 56. 00000
1 56. 00000

263. 00000 1 64. 00000
51.75000

1 50. 00000

54, 59259 1 67.50000
1 66. 00000

1 52.50000

1 31.50000

197. 00000 1 81. 00000
I 70. 00000

1 66. 00000

47. 00001 1 67.50000
1 60. 00000

1 52. 00000

1 38. 50000

Figure 3 - Typical Test Problem
(Sheet 4)



Decrease in Increase in Decrease
Data No. of Pivots % Waste in Time
Al-l 15 0. 0470 0.25
P 155 0. 3424 4. 08
3 110 0.4340 6. 00
4 43 0. 3165 0. 32
5 43 0.1493 1.02
A1 19 0.1673 0.18
2 3 0.0181 0.405
3 0 0 0
4 0 Y 0
5 0 G 0
A3-1 3 0. 0077 0,08
2 T4 0.1723 2,92
3 22 0.1022 0.19
4 25 0. 0961 0.17
5 0 0 0
Ad-1 72 0.1877 2.12
2 83 0. 4581 3. 86
3 42 0.1276 0.53
4 32 0. 0725 0. 45
5 25 0. 0622 0.70
AB-] 168 0.6356 13,30

Figure 4 -~ Cutoff Device

(Stop when improvement over 10 pivots is less than 1/10%. )
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No, of Completed

Data | Ordered Stock at Time

Used | Liengths l.engths Used Pivot No. | {Mins, ) | % Waste

AZ-] 40 168 110 0.52 4. 7232
168, 145 130 0. 68 1.5655
168, 145, 124 132 0.76 1. 0650
168, 145, 140, 124 118 0.75 0.7857

AZ-2 35 168 g0 0. 31 7.8219
168, 145 93 0. 40 3. 6826
168, 145, 124 88 0. 45 3.0969
168, 145, 140, 124 91 0. 52 Z2.5841

AZ-3 30 168 87 0. 24 8. 6921
168, 145 94 0, 37 3.1580
168, 145, 124 85 0. 40 2.7676
168, 145, 140, 124 80 0. 44 1.8374

AZ -4 25 168 ) 47 0.14 9. 6407
168, 145 60 0.19 2. 8297
168, 145, 124 59 0, 22 2. 5589
168, 145, 140, 124 67 G. 29 1. 2289

Al-5 20 168 21 0. 09 5.1748
168, 145 40 0.15 1.4257
168, 145, 124 38 0. 22 1.2257
168, 145, 140, 124 4z 0.19 0. 9130

Figure 6 - Variation of Waste with Number of Stock Lengths
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Data No. %o Time
Al-1 160 3.0474 3. 32
-2 213 0.0184 5,03
=3 184 0, 0616 6. 88
o dh 75 0. 6227 0. 30
-5 80 0. 0539 1.50
A1 110 4, 7232 0. 44
-2 84 7.8219 0.26
-3 83 8. 6921 0.22
w4 47 9. 6407 .10
-5 21 5.1748 g. 04
Ad-1 36 5. 0845 g.20
-2 108 0. 4825 2.48
-3 T4 0.2114 0. 35
o 4 62 0. 1484 0,17
-5 46 0. 0865 0.21
Ag-1 134 0. 3869 3.98
- 122 0. 4326 1.43
-3 71 0. 4494 0.54
wdk 114 0.1415 0.89
-5 79 0. 5490 0. 40
A5~ 297 0. 4862 9. 62

Figure 7 -~ Waste Without

Cutting Knife Limitation



A B C D

No Max. No Max,
Maxj Knapsack I\/.ia,;sct K sack [iOn K.na,psack On Kri\al_. sack
No. of Median Method [[Median Method || Median Method|| Median Meho
Ordered % Time Time Time Time
Data |Lengths | Waste || Pivots | {Min) ||Pivots | (Min) [iPivots | (Min} | Pivots| (Min)
Al -1 40 3, 0474 148 1.34 194 2. 64 333 1. 47 541 2,07
-2 35 0. 0184 233 4. 50 347 9.24 560 6. 30 1104 (11, 0:
=3 30 0,0616 161 6. 32 171 6,75 418 7.19 586 7. B«
~4 25 0.6227 101 0. 47 135 0.93 177 0. 62 545 1.51
-5 20 0, 0539 g0 1.32 111 2.23 214 2.25 370 3, 0¢
A2 -] 40 4, 7232 110 0.52 167 0. 62 122 0.50 316 1.6¢
ey 35 7.8219 90 g. 31 76 0.28 93 0. 30 126 0, 4z
-3 30 8. 6921 87 0. 25 71 0.22 87 0.24 111 0. 2k
- 25 9. 6407 47 0.14 73 0.15 64 0.14 76 0.17
-5 20 5.1748 21 0. 09 19 0. 06 28 0. 07 28 0. 0¢
A3l 40 5. 0845 57 0. 33 73 0. 32 66 0,33 80 0.52
-2 35 0. 4825 141 3,22 157 2. 34 348 3. 35 450 3. 8:
-3 30 0.2114 83 0.59 124 0.78 371 1.97 518 1. 6¢
~4 25 (0.1484 90 0. 54 95 0.58 259 0. 81 380 0.9z
«5 20 4.7297 24 0.12 27 0. 07 173 0. 30 476 G.9:
Ad-1 40 0. 3869 138 5,53 210 |41.58% 637 10. 65% 727 15,87
A 35 0. 4326 125 4.20 208 7.79 648 4, 58% 8§78 17.7¢
-3 30 0. 4494 92 1.24 140 4, 52 489 3,62 817 19.2:
- 25 0.1415 98 2.51 141 6. 30 415 3. 66 873 g.1¢
-5 20 0.5490 67 1.74 77 1.57 536 5.13 786 [18.1¢C
a5-1| 50 |o.4a862 { 291 [14.581 || 540 [16.97% |l 980 |12.51% 2123 |19, 87




VARIATION OF PERCENTAGE WASTE
AND KNAPSACK SIZE WITH
NUMBER OF PIVOTS EXECUTED

PERCENT WASTE

x = waste, (X) = size
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PERCENT WASTE TENTHS

VARIATION OF PERCENTAGE WASTE
AND KNAPSACK SIZE WITH
NUMBER OF PIVOTS EXECUTED

x = waste, = size
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