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1. Introduction

The problem of characterizing maximal points of convex sets often arises in the
study of admissible statistical decision procedures, of efficient allocation of eco-
nomic resources (cf. Koopmans, [4], chapter 1, and references given there), and
of mathematical programming (cf. Arrow, Hurwicz, and Uzawa, [2]).

Let €' be a eonvex set in a finite dimensional veetor space, partially ordered
coordinate-wise (that is, for z = (2) and 2 = (z:), x > 2 means that z; > 2, for
every coordinate 7). Let D be the set of all strictly positive vectors (namely
vectors all of whose coordinates are strictly positive); further, let B be the set of
vectors in ' that maximize J7, ya; for some veetor y = (y:) in D. Tt is obvious
that every vector in B is maximal in € with respeet to the partial ordering <.
One can also show that every vector that is maximal in C also maximizes 3_; vz
on € for some nonnegative vector y. Arrow, Barankin, and Blackwell {1] showed
further that every veetor maximal in C is in the (topological) closure of B. They
also gave an example (in 3 dimensions) in which a vector in the closure of B (and
in €) is not maximal in C.

The purpose of this note is to generalize the Arrow-Barankin-Blackwell result
to the case of £, the space of bounded sequences topologized by the sup norm.
In this generalization, however, the set € is assumed to be compact.

2. The theorem

Let X denote £., that is, the Banach space of all bounded sequences of real
rumbers, with the sup norm topology, where the norm of z = (2;) in X is

2.1) llel] = sup il

Forz in X, I shall say that z > 0 2, > Oforevery 4, and that z > 0 if 2 > 0
but z # 0. Also, for 2! = () and 2* = (2?) in X, I shall say that 2! > 22 if
7} — 2% > 0 (and so on for 2! > z%).

A point £ in a subset € of X will be called mazimal in € if $here is no z in ¢ for
which z > £

This research was supported in part by the Office of Naval Research under Contract ONR

222(77) with the University of California, and by a grant to the University from the National
Seience Foundation.

351




352 FIFTH BERKELEY SYMPOSIUM: RADNER

Let Y denote the set of all continuous linear funetions on X. For any y in Y,
Ishallsay that y > 0 y(z) > Oforallz > 0 in X,and that y >0 y(x) > 0
for all z > 0. Define

S={pyel lyl=1y=>0}
St={y:y 8, y>0.

{Recall that for y in ¥, [lyl} = sup {Jy(=)|: 2 € X. ||2|| = 1}). It shall be under-
stood that ¥ has the weak* topology, and that the Cartesian product X X ¥
has the corresponding product topology.

If § >0, and £ maximizes §(z) in a subset €' of X, then £ is ¢learly maximal
in €. On the other hand, if # is maximal in a conver subset ¢ of X , then there is
2§ 2 0in Y such that £ maximizes §(z) in €. (To see this, consider the non-
negative orthant of X; this is a convex set with a nonempty interior, and its
interior is disjoint from the convex set of all points (z #) for which z is in €.
The hyperplane that separates these two convex sets corresponds to the required
7.) It is easy to see that there can be maximal points in & eonvex set ' that do not
maximize any strictly positive continuous linear funetion on €. The following
theorem gives information about such points in the case in which € is cornpact.

Tueorem. If £ s mazimal in a compact convex subset C of X, then there is q
i i 8 such that

(1) & mazimizes §(x) on C, and

(@) (&, 7) s the limit of a generalized sequence (@™ y™) of points in O X S+ such
that for each m, x™ is mazimal in ¢ and mozimizes y»(z) on C.

Lmvuma 1. Define f(z, y) = y(2); then f is continuous on X X §.

Proor. Foranyz, Zin Xandy, 7in S,

L1z — 2 4+ @ — 7@
Hence [iz — 2]l < ¢/2 and |y(z) — @] < /2 imply |flz, v) — f5, )| < ¢

which completes the proof of the lemma.

Lemma 2. For any p > 0in ¥, define
(2.4) S={y:ye8,y=p}
then for every p 3> 01in ¥, 8, is convex and compaci.

Proor. The set S, is immediately seen o be convex, as the intersection of
two convex sets, Sand {y: y € ¥. y > p}. Note that the latter set is also closed.
The set S can also be characterized as {y:y € 7, y = 0, yle} = 1}, where
e= (1,1, .-, ete. ), and is therefore clearly closed. Thus & is a closed subseb
of the unit sphere in ¥, which, by Alaoglu’s theorem, is compact in the weak*
topology; hence, S is compact, and therefore also S,

Lesoas 8. If y(2) 2 0 for every y in 8*, then % > 0.

Proor. Suppose that T = (z,) and that for some k, % < 0. Let
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let g; (§ # k) be any sequence of positive numbers such that
(2.6) E: g =1— gy
ik

and define g(z) = >_; qix.. It is easy to verify that ¢ 3> 0, {lgll = 1, and ¢(z) < 0,
which completes the proof of the lemma.

Proor or HE THEOREM. The point £ is maximal in the compact convex set
C if and only if 0 is maximal in the compact convex set ¢ — {£}; hence, without
loss of generality we may take £ = 0,

By lemmas 1 and 2, for every p>>0 in ¥, the hypotheses of a minimax
theorem of Ky Fan (ef. [3], p. 121) are satisfied for the function f defined on
C X S, Hence, there exist z# in ¢ and y* in S, such that, for all 2 in C and y
in 8,

2.7) y@r) 2 yr(@?) z y*(@).
In particular, since 0 is in C,
(2.8) yr(x?) = 0.

Let D be the set of all p>3> 01in ¥. The family % = {(z?, y*): p € D} is a net if
D is directed by <. It was noted in the proof of lemma 2 that § is compact;
hence, R has a cluster point, say (Z, §), in € X 8, and a subnet, say 9, of N
converges to (Z, §). Note that for every (v, y?) in 9%, inequality (2.7) implies
that 27 maximizes y2(r) on €, and therefore (since y* 3> 0), 2* is maximal in C,

I now show that ¥ = 0. For every y in St and p in ¥ such that 0 < p < y, we
have y in 8,, and hence, by (2.7) and (2.8), y(z?} > 0; henee, by continuity,
y(Z) = 0. In other words, for every y in 8% y(z} > 0. It follows by lemma 3
that £ > 0. Since 0 is maximal in C, T = 0.

To complete the proof, it saffices to show that the maxirum of §(z) on Cis 0.
From (2.7), for every p>»> 0in ¥ and every z in C,

(2.9) - e —2?), 7] <0

Hence, by the continuity of f (lemma 1), f{z, 7) < 0.

Every continuous linear function y on X can be represented as an integral with
respect t0 a finitely additive, finite, measure on the integers. In partieular, it
ean be represented in the form

(2.10) ylz) = i;@ yit: + Valz),

where ¥ i< ly: < =, and y, is a continuous linear function such that y.(z) = 0
for every x with only a finite number of nonzero coordinates. From this repre-
sentation, it is clear that y 3> 0 if and only if, in {2.10), y: > C for every ¢ < «.

It is an open question whether the theorem can be sharpened by replacing the
set St by the set of continuous linear funcéions of the form (2.10) with y > 0,
Yo = 0, and 2:cw y: = 1. It is also not known whether the condition that € be
compact can be dispensed with.
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