
filling in missing pieces of the value chain, or by
strategic considerations to gain access to new knowl-
edge, network ties become admission tickets to high-
velocity races. Connectivity to an interorganizational
network and competence at managing collaborations
have becomekey drivers of the new logic of organizing.

The growth of new organizational forms is driven
by divergent factors and pursued in a different manner
by a wide array of organizations. Larger organizations
are making their boundaries more permeable in order
to procure key components or critical R&D. Sub-
contracting and outsourcing are steps taken to reduce
fixed overheads. Organizations cooperate with os-
tensible competitors in order to take on projects too
risky or challenging for one entity to pursue alone.
Clusters of small organizations collaborate, cohering
into a production network to create what no single
small entity could on its own. In sum, organizations
are coming to resemble a network of treaties because
these multistranded relationships encourage learning
from a broad array of collaborators and promote
experimentation with new methods, while at the same
time reducing the cost of expensive commitments.
These developments do not mean that competition is
rendered moot, instead the success of organizations is
linked to the nature and depth of their ties to
organizations in diverse fields.

See also: Authority: Delegation; Bureaucracy and
Bureaucratization; Management: General; Network
Analysis; Organization: Overview; Organizational
Decision Making; Organizations: Authority and
Power; Organizations, Sociology of
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Bounded and Costly Rationality

Some kind of model of rational decision making is at
the base of most current economic analysis, especially
in microeconomics and the economics of organization.
Such models typically assume that economic decision
makers have sufficient cognitive capacities to solve the
problems they face, and have preferences and beliefs
that are consistent in a rather strong sense. In
particular, it is typically assumed that decision makers
(a) do not make logical errors, and can solve any
relevant mathematical problems; (b) can process all
available information in the time required (including
computation, storage, and retrieval); and (c) have an
adequate understanding of the decision problems they
face, which includes having precise beliefs about the
relevant uncertainties and precise preferences among
the various consequences of their actions. However,
this model has been criticized as inadequate from both
normative and descriptive viewpoints. The various
strands of this critical movement form the topic known
as ‘bounded rationality.’ This article sketches the
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historical roots and some current developments of this
movement, distinguishing between attempts to extend
the standard models and the need for more radical
departures.

Unease with mainstream models of homo econ-
omicus had already been voiced by J. M. Clark at the
beginning of the twentieth century, but the work of
Jacob Marschak and Herbert Simon provided the
stimuli for a more intense level of activity. The term
‘bounded rationality’ was coined by Simon: ‘Theories
that incorporate constraints on the information-
processing capabilities of the actor may be called
theories of bounded rationality’ (Simon 1972, p. 162).
(For a review of empirical evidence of bounded
rationality, see Conlisk 1996.)

The current mainstream theory of rational indi-
vidual decision making in the face of uncertainty was
elaborated by Savage (1954). This will here be called
the ‘Savage Paradigm,’ and will be the main starting
point of this article. Extensions of this theory to
describe rational strategic behavior in multiperson
situations are the subject of the theory of games (see
below). The notion of optimizing is central to all these
models of rationality.

The general concept of bounded rationality covers
the two rather different approaches of Marschak and
Simon. Marschak emphasized that the Savage Para-
digm could be extended to take account of costs and
constraints associated with information acquisition
and processing in organizations, without abandoning
the notion of optimizing behavior. This approach will
here be called ‘costly rationality,’ and is elaborated in
Sect. 4.

Simonwasmore concernedwith behavior that could
not so readily be interpreted, if at all, as optimizing.
However, in some of his publications he apparently
considered bounded rationality to be a broader con-
cept, subsuming costly rationality as a particular case.
The narrower concept will here be called ‘truly
bounded rationality’ (Sect. 5).

1. Uncertainty

Discussions of rational decision making—unbounded
and otherwise—have been closely tied to uncertainty.
The very beginnings of formal probability theory were
in part stimulated by questions of how to act rationally
in playing games of chance with cards and dice.
Duringthefirsthalfofthetwentiethcenturyanumberof
alternative views were developed concerning the
nature of uncertainty, the possibly of different kinds of
uncertainty, and whether, or in what circumstances, it
could be measured (Arrow 1951, Savage 1954, Chap.
4). One could be uncertain about natural events, the
consequences of action, the laws of nature, or the truth
of mathematical propositions. There was general (but
not universal) agreement that, if uncertainty could be
measured (quantified), then that quantification should
obey the mathematical laws of probability. However,

the ‘frequentist school’ reserved the legitimacy of
probabilistic reasoning for ‘experiments’ (planned or
naturally occurring) that were repeated indefinitely
under identical conditions. The ‘personalist school,’
which included a diverse set of methodologies, argued
that the concept of probability was applicable to
events outside the frequentist realm. Some personalists
went so far as to deny that the frequentist view could
be applied meaningfully to any events at all, i.e., all
probability judgments were ‘personal.’ (See the
accounts of Arrow 1951 and Savage 1954 of the work
of Ramsey, Keynes, Jeffries, Carnap, and De Finetti.
In some sense, the personalist view might also be
ascribed to earlier authors, such as Bayes and
Laplace.) The personalist view was given a solid
foundation by Savage (1954).

Central to the development of thinking about
uncertainty was the simple idea that uncertainty about
the consequences of an action could (or should) be
traced to uncertainty about the ‘state of the world’ in
which the action would be taken. An essential feature
of the concept of the ‘state of the world’ is that it is
beyond the control of the decision maker in question.
A further clarification was provided by the theory of
games (put forward by J. von Neumann and O.
Morgenstern in 1944, and further elaborated by J.
Nash, J. Harsanyi, R. Selten, and others). In multi-
person decision-making situations inwhich the partici-
pants have conflicting goals, this theory distinguishes
between two aspects of the state of the world from the
point of view of any single decision maker, namely (a)
the ‘state of Nature,’ which is beyond the control of
any of the persons involved; and (b) the actions of the
other persons, the latter being called ‘strategic un-
certainty.’ (For material on the theory of games,
especially noncooperative games, see Game Theory;
Game Theory: Noncooperati�e Games; Game Theory
and its Relation to Bayesian Theory)

The remainder of this article concentrates on a
critique of the theory of rational behavior as it is
applied to single-person decision making, or to multi-
person situations in which the persons do not have
conflicting goals. (For discussions of bounded ration-
ality in a game-theory context, see Rubinstein 1998
and Radner 1997.)

2. The Sa�age Paradigm

A sketch of the Savage Paradigm is needed here in
order to understand the notions of costly and bounded
rationality. (For a systematic treatment, see Utility
and Subjecti�e Probability: Contemporary Theories;
Utility and Subjecti�e Probability: Empirical Studies.)
The essential building blocks of the model are (a) a set
of alternative states of the world, or simply states,
which are beyond the decision-maker’s control; (b) a
set of alternative actions available to the decision
maker, or as Savage calls them, ‘acts’; and (c) a set of
alternative consequences. An act determines which
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consequence will be realized in each state (of the
world). Hence a parsimonious way to think about an
act is that it is a function from states to con-
sequences.

The decision maker (DM) is assumed to have
preferences among acts. These preferences reflect both
the DM’s beliefs about the relative likelihood of the
different states, and the DM’s tastes with regard to
consequences. A few axioms about the independence
of beliefs from consequences enable one to impute to
the DM two scales: (a) a probability measure on the set
of states, reflecting the DM’s beliefs; and (b) a utility
scale on the set of consequences, reflecting the DM’s
tastes. Using these two scales, one can calculate an
expected utility for each act, in the usual way, since an
act associates a consequence with each state. Thus, for
each state, one calculates the product of its probability
times the utility of the associated consequence, and
then adds all of the products to obtain the expected
utility of the act. One proves that expected utility
represents the DM’s preferences among acts in the
following sense: the DM prefers one act to another if
and only if the first act has a higher expected utility.
(This theorem is sometimes called the expected utility
hypothesis.) The rational DM is assumed (or advised)
to choose an act that is most preferred among the
available ones, i.e., has the highest expected utility; this
is the assumption of optimization.

The simplicity of this formulation hides a wealth of
possible interpretations and potential complexities.
First, the axioms of the theory enable the DM to infer
preferences among complicated acts from those
among simpler ones. Nevertheless, the required
computations may be quite onerous, even with the aid
of a computer.

Second, if the decision problem has any dynamic
aspects, then states can be quite complex. In fact, a full
description of any particular state will typically require
a full description of the entire history of those features
of the DM’s environment that are relevant to the
decision problem at hand.

Third, the description of the set of available acts
reveals—if only implicitly—the opportunities for the
DM to acquire information about the state of the
world and react to it. The laws of conditional
probability then determine how the DM should learn
from observation and experience. In fact, this is what
gives the Savage Paradigm its real ‘bite.’ An act that
describes how the DM acquires information and reacts
to it dynamically is sometimes called a strategy (plan,
policy). In a model of a sequential decision problem,
the space of available strategies can, of course, be
enormous and complex. This observation will be a
dominant motif in what follows.

(The formula for learning from observation is
sometimes called ‘Bayes’s theorem,’ after the
eighteenth-century author Reverend Thomas Bayes.
Hence, the method of inference prescribed by the
Savage Paradigm is called ‘Bayesian learning.’)

3. The Simon Critique

As Herbert Simon emphasized in his work, the
cognitive activities required by the Savage Paradigm
(and its related precursors) are far beyond the capa-
bilities of human decision makers, or even modern
human�computer systems, except with regard to the
simplest decision problems. This led Simon and his
colleagues (especially at Carnegie-Mellon University)
to investigate models of human decision making that
are more realistic from the point of view of cognitive
demands, and yet do not entirely abandon the notion
of rationality. This research also had an impact on the
emerging field of artificial intelligence (see Simon 1972,
1981, and references therein). Savage himself
was aware of the problem of bounded rationality, but
he nevertheless felt that his model was a useful one for
thinking about rational decision making (Savage 1954,
pp. 16, 17).

4. Costly Rationality and the Extended Sa�age
Paradigm

As just sketched in the previous section, the Savage
Paradigm does not appear to take account explicitly of
the costs of decision making. However, nothing
prevents the DM from incorporating into the de-
scription of the consequences of an act the costs—in
terms of resources used—of implementing the cor-
responding actions. The costly activities involved in
decision making include:

observation and experimentation;
information processing, i.e., computation;
memory; and
communication.

The last category may be important when the decision-
making process is undertaken by a team of individuals.

If the resources used by these decision-making
activities are limited, then those limits may impose
binding constraints on the activities themselves—
constraints that must be taken into account in the
DM’s optimization problem. If the constraints are on
the rate of resource use per unit time, then more
extensive decision-making activities may cause delays
in the implementation of the eventual decisions. To the
extent that a delay lowers the effectiveness of a decision
(e.g., by making it more obsolete), one may think of
delay as an ‘indirect cost.’ Extending the Savage
Paradigm to incorporate the costs of decision making
may in some cases be natural, and in other cases
problematic. The first class of cases is here called
‘costly rationality.’

The notion that observation is costly was implicit in
theNeyman–Pearson theory of hypothesis testing, and
was made explicit by Abraham Wald in his pioneering
studies of sequential statistical procedures (see Wald
1950 for an influential codification of his general
approach). The cost of observation also figures in
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more classical (nonsequential) statistical problems
such as the design of sample surveys and agricultural
experiments. Given some model of the costs of
observation, the DM chooses the kind and amount of
observation, optimally balancing the expected benefits
of additional observations against their costs. Such
decision problems fit naturally into the Savage Para-
digm, although taking account of these costs typically
complicates the analysis. For example, in the case of
clinical trials and similar problems, the calculation of
optimal policies quickly becomes computationally
intractable for many problems of realistic size.

Even after the information has been collected, it still
must be further processed to produce the required
decisions. This information-processing task may be
quite demanding. Examples include (a) computing a
weekly payroll; (b) scheduling many jobs on many
machines; (c) managing multiproduct inventories at
many locations; and (d) project selection and capital
budgeting in a large firm. Such tasks are typically too
complex to be handled by a single person, even with
the aid of modern computers. In such circumstances
the required processing of the information is de-
centralized among many persons in the organization.
The theoretical study of decentralized decision making
in an organization whose members have identical
goals was introduced by J. Marschak in the theory of
teams (Marschak and Radner 1972).

Computer science has provided a number of useful
models of information processing by both computers
and humans, and the decentralization of information
processing in human organizations finds its counter-
part in the theories of parallel and distributed process-
ing in computer systems. T. A. Marschak and C. B.
McGuire, in 1971, were probably the first to suggest
the use of a particular model of a computer (the finite
automaton) to represent the limited information-
processing capabilities of humans in economic organ-
izations. S. Reiter and K. R. Mount were early
contributors to this line of research, and went further
in analyzing economic organizations as networks of
computers. (For more recent developments, see
Radner 1997, Van Zandt 1999, and references therein.)
One conclusion from this literature is the iron law of
delay for networks of processors of bounded indi-
vidual capacity. This ‘law’ can be paraphrased in the
following way: as the size of the information-proc-
essing task increases, the minimum delay must also
increase unboundedly, even for efficient networks, and
even if the number of available processors is unlimited
(Radner 1997, and references therein).

Memory storage and communication among
humans and computers are also resource-using ac-
tivities, and cause further delays in decision making.
Both the storage and transmission of information and
the results of information processing seem to be
relatively ‘cheap’ compared with observation and
processing, at least if we consider computer-supported
activities. The proliferation of large data banks, and

the flood of junk mail, telephone calls, and e-mail, lend
support to this impression. It appears that today it is
much cheaper, in some sense, to send, receive, and
store memos and papers than it is to process them.
(For game-theoretic models of players with limited
memory, see Rubinstein 1998. For models of costly
communication in organizations, and some impli-
cations for organizational structure, see Marschak
and Reichelstein 1998.)

5. Truly Bounded Rationality

Many real decision problems present difficulties that
prevent the DM from usefully treating them as
optimization problems. Among these difficulties are:

inconsistency;
ambiguity;
vagueness;
unawareness; and
failure of logical omniscience.

As will be seen, these difficulties are somewhat related
and overlapping. In particular, it is difficult to dis-
tinguish in practice between ‘ambiguity’ and ‘vague-
ness.’

Regarding inconsistency, Savage (1954, p. 57)
wrote:

According to the personalistic view, the role of the math-
ematical theory of probability is to enable the person using it
to detect inconsistencies in his own real or envisaged behavior.
It is also understood that, having detected an inconsistency,
he will remove it. An inconsistency is typically removable in
many different ways, and the theory gives no guidance for
choosing.

Some ‘inconsistencies’ have been observed so fre-
quently, and have been so ‘appealing,’ that they have
been used to criticize the Savage axioms, and to form
a basis for a somewhat different set of axioms (e.g., the
so-called ‘Allais paradox’ and ‘Ellsberg paradox’
(see Utility and Subjecti�e Probability: Contemporary
Theories; Measurement Theory: Conjoint). In other
cases, it has been argued that inconsistent preferences
arise because theDMis forced to articulate preferences
about which they are not ‘sure.’ (This explanation is
related to ‘vagueness’; see below.) In particular, this
unsureness may be related to uncertainty about what
are the states of the world, a circumstance that can
lead to a preference for ‘flexibility’ (see below). Finally,
it has been observed in experiments that inconsist-
encies are more frequent the closer the alternatives
are in terms of preference. This observation led J.
Marschak and others to the elaboration of models of
‘stochastic choice’ (see Decision and Choice: Random
Utility Models of Choice and Response Time).

Allusion has already been made to the DM’s
possiblevaguenessabouthis�herpreferences.However,
he�she could also be vague about any aspect of his�her
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model of the decision problem, and is likely to be so
if the problem is at all complex. Vagueness can be
about the interpretation of a feature of the model, or
about its scope, or both. Unfortunately, there has been
little if any formal theorizing about problems of
vagueness.

At a moment of time, the DM may be unaware of
someaspectof theproblem: forexample,he�shemaybe
unaware of some future contingencies that could arise,
or of some actions that are available to him�her. This
phenomenon is particularly interesting if the DM is
aware of the possibility that he�she may be unaware of
something. For example, if the DM anticipates that in
thefuturehe�shewillbecomeawareofnewactsofwhich
he�she is currently unaware, then he�she may prefer
present actions that allow for ‘flexibility’ of choice in
the future. (This idea was formalized by T. C.
Koopmans, D. Kreps, and others: Kreps 1992. For
other theoretical treatments of unforeseen contin-
gencies, see Dekel et al. 1998.)

As a consequence of the preceding considerations,
decision theorists recognize that it is impossible for a
DM to construct a complete model of his�her ‘grand
decision problem,’ i.e., for their whole life! A common
research strategy is to suppose that the DM can break
up the grand decision problem into subproblems that
can be solved independently without (much) loss of
utility. Savage called this the device of constructing
‘small worlds,’ but showed that the conditions for this
to be done without loss are unrealistically stringent
(Savage 1954, pp. 82–91).

Finally, I come to what is perhaps the most difficult
aspect of truly bounded rationality. Up to this point it
has been assumed—if only implicitly—that the DM
has no difficulty performingmathematical calculations
or other logical operations. In particular, having
formulatedadecisionmodel,he�shewillbeable to infer
what it implies for their optimal strategy. As has
already been pointed out, this assumption is absurd,
even for small-world models, except for ‘Mickey
Mouse’ problems that are constructed for textbooks
and academic articles. The crux of the matter is that, in
any even semirealistic decision problem, the DM does
not know all of the rele�ant logical implications of what
he or she knows. This phenomenon is sometimes called
‘the failure of logical omniscience.’ Examples of the
failure of logical omniscience are:

(a) A DM who knows the axioms of arithmetic is
uncertain about whether they imply that ‘the 123rd
digit in the decimal expansion of pi is 3,’ unless he�she
have a long time to do the calculation and�or has a
powerful computer with the appropriate software.

(b) Twenty years ago, a DM who knew the axioms
of arithmetic was still uncertain about whether they
imply Fermat’s last theorem.

The following examples are closer to practical life,
and possibly more intimidating:

(a) Given all that a DM knows about the old and
new drugs for treating a particular disease, what is the

optimal policy for conducting clinical trials on the new
ones?

(b) Given all that is known, theoretically and
empirically, about business organizations in general,
and about telecommunications and AT&T in par-
ticular, should AT&T reorganize itself internally, and
if so, how?

Savage (1954, p. 7fn) commented on this class of
problems:

The assumption that a person’s behavior is logical is, of
course, far from vacuous. In particular, such a person cannot
be uncertain about decidable mathematical propositions.
This suggests, at least to me, that the tempting program
sketched by Polya of establishing a theory of the probability
of mathematical conjectures cannot be fully successful in that
it cannot lead to a truly formal theory …

(For further discussion and references, see Savage
1972.)

In spite of some interesting efforts (see, for example,
Lipman 1995), it does not appear that there has been
significant progress on what it means to be rational in
the face of this kind of uncertainty.

6. Satisficing, Heuristics, and Non-Bayesian
Learning

In view of the difficulties posed by the various
manifestations of ‘truly bounded rationality,’ a num-
ber of authors have proposed and studied behavior
that departs more or less radically from the Savage
Paradigm. These will be discussed under three head-
ings: satisficing, heuristics, and non-Bayesian learning.

The term ‘satisficing’ refers to behavior in which the
DM searches for an act that yields a ‘satisfactory,’ as
distinct from an optimal, level of expected utility. The
target, or ‘satisfactory,’ level of expected utility is
usually called the DM’s ‘aspiration level.’ In the
simplest model, the aspiration level is exogenous, i.e., a
given parameter of the model. More ambitious models
describe some process whereby the aspiration level is
determined within the model, and may change with
experience (Simon 1972, Radner 1975). Such aspir-
ation levels are called ‘endogenous.’ In some problems
even optimal behavior bears a resemblance to satisfic-
ing. One category is the ‘secretary problem’ (Radner
2000).

The term ‘heuristics’ refers generally to behavior
that follows certain rules that appear to produce
‘good’ or ‘satisfactory’ results most of the time in some
class of problems (Simon 1972, see Heuristics for
Decision and Choice). For example, the calculation of
an optimal schedule for assigning jobs to machines is
typically intractable if the numbers of jobs and
machines are even moderately large. Nevertheless,
human schedulers routinely construct ‘satisfactory’
schedules with such numbers, using various rules of
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thumb that have been developed with experience.
Heuristics are central to many artificial intelligence
applications. Satisficing plays an important role in
many heuristic methods, and also in the processes of
their modification.

The discussion of heuristics leads naturally to the
consideration of non-Bayesian learning (NBL). Bay-
esian learning (i.e., the application of the calculus of
conditional probability) is of course part of the Savage
Paradigm in any decision problem in which the DM
conditions his�her action on information about the
state of the world. Many standard statistical methods
use NBL. For example, the use of the sample mean to
estimate a population mean is typically inconsistent
with the Savage Paradigm (although in some cases the
latter can be shown to be a limit of Bayesian estimates,
as some parameter of the problem goes to infinity).
Most psychological theories of learning postulate
some form of NBL. A central question in the theory of
NBL is: under what conditions, if any, does a
particular NBL procedure converge asymptotically to
a procedure that is Savage-Paradigm optimal as the
DM’s experience increases? (Rustichini 1999).

Again, one must ask: is there any satisfactory
meaning to the term ‘rationality’ when used in the
phrase ‘bounded rationality’? The convergence of
NBL to optimal actions could provide one (weak)
meaning. Nevertheless, the problems raised by the
various phenomena grouped under ‘truly bounded
rationality’ may eventually lead students of decision
making to answer this last question in the negative.

Bibliographic Notes

Many important works on bounded rationality have
been omitted from the bibliography because of space
limitations. The references cited in the body of the
entry have historical interest, provide an overview of a
topic discussed, and�or provide a key to other litera-
ture. The following provide additional references and
information on the application of notions of bounded
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1974, Radner 2000, Shapira 1997, Van Zandt 1999.

See also: Bounded Rationality; Decision and Choice:
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R. Radner

Bounded Rationality

1. Introduction

The central ideas of bounded rationality (BR) are
straightforward. First, humans are cognitively cons-
trained in various ways, e.g., we can consciously attend
to only one choice problem at a time. Second, these
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